Supporting Information-

Investigation of Binary Lipid Mixtures of a Triple-Chained

Cationic Lipid and Phospholipids Suitable for Lipofection

Christian Wölk,*,†,# Christopher Janich,* Annette Meister,† Simon Drescher,* Andreas

Langner, # Gerald Brezesinski, § Udo Bakowsky†

† Philipps University Marburg, Department of Pharmaceutical Technology and

Biopharmaceutics, Ketzerbach 63, 35037 Marburg, Germany

Martin Luther University (MLU) Halle-Wittenberg, Institute of Pharmacy, Wolfgang-

Langenbeck-Str. 4, 06120 Halle (Saale), Germany

MLU Halle-Wittenberg, Center for Structure and Dynamics of Proteins (MZP),

Weinbergweg 22, 06120 Halle (Saale), Germany

§ Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam,

Germany

Corresponding Author:

*(C.W.)

Tel: +49-345-55-25078.

Fax: +49-345-55-27018.

Email: christian.woelk@pharmazie.uni-halle.de.

1

Content

1. TEM images of different lipid mixtures	p. 3
2. Cell Culture Screening	p. 18
3. Correlation Functions of DLS Measurements of Lipoplexes	p. 21

1. TEM images of different lipid mixtures:

Figure S1. **DiTT4**/DOPE mixture $X_{DiTT4} = 0.2$.

Figure S2. **DiTT4**/DOPE mixture $X_{DiTT4} = 0.4$.

Figure S3. **DiTT4**/DOPE mixture $X_{DiTT4} = 0.5$.

Figure S4. **DiTT4**/DOPE mixture $X_{DiTT4} = 0.6$.

Figure S5. DiTT4/DOPE mixture $X_{DiTT4} = 0.8$.

Figure S6. **DiTT4**/DMPE mixture $X_{DiTT4} = 0.2$.

Figure S7. **DiTT4**/DMPE mixture $X_{DiTT4} = 0.4$.

Figure S8. DiTT4/DMPE mixture $X_{DiTT4} = 0.5$.

Figure S9. **DiTT4**/DMPE mixture $X_{DiTT4} = 0.6$.

Figure S10. DiTT4/DMPE mixture $X_{\text{DiTT4}} = 0.8$.

Figure S11. DiTT4/DMPC mixture $X_{DiTT4} = 0.2$.

Figure S12. **DiTT4**/DMPC mixture $X_{DiTT4} = 0.4$.

Figure S13. **DiTT4**/DMPC mixture $X_{DiTT4} = 0.5$. The arrows indicate disks observed edge-on (black arrows, disc oriented perpendicular to the surface of the grid) and face-on (blue arrows, disc oriented parallel to the surface of the grid), respectively, an observation indicating the presence of disc-like structures.

Figure S14. **DiTT4**/DMPC mixture $X_{DiTT4} = 0.6$. The arrows indicate disks observed edge-on (black arrows, disc oriented perpendicular to the surface of the grid) and face-on (blue arrows, disc oriented parallel to the surface of the grid), respectively, an observation indicating the presence of disc-like structures. The red arrows indicate stacks of discs in the edge-on view. The arrangement to stacks is also typical for discs in TEM.

Figure S15. **DiTT4**/DMPC mixture $X_{DiTT4} = 0.8$. The arrows indicate disks observed edge-on (black arrows, disc oriented perpendicular to the surface of the grid) and face-on (blue arrows, disc oriented parallel to the surface of the grid), respectively, an observation indicating the presence of disc-like structures. The red arrows indicate stacks of discs in the edge-on view. The arrangement to stacks is also typical for discs in TEM.

2. Cell Culture Screening:

Figure S16. Transfection efficiency (TE) of lipoplexes at different N/P-ratios and the corresponding cell viability 24 h after the transfection of A549 cells in absence of serum during the incubation time of the lipoplexes. Following lipid mixtures were used: **DiTT4**/DOPE (A), **DiTT4**/DMPE (B) and **DiTT4**/DMPC (C) with different molar fractions of **DiTT4**.

Figure S17. Transfection efficiency (TE) of lipoplexes at different N/P-ratios and the corresponding cell viability 24 h after the transfection of A549 cells in presence of 10% serum during the incubation time of the lipoplexes. Following lipid mixtures were used: **DiTT4**/DOPE (A), **DiTT4**/DMPE (B) and **DiTT4**/DMPC (C) with different molar fractions of **DiTT4**.

Figure S18. Transfection efficiency and the corresponding cell viability of **DiTT4**/DMPC ($X_{DiTT4} = 0.2$) lipoplexes as a function of the N/P-ratio 24 h after the transfection of HeLa and LLC-PK1 cells in presence of 10% serum during the incubation time of the lipoplexes. LF 2000 is the standard Lipofectamine $2000^{\$}$ in the most effective DNA/Lipofectamine $2000^{\$}$ ratio.

3. Correlation Functions of DLS Measurements of Lipoplexes:

Figure S19. Correlation functions of lipoplex dispersions in HEPES buffer pH 7.3 determined by DLS. The used lipid composition was **DiTT4**/DOPE with different x_{DiTT4} values which were complexed with pDNA at different N/P-ratios (see legend).

Figure S20. Correlation functions of lipoplex dispersions in HEPES buffer pH 7.3 determined by DLS. The used lipid composition was **DiTT4**/DMPE with different x_{DiTT4} values which were complexed with pDNA at different N/P-ratios (see legend).

Figure S21. Correlation functions of lipoplex dispersions in HEPES buffer pH 7.3 determined by DLS. The used lipid composition was **DiTT4**/DMPC with different x_{DiTT4} values which were complexed with pDNA at different N/P-ratios (see legend).