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Abstract
Instrumental music and language are both syntactic systems, employing complex, hierar-

chically-structured sequences built using implicit structural norms. This organization allows

listeners to understand the role of individual words or tones in the context of an unfolding

sentence or melody. Previous studies suggest that the brain mechanisms of syntactic pro-

cessing may be partly shared between music and language. However, functional neuroim-

aging evidence for anatomical overlap of brain activity involved in linguistic and musical

syntactic processing has been lacking. In the present study we used functional magnetic

resonance imaging (fMRI) in conjunction with an interference paradigm based on sung sen-

tences. We show that the processing demands of musical syntax (harmony) and language

syntax interact in Broca’s area in the left inferior frontal gyrus (without leading to music and

language main effects). A language main effect in Broca’s area only emerged in the com-

plex music harmony condition, suggesting that (with our stimuli and tasks) a language effect

only becomes visible under conditions of increased demands on shared neural resources.

In contrast to previous studies, our design allows us to rule out that the observed neural

interaction is due to: (1) general attention mechanisms, as a psychoacoustic auditory anom-

aly behaved unlike the harmonic manipulation, (2) error processing, as the language and

the music stimuli contained no structural errors. The current results thus suggest that two

different cognitive domains—music and language—might draw on the same high level syn-

tactic integration resources in Broca’s area.

Introduction
Music and language are uniquely human abilities which, despite their obvious differences,
appear to share more than just a common population of users. Specifically, it has been pro-
posed that one overlapping aspect is found in syntactic processing [1]. Syntactic processing—
whether in language or in music—involves the integration of discrete elements (e.g., words,
tones/chords) into higher order structures (e.g., sentences in language and harmonic sequences

PLOSONE | DOI:10.1371/journal.pone.0141069 November 4, 2015 1 / 16

a11111

OPEN ACCESS

Citation: Kunert R, Willems RM, Casasanto D, Patel
AD, Hagoort P (2015) Music and Language Syntax
Interact in Broca’s Area: An fMRI Study. PLoS ONE
10(11): e0141069. doi:10.1371/journal.pone.0141069

Editor: Robert C Berwick, Massachusetts Institute of
Technology, UNITED STATES

Received: September 8, 2014

Accepted: September 17, 2015

Published: November 4, 2015

Copyright: © 2015 Kunert et al. This is an open
access article distributed under the terms of the
Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any
medium, provided the original author and source are
credited.

Data Availability Statement: All data files are
available from the data archive at the Max Planck
Institute for Psycholinguistics, Nijmegen, The
Netherlands (URL: https://corpus1.mpi.nl) by
following this path: MPI corpora > Neurobiology of
Language > 3011048.01 Syntactic processing
mechanisms in music and language.

Funding: This study was financially supported by a
Dutch science organization (Nederlandse Organisatie
voor Wetenschappelijk Onderzoek: www.nwo.nl/)
Spinoza Prize awarded to PH and a PhD grant from
the Max Planck Society (www.mpg.de) to RK. The
funders had no role in study design, data collection

http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0141069&domain=pdf
http://creativecommons.org/licenses/by/4.0/
https://corpus1.mpi.nl
http://www.nwo.nl/
http://www.mpg.de


in music) according to a set of combinatorial principles that are implicitly understood by mem-
bers of a culture [1]. Using functional magnetic resonance imaging (fMRI), the present study
aimed to find neural evidence for shared syntactic integration resources recruited by both
music and language.

In the present study we defined music syntax processing as harmonic structure processing,
in line with many previous studies (e.g., [2,3]). Harmony in Western tonal music refers to the
organization of pitches in terms of scales, chords, and keys. The basic ‘pitch material’ of West-
ern tonal/harmonic music (henceforth, tonal music) consists of 12 pitches per octave, each rep-
resenting one of 12 octave-equivalent ‘pitch classes’ (e.g., all the C-notes on a piano keyboard).
When playing in a musical ‘key’, a subset of 7 out of 12 pitch classes (in-key tones) is empha-
sized. Therefore, once a listener has derived a sense of key, e.g., C-major, from a musical piece
(for a computational model see [4]) she or he expects certain tones—for example in-key tones
such as C—more strongly than others—out-of-key tones such as C# [5,6]. Thus, in tonal
music, incoming tones are evaluated in terms of a harmonic framework into which they are
continuously integrated.

Do musical and linguistic syntactic processing overlap in the brain? On the one hand, it is
known that sensitivity to linguistic syntax and to tonal harmony can dissociate after brain dam-
age, suggesting independence of these two domains (e.g., [7]). On the other hand, there is evi-
dence that linguistic syntactic processing and tonal harmonic processing involve similar brain
responses [2,8–10](for a review see [11]). To resolve this paradox, the ‘Shared syntactic integra-
tion resource hypothesis’ or SSIRH [1] posited a distinction between domain-specific represen-
tations in long-term memory (e.g., stored knowledge of words and their syntactic features, and
of chords and their harmonic features) and shared neural resources which act upon these rep-
resentations as part of structural processing. This “dual-system”model considers syntactic pro-
cessing to involve the interaction (via long-distance neural connections) of “resource
networks” (hypothesized in frontal brain regions) and “representation networks” (hypothe-
sized in temporal brain regions). Patel [1] posited that resource networks are recruited when
structural integration of incoming elements in a sequence is costly; that is, when it involves the
rapid and selective activation of low-activation items in representation networks. Cognitive
theories of syntactic processing in language (dependency locality theory; [12]) and of tonal har-
monic processing in music (tonal pitch space theory; [13]) were used to specify the notion of
processing cost. In both models, incoming elements incur large processing (activation) costs
when they need to be mentally connected to existing elements from which they are “distant” in
a cognitive sense (e.g., in music, distant in tonal pitch space rather than in terms of physical
distance in Hz; in language, distant in terms of the number of intervening words between a syn-
tactic head and the to-be-integrated word). According to the SSIRH, in such circumstances,
activity in frontal brain regions increases in order to rapidly activate specific low-activation
representations in temporal regions via reentrant connections. Put another way, music and lan-
guage share limited neural resources in frontal brain regions for the activation of stored struc-
tural information in temporal brain regions (for a similar model specific to language see
[14,15]).

The SSIRH predicts that since neural resources for structural integration are limited, simul-
taneous costly integrations in harmony and language should lead to interference. Testing this
prediction requires experiments which present music and language simultaneously, and which
align points of difficult structural integration in the two domains. This prediction has been sup-
ported in several studies which presented chord sequences and sentences (two using ERPs
[16,17] and two using behavioral methods [18,19]) or melodies and sentences (one using ERPs
[20] and one using behavioral methods [3]), see [21] for an overview. For example, the behav-
ioral study of Fedorenko et al. [3] (which informed the design of the current neural study)
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manipulated linguistic syntactic integration difficulty via the distance between dependent
words. These researchers manipulated the structure of embedded relative clauses as shown
below (italicized):

(a). The boy that helped the girl got an “A” on the test.

(b). The boy that the girl helped got an “A” on the test.

The sentences were sung to melodies (one note per word) which did or did not contain an out-
of-key note on the last word of the relative clause: ‘girl’ in (a), ‘helped’ in (b). According to
dependency locality theory [12], this word is associated with a distant structural integration in
(b) (between ‘helped’ and ‘that’) but not in (a). A control condition was included for an atten-
tion-getting but non-harmonically deviant musical event: a 10 dB increase in volume on the
last word of the relative clause. After each sentence, participants were asked a comprehension
question, and accuracy was assumed to reflect processing difficulty. The results revealed an
interaction between musical and linguistic processing: comprehension accuracy was lower for
sentences with distant versus local syntactic integrations (as expected), but crucially, this differ-
ence was larger when melodies contained an out-of-key note. The control condition (loud
note) did not produce this effect: the difference between the two sentence types was of the same
size as that in the conditions which did not contain an out-of-key note.

However, the brain areas underlying such interaction effects are unclear. Overall, a great
number of brain lesion, electrophysiological and hemodynamic brain imaging studies converge
in highlighting one key region for syntax processing in either music or language when studied
separately: Broca’s area [9,22–26]. Thus this region may be the locus of the interaction effect,
either in the left hemisphere and/or in the right hemisphere homologue of this area
[9,22,24,27,28].

In searching for interactions between language and music in Broca’s area, the current study
was mindful of a confound identified by Rogalsky et al. [29]. Many previous experiments using
brain measures have operationalized syntactically challenging processing in language as syntac-
tic violation processing [16,17,20,30]. Therefore, general error processing may be shared
between music and language, rather than syntactic processing. We used a language manipula-
tion and a music manipulation which did not involve syntactic violations.

Motivated by the hypothesis that Broca’s area was a neural site of interaction between lin-
guistic and musical syntactic processing, the present study specifically focused on the activation
pattern of Broca’s area and its right hemisphere homologue in response to structural manipula-
tions of music and language. Participants heard songs containing either a syntactically easy
construction containing only a local dependency (SR: subject-extracted relative clause) or a dif-
ficult construction containing a non-local dependency (OR: object-extracted relative clause; see
[31]). Sentences were sung a cappella and the critical word which disambiguated between these
two linguistic options was either sung on a regular tone (in-key tone which is easy to integrate
in the prevailing harmonic context) or on an irregular tone (out-of-key tone which is not easy
to integrate harmonically). Thus, the time point of integration difficulty in music was aligned
with the one in language.

Note that neither integration difficulty involved errors. Both types of sentences used in the
current study were fully grammatical, and differed in syntactic complexity. Similarly, the use of
an out-of-key tone in some of the musical melodies increased their complexity in terms of
tonal-harmonic structure [32], but such tones would not be considered ‘errors’ because they
are common stylistic elements in tonal melodies. For example, the melodies of Schubert’s lieder
often contain out-of-key notes, which are considered to play an important role in the pattern
of tension and resolution within the melodies [33].
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As noted above, a previous behavioral study in English using a similar design showed an
interaction between linguistic and musical conditions in terms of sentence comprehension [3].
As in that study, we included a control condition involving a non-syntactic auditory anomaly
—presenting the critical tone in-key but 10dB SPL louder—in order to rule out the possibility
that any acoustic irregularity would elicit the predicted interaction. (This loudness increment
was identical to that used in [3].)

It was hypothesized that Broca’s area would be sensitive to the increased processing diffi-
culty of a concurrent syntactic integration challenge in both music and language. Furthermore,
this brain area is not predicted to be sensitive to the interaction between language syntax and a
perceptually salient loudness increase at the critical sentence position, as the latter is not syn-
tactic in nature but instead merely acoustic.

Materials and Methods

Ethics Statement
Written informed consent was obtained from all participants prior to measurement and the
study received ethical approval from the local reviewing committee ‘‘CMO Arnhem Nijmegen”
(CMO no 2001/095 and amendment ‘‘Imaging Human Cognition” 2006, 2008), in accordance
with the Research involving human subjects Act, following the principles of the Declaration of
Helsinki.

Participants
19 healthy participants were included in the final analysis (mean age = 22 years, range 18–27).
No subject had a known history of neurological, language related or hearing problems and all
had normal or corrected-to-normal vision. Five additional participants were excluded due to
technical difficulties or excessive movement. The remaining 7 men and 12 women were all
right handed, native speakers of Dutch with little formal musical training (mean training = 1.9
years, SD = 2.3). All were naïve as to the purpose of the study and were paid for their
participation.

Stimuli
The stimuli were constructed in a fully factorial design. The language dimension had two levels:
either a stimulus sentence included a subject-extracted relative clause (SR) or an object-
extracted relative clause (OR), as shown in (1). The music dimension had three levels: a melody
included either only in-key tones (in-key), or only in-key tones except for one tone which was
out-of-key (out-of-key), or only in-key tones with one tone being sung unusually loudly (audi-
tory anomaly). This resulted in 120 stimulus sextuplets: 120 sentences in two linguistic versions
and three musical versions, totaling 720 stimuli (120 × 2 × 3). Example stimuli can be accessed
online: https://sites.google.com/site/rikunert/CV/example_stimuli_kunert_willems_
casasanto_patel_hagoort.

(1)

(1a). Subject-extracted (SR)
De atleet die de minnaressen opmerkte keek uit het raam.
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Literal: The athletesingular that the mistressesplural noticedsingular lookedsingular out of the
window.

English translation: The athlete that noticed the mistresses looked out of the window.

(1b). Object-extracted (OR)
De atleten die de minnares opmerkte keken uit het raam.

Literal: The athletesplural that the mistresssingular noticedsingular lookedplural out of the window.

English translation: The athletes that the mistress noticed looked out of the window.

The language materials consisted of 120 Dutch sentences each in two versions, as can be
seen in (1): the critical relative clause verb (‘opmerkte’) agreed in number either with the matrix
clause noun phrase (‘De atleet’) in the subject-extracted version or with the relative clause
noun phrase (‘de minnares’) in the object-extracted version. By ensuring that these two noun
phrases differed in grammatical number we forced the listener to disambiguate the sentence
and interpret it as one of the two syntactic versions. Disambiguation was only possible at the
moment of listening to the relative clause verb.

Sentences were on average 10 (standard deviation = 1.3) words long with the disambiguat-
ing relative clause verb always being the sixth word. The final syllable of the relative clause,
which distinguishes between the SR and OR versions, was sung on any beat within a 4/4 bar
(11.6% on the first beat, 31.7% on the second, 24.2% on the third, 6.7% on the final beat, the
remainder on off-beat notes). The matrix subject was plural in half of the SR sentences, i.e. the
grammatical number of the first noun phrase was not indicative of the linguistic condition.

In order to ensure that participants would process the full sentences, a linguistic task
checked language comprehension by use of prompts relating to some part of the stimulus sen-
tence (e.g., ‘Iemand merkte de atleet op.’ Somebody noticed the athlete.). Prompts required a
true/false response. Half the comprehension prompts checked for matrix clause understanding.
The other half focused on the relative clause (as in the aforementioned example). In order to
avoid task-specific strategies we also created (1) more challenging passive voice prompts and
(2) prompts with ‘someone’ (‘iemand’) as a singular subject possibly representing either a plu-
ral or a singular noun phrase in the song (see example prompt). Within each comprehension
prompt version half the prompts matched the content of the songs.

Each of the two sentence stimulus versions was combined with three versions of a melody
(in-key, out-of-key, auditory anomaly). All melodies were composed specifically for this study
by a professional composer (Jason Rosenberg, www.jasonrosenberg.org). The three music ver-
sions of each of the 120 melodies differed only in terms of the tone sung on the stressed syllable
of the disambiguating relative clause verb in terms of pitch (in-key versus out-of-key) or loud-
ness (in-key normal volume versus in-key auditory anomaly [loud volume]), see Fig 1. The in-
key and auditory anomaly conditions did not differ in pitch. Melodies were rhythmically
diverse and on average 10.2 seconds long (standard deviation = 1.3) at a tempo of 70 beats per
minute, i.e. a quarter note corresponded to a nominal duration of 857 ms. The beginning of
each melody established a strong sense of key. The three music conditions were in the same
key and differed only by one note. This critical tone coincided with the stressed syllable of the
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relative clause verb, and was either part of the established key (in-key normal volume, auditory
anomaly [in-key but loud volume]) or not (out-of-key normal volume). The melodies were
composed in such a way that the location of the out-of-key note was musically plausible from
the standpoint of harmonic tension-resolution patterns [33]. Rhythmically, the critical note
was always a quarter note in length, and occurred on various beats (44.2% on the first beat,
36.7% on the second, 6.7% on the third, 12.5% on the fourth beat). Each of the twelve major
keys was used 10 times (10 × 12 = 120 sets). Melodies were in the baritone range.

After stimulus design, the 120 (sets) × 2 (SR and OR versions) × 2 (in-key and out-of-key
versions) sung sentences were recorded in a soundproof room at the Max Planck Institute for
Psycholinguistics in Nijmegen by a 34 year old male Dutch baritone. The singer was an ama-
teur (Jan-Mathijs Schoffelen) who had been trained for 16 years in total (piano and voice).
First, each of the 480 songs (four per set) was recorded separately in each of the linguistic and
harmonic conditions. Afterwards, all recordings were normalized for loudness level. Next,
steps were taken to control for acoustic cues prior to the critical verb. Specifically, we cut out
the verb recording of one harmonic version and pasted it into the audio stream of the other.
This created two harmonic versions of each sentence with identical recordings except for the
critical verb. After this splicing step the new song signal was adjusted in order to avoid the
audibility of the verb recording exchange. To exclude any possible systematic influence of this
processing step it was ensured that an equal number (exactly half) of in-key and out-of-key
recordings were left unchanged. Next, the auditory anomaly condition of each sentence was
created. Of the resulting four files the in-key versions were chosen and the critical tone’s loud-
ness was increased by 10 dB following [3]. All audio manipulations were done with the pro-
gram Audacity version 1.3 (audacity.sourceforge.net).

Procedure
Of each of the 120 stimulus sextuplets, each participant heard both linguistic versions, i.e. a
total of 240 trials (120 × 2). However, each linguistic version of a stimulus sextuplet was only

Fig 1. Example stimuli. The top melody shows the in-key condition in which no note is out-of-key (all notes are in G-major). The middle melody shows the
out-of-key condition in which only the tone coinciding with the stressed syllable of the relative clause verb (circled) is out-of-key. The bottommelody shows
the auditory anomaly condition in which all notes are in G-major but the critical tone is 10dB louder (boxed). The lowest pitch used across all melodies was
F#2 (92.5 Hz) and the highest was E4 (329.6 Hz). The Dutch sentence in the figure means: The athletes that the mistress noticed looked out of the window.

doi:10.1371/journal.pone.0141069.g001
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presented in one music condition. Still, overall, each participant heard an equal number of tri-
als in each music condition. Following an event-related design, the stimuli were ordered
pseudo-randomly with the following constraints: (1) no more than three consecutive trials
with the same prompt condition (the prompt matches the sentence or not), (2) no more than
three consecutive trials of the same music-language condition, and (3) at least ten trials
between any stimulus set’s SR and OR versions. For every three participants a new pseudo-
randomized stimulus order was used. Within each such participant-triplet, for each trial the
musical condition was counterbalanced. The stimuli were presented to the participants using
MR-compatible non-magnetic earphones (Sensimetrics, model S14) which also dampened
scanner noise. Volume was set at a subject-specific, comfortable level before the start of the
experiment.

Participants were asked to concentrate on the linguistic dimension of the sung sentences. As
in most previous studies examining interactions between linguistic and musical syntactic pro-
cessing (e.g., [16,18]), there was no musical task. That is, we relied on the musical structure
being processed implicitly. The experiment was organized as follows. Four example trials pre-
ceded the experimental session. Experimental trials were divided into eight blocks of 30 sung
sentences. After four blocks participants could rest for approximately ten minutes while an
anatomical MRI scan was acquired.

Each trial was organized as follows. After a stimulus was played a comprehension prompt
was displayed visually through a projector from outside the scanner room. Subjects saw it
through a nonmagnetic mirror attached to the head-coil. Within 10 seconds they had to press
a button to indicate whether the prompt was true according to the preceding sung sentence or
not. Except for the example trials, no feedback was given. Stimulus onset was jittered with
respect to volume acquisition by randomly varying the intertrial interval (time between
response to the previous trial’s prompt and the song-onset of the next trial) between 3.5 and
6 seconds. During the intertrial interval as well as during the song presentation a fixation cross
was displayed centrally. An experimental session lasted approximately 100 minutes.

fMRI Data Acquisition
The experiment was carried out in a 1.5 Tesla MRI scanner (Siemens Avanto, Siemens Medical
Systems, Erlangen, Germany). Thirty-three axial slices were acquired (3.5 mm × 3.5 mm in-
plane resolution, 3 mm slice thickness, 0.51 mm slice spacing, field of view [FOV] = 224 mm)
covering the whole brain. We used a single-shot echo-planar imaging (EPI) sequence (repeti-
tion time [TR] = 2140 ms, echo time [TE] = 40 ms, 90° flip-angle [FA]). In the middle of the
scanning session a 3-D T1 scan was acquired (176 slices, voxel size = 1 mm × 1 mm × 1 mm,
TR = 2250 ms, TE = 2.95 ms, FA = 15°, sagittal orientation).

fMRI Data Analysis
Analysis was carried out using SPM8 (www.fil.ion.ucl.ac.uk/spm). The first five volumes of
each functional run were discarded. In order to compensate for small head movements, images
were realigned to the first image by means of rigid body registration. Slice timing correction
was applied by means of linear interpolation to the onset of the first slice. All functional data-
sets were individually co-registered using the participants’ individual high-resolution anatomi-
cal images. Afterwards, this co-registered EPI dataset was normalized to Montreal
Neurological Institute (MNI) space. The time series were high pass filtered with a cut-off fre-
quency of 128 seconds and images were spatially smoothed using an 8mm FWHMGaussian
kernel.
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The statistical evaluation was performed using the general linear model. The model was
generated with a synthetic hemodynamic response function modeled on the manipulated song
region, i.e. the start of the critical verb until the end of the song. We separately modeled the six
conditions of interest and included two nuisance regressors (dummy variables for run1 and
run2) to capture the effect of functional scanning run as well as 18 nuisance regressors derived
from the motion correction algorithm. These modeled variability in all three rotations and all
three translations due to linear motion, quadratic motion and the first derivative of linear
motion (6 motion types × 3 quantifications = 18 regressors; see [34]). Statistical analysis was
performed by computing contrast maps for each condition for each participant separately
including all of his or her trials (independent of behavioral performance), and the subsequent
group analysis involved calculating interaction and main effects in a full factorial ANOVA
with factors language (SR, OR) and music (in-key, out-of-key, auditory anomaly). In this way
participant was treated as a random factor (‘random effect analysis’). The multiple compari-
sons problem ensuing from this massive univariate approach was dealt with by applying a
topological feature based false discovery rate correction at the .05 level (peak-based FDR)
[35,36].

The region definitions used in the structural region of interest (ROI) analysis we derived
from the Automated Anatomical Labeling library [37]. The chosen ROIs were those where
overlapping activation sites between music harmony and language syntax had been reported
(see Introduction): bilateral inferior frontal gyrus (IFG) pars opercularis and pars triangularis,
i.e. Broca’s area and its right hemisphere homologue. The Marsbar ROI toolbox version 0.42
[38] was used to derive average contrast values across the 3567 and 3550 voxels of size 2 × 2 ×
2 mm3, in the left and right structural ROIs respectively, based on data generated during the
first level analysis with SPM8. Please note that we are aware of the literature describing struc-
tural and functional differences between different parts of Broca’s area (e.g., [23]). Nonetheless,
we only defined a single Broca’s area ROI for three reasons: 1) Patel’s SSIRH does not specify
which part of Broca’s area should show the predicted interaction between music and language,
2) previous studies which investigated music and language separately found syntax-processing
related activations in both pars opercularis (music: [24]; language: [59]) and pars triangularis
(music: [9,24]; language: [60]), 3) we aimed to reduce the number of ROIs in order to have suf-
ficient statistical power after controlling for the number of comparisons (Bonferroni method),
i.e. the number of structural ROIs.

The ROI data were not normally distributed. Using the SPSS implementation of the
Kolmogorov-Smirnov test to check the distributions of OR-SR difference scores within each
music condition and ROI revealed that two distributions were significantly different from nor-
mal [left and right hemisphere, out-of-key: Ds(19) > .19, ps< .05]. In order to maximize power,
these p-values of the normality test are not corrected for multiple comparisons. In order to
account for the non-normal data distribution, inferential analyses of the ROI data were carried
out using random permutation based tests which require no parametric assumptions. In terms
of the dependent t-tests this amounts to creating a null hypothesis t-distribution by randomly
applying condition labels to data points within each participant 50,000 times and testing the
effect of interest on the randomized data each time. The proportion of randomly obtained t-
values equal or greater than the true t-value represents the likelihood of obtaining the t-statistic
under the null hypothesis, i.e. the p-value. Similarly, the random permutation based ANOVA
randomized labels within each participant but otherwise in an unrestricted way across experi-
mental factors [39]. ANOVA p-values were Bonferroni corrected for two ROIs and within each
ROI t-test p-values were corrected for three comparisons. Only the corrected p-values are
reported.
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It has recently been argued that doing region of interest analysis with the same ROI across
the whole group of participants is a statistically insensitive procedure [40]. Therefore we com-
plemented our previous ROI analysis with a functional ROI (fROI) analysis using the spm_ss
toolbox [40]. For each subject separately, we extracted the top 10% of voxels (357 voxels) in the
left IFG (pars opercularis and pars triangularis, taken from the AAL template) which exhibited
the highest t-values in the OR> SR contrast (averaged across music conditions). Strictly speak-
ing the voxels did not need to be adjacent, but in practice they mostly are. In order to ensure
the independence of data for fROI identification and activity estimation, we used either the
first or the second scanning run for fROI building and the left-out run for estimation of activa-
tion during the conditions of interest (see [41]). Responses were averaged across the two parti-
tions (‘ 2-fold cross-validation procedure’, see [42] for a similar approach). Thus, each subject
had a different fROI in Broca’s area. Data from the fROI were used to derive average contrast
values across voxels. Inferential analyses were again carried out using random permutation
based tests and t-test p-values were corrected for three comparisons (Bonferroni method).
Only the corrected p-values are reported.

Results

Behavioral Results
Participants answered one comprehension prompt after each trial. The accuracy rates revealed
that no participants scored at or below chance level, i.e. not with an accuracy below 56% (bino-
mial distribution, p< .05). Scores ranged between 66% and 90% (M = 78%). A 2 (prompt type:
matrix or relative clause) × 2 (language: SR or OR) × 3 (music: in-key, out-of-key, or auditory
anomaly) dependent ANOVA revealed three effects. First, there was a main effect of prompt
type [F(1,18) = 143.56, p< .001, pη

2 = .889, pω
2 = .882], such that prompts targeting main clause

understanding were easier to answer (88%) than prompts targeting relative clause understand-
ing (68%). Furthermore, a main effect of linguistic condition was found [F(1,18) = 43.90, p<
.001, pη

2 = .709, pω
2 = .693] indicating that prompts after SR sentences were answered more

accurately (86%) than those after OR sentences (70%). Furthermore, these two main effects
interacted [F(1,18) = 51.18, p< .001, pη

2 = .740, pω
2 = .725]. Follow-up t-tests revealed that the

difference between SR and OR sentences is significant for both kinds of prompts albeit larger
for those targeting relative clause comprehension [t(18) = 7.05, p< .001] than those targeting
main clause comprehension [t(18) = 3.85, p< .01]. This supports the idea that OR sentences
were indeed more challenging than SR sentences. However, this difficulty did not interact with
the music factor [p> .3]. The three-way interaction was not significant. It should be borne in
mind that the behavioral measure was designed to ensure adequate neural processing instead
of showing the previously reported behavioral interaction effect [3]. Therefore, the crucial test
of our hypothesis lies in the neural data analysis. We will return to this point in the discussion
section.

fMRI Results
Whole-brain Analysis. For the whole brain analysis, no cluster emerged for any of the

main effects or their interaction with a probability of p< .05 (FDR corrected). In order to see
whether our data set replicates previous findings of language syntax-related effects in left pre-
frontal areas, we lowered the statistical threshold (p< .005 uncorrected) and identified the big-
gest cluster (87 voxels) with a peak at [-54; 18; 28], see Fig 2A. The cluster represents increased
activity to OR sentences compared to SR sentences and it covers parts of the IFG pars opercu-
laris and pars triangularis, showing that our data set can replicate previous findings albeit only
at a reduced statistical threshold.
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Structural ROI analysis. The predicted interaction between the language and music fac-
tors was found in left IFG [F = 4.14, p< .05] but not right IFG [F = 1.68, p> .4]; see Fig 2B.
Follow-up t-tests showed that the significant interaction in left Broca’s area emerged because
the OR> SR contrast was only significant in the out-of-key condition [t = 2.93, p< .03] but
not in the in-key condition [t = 1.30, p> .5] or the auditory anomaly condition [t< 1]. Similar
analyses in the right ROI revealed no significant OR> SR effect in any of the music conditions
[all p values> .2]. The language main effect was not significant in either region of interest [left:
F = 4.00, p> .1; right: F = 1.76, p> .4]. However, the music main effect was marginally signifi-
cant in the right hemisphere region of interest [F = 3.26, p< .1] but not in the left one
[F = 2.63, p> .1]; see Fig 2C. The former was due to a marginally greater activation in the audi-
tory anomaly condition compared to the out-of-key condition [t = 2.28; p< .1]. The contrast
with the in-key condition did not approach significance [t = 2.00; p> .1], nor did the in-key vs.
out-of-key contrast [t< 1].

Functional ROI analysis. The 10% of voxels in the left IFG which exhibited the strongest
language effect were used to construct an fROI for each subject separately. Fig 2D (top panel)
shows that the overlap of included voxels was small across participants, reflecting known indi-
vidual differences in the location of language-related activity peaks in Broca’s area [43]. Similar
to the structural ROI, this language syntax-related fROI exhibited the predicted interaction
between the language and the music factors [F = 3.27, p< .05], see Fig 2D (bottom panel). Fol-
low-up t-tests again showed that the significant interaction in the fROI emerged because the
OR> SR contrast was only significant in the out-of-key condition [t = 2.78, p< .04] but not in
the in-key condition [t = 1.09, p> .5] or the auditory anomaly condition [t< 1]. The language
main effect—indicative of an OR> SR pattern [F = 3.89, p< .1]—as well as the music main
effect [F = 2.65, p< .1] were only marginally significant. The latter was reflecting a pattern

Fig 2. fMRI results. A) The language main effect (OR > SR) found in the whole-brain analysis (p < .005 uncorrected, cluster size = 87 voxels). B) Left
hemisphere structural ROI. The BOLD effect of the linguistic manipulation is shown (OR—SR) with the associated p-value of a paired t-test above the bar.
The significance level of the interaction effect is denoted above the line. Bars represent the activity difference (OR-SR) to sequences in which the stressed
syllable of the critical word was sung in-key, out-of-key or unusually loudly (auditory anomaly). C) Right hemisphere structural ROI. The BOLD effect
(compared to implicit baseline) is shown for each music condition. The p-value of a dependent t-test comparing two music conditions can be seen above the
respective bars. The significance level of the music main effect is denoted above the line. D) Left hemisphere functional ROI. fROIs were individually defined
in the left structural ROI. The inter-subject overlap in fROI locations is shown in the top panel. See methods for details. The BOLD effect is shown for the three
different music conditions separately. Error = SEM. All p-values in structural ROI analyses are Bonferroni adjusted.

doi:10.1371/journal.pone.0141069.g002
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previously seen in the right hemispheric structural ROI: greater activity to the auditory anom-
aly condition compared to the other two music conditions.

Discussion
The present study aimed to provide brain-imaging support for the proposal that syntax pro-
cessing in music and language interact in the human brain. To this end we adopted an interfer-
ence paradigm. We found a statistical interaction between music and language processing in
Broca’s area, corresponding to BA44 and BA45 in the left inferior frontal gyrus. This music-
language interaction even emerged when restricting the analysis to voxels within Broca’s area
which are involved in language syntax processing. This suggests that at least some of the neural
resources in Broca’s area that process syntactic relations between words in language are also
sensitive to syntactic relations between tones in music, and that syntactic integration in lan-
guage is not wholly independent of syntactic integration in music. Note that this non-
independence is not due to shared general attention resources as an auditory anomaly led to a
different activation pattern.

Specifically, the interaction between music and language emerged when participants heard a
stimulus containing a syntactically challenging sentence (object-extracted relative clause
instead of subject-extracted relative clause) sung on a melody containing a syntactically chal-
lenging tone (out-of-key instead of in-key), with the tone located at the precise point in the
melody where the linguistic syntactic integration difficulty occurred. In this case an interaction
pattern emerged (see Fig 2B and 2D). This is indicative of an even greater integration difficulty
in this condition compared to what would be expected from integrating challenging words and
tones entirely independently of each other. In order to check whether non-syntactic auditory
anomalies would also show such a pattern we included a control condition in which the critical
tone was sung in-key but unusually loudly. In Broca’s area this control condition did not lead
to activity patterns similar to the out-of-key condition, even in numerical terms. Instead of
affecting the left hemisphere Broca’s area, the control condition seemed to activate the right
hemisphere homologue of Broca’s area. The implications of these findings for our understand-
ing of music and language are discussed below.

A Common Role for Broca’s Area in the Music and Language Networks
The current study has found some support for a common syntactic processing role of Broca’s
area in music and language. This fits with results showing that musical training is associated
with structural changes in this area [44–47] and altered language syntax processing [48,49].
Damage to this brain area is also known to lead to processing deficits in both language and
music in non-musicians [26].

However, the results of four recent fMRI studies might appear to contradict a common role
for Broca’s area in the music and language networks. Two found common brain areas but dif-
fering music and language activation patterns in them using multi-voxel pattern analysis
(MVPA) [29,50]. In two other studies Fedorenko et al. [42,51] found different activated brain
regions when comparing a music-localizer based on a scrambling manipulation to a language-
localizer based on the reading of sentences versus lists of non-words. However, none of these
studies specifically manipulated syntactic structure in language and tonal/harmonic structure
in music, while leaving other aspects of sequence structure intact (cf. [52,53]). It is also worth
keeping in mind that the SSIRH actually predicts the overlap between music and language to
be partial, not complete. The question which we attempted to answer in this study was whether
music and language share any circuitry at the level of syntactic processing, as suggested by the
music-language interaction in Broca’s area.
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Non-syntactic Overlap between Music and Language
Despite the evidence for a shared syntactic processing mechanism in the left inferior frontal
gyrus, alternative explanations for our results could be proposed. First of all, any auditory
anomaly might draw attention away from language and thus interact with linguistic processing.
We reject this explanation because a control condition consisting of a sudden 10dB loudness
increase did not lead to a similar pattern of results compared to the harmonic violation. This is
striking since, as opposed to the subtle harmonic violation which interacted with language pro-
cessing, the loudness increase evoked a marginally significant brain correlate in the right hemi-
sphere’s inferior frontal gyrus. This more salient non-syntactic manipulation, however, did not
interact with language processing. This supports a shared syntactic neural architecture between
music and language. Furthermore, the finding is in line with previous behavioral and ERP stud-
ies which found that neither a loudness anomaly nor a timbral anomaly leads to the same
music-language interactions as seen with harmonic manipulations [3,16,18].

Another recent alternative explanation has been Rogalsky et al.’s [29] proposal that music
and language processing exhibit a link only in tasks which involve the processing of violations.
However, the current study elicited a music-language interaction by using relatively easier or
more difficult linguistic constructions which were without any errors, as well as a musically
plausible in-key/out-of-key tone manipulation [33]. Moreover, the brain activation response
we find is not indicative of linguistic error processing which is associated with relatively more
right-lateralized prefrontal activation sites [54], as opposed to the relatively left-lateralized
effect here. Thus, the overlap we found does not appear to be elicited only under the excep-
tional circumstances of processing violations (see also behavioural studies without error
manipulations [3,18]).

Still, some studies have reported interactions between music and semantic language manip-
ulations [17,55]. The present study does not directly address semantic language processing, but
its design could be extended to investigate the neural differences between semantic-harmonic
and syntactic-harmonic interactions. Thus, more research is required in order to address the
syntax-specificity of the interaction we found in the present study.

Besides attention and violation processing, it could also be suggested that the observed acti-
vation differences reflect decision-making related processes. Binder et al. [56] have shown that
a cluster in the lateral part of the left IFG is associated with decision making performance in a
syllable differentiation task. However, such an explanation is unlikely to reflect the pattern seen
here because a decision was only required after a song was heard, upon seeing a comprehension
prompt. Furthermore, the kind of prompt was variable and unpredictable. For example, half
the comprehension prompts did not focus on the relative clause manipulation at all. Thus, acti-
vation differences due to a decision process are unlikely as decision making started after the
song, i.e. after the time interval which the current fMRI analysis investigated.

The Role of the Right Inferior Frontal Gyrus
The right hemisphere homologue of Broca’s area did not show activity related to linguistic or
harmonic processing, which was partly surprising given that previous brain imaging studies
reported an involvement in both cases (e.g., [27,28]). In contrast to these studies, we employed
a task-unrelated, subtle harmonic manipulation which was based on a single tone (the smallest
possible alteration of melody). This manipulation might not have been strong enough to reli-
ably activate right hemisphere areas involved in musical harmonic processing (e.g., [28]). In
future work, one could increase the salience of the tonal/harmonic manipulation, e.g., by using
a melody sung over instrumental musical chords, or over an instrumental melody with several
notes per sung word, so that the critical word was accompanied by several out-of-key notes.
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The subtle effect we find could be taken to suggest that the tone manipulation is only able to
modulate linguistic processing already triggered by the language task. Instead of syntactic or
harmonic processing we found a marginal attention-related effect in the right inferior frontal
gyrus. Our control condition, a salient loudness increase, seemed to activate this region, likely
due to its involvement in the bottom-up attention network [57,58].

Limitations
The absent behavioural effect of music on language might appear surprising. However, it does
not necessarily contradict the proposal for shared syntactic processing resources in the left infe-
rior frontal gyrus. In comparison to a previous behavioral study [3] which did find a behavioral
effect with a similar paradigm, several aspects of our study might have lowered the sensitivity
of our behavioral measure. First, we used a diverse set of comprehension prompts which were
partly challenging in themselves (e.g., passive voice prompts) and which often did not focus on
the relative clause manipulation. This was necessary in order to discourage unnatural task
strategies, a problem Fedorenko et al. [3] were not faced with due to linguistic differences such
as a word order manipulation in English vs. a number agreement manipulation in Dutch. Sec-
ond, in order to reduce the duration of scanning sessions, our stimulus list did not include fil-
lers. Third, our stimuli were rhythmically and linguistically more diverse, possibly increasing
ecological validity at the expense of reducing the effect size. In sum, by focusing the present
study on exploring a neuronal effect we did not optimize the design for finding a behavioral
effect.

The neural effects we find could appear weak. Concerning the language main effect, we only
find a marginally significant language syntax effect in Broca’s area, and that result only emerges
in the functional region of interest analysis. This weak effect might be a consequence of the
syntactic manipulation we used. Dutch participants could have misheard the number of the
relative clause verb in the more difficult object-extracted relative clauses, and therefore ‘default’
to the more common subject-extracted relative clause version. Such a process is considerably
less likely in an object- versus subject-relative clause manipulation based on word order, such
as used in [3]. Thus, future work might employ a word-order based syntactic contrast. Simi-
larly, the influence of music on the language effect was relatively weak, see Fig 2B and 2D. This
might simply mirror the rather subtle music manipulation in combination with our particular
choice of syntactic constructions. Moreover, pilot work reported by Fedorenko et al. [3] sug-
gests that music-language interaction effects might be enhanced by an increased rate of presen-
tation (the average rate in [3] was 1.78 words/sec, versus 0.98 in the current study). Future
work is needed to test whether the effects found here generalize to other music and language
manipulations.

Conclusion
The present study aimed to test the hypothesis that music and language share neural resources
for syntactic processing in Broca’s area. The predicted interactive pattern between music and
language demands was indeed found in this part of the brain. This is the first direct evidence
which suggests that music and language syntactic processing interact in Broca’s area.
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