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Efficient tool to calculate two-dimensional optical spectra for photoactive molecular complexes
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We combine the coherent modified Redfield theory (CMRT) with the equation of motion-phase matching
approach (PMA) to calculate two-dimensional photon-echo spectra for photoactive molecular complexes with
an intermediate strength of the coupling to their environment. Both techniques are highly efficient, yet they
involve approximations at different levels. By explicitly comparing with the numerically exact quasiadiabatic
path integral approach, we show for the Fenna-Matthews-Olson complex that the CMRT describes the decay
rates in the population dynamics well, but final stationary populations and the oscillation frequencies differ
slightly. In addition, we use the combined CMRT+PMA to calculate two-dimensional photon-echo spectra for a
simple dimer model. We find excellent agreement with the exact path integral calculations at short waiting times
where the dynamics is still coherent. For long waiting times, differences occur due to different final stationary
states, specifically for strong system-bath coupling. For weak to intermediate system-bath couplings, which is
most important for natural photosynthetic complexes, the combined CMRT+PMA gives reasonable results with

acceptable computational efforts.
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I. INTRODUCTION

Photosynthesis is the process used by plants and bacteria
to convert the energy of sunlight into chemical energy in
order to fuel the organism’s activities. In the initial steps
of the photosynthetic process, pigment-protein complexes
complete the light-energy transfer and charge separation with
a near unity quantum efficiency. Light-harvesting molec-
ular complexes achieve the energy transfer by using an
array of light-harvesting pigments that absorb the energy
to form excitons and funnel the excitation to the reaction
center [1]. To investigate the energy transfer dynamics in the
first steps of photosynthesis on the fs time scale, ultrafast
spectroscopic tools are available. Among the techniques used,
two-dimensional (2D) photon-echo spectroscopy is a powerful
tool, which allows for direct mapping of the excitation energy
pathways as a function of absorption and emission wave-
length [2]. It is particularly useful in examining photosynthetic
systems in which the manifold of electronic states is closely
spaced and broadening through static disorder yields highly
congested spectra. Recent experimental 2D electronic spectro-
scopic studies of the Fenna-Matthews-Olson (FMO) complex
observed coherent beating signals and, thus, raised interest
in the interplay between energy transfer, long-lived quantum
coherence in photosynthetic processes [3], and low-frequency
vibrations of the molecular back bone. Also in photoactive
marine cryptophyte algae [4], the light-harvesting complex
LH2 [5] of rhodobacter sphaeroides, and in the reaction
center [6,7] of the Photosystem II, long-lived oscillations
have been experimentally observed at low (77 K) and room
temperatures (300 K), indicating a strong vibronic coupling in
these systems.

To analyze the experimental findings in such large and com-
plex photoactive molecular complexes, a thorough comparison
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with theoretical calculations is essential, in order to arrive at a
reliable interpretation of the measured 2D spectra. Since it is
a difficult and computationally demanding task to determine
2D optical spectra, often only the population dynamics of
exciton states is calculated. For the FMO complex, a rather
small light-harvesting complex, the hierarchical equations
of motion [8] were applied and quantum oscillations were
observed on the time scale of the 2D experiments employing an
environmental Debye model spectral density with rather small
reorganization energy [9]. Employing the numerically exact
quasiadiabatic propagator path integral (QUAPI) allowed us to
use a more realistic measured environmental spectral density.
However, this resulted in a decay of the decoherence faster
than experimentally observed [10,11]. This spectral density
could, more recently, be employed to calculate the 2D spectra
of FMO with the hierarchy equation [12] and a reasonable
agreement between theory and experiment could be achieved.
The calculations of QUAPI and the hierarchical equations of
motion treated the coupling of the complex to environmental
fluctuations numerically exactly. However, the computational
effort is immense, which makes the simulation of larger light-
harvesting molecular complexes (which contain, typically,
dozens to hundreds of excitonic subunits) virtually impossible.
The need for a highly efficient numerical tool to calculate 2D
optical spectra of large molecular complexes with a reasonable
numerical effort and a satisfactory accuracy still exists and it
is expected to continue to increase.

Given their complex molecular structures, for the calcu-
lation of 2D spectra of large light harvesters, approximate
schemes are usually unavoidable. Standard Redfield equa-
tions [13], which invoke a lowest-order Born and a Markovian
approximation, are good at weak system-bath coupling, but fail
for strong coupling. The regime of intermediate system-bath
coupling as present for the exciton dynamics in photoactive
complexes [14] is typically also not properly treated within
Redfield equations [15-19]. Thus, the modified Redfield
theory (MRT) has been widely used for the description
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of energy transfer processes of large molecules [20-26].
This approach includes that contribution of the system-bath
coupling Hamiltonian, which is diagonal in the eigenbasis
of the system. In turn, it includes the off-diagonal terms
of the system-bath coupling Hamiltonian in the form of a
second-order perturbative approximation. The equation of
motion of the MRT only includes the population transfer within
the reduced density matrix, but the accompanying dephasing
is not presented. The accuracy of the MRT in view of the
dynamics of the reduced density matrix has been analyzed
in detail [27]. Moreover, MRT has been shown to have a
somewhat wider range of applicability when compared to
both the original Redfield and Forster theory [21]. Also, linear
absorption spectra for an ensemble of B850 rings have been
determined, which shows that MRT includes non-Markovian
effects, which clearly show up in the high-energy part of the
static absorption line shapes [28]. Different energy transfer
components of LHCII trimer and phycoerythrin 545 have
been revealed using MRT by simultaneous quantitative fits
of the absorption, linear dichroism, steady-states fluorescence
spectra, and transient absorption kinetics upon excitation at
different wavelengths [29].

A more refined description of the quantum dissipative
exciton dynamics is achieved in this work upon observing that
the electronic dephasing, which is induced by the population-
transfer, can be efficiently included in the quantum master
equation. The off-diagonal terms in the quantum master
equation now include the decoherence of excited states and
electronic dephasing between ground and excited states by
exploiting the relation 1/7, = 1/2T, + 1/T, to estimate the
different contributions to the dephasing rate. Here, T, is the
transverse relaxation time and 7, T, are the longitudinal
relaxation time and pure dephasing time, respectively. While
working out the details with the results reported in this
paper, this extended quantum master equation has also been
independently put forward very recently in Ref. [30] and has
been named the coherent modified Redfield theory (CMRT).
To avoid confusion, we use to this nomenclature also here.

For calculating 2D photon-echo spectra, essentially two
different approaches are available. On the one hand, the
response to the sequence of applied laser pulses can be
calculated by evaluating the third-order optical response
function [31]. Modified Redfield theory was successfully
applied to simulate the 2D spectra of the double-ring LH2
aggregate of purple bacteria including both the B800 and
the B850 ring [32]. Comparing experimentally measured and
theoretically calculated results of 2D spectra revealed that
excitation energy transfer through the LHCII happens on three
time scales: sub-100fs relaxation through spatially overlapping
states, several hundred femtosecond transfer between nearby
chlorophylls, and picosecond energy transfer steps between
layers of pigments [33]. More recently, 2D spectra of the
reaction center in the Photosystem II were calculated with
MRT at low temperature, and the charge separation process
was investigated by MRT including charge transfer states in
the model [22,34].

An alternative approach to calculate 2D optical spectra,
which is especially useful when finite durations of the
laser pulses as well as pulse overlap effects are taken into
account, is the equation of motion phase matching approach
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(PMA) [35,36]. Using the PMA in combination with the
conventional Redfield equations, 2D spectra of a single FMO
subunit were studied, and the signature of energy transfer
was revealed by well-resolved peaks in the simulation with
adjustable pure dephasing of exciton states [37].

Although MRT is used to tackle many different problems
in the study of energy transport in photosynthetic complexes,
no investigation of its reliability in calculating nonlinear and,
specifically, 2D optical spectra is at hand. In this work, we
first verify the CMRT approach by comparing the population
dynamics of FMO exciton states with numerically exact
results of the QUAPI approach. In addition, we combine
the CMRT with the PMA to calculate 2D photon-echo
spectra for a simple dimer model. Again, the results of
CMRT+PMA are benchmarked against numerically exact
results of the QUAPI approach. For the long-time steady-
state dynamics, the CMRT+PMA and QUAPI simulations
show differences for intermediate and strong system-bath
coupling. However, for intermediate coupling, as it is typical in
photosynthetic complexes, the short-time dynamics including
dephasing times and coherent beating frequencies are well
described by CMRT+PMA. Hence, an efficient numerical
scheme to calculate 2D photon-echo spectra with a reasonable
computational effort is available.

The remainder of this paper is organized in the following
way. In Sec. II, we briefly introduce the model of the FMO
complex for which we compare the performance of the
CMRT+PMA in calculating a nontrivial population dynamics.
Additionally, the dimer model is introduced for which we
compare results of 2D photon-echo spectra. A brief description
of the CMRT+PMA and QUAPI for calculating the reduced
density matrix and 2D spectra is given in Sec. III. In Sec. IV, we
give the results of the comparison, and a thorough discussion
is appended in Sec. V, before we finish with a conclusion.

II. MODEL

In the framework of open quantum systems the Hamiltonian
of the complete system H can be decomposed as four parts

H = Hg + Hsp + Hp + Hpen,

N N
HS = Z 6mai«,am + Z Z Jnm(ajnan + aiam)s
m=1

m=ln<m (1)

N N 2
HB:ZZ( ;J —|—§wWijr%1j>’

m=1 j=1

where €, is the on-site transition energy and J,, is the
intermolecular coupling. N is the total number of monomers.
N;" is the number of bath modes coupled to molecule m,
which we will take to be infinity. x,,; and p,; are the
mass weighted position and momentum of the jth harmonic
oscillator bath mode with frequency w,,;. The interaction term
Hsp = Zm K ®,,(x) induces the coupling between system
and bath. It is assumed to be separable such that K,, only acts
on the system subspace and ®,,(x) only on the bath degrees of
freedom. In the following we further assume a linear relation
between bath coordinates and the system. The system-bath
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interaction is then given as

Hsp = Z K Zcmjxmj s (2)
m J

and we furthermore restrict our considerations to pure elec-

tronic dephasing only, i.e. K,, = aya,,. The renormalization
term is

Hien = Z Z anq ""jz . (3)

This term compensates for artificial shifts of the system
frequencies due to the system-bath interaction.

The influence of the bath is fully described by its bath
spectral density

Cmj @y
j mj®m

with reorganization energy A and high-frequency cutoff y. We
assume the bath at each monomer to be independent (no cross
correlation between baths [38]) but with identical spectra, i.e.,
Jn(@) = Jp(w).

Laser pulses acting on the exciton complex result in the
addition of a system-field interaction, i.e., Hy — Hg + F(t),
which is defined within the dipole approximation according to

F(1) = —XE(t) + He., (5)

with the electric field of the laser pulse E(#) and the electronic
transition dipole operator u of the exciton system

N
w=X+X" with X:Zumam. (6)

m=1

ML, determines the dipole strength and direction of the mth
monomer.

A. Dimer

The dimer is modeled by two monomers with site energies
€1 =—50cm™' = —¢, and a coupling J = 150cm™~'. The
two dipole moments are considered to be perpendicular to each
other, i.e., u; L p,. For the bath spectral density as specified
in Eq. (4), we choose A =50cm™! and 100cm™!, and set
y = 100cm™!

B. FMO

We model a monomer subunit of the FMO trimer by
including seven bacteriochlorophyll a molecular sites. The
single excitation subspace is described by a Hamiltonian

240 —87.7 55 -59 67 —13.7 -9.9

315 30.8 8.2 0.7 118 43
0 —535 =22 -96 6.0

Hp = 130 —70.7 —17.0 —63.3 @)
285 811 —13
435 397

in units of cm~!, where we use the site energies and dipolar
couplings determined by Adolphs and Renger [14] for the
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FMO complex of Chlorobium tepidum. Bath parameters are
chosen as A = 35cm™! and y = 53 cm™! following Ref. [8].

III. METHODS

A. Coherent modified Redfield theory (CMRT)

The CMRT can be derived from the Nakajima-Zwanzig
equation [28] using a scheme for the separation of the total
Hamiltonian, which does not treat the whole system-bath
interaction term Hgp perturbatively [15,39]. Instead, the
Hamiltonian is separated according to

Ho = Hs+ Hp + Y _ ) (il Hsp ) (ul,
y23

> Il Hsplv) (v, ®)

v, Y

H =

where |u) are eigenstates of Hg and H' is the off-diagonal
term of the system-bath interaction part in the exciton basis.
In this basis, Hy is diagonal and the matrix elements read

)\p.p.p,p, + HB(M)9 (9)

where €, is the uth excitonic level of the system Hamiltonian
and

(u|Holp) = €, —

2

Cm-
My = D Al K 0) (W [K)V' T (10)
m J

mj @y

is the weighted reorganization energy. Moreover,

2
] K |p)
mga)g
(1m)

describes a bath of harmonic oscillators with mass mg,
frequency wg, and momentum pg, shifted due to the coupling
with the exciton state |u).

In addition to the redefinition of the system and the bath
Hamiltonian, one has to define a different type of projection
operator, which only projects on the diagonal part of the system
density matrix in the eigenstate basis. This is achieved by

N
P=Y"p,
n=0

where P, is the projector onto the uth excitonic state and
RL, = expl—BHp(1)l/Zty is the equilibrium density matrix
of the bath when the system is in the excitonic state |u). Here,
qu = trexp[—BHg(n)] with 8 = 1/(kpT) and T being the
temperature.

Inserting these definitions into the Nakajima-Zwanzig
equation, determining H’ up to second order and invoking
the time-dependent population transfer rate, one obtains an
equation of motion for the population transfer terms in the
form

Iy | 7
22 m§~|—mga)§ xg+Z

3

Hp(u) =

with  P,- = Rigtr{ju)(ul-},  (12)

d
o7 Pun(t) = g[mw(npw(x) -

Ry (Oppp @], (13)
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with the population transfer rates [20]

Rypun(t) = 2Re / drte{|v) (vl exp(—i Hor) H'|12) (1
0

x R, exp(iHor)H/},

t
= 2Re/ drt exp[_ia)uvf - g,u,uuu(f) — &un(T)
0

+gwuu(r) + guuw(r) - 2i()"vvw - )‘uuw)r]
X {guvuu(f) - [gvuvv(f) - gvuuu(f) + Zi)hvp.vu]
X [gvuuv(f) - gu,u,uv(f) + 2“‘#\11}1}]}- (14)

Here, w,, = €, — €,. The line-shape function g,,,,(¢) can be
written as the two-time integral of the bath correlation function
according to

t T
o (1) = Y (K} ('] Kilv') f dr / dr'C(1),
& 0 0
© dw eiwr
—J(w)
T ebo —

wMWb/

—00

5)

To obtain Eq. (14), we have used the cumulant expansion up
to second order in the system-bath coupling and have taken
the independent bath model into account. The absorption line
shape within the CMRT is given by

1@:%2@/m
0
I

1 t
X exp [i(w—wﬂo)t — gWW(t)—E Z/ RWW(T):|.
VFEL 0

(16)

as detailed in Ref. [28].

Up to this point, Eq. (13) constitutes the modified Redfield
theory, as developed and applied in Refs. [20-26]. Based
on the population transfer term in Eq. (13), we extend the
quantum master equation by including also the coherence
(or, off-diagonal) terms of the reduced density matrix. The
resulting coherent modified Redfield quantum master equation
now reads [40]

a
gp(t) = —i[H + F(1),p(0)] = R{p(n)}, a7)

where F(t) is the time-dependent system-field interaction
term.

The relaxation and dephasing operator R{p(#)} now also
includes diagonal and off-diagonal terms. The diagonal part
of the relaxation operator, which was described in Ref. [41],
reads

m{p(t)}uu = Z[R,u;wv(t)pvv - vauu(t)puu]~ (18)
vEWL

The off-diagonal terms M{p(#)},, are now included in order
to describe decoherence of excited states and electronic
dephasing between the ground and excited states. Here, we use
an efficient way to obtain the associated rates by exploiting
the relation 1/7, = 1/2T; + 1/T; to estimate the different
contributions to the dephasing rate. 7, is the transverse
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relaxation time, 71, T, are the longitudinal relaxation time
and pure dephasing time, respectively [42]. In detail, 1/7T; =
> ety Rupee + 2oz Ruvee and 1/T5 is given by the first
derivative of line-shape function g,,,,(¢). Therefore, the
off-diagonal terms of the excited states and between the ground
and excited states can be written as

1
m{p(t)}uv = z Z Ruuee(t) + Z Ryvee(t)
eF#u e#v

+ g/,L/,wy(t) IOMU(t)7

: 1
5)t{lo(l‘)}ll-o = 5 Z Rmmnn(t)+2 Rnnmm(t)
m#n n#m

+ 8y (0  Ppo(0). 19)

This extended quantum master equation has also been inde-
pendently put forward very recently in Ref. [30] and has been
named the coherent modified Redfield theory (CMRT). It is an
efficient, but approximate way to take into account population
transfer and dephasing on the same footing.

B. QUAPI

The quasiadiabatic propagator path integral [43,44] is a
numerically exact approach to determine the influence of
environmental fluctuations on the system dynamics within
an open quantum systems approach. Specifically, QUAPI
determines the time-dependent reduced statistical operator
p(t) of the system. It is well established in the literature and we
only briefly summarize the central features in the following.
The algorithm is based on a symmetric Trotter splitting of
the short-time propagator K(#1,#) for the full Hamiltonian
into two parts, one depending on the system Hamiltonian, and
one involving the bath and the coupling term. The short-time
propagator determines the time evolution over a Trotter time
slice &t. The discrete time evolution becomes exact in the
limit 6t — 0. For any finite 8¢, a finite Trotter error occurs,
which has to be eliminated by choosing ¢ small enough to
achieve convergence. On the other side, the environmental
degrees of freedom generate correlations, which are nonlocal
in time. For any finite temperature, these correlations decay on
a time scale denoted as the memory time scale. The QUAPI
scheme defines an augmented reduced density tensor, which
lives on this full memory time window. Then, an iteration
scheme is established in order to extract the time evolution
of this object. All correlations are completely included over
the finite memory time t,., = KJ¢ but are neglected for
times beyond Tyey. One increases the memory parameter K
until convergence is found. The two requirements to achieve
convergence, i.e., minimize 6¢ but maximize Tyem = Kdt, are
naturally opposed to each other, but nevertheless convergent
results can be obtained in a wide range of parameters, including
the cases presented in this work.
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C. Two-dimensional electronic spectroscopy

In the equation of motion phasing matching approach
(PMA), the polarization in the photon-echo direction is cal-
culated by simultaneously propagating three auxiliary density
matrices pj,0, and ps3, thereby employing also the rotating
wave approximation [36]. The time evolution equations are
given by

3 , )
5,010 = —i[H = Vi(t.1) = V) (t,1) — V4 (t,13), p1(1)]
—R{p1 (D},

0 s
5, P2(0) = —ilH = Vi(t,h) — V, (1), p2(1)] — R p2(1)},

0 5
5,30 = —ilH = Vi(t,n) — V3 (t.13), p3(t)] — N{p3(1)}.
(20)

where Vo = XE,(t — ty)e'" and E (t —ty) =
exp[—41n2(t — ta)z/rpz], 17, is the pulse duration. To
obtain the third-order 2D signal, the polarization in the phase
matching direction is evaluated as

Ppe(ti 1) = € (X[pi(t) — pa(t) — p3(D)]) + c.c.,
1)

where the bracket (...) denotes the trace. Experimentally, in
the limit of ideal detection, the heterodyne photon-echo signal
is proportional to the polarization Ppg(t,t2,t3,t), where t is
the detection time. Therefore, the ideal total 2D signal can be
expressed as

o0 o0
St(w., T ;) o</ dr/ dte e Ppp(t,T,1), (22)
—0oQ —0oQ

where 7, T, and ¢ denote coherence time, population (waiting)
time and detection time, respectively, Tt =t —t;, T =t3 —
t;. The coherence time corresponds to a period in which
the system is coherently evolving after the first interaction
with the optical field. The second interaction with the field
creates population states and the third interaction recovers the
coherence again. The Fourier transform in Eq. (22) is always
performed over the coherence time t and the detection time
t. The corresponding frequencies w,, w, are often referred
to as absorption and emission frequencies, respectively. In
addition, Gaussian laser pulses have been assumed for a
realistic detection scheme, which have the form

3
E(t) = Z Ae_4]n2(t_t“)2/t'2’eiwte_ik“r tec., (23)

a=1

where A, 1., K,, and w are the amplitude, envelop central time,
wave vector, and frequency of the pulses and z,, characterizes
the pulse duration. In order to obtain the undisturbed photon-
echo signal, arelatively small laser pulse strength A, compared
to the parameters in the molecular Hamiltonian Hg, has to be
used. In addition, we would like to point out that another useful
method to compute nonlinear spectra exists, which does not
suffer from this problem [45]. Note that all the pulses are
assumed to have the same line shape, carrier frequencies, and
durations in this paper.
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FIG. 1. (Color online) Population dynamics of selected FMO
sites. In (a), the population of sites 1 (square), 2 (circle), and 3
(triangle) with the initial condition p(1,1) = 1 is shown, while in (b)
the populations of sites 3 (triangle), 5 (circle), and 6 (square) with the
initial condition p(6,6) = 1 is depicted (symbols: QUAPI, full lines
with points: CMRT) for the parameters as given in the text.

IV. RESULTS

A. Population dynamics of the FMO complex

In order to verify the reliability of the CMRT, we present
the population dynamics of the FMO complex calculated by
CMRT and compare the results to those obtained by the
numerically exact QUAPI method. In Fig. 1, the population
dynamics of selected FMO sites is shown for 7 = 77 K for
two different initial conditions. In Fig. 1(a), we assume the
energy transfer to start from site 1. We monitor then the full
transfer, which involves all seven FMO sites. For simplicity,
we only show the population dynamics of the sites 1, 2, and
3. Alternatively, the energy transfer may be assumed to start
from site 6, see Fig. 1(b). There, we depict the population
dynamics of the relevant sites 3, 5, and 6. We observe that
the oscillatory behavior of the populations is captured by both
approaches. Both also yield the same decay rates and periods of
oscillations. However, a phase shift of the oscillations occurs
between the CMRT and QUAPI results. Energy transfer is
believed to be related to the population of the FMO site 3 (green
symbols and lines), which has the lowest energy in the FMO
monomer. In our comparison, CMRT slightly overestimates
the population transfer efficiency towards site 3. All in all, the
CMRT results for the FMO exciton population dynamics are
in good agreement to numerically exact QUAPI results. Since
the system-bath coupling parameters of the FMO complex
are typical for natural photosynthetic units, we conclude that
CMRT is a useful tool to study their exciton dynamics.
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B. Two-dimensional spectra of a dimer system

To obtain 2D spectra, we combine the CMRT next with the
PMA. This constitutes a very efficient approximate numerical
tool whose reliability is assessed by a comparison with 2D
spectra obtained by QUAPI. Since 2D spectra involve extended
numerical calculations, QUAPI results are available only for
small model systems with present day hardware technology.
For such a comparison, we present the calculated results for
the dimer model. It allows us to study energy transfer and
dephasing (homogeneous broadening) as building blocks of
the exciton dynamics in larger molecular compounds. It can
still be treated by QUAPI with reasonable numerical effort.

Figure 2 (left) shows 2D spectra of the dimer calculated
by CMRT+PMA for A = 50cm~! and the other parameters
as indicated above. They are compared to QUAPI results
(right column in Fig. 2) for waiting times T = Ofs, 50fs,
100fs, and 500fs. These 2D spectra show two diagonal
peaks (labeled A, B), which correspond to the two exciton
states. Moreover, two cross peaks (labeled C and D) arise
due to the excitonic coupling between them. For the sake
of simplicity and clarity of the comparison, inhomogeneous
broadening and the rotational averaging for different laser
polarizations and molecular orientations is not performed
here. Although this would be important to describe realistic
experimental situations, the averaged results generally show
smaller discrepancies (not shown).

At T = Ofs, the two results show the same profile for
diagonal and cross peaks and, indeed, the agreement is
excellent. This shows that the CMRT correctly models the
coherence times and the system-bath correlations created
during the simulation. With increasing waiting time, the same
coherent dynamics is found for both the diagonal and the
cross peaks and even can be inspected by eye. However, some
disagreement is observed at long waiting time 7 = 500fs.
The diagonal peak B in left figure (CMRT+PMA) shows a
somewhat reduced amplitude as compared to the right figure
(QUAPI).

For a more refined comparison, the amplitudes of the
diagonal and cross peaks (A, B, C, and D) are plotted against
the waiting time in Figs. 3 and 4. In Fig. 3, the population
dynamics of the diagonal peaks A (top) and B (bottom)
calculated by CMRT+PMA from 0-1000fs is shown and
compared to the QUAPI result. We find that the CMRT+PMA
provides reasonably accurate results for the population transfer
and the oscillation period. However, the amplitude of peak B
decays slightly faster in the approximate results as compared
to the QUAPI data. Moreover, both yield different stationary
states. In addition, the phase of the oscillations is slightly
shifted. For the comparison of the cross peaks, the oscillatory
behavior of peaks C and D is plotted in Fig. 4. Cross peak C
shows a similar oscillatory behavior but the two approaches
yield different stationary states. Peak D shows a only slightly
shifted phase of the oscillatory behavior. Such a phase shift
was also observed in the population dynamics of the FMO
complex shown above. The phase shift might be due to the
neglect of imaginary parts in the Redfield relaxation tensor.

In order to further assess the reliability of the CMRT+PMA,
we have repeated the calculations for a larger reorgani-
zation energy, i.e., for A = 100cm™' (with y = 100cm™!
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FIG. 2. (Color online) Two-dimensional photon-echo spectra of
a dimer model calculated by CMRT+PMA (left) and QUAPI (right)
for different waiting times as indicated. The Debye spectral density
was used for the calculation with the parameters A = 50cm™!, y =
100 cm~! and the temperature was set to T = 77 K.

kept unchanged). 2D spectra were again calculated by both
approaches and the amplitude of the labeled peaks were
extracted. Their time dependence is plotted in Figs. 5 and 6.
CMRT+PMA still yields quantitative agreement with the
QUAPI result except for the behavior of the damping.
The stronger system-bath coupling results in faster damping
(diagonal peak A) and also in an increased difference between
QUAPI and CMRT+PMA as compared to the weaker coupling
with A = 50cm~!.
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FIG. 3. (Color online) Population dynamics of the labeled diago-
nal peaks (A, B) extracted from the underlying sequence of 2D maps.
The two approaches yield the same oscillation period. The diagonal
peak B obtained from CMRT+PMA decays faster as compared to the
QUAPI result. The oscillation periods can be extracted by data fitting
and are: CMRT+PMA: 110fs, QUAPI: 99fs.

V. DISCUSSION: CMRT+PMA VERSUS QUAPI

From the above comparison of the results obtained by both
approaches, we observe that the discrepancies found in the
2D calculations are more pronounced than in the dynamics
of the populations. Put differently, nonlinear 2D spectra are
more sensitive to assess the performance and reliability of ap-
proximate theoretical approaches. In order to understand this,
we point out two fundamental differences between 2D spectra
and the population dynamics. First, entanglement between the
system and the bath leads to initial correlations at the beginning
of the waiting time window, which are absent in the calcula-
tion of the population dynamics. Second, two-exciton states
contribute to the 2D spectra during the detection time, and
interference between positive and negative peaks changes the
observed amplitudes. This shows that one cannot understand
the reliability of a method to simulate correct 2D spectra by cal-
culating population dynamics alone. Our current framework,
in which we use the combined CMRT+PMA and compare the
results with QUAPI, is well suited to show the performance of
these methods in understanding 2D spectra directly.

In more detail, we have observed three noticeable discrep-
ancies of the CMRT+PMA as compared to QUAPI: (i) shifted
oscillation phase of peak intensities, (ii) a slightly faster decay,
and, (iii) a different amplitude of peaks B and C for long
waiting times.

For the explanation of the shifted oscillation observed in
2D simulations of the CMRT+PMA, we need to notice that
Egs. (18), (19) provide the analytic result for a monomer
(two-level system), and that this has been proven by comparing
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FIG. 4. (Color online) Coherent oscillations of labeled cross
peaks (C, D) extracted from 2D maps. Cross peak C obtained
by CMRT+PMA shows the same oscillatory behavior, but with a
somewhat smaller amplitude.

to QUAPI [46]. However, CMRT yields a shifted period for the
dimer model. The mismatch is mainly caused by the population
transfer term R(¢) since there is no population transfer
term in the monomer model. In this paper, the population
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FIG. 5. (Color online) Amplitude of the diagonal peaks A and
B for a stronger system-bath coupling A = 100cm™! (with y =
100 cm~! unchanged). CMRT+PMA calculations yield a faster decay
(A) as compared to the QUAPI result (decay rate extracted from a fit:
CMRT+PMA: 81fs, QUAPI: 146fs).
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FIG. 6. (Color online) Oscillations of the cross peaks (C, D) for a
stronger system-bath interaction (same parameters as in Fig. 5). The
cross peak C calculated by CMRT+PMA yields a faster decay and a
smaller amplitude (decay rates as obtained from a fit: CMRT+PMA:
62fs, QUAPI: 177fs).

transfer rate was calculated by the cumulant expansion in
Eq. (14) [20], which is derived based on the second-order
perturbation approximation. It is one of the reasons for the
explanation of the oscillatory shift and slightly fast decay of
the oscillations found in CMRT calculations. Furthermore, the
secular approximation was used to separate the population
dynamics and the dephasing process in Eqgs. (18), (19). This
also contributes to the discrepancy in the decay rate, since
it neglects the interference between population transfer and
coherence dephasing. Besides, the imaginary part of g(¢) is
important for the spectral calculation, since it contains the
information of the reorganization energy [47].

A relatively small amplitude of peak B and C was found
in Fig. 3 and Fig. 4 and it also can be observed by eye in the
2D map for the long waiting time 7" = 500fs. We observe that
peaks B and C are mainly formed by one positive (red) peak
and overlap with a negative (blue) peak in the 2D spectrum
(T = 500fs). Therefore, the amplitude of those peaks mainly
depends on the overlap of two peaks. In the QUAPI result, the
two peaks are clearly separated with a larger spectral distance
than in the CMRT result and this leads to the larger amplitude
of peaks B and C in the 2D spectrum calculated with QUAPIL.
It indicates that, besides the shifted oscillation and the faster
decay of the oscillation, CMRT does not properly account for
the reorganization energy by the heat bath (diagonal peaks
show slightly different positions in the 2D map: —190 cm™!
and 190 cm~! for CMRT and —180c¢m~! and 200 cm~! for
QUAPI). In the CMRT, the reorganization energy is included
in the diagonal part of the Hamiltonian by Eq. (3), where it just
brings in a shift of the excitonic transition frequency E,, by the
renormalization term Eq. (3) and does not affect the dynamics
of the off-diagonal terms in the Hamiltonian in Eq. (8).

PHYSICAL REVIEW E 92, 042708 (2015)

On the basis of a clear physical meaning (population
transfer and dephasing terms) and for the purpose of an
efficient and fast calculation, the secular approximation and
the second-order perturbation theory were applied to construct
the CMRT. On the one hand, the secular approximation leads
to a separation of the population dynamics and dephasing
process and avoids any complicated interaction terms between
diagonal and off-diagonal parts in the equation of motion.
On the other hand, the second-order perturbation theory
simplifies the population transfers. It is possible to improve
the equation by including higher orders. However, this renders
the equation considerably more complicated and requires more
computational resources for the simulation and it is a priori
unclear how much this improves the accuracy.

VI. CONCLUSIONS

In this paper we present the CMRT and compare it in more
detail to the QUAPI method by calculating the population
dynamics of selected FMO exciton sites and the 2D spectrum
of a model dimer. We found that CMRT provides numerically
reliable results as compared to numerically exact QUAPI
calculations for both the population dynamics and 2D spectra,
as long as the reorganization energy is not too large compared
to the typical energy gap of the system. Most importantly, it
requires smaller computational efforts and orders of magnitude
shorter calculation times. It provides us with an efficient
approach to study the energy transfer in superlarge molecular
complexes and to perform complicated 2D simulations.

We found that the 2D profile calculated from CMRT+PMA
agrees well with the corresponding QUAPI results. For a
quantitative comparison, the amplitudes of diagonal and cross
peaks were extracted from 2D maps and compared to those
calculated by QUAPIL Quantitative agreement was found.
We observe some discrepancies. In particular, oscillations
are shifted, they decay slightly faster, and positions of
peaks are slightly shifted. This becomes more serious if the
reorganization energy is increased, which is also the case in
Refs. [48,49].

The simulation protocol developed here can be used for
arbitrary forms of the spectral density. For instance, the spectral
density obtained from quantum mechanics and molecular
mechanics [50,51] is rather involved and contains a rich
structure due to vibrational contributions. One can envision
an approach where the CMRT method is used to simulate
superlarge complexes, while numerically exact methods such
as QUAPI play a role in benchmarking the accuracy of the
simulations of smaller systems.
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