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Abstract Integrins require an activation step prior to ligand binding and signaling. How talin and
kindlin contribute to these events in non-hematopoietic cells is poorly understood. Here we report
that fibroblasts lacking either talin or kindlin failed to activate b1 integrins, adhere to fibronectin
(FN) or maintain their integrins in a high affinity conformation induced by Mn 2+. Despite
compromised integrin activation and adhesion, Mn 2+ enabled talin- but not kindlin-deficient cells to
initiate spreading on FN. This isotropic spreading was induced by the ability of kindlin to directly
bind paxillin, which in turn bound focal adhesion kinase (FAK) resulting in FAK activation and the
formation of lamellipodia. Our findings show that talin and kindlin cooperatively activate integrins
leading to FN binding and adhesion, and that kindlin subsequently assembles an essential signaling
node at newly formed adhesion sites in a talin-independent manner.
DOI: 10.7554/eLife.10130.001

Introduction
Integrins are heterodimeric transmembrane receptors that mediate cell adhesion to the extracellular
matrix (ECM) and to other cells (Hynes, 2002 ). The consequence of integrin-mediated adhesion is
the assembly of a large molecular network that induces various signaling pathways, resulting in cell
migration, proliferation, survival and differentiation ( Winograd-Katz et al., 2014 ). The quality and
strength of integrin signaling is controlled by the interaction between integrins and substrate-
attached ligands, which is, in turn, regulated by the on- and off-rates of the integrin±ligand binding
process. The on-rate of the integrin±ligand binding reaction (also called integrin activation or inside-
out signaling) is characterized by switching the unbound form of integrins from an inactive (low affin-
ity) to an active (high affinity) conformation. The affinity switch proceeds from a bent and clasped
low affinity conformation to an extended and unclasped high affinity conformation with an open
ligand-binding pocket ( Askari et al., 2010 ; Springer and Dustin, 2012 ). This change in affinity is
believed to be induced through the binding of talin and kindlin to the b integrin cytoplasmic domain
(Moser et al., 2009 ; Shattil et al., 2010 ) and divalent cations to distinct sites close to the ligand-
binding pocket ( Gailit and Ruoslahti, 1988 ; Mould et al., 1995 ; Xia and Springer, 2014 ;
Mould et al., 2003 ).

The stabilisation of integrin±ligand complexes is mediated by integrin clustering and catch bond
formation between integrin and bound ligand. The stabilizing effect of clustered integrins is
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achieved by the ability of dissociated integrin±ligand complexes to rebind before they leave the
adhesion site (van Kooyk and Figdor, 2000 ; Roca-Cusachs et al., 2009 ), while catch bonds are
receptor±ligand bonds whose lifetime increases with mechanical force ( Kong et al., 2009 ;
Chen et al., 2010 ; Kong et al., 2013 ). Both mechanisms extend the duration and increase the
strength of integrin-mediated adhesion and signaling (also called outside-in signaling) ( Koo et al.,
2002 ; van Kooyk and Figdor, 2000 ; Maheshwari et al., 2000 ; Roca-Cusachs et al., 2009 ;
Coussen et al., 2002 ), and depend on the association of integrins with the actin cytoskeleton via
talin (Roca-Cusachs et al., 2009 ; Friedland et al., 2009 ), and probably kindlin ( Ye et al., 2013 ).

The talin family consists of two (talin-1 and -2) and the kindlin family of three isoforms (kindlin-1-
3), which show tissue-specific expression patterns (Calderwood et al., 2013 ; Moser et al., 2009 ;
Shattil et al., 2010 ). The majority of studies that defined integrin affinity regulation by talin and
kindlin were performed on aIIbb3 and b2-class integrins expressed by platelets and leukocytes,
respectively. These cells circulate in the blood and hold their integrins in an inactive state until they
encounter soluble or membrane-bound agonists ( Evans et al., 2009 , Bennett, 2005 ). The prevailing
view is that agonist-induced signaling pathways activate talin-1 and the hematopoietic cell-specific
kindlin-3, which cooperate to induce integrin activation ( Moser et al., 2008 ; Han et al., 2006 ) and
clustering (Cluzel et al., 2005 ; Ye et al., 2013 ).

Integrin affinity regulation in non-hematopoietic cells such as fibroblasts and epithelial cells is
poorly understood. It is not known how integrin activation is induced on these cells (no integrin-
activating agonists have been identified) and it is also controversial whether talin and kindlin are
required to shift their integrins into the high affinity state. While there are reports showing that talin
and kindlin are required for integrin activation in epithelial cells ( Montanez et al., 2008 ;
Margadant et al., 2012 ), it was also shown that in myoblasts and mammary epithelial cells activation
of b1 integrins, adhesion and spreading on multiple ECM substrates can proceed in the absence of
talin (Conti et al., 2009 ; Wang et al., 2011 ). Likewise, it was reported that focal adhesion

eLife digest A meshwork of proteins called the extracellular matrix surrounds the cells that
make up our tissues. Integrins are adhesion proteins that sit on the membrane surrounding each cell
and bind to the matrix proteins. These adhesive interactions control many aspects of cell behavior
such as their ability to divide, move and survive.

Before integrins can bind to the extracellular matrix they must be activated. Previous research has
shown that in certain types of blood cells, proteins called talins and kindlins perform this activation.
These proteins bind to the part of the integrin that extends into the cell, causing shape changes to
the integrin that allow binding to the extracellular matrix. However, it is not clear whether talin and
kindlin also activate integrins in other cell types.

Fibroblasts are cells that help to make extracellular matrix proteins, and are an important part of
connective tissue. Theodosiou et al. engineered mouse fibroblast cells to lack either talin or kindlin,
and found that both of these mutant cell types were unable to activate their integrins and as a result
failed to bind to an extracellular matrix protein called fibronectin.

Even when cells were artificially induced to activate integrins by treating them with manganese
ions, cells lacking talin or kindlin failed to fully activate integrins and hence did not adhere well to
fibronectin. This suggests that talin and kindlin work together to activate integrins and to maintain
them in this activated state.

When treated with manganese ions, cells that lacked talin were able to flatten and spread out,
whereas cells that lacked kindlin were unable to undergo this shape change. Theodosiou et al. found
that this cell shape is dependent on kindlin and its ability to bind to and recruit a protein called
paxillin to ªadhesion sitesº, where integrins connect the cell surface with the extracellular matrix.
Kindlin and paxillin then work together to activate other signaling molecules to induce the cell
spreading.

The next challenge is to understand how talin and kindlin are activated in non-blood cells and
how they maintain integrins in an active state.
DOI: 10.7554/eLife.10130.002
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kinase (FAK)-deficient fibroblasts develop small, nascent adhesions (NAs) at the edge of membrane
protrusions without visible talin and that integrins carrying a mutation in the talin-binding site can
still nucleate and stabilize NAs (Lawson et al., 2012 ). Also fibroblasts lacking talin-1 and -2 were
shown to adhere to fibronectin (FN) and initiate isotropic spreading ( Zhang et al., 2008 ). Another
intriguing study demonstrated that overexpression of kindlin-2 in Chinese hamster ovary (CHO) cells
inhibits rather than promotes talin head-induced a5b1 integrin activation ( Harburger et al., 2009 ).
Given the fundamental importance of talin and kindlin for integrin activation in hematopoietic cells,
the findings of these studies are unexpected and imply that either integrin affinity regulation is sub-
stantially different in fibroblasts and epithelial cells or the experimental approaches used to manipu-
late protein expression and localization were imperfect.

To directly evaluate the functions of talin and kindlins for FN-binding integrins on fibroblasts, we
used a genetic approach and derived fibroblasts from mice lacking either the Tln1 and -2 or the
Fermt1 and -2 genes. We show that integrin affinity regulation depends on both talin and kindlin,
and that kindlin has the additional function of triggering cell spreading by binding directly to paxillin
in a talin-independent manner.

Results

Kindlins and talins control cell morphology, adhesion and integrin
expression
To obtain cells lacking the expression of talin-1 and kindlin-2, we intercrossed mice carrying loxP
flanked (floxed; fl) Tln1 or Fermt2 alleles (Figure 1A ), isolated kidney fibroblasts and immortalized
them with the SV40 large T antigen (parental fibroblasts). The floxed alleles were deleted by adeno-
viral Cre recombinase transduction resulting in T1 Ko and K2Ko fibroblasts. Loss of talin-1 or kindlin-2
expression in fibroblasts was compensated by talin-2 or the de novo expression of kindlin-1, respec-
tively, allowing adhesion and spreading, although to a lesser extent compared with control cells ( Fig-
ure 1Ðfigure supplement 1A,B ). To prevent this compensation, we generated mice with floxed
Tln1 and nullizygous Tln2 alleles or with floxed Fermt1 and -2 alleles (TlnCtr; KindCtr) from which we
isolated, immortalized and cloned kidney fibroblasts with comparable integrin surface levels
(Figure 1A and Figure 1Ðfigure supplement 2 ). The floxed alleles were deleted by transducing
Cre resulting in talin-1, -2 (TlnKo) and kindlin-1, -2 (KindKo) deficient cells, respectively (Figure 1A±C ).
Since the TlnCtr and KindCtr control cells showed similar morphologies and behaviour in our experi-
ments, we display one control cell line in several result panels. Cre-mediated deletion of the floxed
Tln1 or floxed Fermt1/2 genes was efficient (Figure 1B ) and resulted in cell rounding, weak adhesion
of a few cells, and reduced cell proliferation despite the immortalisation with the oncogenic large T
antigen (Figure 1C and Figure 1Ðfigure supplement 3 ). To minimize cell passage-induced abnor-
malities, we used cells only up to 12 passages after Cre-mediated gene deletions.

To define the adhesion defect, we performed plate and wash assays for 30 min on defined sub-
strates and found that neither Tln Ko nor KindKo cells adhered to FN, laminin-111 (LN), type I collagen
(COL) and vitronectin (VN) (Figure 1D ). To test whether the inability of Tln Ko and KindKo cells to
adhere to ECM proteins is due to an integrin activation defect, we bypassed inside-out activation by
treating cells with Mn 2+, which binds to the integrin ectodomain and induces unbending and
unclasping of integrin heterodimers ( Mould et al., 1995 ). Treatment with Mn 2+ induced partial
adhesion of TlnKo and KindKo cells to FN, while partial adhesion to LN and VN was only induced in
TlnKo cells (Figure 1D ). Time course experiments revealed that Mn 2+-induced adhesion of Tln Ko and
KindKo cells to FN was already significantly lower 2.5 min after plating and remained significantly
lower compared with control cells ( Figure 1E ), suggesting that talin and kindlin cooperate to initiate
and maintain normal Mn 2+-induced adhesion to FN. In line with these findings, dose-response pro-
files showed that TlnKo and KindKo cells have severe adhesion defects at low (1.25 mg ml±1) as well as
high (20 mg ml±1) substrate concentrations (Figure 1Ðfigure supplement 4 ).

These findings indicate that talin and kindlin promote integrin-mediated adhesion to FN and pro-
liferation, and that the integrin-activating compound Mn 2+ can only partially substitute for the adhe-
sion promoting roles that talin and kindlin accomplish together.
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Figure 1. Kindlin and talin are required for integrin-mediated cell adhesion. ( A) Scheme showing gene loci before and after ablation of the Tln1, -2 and
Fermt1, -2 genes. Orange diamonds indicate loxP sites and rectangles exons; untranslated regions are marked grey. (B) Western blot of TlnKo and
KindKo cells. Keratinocyte lysates (Kerat.) served to control kindlin-1 expression. (C) Bright field images of TlnCtr, KindCtr, TlnKo and KindKo cells. (D)
Quantification of cell adhesion on indicated substrates 30 min after seeding by counting DAPI stained cells; n=3 independent experiments, error bars
indicate standard error of the mean; t-test significances are calculated between untreated Tln Ko or KindKo cells and the corresponding Tln Ctr and
KindCtr or Mn2+-treated TlnKo or KindKo cell lines on same substrates; only significant differences are shown. (E) Quantification of Mn 2+-stimulated cell
adhesion for indicated times on FN; cells were quantified by absorbance measurement of crystal violet staining; n=3 independent experiments; lines
represent sigmoidal curve fit; error bars indicate standard deviation; significances for indicated pairs after 2.5 min were calculated by two-tailed t-test
and significances for indicated pairs of the overall kinetics were calculated by two-way RM ANOVA. Bar, 10 mm. COL, collagen; DAPI, 4',6-diamidino-2-
phenylindole; FN, fibronectin; GAPDH, glyceraldehyde-3-phosphate dehydrogenase; LN, laminin-111; RM ANOVA, repeated measures analysis of
variance; VN, vitronectin.
DOI: 10.7554/eLife.10130.003
The following figure supplements are available for figure 1:

Figure supplement 1. Talin-1- and kindlin-2-deficient fibroblasts.

DOI: 10.7554/eLife.10130.004

Figure supplement 2. Integrin expression profiles of TlnCtr and KindCtr cells.

DOI: 10.7554/eLife.10130.005

Figure 1 continued on next page
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Integrin activation and binding to FN requires talin and kindlin-2
The inability of Mn 2+ to fully rescue the adhesion defect of Tln Ko and KindKo cells raised the question
whether integrin surface levels change after deletion of the Tln1/2 and Fermt1/2 genes. We quanti-
fied integrin surface levels by flow cytometry and found that the levels of b1 and b3 were signifi-
cantly reduced in Kind Ko and unaffected in Tln Ko cells (Figure 2A and Figure 2Ðfigure supplement
1). The levels of a2 and a3 integrin were reduced in both cell lines, a6 was elevated in TlnKo and
decreased in KindKo cells, and the a3 levels were significantly more decreased in Kind Ko than in TlnKo

cells (Figure 2A ) explaining the absent adhesion of both cell lines to COL and their differential adhe-
sion behaviour on LN (Figure 1D ). The b5 levels were similarly up-regulated in Kind Ko and TlnKo cells,
and the a5 and av integrin levels were slightly reduced but not significantly different between Tln Ko

and KindKo cells (Figure 2A ). The differential adhesion of Mn 2+-treated Tln Ko and KindKo cells to VN
(Figure 1D ), despite similar surface levels of av integrins, points to particularly important role(s) for
kindlin-2 in av integrins-VN adhesion and signaling (Liao et al., 2015 ). Serendipitously, the reduced
expression of b1-associating a2, a3 and a6 subunits in KindKo cells, which impairs adhesion to LN
and COL enables a5 to associate with the remaining b1 subunits and leads to comparable a5b1 lev-
els on TlnKo and KindKo cells (Figure 2Ðfigure supplement 2 ) explaining their similar adhesion to
FN (Figure 1D,E and Figure 1Ðfigure supplement 4 ). Therefore, we performed all further experi-
ments with FN.

Since we excluded different surface levels of FN-binding integrins as a cause for the severely com-
promised adhesion of Tln Ko and KindKo cells to FN, we tested whether talin and kindlin are required
to activate FN-binding a5b1 integrins. To directly assess integrin activation, we made use of an anti-
body against the 9EG7 epitope, which specifically recognizes Mn 2+ and/or ligand activated b1 integ-
rins (Bazzoni et al., 1995 ). The amount of 9EG7 epitope exposure relative to total b1 integrin
exposure corresponds to the integrin activation index, which can be measured by flow cytometry
using 9EG7 and anti-total b1 integrin antibodies. These measurements revealed that Tln Ctr and
KindCtr cells bound 9EG7 antibodies, while Tln Ko and KindKo cells lacked 9EG7 binding in the
absence of Mn2+ (Figure 2Ðfigure supplement 3A ). Mn2+ treatment significantly increased 9EG7
binding by Tln Ctr and KindCtr cells, which was further elevated in the presence of FN-Arg-Gly-Asp
(RGD) ligand known to stabilize the high affinity state of integrins ( Figure 2Ðfigure supplement
3A). Mn2+-treated Tln Ko and KindKo cells bound significantly less 9EG7 antibodies than control cells,
which marginally increased with FN-RGD (Figure 2Ðfigure supplement 3A ). Moreover, the normali-
zation of the 9EG7 binding to the total b1 integrin surface levels also indicated a significantly lower
influence of Mn 2+ and FN-RGD on the integrin activation index of Kind Ko as compared to TlnKo cells
(Figure 2Ðfigure supplement 3A ). These findings confirm that both, talin and kindlin are required
for b1 integrin activation and to stabilize Mn 2+-induced unbending/unclasping of a5b1 integrins.

Our findings so far suggest that talin and kindlin are required to activate FN-binding integrins
and maintain Mn 2+-induced activation of FN-binding integrins. To further analyze whether ligand-
induced stabilisation of high-affinity integrin conformations (also termed `ligand-induced integrin
activation; Du et al., 1991 ) can form in the absence of talin or kindlin, we used atomic force micros-
copy (AFM)-based single cell force spectroscopy (SCFS). We attached control, TlnKo or KindKo cells
to Concanavalin A (ConA)-coated cantilevers, allowed the cells to contact surfaces coated with either
wild type FN-III 7-10 (FN-RGD) or an integrin-binding-deficient FN-III 7-10 fragment lacking the RGD
binding motif (FN- DRGD) for increasing contact times, either in the absence or presence of Mn 2+

and then detached them from the substrate by lifting the cantilever ( Figure 2B,C ). In the absence of
Mn2+ TlnCtr and KindCtr cells developed significant adhesion to FN-RGD within 5 s contact time.
After a contact time of 20 s around 2 nN force was required to disrupt adhesion to FN-RGD, and
after 50 and 120 s, respectively, 3 and 6 nN were required ( Figure 2B ). TlnKo and KindKo cells failed
to develop measurable adhesions to FN-RGD after contact times of 5, 20, 50 and 120 s ( Figure 2B ).
Treatment with Mn 2+ induced a slight and similar increase of force required to disrupt adhesion of

Figure 1 continued

Figure supplement 3. Cell proliferation of Tln Ko and KindKo cells.

DOI: 10.7554/eLife.10130.006

Figure supplement 4. Cell adhesion of TlnKo and KindKo cells on different FN concentrations.

DOI: 10.7554/eLife.10130.007
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Figure 2. FN binding by Tln Ko and KindKo cells. (A) Quantification of integrin surface expression levels relative to the TlnCtr and KindCtr cell lines;
independent experiments: n=10 for b1; n=4 for b3, a5, av; n=3 for remaining integrin subunits; error bars indicate standard error of the mean;
significances are calculated between TlnKo and KindKo cells indicated by brackets, or between Tln Ko or KindKo cells and corresponding control cells
indicated by the significances above or below bars. (B, C) Box plot representation of adhesion forces generated by cells interacting with surface
immobilized FN fragments. Cells were immobilized on ConA-coated AFM cantilevers and pressed onto surfaces coated with the FN-RGD or integrin-
binding deficient FN- DRGD fragments for varying contact times, either in the absence (B) or presence of Mn2+ (C). Coloured and grey boxplots
represent adhesion forces from at least 10±15 independent experiments with single cells; + signs represent mean; the significance between adhesion
on FN-RGD versus FN-DRGD is given on top of each boxplot and was calculated with a Mann±Whitney U test; brackets indicate two-way RM ANOVA
comparisons of the whole adhesion kinetics. (D) FN staining after plating cells on a FN-coated dish for 24 hr. (E) Quantification of cell adhesion on FN
30 min after seeding; values are normalized to TlnCtr and KindCtr; n=3 independent experiments; error bars indicate standard error of the mean. Bar, 10
mm. AFM, atomic force microscopy; ConA, Concanavalin A; FN, fibronectin; K2GFP, green fluorescent protein-tagged kindlin-2; RGD, Arg-Gly-Asp; RM
ANOVA, repeated measures analysis of variance; THD, talin-1 head domain; Tln1V, Venus-tagged full length talin-1.
DOI: 10.7554/eLife.10130.008
The following figure supplements are available for figure 2:

Figure supplement 1. Integrin expression profiles of TlnCtr, TlnKo, KindCtr and KindKo cells.

DOI: 10.7554/eLife.10130.009

Figure supplement 2. TlnKo and KindKo cells display comparable a5b1 integrin cell surface levels.

DOI: 10.7554/eLife.10130.010

Figure supplement 3. b1 i ntegrin activation in Tln Ctr, TlnKo, KindCtr, KindKo cells.

DOI: 10.7554/eLife.10130.011

Figure supplement 4. Re-expression of talin-1 or kindlin-2 in TlnKo and KindKo cells.

DOI: 10.7554/eLife.10130.012
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control, Tln Ko and KindKo cells to FN-RGD after 5 s contact time ( Figure 2C ). However, with increas-
ing contact times, the AFM profiles of Tln Ko and KindKo cells differ in the presence of Mn 2+. While
the adhesion force increased concomitantly with longer contact times in Tln Ctr, KindCtr and TlnKo

cells, adhesion forces of KindKo cells plateaued after 50 s and showed no further increase towards
120 s contact time. The latter finding suggests that kindlin stabilizes integrin±ligand complexes with
time, by inducing integrin clustering and/or by modulating the off-rate of integrin ligand bonds,
for example, through associating with the integrin-linked kinase (ILK)-Pinch-Parvin (IPP) complex that
links kindlin to the F-actin cytoskeleton ( Cluzel et al., 2005 ; Ye et al., 2013 ; Montanez et al., 2008 ;
Fukuda et al., 2014 ).

We next tested whether their impaired integrin function affects the assembly of FN into fibrils,
which requires association of active a5b1 integrin with the actin cytoskeleton ( Pankov et al., 2000 ),
and whether re-expression of talin and kindlin reverts the defects of Tln Ko and KindKo cells. While
neither TlnKo nor KindKo cells were able to assemble FN fibrils, re-expression of full-length Venus-
tagged talin-1 (Tln1V) in TlnKo or GFP-tagged kindlin-2 (K2GFP) in KindKo cells (Figure 2Ðfigure
supplement 4 ) rescued FN fibril assembly and adhesion to FN (Figure 2D,E ). Furthermore, neither
overexpression of the talin-1 head (THD) nor K2GFP in TlnKo cells, nor Tln1V or THD in KindKo cells
rescued adhesion to FN or 9EG7 binding ( Figure 2E and Figure 2Ðfigure supplement 3B ).

Altogether, our results demonstrate that both talin and kindlin are required (1) for ligand-induced
stabilisation of integrin-ligand complexes, (2) to stabilize Mn 2+-activated a5b1 integrins, and (3) to
induce integrin-mediated FN fibril formation.

TlnKo cells initiate spreading and assemble b1 integrins at protruding
membranes
It has been reported that a significant number of talin-2 small interfering RNA (siRNA)-expressing
talin-1±/± fibroblasts adhere to FN and initiate isotropic cells spreading ( Zhang et al., 2008 ). To test
whether spreading can also be induced in adherent Tln Ko and KindKo cells, we bypassed their adhe-
sion defect with Mn 2+, seeded them for 30 min on FN and stained with an antibody against total b1
integrin and the b1 integrin activation epitope-reporting 9EG7 antibody. As expected, Tln Ctr or
KindCtr cells clustered 9EG7-positive b1 integrins in NAs and focal adhesions (FAs), whose frequency
and size increased upon Mn2+ treatment ( Figure 3A,B ). In contrast, the sporadic and very weakly
adherent TlnKo and KindKo cells were small, round and formed small and finely dispersed b1 integrin
aggregates over the entire cell ( Figure 3A ) and lacked 9EG7-positive signals (Figure 3B ) in the
absence of Mn2+ treatment. Upon Mn 2+ treatment 37 ± 1% (n=684, mean ± standard deviation of
three independent experiments) of the Tln Ko cells showed isotropic membrane protrusions (circum-
ferential lamellipodia) with small, dot-like aggregates of b1 integrin, kindlin-2, paxillin and ILK at the
membrane periphery ( Figure 3A and Figure 3Ðfigure supplement 1 ), which eventually detached
from the substrate leading to the collapse of the protruded membrane ( Video 1 ). Furthermore,
9EG7-positive b1 integrins accumulated along the lamellipodial edge and beneath the nucleus of
TlnKo cells (Figure 3B ). The remaining cells were spheroid, with half of them showing short, finger-
like protrusions, which were motile due to their poor anchorage to the substrate. In the case of
KindKo cells, we analysed 652 cells in three independent experiments and found that only 7 ± 1%
(mean ± standard deviation) of the cells established lamellipodia, which formed around the entire cir-
cumference in 2 ± 0.4% (mean ± standard deviation) of the cells. Around 93 ± 1% of the KindKo cells
were spheroid (mean ± standard deviation) and frequently had finger-like, motile protrusions with
small dot-like signals containing b1 integrin and talin but rarely paxillin or ILK ( Figure 3A and Fig-
ure 3Ðfigure supplement 1 ). Importantly, re-expression of Tln1V in Tln Ko cells or K2GFP in KindKo

cells normalized FA formation and spreading on FN ( Figure 3Ðfigure supplement 2 ). These find-
ings indicate that kindlin-2 expressing Tln Ko cells can initiate the formation of large lamellipodia and
assemble b1 integrins in lamellipodial edges.

To further characterize the distribution of b1 integrins in the lamellipodial edges of Tln Ko cells, we
visualized them by combining direct stochastic optical reconstruction microscopy (dSTORM) and
total internal reflection fluorescence microscopy (TIRFM). Mn 2+-treated and non-permeablized cells
were seeded on FN, stained with anti-total b1 integrin antibodies, and then permeabilized, immu-
nostained for paxillin and imaged with normal resolution TIRFM and dSTORM ( Figure 3C ). Each
localization detected by dSTORM was plotted as a Gaussian distribution around its centre with an
average spatial accuracy of ~20 nm (resolution limit of dSTORM imaging). Since two or more
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Figure 3. Integrin distribution in Tln Ko and KindKo cells. (A) Confocal images of the ventral side of adherent cells stained for b1 integrin and F-actin in
the absence or presence of Mn2+ stimulation. Notice the increase in the spreading area (w/o Mn 2+: 1696± 360 mm2, Mn2+: 2676± 466 mm2) and in the
average size (w/o Mn2+: 0.64 ± 0.1 mm2, Mn2+: 0.89 ± 0.1 mm2) and number (w/o Mn2+: 105 ± 38, Mn2+: 246 ± 8) of focal adhesions in KindCtr cells after
Mn2+ stimulation and the increase of spreading area in the Tln Ko (w/o Mn2+: 77 ± 1 mm2, Mn2+: 572 ± 37 mm2) and KindKo cells (w/o Mn2+: 76 ± 27 mm2,
Mn2+: 152 ± 8 mm2) (n=3, mean± standard deviation). (B) Confocal images from the ventral side of adherent cells stained for the 9EG7 epitope in the
absence or presence of Mn2+ stimulation. (C) TIRF-dSTORM images ofb1 integrin (grey scale image) obtained from immunostaining of non-
permeabilized cells overlaid with anti-paxillin staining following permeabilization (red, normal resolution). Boxed areas are displayed in a five-fold
magnification. (D) Images show heat map representations of dSTORM localizations permm2 and sec, indicative for integrin clustering defined by local
integrin densities. The colour range indicates localizations s±1 mm±2 with low values shown in dark red colours and high densities from yellow to white
colours. Bars, 10mm (A,B); 5mm (C,D); 500 nm (for the magnification in C,D). TIRF, total internal reflection fluourescence; dSTORM, direct stochastic
optical reconstruction microscopy.
DOI: 10.7554/eLife.10130.014
The following figure supplements are available for figure 3:

Figure 3 continued on next page
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localizations from single or multiple dyes in close proximity cannot be distinguished, the number of
localizations does not directly reflect integrin numbers. However, all antibody molecules display the
same average behaviour with respect to the number of localizations per second in all areas of the
cell. This allowed to average the number of localizations per second and mm2 and to plot them in a
heat map representation ( Figure 3D ), which directly reflects the density of stained b1 integrin mole-
cules and thus the degree of integrin clustering. The b1 integrin staining of Tln Ctr and KindCtr cells
revealed small round structures of ~50 nm diameter indicating clusters of integrins larger than the
resolution limit ( Figure 3C ; high magnification; see arrowheads). Furthermore, high numbers of
localizations were enriched in paxillin-positive FAs and in NAs at the lamellipodial edge ( Figure 3C ;
see arrowheads). In these areas, we observed a high average density of 60±120 localizations s±1 mm±

2, while outside of the adhesion sites ~0±20 localizations s±1 mm±2 were detected, indicating a high
degree of b1 integrin clustering within and a low degree of clustering outside of adhesion sites
(Figure 3D ). TlnKo cells with circumferential lamellipodia showed a high density of blinking with up
to 100 localizations s±1 mm±2 at lamellipodial edges ( Figure 3C,D ; see arrowheads), which appeared
less compact than in control cells. Kind Ko cells showed >120 localizations s±1 mm±2 in the periphery
and finger-like membrane protrusions ( Figure 3C,D ; see arrowheads), which were also observed in
TlnKo cells that adopted a spheroid rather than an isotropic spread shape ( Figure 3Ðfigure supple-
ment 3 ). The exclusive presence of these large and entangled b1 integrin aggregates on Tln Ko and
KindKo cells with small, spheroid shapes and protrusions suggests that they were induced by spatial
constraints rather than specific signaling.

These findings demonstrate that, in contrast to Kind Ko cells, Mn2+-treated kindlin-2-expressing
TlnKo cells induce circumferential membrane protrusions with b1 integrins at the protrusive edges.

Kindlin-2 binds and recruits paxillin to NAs
Our data so far indicate that the expression of kindlin-2 enables initial, isotropic spreading and the
accumulation of integrins in lamellipodia of Mn 2+-treated Tln Ko cells. To identify binding partner(s) of
kindlin-2 that transduce this function to downstream effectors, we performed yeast-two-hybrid

assays with kindlin-2 as bait using a human
complementary DNA (cDNA) library containing
all possible open reading frames and a human
keratinocyte-derived cDNA library. Among the
124 cDNAs identified from both screenings, 17
coded for leupaxin and 11 for Hic-5. Immuno-
precipitation of overexpressed green fluorescent
protein (GFP)-tagged paxillin family members,
paxillin, Hic-5 and leupaxin in HEK-293 cells with
an anti-GFP antibody efficiently co-precipitated
FLAG-tagged kindlin-2 (K2flag) (Figure 4A ).
Conversely, overexpressed GFP-tagged kindlin
family members (kindlin-1, kindlin-2, kindlin-3)
co-precipitated Cherry-paxillin ( Figure 4Ðfigure
supplement 1 ). Since fibroblasts express high
levels of paxillin (Figure 4Ðfigure supplement
2), we performed all further interaction analysis
with paxillin. Immunoprecipitations of GFP-
tagged paxillin or kindlin-2 truncation mutants
(Figure 4Ðfigure supplement 3A ) revealed that

Figure 3 continued

Figure supplement 1. Localization of FAs proteins in Mn2+-treated Kind Ctr, TlnKo and KindKo cells.

DOI: 10.7554/eLife.10130.015

Figure supplement 2. Rescue of FA formation and spreading after expression of Tln1V in TlnKo cells or K2GFP in KindKo cells.

DOI: 10.7554/eLife.10130.016

Figure supplement 3. Distribution of b1 integrins in spheroid-shaped TlnKo cells.

DOI: 10.7554/eLife.10130.017

Video 1. Spreading KindCtr, TlnKo and KindKo cells on
FN. Assembled time lapse movies of KindCtr, TlnKo and
KindKo cells. Cell spreading was recorded 5 min after
seeding on FN. KindCtr cells were already well spread
and only a minor size increase was observed over the
following minutes. The TlnKo cells formed a
circumferential lamellipodium that rapidly collapsed
and subsequently the cells formed finger-like
protrusions of varying size and failed to reestablish a
fully formed circular lamellipodium. The Kind Ko cells
failed to form a lamellipodium and formed finger-like
protrusions that were not always adherent. Bar, 10
mm. FN, fibronectin.
DOI: 10.7554/eLife.10130.013
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the interaction between kindlin-2 and paxillin was dramatically reduced in the absence of the Lin-11,
Isl-1 and Mec-3 (LIM)1-4, LIM2-4 or LIM3-4 domains of paxillin (Figure 4B ), or the pleckstrin homol-
ogy (PH) domain (K2DPHGFP; lacking amino acids 380-477) or the N-terminus of kindlin-2 including
the F0, F1, and the N-terminal part of the F2 domains (K2NTGFP; terminating at the end of F1; span-
ning amino acids 1-229) (Figure 4C ). As expected, the interaction between kindlin-2 and ILK
(Montanez et al., 2008 ), which is mediated via a recently identified sequence in the linker domain
between the end of the N-terminal F2 and the beginning of the PH domain (amino acids 353±357)
(Fukuda et al., 2014 ; Huet-Calderwood et al., 2014 ), was abolished by the K2NTGFP truncation
but unaffected by the deletion of the PH domain (K2 DPHGFP) or the deletion of the N-terminal F0
and F1 domains (K2CTGFP, spanning amino acids 244-680) (Figure 4C ). Importantly, immunoprecip-
itation of Kind Ctr lysates with antibodies against paxillin co-precipitated kindlin-2 ( Figure 4D ), con-
firming interactions between the endogenous proteins. Pull down experiments with recombinant
full-length paxillin or paxillin-LIM3 domain and recombinant kindlin-2 demonstrated that binding to
LIM3 and full-length paxillin is direct, Zn 2+-dependent and abrogated with ethylenediaminetetraace-
tic acid (EDTA) (Figure 4E and Figure 4Ðfigure supplement 3B ). KindKo cells were transduced with
K2GFP or K2DPHGFP expression constructs, seeded on FN for different times and stained for b1
integrin, paxillin and F-actin. The experiments revealed that the expression of K2GFP in Kind Ko cells
rescued spreading and induced robust paxillin recruitment to b1 integrin-positive NAs ( Figure 4F,
G). In contrast, expression of K2DPHGFP failed to recruit paxillin to b1 integrin-positive adhesion
sites at the rim of membrane protrusions ( Figure 4F,G ) and induce normal cell spreading (Figure 4Ð
figure supplement 4A ) despite proper, although weaker, localisation to b1 integrin-positive adhe-
sion sites (Figure 4Ðfigure supplement 4B,C ). Interestingly, mature FAs in K2DPHGFP-expressing
cells were prominent after 30 min and contained significant amounts of paxillin, indicating that paxil-
lin is recruited to mature FAs in a kindlin-2-independent manner ( Figure 4F ).

These findings indicate that the PH domain of kindlin-2 directly binds the LIM3 domain of paxillin
and recruits paxillin into NAs but not into mature FAs.

The kindlin-2/paxillin complex promotes FAK-mediated cell spreading
Our findings revealed that kindlin-2 is required to recruit paxillin to NAs. Paxillin in turn, was shown
to bind, cluster and activate FAK in NAs, which leads to the recruitment of p130Cas, Crk and Dock
followed by the activation of Rac1 and the induction of cell spreading, and, in concert with growth
factor signals, to the activation of Akt-1 followed by the induction of cell proliferation and survival
(Schlaepfer et al., 2004 ; Bouchard et al., 2007 ; Zhang et al., 2014 ; Brami-Cherrier et al., 2014 ).
We therefore hypothesized that the recruitment of paxillin and FAK by kindlin-2 triggers the isotro-
pic spreading and expansion of Tln Ko cells. To test this hypothesis, we seeded our cell lines on FN or
poly-L-lysine (PLL) in the presence or absence of epidermal growth factor (EGF) and Mn2+. We found
that EGF induced similar phosphorylation of tyrosine-992 (Y992) of the epidermal growth factor
receptor (pY992-EGFR) in control, TlnKo and KindKo cells. The phosphorylation of tyrosine-397 of
FAK (pY379-FAK) in KindCtr cells was strongly induced after the adhesion of control cells on FN and
was not further elevated after the addition of EGF and Mn 2+ (Figure 5A and Figure 5Ðfigure sup-
plement 1 ). TlnKo cells also increased pY397-FAK as well as pY31-Pxn and pY118-Pxn levels upon
adhesion to FN, however, significantly less compared to control cells ( Figure 5A and Figure 5Ðfig-
ure supplement 1A-C ). Furthermore, EGF and Mn2+ treatments further increased pY397-FAK levels
in TlnKo cells and localized pY397-FAK to peripheral NA-like adhesions ( Figure 5A,B and Figure 5Ð
figure supplement 1A-C ). In sharp contrast, KindKo cells seeded on FN or treated with EGF and
Mn2+ failed to induce pY397-FAK, pY31-Pxn, pY118-Pxn (Figure 5A and Figure 5Ðfigure supple-
ment 1A-C ) and localize pY397-FAK to peripheral membrane regions ( Figure 5B ). Importantly, re-
expression of Talin1-Venus in TlnKo and Kindlin2-GFP and KindKo cells fully rescued these signaling
defects (Figure 5Ðfigure supplement 1B,C ). Furthermore, stable expression of K2GFP in KindKo

cells rescued pY397-FAK and pS473-Akt levels (Figure 5C ) and co-precipitated paxillin and FAK with
K2GFP (Figure 5Ðfigure supplement 2 ). In contrast, stable expression of K2DPHGFP in KindKo cells
failed to co-precipitate paxillin and FAK ( Figure 5Ðfigure supplement 2 ) and induce pY397-FAK
and pS473-Akt (Figure 5C ).

In line with previous reports showing that the paxillin/FAK complex can trigger the activation of
p130Cas (Zhang et al., 2014 ) and, in cooperation with EGFR signaling, the activation of Akt
(Sulzmaier et al., 2014 , Deakin et al., 2012 ), we observed Y410-p130Cas, pT308-Akt, S473-Akt and
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Figure 4. Kindlin binds and recruits paxillin to NAs. ( A) GFP-IP of lysates from HEK 293T cells overexpressing GFP-tagged paxillin, Hic5 and leupaxin
constructs (Pxn, paxillin; Hic5; Lpx, leupaxin) and K2flag reveal interaction of kindlin-2 with all three paxillin family members. (B) GFP-IP of lysates from
HEK 293T cells overexpressing GFP-tagged paxillin truncation mutants and K2flag identifies the paxillin LIM3 domain as kindlin-2-binding domain. ( C)
GFP-IP of lysates from HEK 293T cells overexpressing GFP-tagged kindlin-2 truncation/deletion mutants and Cherry-tagged paxillin (PxnCH) identifies
the kindlin-2 PH domain as paxillin binding domain. ( D) Co-IP of endogenous paxillin and kindlin-2 from Kind Ctr cells. (E) Purified His-tagged paxillin-
LIM3 domain pulls down recombinant kindlin-2 in a Zn 2+-dependent manner. (F) K2GFP and K2DPHGFP expressing KindKo cells seeded on FN for the
indicated times and stained for paxillin and b1 integrin. (G) Fluorescence intensity line scans from K2GFP- (n=11 cells) and K2DPHGFP- (n=17 cells)
expressing KindKo cells cultured on FN for 10 min and stained for paxillin and b1 integrin; error bars indicate standard error of the mean. Bar, 10
mm. EDTA, ethylenediaminetetraacetic acid; FN, fibronection; GAPDH, glyceraldehyde-3-phosphate dehydrogenase; GFP, green fluorescent protein;
ILK, integrin-linked kinase; IP, immunoprecipitation; K2GFP, green fluorescent protein-tagged kindlin-2; LIM, Lin-11, Isl-1 and Mec-3; NAs, nascent
adhesions; PH, pleckstrin homology.
DOI: 10.7554/eLife.10130.018

Figure 4 continued on next page
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pT202/pY204 Erk1/2 phosphorylation after Mn 2+ and/or EGF treatment of FN-seeded control and
rescued cells, and to a slightly lesser extent TlnKo cells (Figure 5D , Figure 5Ð figure supplement
3A,B). In contrast, FN-seeded KindKo cells failed to activate p130Cas and showed reduced Akt and
Erk1/2 phosphorylation in response to EGF ( Figure 5D , Figure 5Ðfigure supplement 3A,B ).

Finally, we tested whether the impaired activity of FAK contributed to the spreading defect of
KindKo cells by chemically inhibiting FAK activity in Tln Ko cells or by overexpressing FAK in KindKo

cells (Figure 5E±G). The experiments revealed that inhibiting FAK reduced lamellipodia formation of
TlnKo cells to an extent that was similar to untreated Kind Ko cells (Figure 5E ). Conversely, overex-
pression of FAKGFP in KindKo cells resulted in high active FAK, increased lamellipodial formation
and increased cell spreading in TlnKo and KindKo cells (Figure 5F,G and Figure 5Ðfigure supple-
ment 4A,B ).

Altogether, these findings show that the kindlin-2/paxillin complex in NAs recruits and activates
FAK to induce cell spreading and increase the strength of Akt signaling.

Discussion
While the functions of talin and kindlin for integrin activation, adhesion and integrin-dependent sig-
naling in hematopoietic cells are firmly established, their roles for these processes in non-hematopoi-
etic cells are less clear. To clarify this issue, we established mouse fibroblast cell lines that lacked
either talin-1/2 (Tln Ko) or kindlin-1/2 (Kind Ko) and tested whether they were able to activate integrins
and mediate substrate adhesion and signaling. In line with previous reports ( Bottcher et al., 2012 ;
Margadant et al., 2012 ), the deletion of Tln1/2 or Fermt1/2 genes changed the surface levels of
laminin- and collagen-binding integrins. Since surface levels of a5 and av integrins remained
unchanged between Tln Ko and KindKo cells, we were able to establish the specific roles of talin and
kindlin for the function of FN-binding integrins under identical conditions.

A major finding of our study demonstrates that integrin affinity regulation (activation) is essential
for fibroblast adhesion and depends on both talin and kindlin-2 ( Figure 6A,D ). The unambiguity of
this finding was unexpected in light of several reports showing that integrin activation and integrin-
mediated adhesion still occurs in talin-depleted cells, or is inhibited when kindlin-2 is overexpressed
(Harburger et al., 2009 ; Wang et al., 2011 ; Lawson et al., 2012 ). The previous studies that
addressed the functional properties of talin used siRNA-mediated protein depletion, a combination
of gene ablation and siRNA technology, or approaches to interfere with talin recruitment to NAs
either by ablating the talin upstream protein FAK or by expressing an integrin that harbors a muta-
tion in the talin binding site. Since the majority of approaches deplete rather than eliminate proteins
from cells and adhesion sites, the respective cells were most likely recruiting sufficient residual pro-
tein to adhesion sites to allow integrin activation, cell adhesion and spreading, and the assembly of
adhesion- and signaling-competent NAs. It is possible that not all integrin molecules have to be
occupied by talin and therefore low levels of talin suffice, particularly in NAs that were shown by
fluorescence correlation spectroscopy to contain only half the number of talin relative to a5b1 integ-
rin and kindlin-2 molecules (Bachir et al., 2014 ). However, when the entire pool of talin is lost or
decreased below certain thresholds ( Margadant et al., 2012 ) integrins remain inactivate and conse-
quently adhesion sites do not form. With respect to kindlin, it was reported that overexpressed kind-
lin-2 in CHO cells inhibits rather than promotes talin head domain-induced a5b1 integrin activation
(Harburger et al., 2009 ). An integrin inhibiting effect of kindlin-2 is inconsistent with our study,

Figure 4 continued

The following figure supplements are available for figure 4:

Figure supplement 1. Kindlin-1, -2 and -3 interact with paxillin.

DOI: 10.7554/eLife.10130.019

Figure supplement 2. Expression of paxillin family members in different cell lines.

DOI: 10.7554/eLife.10130.020

Figure supplement 3. Direct interaction between paxillin and kindlin-2.

DOI: 10.7554/eLife.10130.021

Figure supplement 4. K2DPHGFP fails to recruit paxillin to b1 integrin-positive adhesions in KindKo cells.

DOI: 10.7554/eLife.10130.022
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Figure 5. The kindlin/paxillin complex induces FAK signaling and cell spreading. ( A) FAK and EGFR activation after seeding serum-starved KindCtr,
TlnKo and KindKo cells on PLL or FN and treating them with or without EGF and Mn 2+. (B) Immunofluorescence staining of activated (Tyr-397
phosphorylated) FAK and F-actin in cells seeded on FN and treated with Mn 2+ for 30 min (FAKGFP indicates exogenous expression of FAKGFP fusion
protein). (C) FAK and Akt activation in KindKo cells stably transduced with K2GFP or K2DPHGFP either seeded on FN or kept in suspension. GFP
indicates similar expression of transduced GFP-tagged constructs. GAPDH levels served to control loading. (D) Levels of phosphorylated signaling
mediators downstream of FAK in Mn 2+-treated, serum-starved or EGF-treated KindCtr, TlnKo and KindKo cells. GAPDH levels served to control loading.
(E) Quantification of lamellipodia formation of FN-seeded Tln Ko and KindKo cells treated with Mn 2+ and either DMSO or the FAK inhibitor PF-228 (n=3
independent repeats; >100 cells/condition; error bars indicate standard error of the mean; significances are given in comparison to the DMSO control).
(F) FAK activity in TlnKo and KindKo cells stably transduced with FAKGFP (n=3 independent experiments). (G) Quantification of lamellipodia formation in
TlnKo and KindKo cells stably transduced with FAKGFP (n=3 independent experiments; significances are given in comparison to untreated control; error
bars indicate standard error of the mean). Bar, 10 mm. DMSO, dimethyl sulfoxide; EGF, epidermal growth factor; EGFR, epidermal growth factor
receptor; FAK, focal adhesion kinase; FAKGFP, green fluorescent protein-tagged FAK; FN, fibronectin; GAPDH, glyceraldehyde-3-phosphate
dehydrogenase; GFP, green fluorescent protein; PLL, poly-L-lysine.
DOI: 10.7554/eLife.10130.023
The following figure supplements are available for figure 5:

Figure supplement 1. FAK phosphorylation in TlnCtr, TlnKo, TlnKo+T1V, KindCtr, KindKo and KindKo+K2GFP cells.

DOI: 10.7554/eLife.10130.024

Figure supplement 2. Kindlin-2 forms a ternary complex with paxillin and FAK.

Figure 5 continued on next page
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which identified a crucial role for kindlin in integrin activation, as well as with other studies also dem-
onstrating that kindlin-2 promotes integrin functions ( Montanez et al., 2008 ). It could well be that
the reported inhibition of a5b1 by kindlin-2 represents an artifact that arose from protein
overexpression.

Integrin activation can be induced with Mn 2+, whose binding to the ectodomain of b subunits
directly shifts integrins into the high affinity state without the requirement for inside-out signals
(Mould et al., 1995 ). We observed that Mn 2+-treated Tln Ko and KindKo cells expressed the activa-
tion-dependent epitope 9EG7 and adhered to FN, albeit at significantly lower levels and efficiencies
than the normal parental or rescued cells ( Figure 6B,C ). This observation strongly indicates that talin
and kindlin also cooperate to maintain the extended and unclasped conformation of active integrins.
Although it is not known how talin and kindlin keep integrins in an active state, it is possible that
they stabilize this conformation by linking the unclasped b integrin cytoplasmic domain to the
plasma membrane and/or to cortical actin, which may firmly hold separated integrin a/b subunits
apart from each other. The expression of mutant talins and kindlins in our cells should allow us to
examine these possibilities in future.

Finally, our study also revealed that Mn 2+-treated Tln Ko cells began to form large, circumferential
lamellipodia that eventually detached from FN, leading to the collapse of the protruded membrane.
This initial isotropic spreading was significantly less frequent in Kind Ko cells, and has also been
observed in talin-2-depleted talin-1 ±/± cells on FN, although these cells did not require Mn 2+ for
inducing spreading, which is likely due to the presence of residual talin-2 that escaped siRNA-medi-
ated depletion ( Zhang et al., 2008 ; Zhang et al., 2014 ). These findings strongly suggest that integ-
rin binding to FN enables kindlin-2 in Tln Ko cells to cluster b1 integrins (as shown for aIIbb3 by
kindlin-3 in Ye et al., 2013 ) and to trigger a signaling process that initiates spreading.

To find a mechanistic explanation for the kindlin-2-mediated cell spreading, we used the yeast-
two-hybrid technology to identify paxillin as a novel and direct binding partner of kindlin-2. The
interaction of the two proteins occurs through the LIM3 domain of paxillin, which was previously
identified as integrin adhesion-targeting site ( Brown et al., 1996 ), and the PH domain of kindlin-2. It
is not unusual that PH domains fulfill dual roles by binding phospholipids and proteins, either simul-
taneously or consecutively (Scheffzek and Welti, 2012 ). The expression of a PH domain-deficient
kindlin-2 in Kind Ko cells rescues adhesion to FN and FA maturation, however, significantly impairs
spreading and plasma membrane protrusions. This finding together with the observations that paxil-
lin-null fibroblasts and embryonic stem cells have defects in spreading, adhesion site remodeling
and formation of lamellipodia ( Hagel et al., 2002 , Wade et al., 2002 ) indicates that the kindlin-2/
paxillin complex induces the elusive signaling process, leading to initial spreading of Tln Ko and talin-
depleted cells (Zhang et al., 2008 ). Indeed, the kindlin-2/paxillin complex in NAs recruits FAK
(Deramaudt et al., 2014 , Thwaites et al., 2014 ; Choi et al., 2011 ), which cooperates with growth
factor receptors (such as EGFR) to induce signaling pathways that activate Erk and Akt to promote
proliferation and survival, as well as Arp2/3 and Rac1 to induce actin polymerization and membrane
protrusions (Figure 6B,E ). Kindlin-2 also recruits ILK, which binds in the vicinity of the kindlin-2 PH
domain and links integrins to actin and additional signaling pathways ( Figure 6E ). The short-lived
nature of the initial spreading of Tln Ko and talin-depleted ( Zhang et al., 2008 ) cells shows that talin
concludes the integrin-mediated adhesion process in NAs ( Figure 6F ) and induces the maturation of
FAs. The formation of paxillin-positive FAs in cells expressing the PH domain-deficient kindlin-2 sug-
gests that the recruitment of paxillin to FAs occurs either in a kindlin-independent manner or
through a modification of kindlin in a second binding motif.

Figure 5 continued

DOI: 10.7554/eLife.10130.025

Figure supplement 3. Activity of signaling mediators downstream of FAK in Tln Ctr, TlnKo, TlnKo+T1V, KindCtr, KindKo and KindKo+K2GFP cells.

DOI: 10.7554/eLife.10130.026

Figure supplement 4. Cell spreading of FAK overexpressing TlnKo and KindKo cells.

DOI: 10.7554/eLife.10130.027

Theodosiou et al. eLife 2015;5:e10130. DOI: 10.7554/eLife.10130 14 of 24

Research article Biochemistry Cell biology



Figure 6. Model for the roles of talin and kindlin during inside-out and outside-in signaling of a5b1 integrin. Integrin subunits are modelled according
to Zhu et al. (2008) , with the a5 subunit in green and the b1 subunit in blue showing the bent and clasped low affinity and the extended and
unclasped high affinity conformations; the 9EG7 epitope is marked as red dot at the b1 leg and the FN ligand as beige dimers. ( A) a5b1 integrin fails to
shift from a bent to an extended/unclasped, high affinity state in the absence of talin-1/2 or kindlin-1/2; the bent/clasped conformation brings the EGF-
2 domain of the b subunit in close contact with the calf domain of the a5 subunit and prevents exposure of the 9EG7 epitope. (B) In the absence of
talin (TlnKo) and presence of Mn2+, kindlin-2 allows adhesion by stabilizing the high affinity conformation of a low number of integrins and the direct
binding of paxillin, leading to nucleation of integrins, recruitment of FAK, FAK-dependent signaling and lamellipodia formation. ( C) In the absence of
kindlins (KindKo), talin stabilizes the high affinity conformation of a low number of integrins but does not enable paxillin recruitment and lamellipodia
formation. (D) In normal fibroblasts, binding of kindlin and talin to the b1 tail is associated with the stabilisation of the unclasped a5b1 heterodimer and
9EG7 epitope exposure. (E) Kindlin recruits paxillin and FAK through the kindlin-PH domain and ILK/Pinch/Parvin (IPP; not shown) in a talin-
independent manner and induces cell spreading, proliferation and survival. ( F) The high affinity conformation of a5b1 integrin is stabilized by linkage of
the b1 tail to the actin cytoskeleton through talin (and potentially the IPP complex; not shown). The arrow length indicates integrin conformations
existing at equilibrium. EGF, epidermal growth factor; FAK, focal adhesion kinase; FN, fibronectin; ILK, integrin-linked kinase; IPP, integrin-linked
kinase-Pinch-Parvin; SFK, src family kinases.
DOI: 10.7554/eLife.10130.028
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Materials and methods

Mouse strains and cell lines and cell culture
The floxed kindlin-1 (Fermt1flox/flox ), floxed talin-1 (Tln1flox/flox ) and the constitutive talin-2-null
(Tln2±/±) mouse strains have been described (Rognoni et al., 2014 ; Nieswandt et al., 2007 ;
Conti et al., 2009 ). The floxed kindlin-2 (Fermt2flox/flox ) mouse strain generated via recombinant
recombination in embryonic stem cells ( Fassler and Meyer, 1995 ) carries loxP sites flanking exon
15, which contains the stop codon and the polyadenylation signal of the murine Fermt2 gene.
Homologous recombination and germ line transmission were verified by Southern blots, and the frt -
flanked neo cassette was removed with a transgenic mouse strain carrying a deleter-flipase gene.
Floxed talin-1 and talin-2-null mice, and floxed kindlin-1 and kindlin-2 mice were intercrossed to gen-
erate Tln1flox/flox Tln2±/± and Fermt1flox/flox Fermt2flox/flox mice.

The cell lines used in this study are mouse fibroblasts derived from the kidneys of 21 d old mice,
immortalized by retrovirally transducing the SV40 large T antigen, cloned (Tln Ctr and KindCtr) and
finally infected with an adenovirus to transduce the Cre recombinase resulting in talin-null (Tln Ko)
and kindlin-null (Kind Ko) cells. The parental cell lines were authenticated based on morphological cri-
teria and the surface experession of specific integrins. All cells were cultured under standard cell cul-
ture conditions using Dulbecco's modi®ed Eagle's medium (DMEM) supplemented with 8% fetal calf
serum (FCS) and Penicillin/Streptomycin but not subjected to mycoplasma contamination testing.

Flow cytometry
Flow cytometry was carried out with a FACSCantoTMII cytometer (BD Biosciences, Franklin Lakes,
NJ, USA) equipped with FACS DiVa software (BD Biosciences) using standard procedures. Data anal-
ysis was carried out with the FlowJo program (version 9.4.10). Fibroblasts were incubated with pri-
mary antibodies diluted in FACS-Tris buffered saline (FACS-TBS; 30 mM Tris, pH 7.4, 180 mM NaCl,
3.5 mM KCl, supplemented with 1 mM CaCl 2, 1 mM MgCl 2, 3% BSA, 0,02% NaN3) for 1 hr on ice,
washed twice with cold FACS-TBS and finally incubated with the secondary antibody for 45 min on
ice.

Real-time polymerase chain reaction
Total RNA was extracted with the RNeasy Mini extraction kit (Qiagen, Germany) from cultured cells,
cDNAs were prepared with an iScript cDNA Synthesis Kit (BioRad, Germany) and real-time polymer-
ase chain reaction (PCR) was performed with an iCycler (BioRad). Each sample was measured in trip-
licate and values were normalized to Gapdh. Primer sequences for Lpxn and Pxn were from
PrimerBank (Spandidos et al., 2010 ) (Lpxn: 26080416a1; aPxn: 114326500c2; bPxn: 22902122a1),
GAPDH primers were described before ( Rognoni et al., 2014 ) and Hic5 primers were newly
designed (Hic5-fwd: 5'-ttcctttgcagcggttgttcc-3'; Hic5-rev: 5'-ggttacagaagccacatcgtggg-3').

Antibodies and inhibitors
The following antibodies or molecular probes were used at indicated concentrations for western
blot (WB), immunofluorescence (IF) or flow cytometry (FACS): kindlin-1 (home made), (Ussar et al.,
2008 ) WB: 1:5000, IF: 1:1000; kindlin-2 (MAB2617 from Millipore, Germany) WB: 1:1000, IF: 1:500;
talin (8D4 from Sigma, Germany) WB: 1:1000; talin (sc-7534 from Santa Cruz, Germany) IF: 1:500;
talin-1 (ab57758 from Abcam, UK) WB: 1:2000; talin-2 (ab105458 from Abcam) WB: 1:2000; GAPDH
(6C5 from Calbiochem, Billerica, MA, USA) WB: 1:10,000; Paxillin (610051 from BD Transduction
Laboratories, Franklin Lakes, NJ, USA) WB: 1:1000, IF: 1:400; integrin b1-488 (102211 from
Biolegend, San Diego, CA, USA) IF: 1:400, FACS: 1:200; integrin b1 (MAB1997 from
Chemicon, Billerica, MA, USA) FACS: 1:400; integrin b1-647 (102213 from Biolegend) IF: 1:200;
integrin b1 (home-made), (Azimifar et al., 2012 ) IF: 1:400; integrin b3-biotin (553345
from PharMingen, Franklin Lakes, NJ, USA) FACS: 1:200; integrin b3 (M031-0
from Emfret, Germany) IF: 1:200; integrin a2-FITC (554999 from BD Biosciences) FACS: 1:100; integ-
rin a3 (AF2787 from R&D, Germany) FACS: 1:200; integrin a5-biotin (557446 from Pharmingen)
FACS: 1:200, IP 1mg; integrin a5 (4705 from Cell Signaling, Germany) WB: 1:1000; integrin a6-FITC
(555735 from Pharmingen) FACS 1:100; integrin av-biotin (551380 from Pharmingen) FACS: 1:200;
b1-integrin 9EG7 (550531 from BD Biosciences, San Diego, CA, USA) IF: 1:200; FACS: 1:200;
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fibronectin (AB2033 from Millipore) IF: 1:500; IgG2a rat isotype control (13-4321 from eBioscience,
Germany) FACS: 1:200; IP 1mg; Tritc-Phalloidin (P1951 from Sigma) IF: 1:400; Flag-tag-HRP (8592
from Sigma) WB: 1:10,000; GFP (A11122 from Invitrogen, Germany) WB: 1:2000; Cherry (PM005
from MBL, Woburn, MA, USA) WB:1:1000; Myc (05-724 from Millipore) WB 1:2000; FAK (06-543
from Upstate, Billerica, MA, USA) WB: 1:1000; FAK (3285 from Cell Signaling) WB (1:1000); phos-
pho-Y397 FAK (3283 from Cell Signaling) WB: 1:1000; phospho-Y397 FAK (44624G from
Biosource, Waltham, MA, USA) WB: 1:1000, IF: 1:400; ILK (611803 from Transduction Labs) WB:
1:5000; IF: 1:500; phospho-Y992 EGFR (2235 from Cell Signaling) WB: 1:2000; phospho-Y31 Paxillin
(44720G from Invitrogen) WB: 1:1000; phospho-Y118 Paxillin (44722G from Invitrogen) WB: 1:1000;
p130Cas (P27820 Transduction Labs) WB: 1:1000; phospho-Y410 p130 Cas (4011S from Cell Signal-
ing) WB: 1:1000; Akt (9272 from Cell Signaling) WB: 1:1000; phospho-S473 Akt (4060 from Cell Sig-
naling) WB: 1:1000; phosho-T308 Akt (9275 from Cell Signaling) WB: 1:1000; Erk1/2 (9102 from Cell
Signaling) WB: 1:1000; Erk1/2 phosphorylated T202 Y204 (4376 Cell Signaling) WB: 1:1000.

The following secondary antibodies were used: goat anti-rabbit Alexa 488 (A11008), goat anti-
mouse Alexa 488 (A11029), goat anti-rat Alexa 488 (A11006), goat anti-mouse Alexa 546 (A11003),
donkey anti-mouse Alexa 647 (A31571), goat anti-rabbit Alexa 647 (A21244), (all from Invitrogen)
FACS: 1:500, IF: 1:500; streptavidin-Cy5 (016170084) FACS: 1:400; goat anti-rat horseradish peroxi-
dase (HRP) (712035150) (both from Dianova, Germany) WB: 1:10,000, donkey anti-rabbit Cy3 (711-
165-152) (from Jackson ImmunoResearch, West Grove, PA, USA) IF: 1:500, goat anti-mouse HRP
(172-1011) and goat anti-rabbit HRP (172-1019) (both from BioRad) WB: 1:10,000.

The FAK inhibitor PF-228 (PZ0117 from Sigma) was dissolved in dimethyl sulfoxide at 10 mM and
used at 1:2000.

Expression and purification of recombinant proteins
The recombinant expression of kindlin-2, full-length paxillin (paxillin-FL) and paxillin-LIM3 in Escheri-
chia coli Rosetta cells (Merck Millipore) was induced with 1 mM or 0.2 mM IPTG, respectively, at
18ÊC for 22 hr. After cell lysis and clarification of the supernatant, kindlin-2 was purified by Ni-NTA
affinity chromatography (Qiagen). Eluate fractions containing kindlin-2 were pooled, cleaved with
SenP2 protease and purified by size-exclusion chromatography (Superdex 200 26/600, GE
Healthcare, UK) yielding unmodified murine kindlin-2. The paxillin constructs were purified by Ni-
NTA affinity chromatography (Qiagen), and subsequent size-exclusion chromatography (SEC650,
BioRad) to obtain N-terminally tagged His10-SUMO3-paxillin-FL and His10-SUMO3-paxillin-LIM3
domain, respectively.

Immunostaining
For immunostaining, cells were cultured on plastic ibidi- m-slides (80826 from Ibidi, Germany) coated
with 20 mg ml±1 FN (Calbiochem). Cells were routinely fixed with 4% paraformaldehyde (PFA) (w/v) in
phosphate buffered saline (PBS; 180 mM NaCl, 3.5 mM KCl, 10 mM Na 2HPO4, 1.8 mM K2H2PO4) for
10 min at room temperature (RT) or with ±20 ÊC cold acetone±methanol when indicated. If necessary,
cells were solubilized with staining buffer (PBS supplemented with 0.1% Triton X-100 (v/v) and 3%
BSA (w/v)) or with ±20ÊC cold methanol for kindlin-2 staining. Background signals were blocked by
incubating cells for 1 hr at RT in staining buffer. Subsequently, they were incubated in the dark with
primary and secondary antibodies diluted in staining buffer. Fluorescent images were aquired with a
LSM 780 confocal microscope (Zeiss, Germany) equiped with a 100� /NA 1.46 oil objective and with
a DMIRE2-SP5 confocal microscope (Leica, Germany) equiped with a 40� /NA 1.25 or 63 � /NA 1.4
oil objective using Leica Confocal software (version 2.5 build 1227). Brightfield images were aquired
with an Axioskop (Carl Zeiss) 40� /NA 0.75 objective and DC500 camera with IM50 software (Leica).
Z-stack projection and contrast adjustments ImageJ (v1.47) were used for further image analysis.

Super-resolution imaging was carried out by direct stochastic optical reconstruction microscopy
(dSTORM) (van de Linde et al., 2011 ), which is based on precise emitter localization. To induce
reversible switching of the Alexa 647 label and reduce photobleaching, imaging was performed in
imaging solution (50% Vectashield (v/v) (H-1000; Vector Laboratories, Burlingame, CA, USA), 50%
TBS (v/v), pH=8.0) supplemented with 50 mM b-mercaptoethylamine (Sigma-Aldrich; M9768).

dSTORM was implemented on a custom built total internal reflection fluourescence (TIRF) system
(Visitron Systems, Germany) based on a Zeiss Axiovert 200M with fiber-coupled lasers. Sample were
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excited with a 640 nm laser in a TIRF mode using a Zeiss a Plan-Fluar 100� /NA 1.45 oil objective.
The emitted light was detected in the spectral range 660±710 nm through a Semrock FF02-685/40-
25 bandpass filter (Semrock Inc., Rochester, NY, USA). Images were recorded with a Photometrics
Evolve Delta emCCD camera (Photometrics, Huntington Beach, CA, USA), with its EM gain set to
250. Additional magnification by a factor of 1.6 resulted in a pixel size of 100 nm. For each final
image, a total of 20,000 frames with an exposure time of 14 ms were recorded.

A standard TIRF imaging of the same sample in the green channel (anti-paxillin) was achieved by
illumination with a 488 nm laser and detection in the spectral range 500±550 nm through a Chroma
Et 525/50 bandpass filter (Chroma Technology Corporation, Bellows Falls, VT, USA). Simultaneous
dual-colour imaging of both the green and the red channel was realized with a Hamamatsu W-View
Gemini image splitter (Hamamatsu Photonics, Bridgewater, NJ, USA) mounted between the micro-
scope and the camera. Image analysis was carried out with the ImageJ plugin ThunderSTORM
(Ovesny et al., 2014 ) and standard tools of ImageJ. Heat maps of density of blink events were cre-
ated using the 2D-Frequency Count/Binning module of OriginPro 9.1 (OriginLab
Corporation, Northampton, MA, USA).

AFM-based single-cell force spectroscopy
Tipless, 200 mm long V-shaped cantilevers (spring constants of 0.06 N m ±1; NP-O, Bruker, Billerica,
MA, USA) were prepared for cell attachment as described ( Friedrichs et al., 2010 ). Briefly, plasma
cleaned cantilevers were incubated in 2 mg ml ±1 ConA (Sigma) in PBS at 4ÊC overnight. Polydime-
thylsiloxan (PDMS) masks were overlaid on glass bottoms of Petri dishes (35 mm FluoroDish, World
Precision Instruments, Sarasota, FL, USA) to allow different coatings of the glass surface (Te Riet
et al., 2014 ). PDMS-framed glass surfaces were incubated overnight with 50 mg ml±1 FN-RGD and
50 mg ml±1 FN-DRGD in PBS at 4ÊC. Overnight serum-starved fibroblasts (Tln Ctr, KindCtr, TlnKo,
KindKo) grown on FN-coated (Calbiochem) 24 well plates (Thermo Scientific, Denmark) to confluency
of ~ 80% were washed with PBS and detached with 0.25% (w/v) trypsin/EDTA (Sigma). Detached
cells were suspended in single-cell force spectroscopy (SCFS) medium (DMEM supplemented with
20 mM HEPES) containing 1% (v/v) FCS, pelleted and further resuspended in serum-free SCFS
medium. Detached cells were left suspended in SCFS media to recover from detachment for ~1 hr
(Schubert et al., 2014 ). For the activation or chelation assay, the detached cells were incubated in
SCFS media supplemented with 0.5 mM Mn 2+ or 5 mM EDTA, respectively, for ~1 hr and SCFS was
performed in the presence of the indicated supplement. SCFS was performed using an AFM (Nano-
Wizard II, JPK Instruments, Germany) equipped with a CellHesion module (JPK Instruments)
mounted on an inverted optical microscope (Zeiss Axiovert 200M). Measurements were performed
at 37ÊC, controlled by a PetriDish Heater (JPK Instruments). Cantilevers were calibrated using the
equipartition theorem ( Hutter and Bechhoefer, 1993 ).

To attach a single cell to the cantilever, cell suspensions were pipetted to the region containing
the FN-DRGD coating. The ConA functionalized cantilever was lowered onto a single cell with a
velocity of 10 mm s� 1 until reaching a contact force of 5 nN. After 5 s contact, the cantilever was
retracted from the Petri dish by 50 mm and the cantilever-bound cell was left for incubation for >10
min. For adhesion experiments, the cantilever-bound cell was brought into contact with the FN- D
RGD coated support at a contact force of ~2 nN for 5, 20, 50 and 120 s and then retracted while
measuring the cantilever deflection and the distance travelled. Subsequently, the cell adhesion to
the FN-RGD coated support was characterized as described. In case cantilever attached cells
showed morphological changes (e.g. spreading) they were discarded. The approach and retract
velocity of the cantilever was 5 mm s±1. The deflection of the cantilever was recorded as force-dis-
tance curves. Adhesion forces were extracted from retraction force-distance curves using the AFM
data processing software (JPK Instruments).

Immunoprecipitations and recombinant protein pulldown
GFP-IPs were performed using m-MACS anti-GFP magnetic beads (130-091-288 from Miltenyi, Ger-
many). To pulldown recombinant kindlin-2 35 mg of purified His10-LIM3 or 10 mg of purified His10-
paxillin-FL were incubated with 100 ml of 50% Ni-NTA-Agarose slurry (Qiagen) in pulldown buffer (20
mM Tris, pH 7.5, 200 mM NaCl, 1 mM TCEP, 0.05% Tween20) for 1 hr at 4ÊC. After a first wash with
20 column volumes (CV) of pulldown buffer supplemented with 1 mM ZnCl 2 and a second wash with

Theodosiou et al. eLife 2015;5:e10130. DOI: 10.7554/eLife.10130 18 of 24

Research article Biochemistry Cell biology



20 CV of pulldown buffer, 14 mg of purified kindlin-2 were added to 100 ml of Ni-NTA-agarose slurry
and incubated for 30 min at 4 ÊC. Subsequently, the Ni-NTA beads were washed three times with 20
CV of pulldown buffer supplemented with 25 mM imidazole and either 1 mM ZnCl 2 or 1 mM EDTA.
The beads were eluted with 50 ml pulldown buffer supplemented with 500 mM imidazole and ana-
lysed on a 12% sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE).

For immunoprecipitation of kindlin-2 or paxillin, control fibroblasts were lysed in lysis buffer (50
mM Tris, pH 8.0, 150 mM NaCl, 1% Triton X-100, 0.05% sodium deoxycholate, 10 mM EDTA).
Lysates were incubated with kindlin-2 or paxillin antibodies for 2 hr at 4 ÊC while rotating. Isotype-
matched IgG was used as a negative control. After this, lysates were incubated with 50 ml protein A/
G Plus Agarose (Santa Cruz) for 2 hr at 4ÊC. Following repeated washes with lysis buffer, proteins
were eluted from the beads using Laemmli buffer and analyzed by western blotting.

For the immunoprecipitation of a5 integrin from the cell surface of live cells, a5 integrins were
labeled with a biotinylated anti- a5 integrin antibody (PharMingen #557446) or an isotype control
(eBioscience # 13-4321) for 1 hr on ice. After two washes in ice-cold PBS to remove unbound anti-
body, cells were lysed in IP buffer (50 mM Tris, pH 7.5, 150 mM NaCl, 1% Triton X-100, 0.1% sodium
deoxycholate, 1mM EDTA, and protease inhibitors) and cleared by centrifugation. a5 integrin
immuno-complexes were pulled-down by incubation with streptavidin-sepharose (GE Healthcare)
overnight at 4 ÊC with gentle agitation. After several washes with lysis buffer, proteins were subjected
to SDS-PAGE and western blot analysis with antibodies against a5 and b1 integrin.

Spreading and adhesion assays
Cells were grown to 70% confluency and then detached using trypsin/EDTA. Suspended cells were
serum starved for 1 hr in adhesion assay medium (10 mM HEPES, pH 7.4; 137 mM NaCl; 1 mM
MgCl 2; 1 mM CaCl2; 2.7 mM KCl; 4.5 g L±1 glucose; 3% BSA (w/v)) before 40,000 cells per well were
plated out in the same medium supplemented with 8% FCS, and 5 mM Mn 2+ if indicated. Plastic
ibidi- m-slides (Ibidi; 80826) were coated with 10 mg ml±1 FN (Calbiochem) for adhesion or 20 mg ml±1

FN for spreading assays, 10 mg ml±1 LN (11243217001 from Roche, Germany), 10 mg ml±1 COL
(5005B from Advanced Bio Matrix, Carlsbad, CA, USA), 10 mg ml±1 VN (07180 from
StemCell, Canada) or 0.1% PLL (w/v) (Sigma; P4707) diluted in PBS. Seeded cells were centrifuged
at 600 rpm in a Beckman centrifuge for 30 min at 37 ÊC before they were fixed with 4% PFA (w/v) in
PBS and stained with Phalloidin-TRITC and DAPI. For cell adhesion assays, nuclear staining of the
whole well was imaged using a 2.5x objective and cell numbers were counted using ITCN plugin for
imageJ (Byun et al., 2006 ). For cell spreading assays, 12 confocal images of different regions of
Phalloidin and DAPI stained cells were aquired using a Leica confocal microscope, cell spreading
was quantified using imageJ.

For time dependent and ligand concentration dependent adhesion on FN, 40,000 cells were
plated on 96-well plates, vigorously washed after the indicated timepoints with PBS and fixed with
4% PFA. Cell attachment was meassured by crystal violet staining (0.1% in 20% methanol) of cells in
a absorbance plate reader at the wavelength of 570 nm.

Live cell imaging
A hole of 15 mm diameter was drilled into the bottom of a 35 mm falcon tissue culture dish (353001,
Becton Dickinson) and a coverslip (é 25 mm, Menzel-GlaÈser, Germany), rinsed with ethanol, was
glued to the dish with silicon glue (Elastosil E43, Wacker, Germany). After coating coverslips with 20
mg ml±1 FN (Calbiochem) overnight at 4 ÊC, cells were plated and imaged in an inverted transmission
light microscope (Zeiss Axiovert 200 M, Carl Zeiss) equipped with a climate chamber. Phase contrast
images were taken with a ProEM 1024 EMCCD camera (Princeton Instruments, Acton, MA, USA)
through a Zeiss Plan Neofluar 100x objective (NA 1.3, Ph3). Frames were acquired at 30 sec or 1 min
intervals and converted to time lapse movies using ImageJ.

Constructs and transfections
K2DPHGFP was cloned by PCR using the K2GFP cDNA (Ussar et al., 2006 ) as template and the
Kind2fwd (5'-ctcgaggaggtatggctctggacgggataag -3', Kind2PHrev 5'- tggtcttgcctttaatatag tcagcaagtt
-3'), Kind2PHfwd (5'- ctatattaaaggcaa gaccatggcagacag -3') and Kind2rev (5'- tctagatcacacccaac-
cactggtga-3') primers. The two fragments containing homologous regions (indicated with bold
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letters in the primer sequences) were fused by another round of amplification using the most 5' and
3' primers (Kind2fwd and Kind2rev). The resulting PCR product was cloned into the K2GFP vector.
The N- and C-terminal truncation constructs of kindlin-2 were cloned by PCR using K2GFP as tem-
plate. The primer sequences were: Kind2-NT-fwd 5'-ctgtacaagtccggactc-3', Kind2-NT-rev 5'-
gcggccgcctattttgctttatcaagaagagc-3', Kind2-CT-fwd 5'-ctcgagctatggataaagcaaaaaccaaccaag-3',
Kind2-CT-rev 5'-gttatctagagcggccgc-3'. Stable expression of K2 DPHGFP and FAKGFP- or Myc-FAK
(a gift from Dr. Ambra Pozzi; Vanderbilt University, Nashville, USA) cDNAs was achieved with the
sleeping beauty transposase system (Bottcher et al., 2012 ). Kindlin-1-GFP and Kindlin-3-GFP con-
structs have been described (Ussar et al., 2008 ; Moser et al., 2008 ).

For stable expression of murine talin-1 and THD (amino acids1-443), the corresponding cDNAs
were N-terminally tagged with Venus and cloned into the retroviral pLPCX vector. The constructs for
GFP-tagged paxillin-LIM truncation mutants were generated by PCR from GFP- and Cherry-tagged
a-paxillin (Moik et al., 2013 ) and cloned into the retroviral pLPCX vector. The primer sequences
were: stop codon in bold: DLIM1-4fwd 5'- caccgttgccaaa tga gggtctgtggagcc -'3, DLIM1-4rev 5'-
ggctccacagaccctcatttggcaacggtg -'3, DLIM2-4fwd 5'- cagcctcttctcccca tga cgctgctactactg -'3, DLIM2-
4rev 5'- cagtagtagcagcg tcatggggagaagaggctg -'3, DLIM3-4fwd 5'- aagattacttcgacatgtttgct tga cc-
caagtgcggc -'3, DLIM3-4rev 5'- gccgcacttggg tcaagcaaacatgtcgaagtaatctt -'3, DLIM4fwd 5'-
ggcgcggctcg tga ctgtgctccgg -'3, DLIM4rev 5'- ccggagcacagtcacgagccgcgcc -'3). The cDNA of
murine Hic5 was amplified from a cDNA derived from murine vascular smooth muscle cells, cloned
into pCR2.1-TOPO (Invitrogen) and subcloned into pEGFP-C1 vector. Murine leupaxin cDNA (clo-
neID: 5065405 from Thermo Scientific, Germany) was PCR-amplified (Lpxn-fwd: 5'- ctcgagcaatggaa-
gagctggatgccttattg -3'; Lpxn-rev 5'- gaattcctactgtgaaaagagcttagtgaagc -3') and subcloned into the
pEGFP-C1 vector.

To express recombinant murine kindlin-2 and paxillin-LIM3 (A473-S533) cDNAs were fused with
N-terminal tandem tags consisting of 10x-Histidine followed by a SUMO3-tag and cloned into
pCoofy17. The primer sequences for amplifying the paxillin-LIM3 domain were: LIM3fwd 5'-
aaccggtggagctcccaagtgc-3' and LIM3rev 5'-ttctcgagttacgagccgcgcc-3'. The plasmid carrying FNIII 7-

10 cDNA has been described previously (Takahashi et al., 2007 ). For Y2H analysis, the kindlin-2
cDNA was PCR amplified using the primers K2-Bamfw: 5'-gggatcccactgggcctaatggctctggacggga-
taagg-3' and K2-Salrev: 5'-gtgtcgacgtcacacccaaccactggtgagtttg-3' and cloned into the pGBKT7
plasmid to obtain a kindlin-2 version that was N-terminally fused with the Gal4-DNA binding domain.
Screening of this construct against a human full ORF library was conducted by the Y2H protein inter-
action screening service of the German Cancer Research Center in Heidelberg, Germany.

Statistical analysis
Experiments were routinely repeated at least three times and the repeat number was increased
according to the effect size or sample variation. Unless stated differently, all statistical significances
(*P<0.05; **P<0.01; ***P<0.001; n.s., not significant) were determined by two-tailed unpaired t-test.
In the boxplots, the middle line represents the median, the box ends represent the 25th and 75th
percentiles and the whisker ends show the 5th and 95th percentiles. Statistical analysis were per-
formed with Prism (GraphPad, La Jolla, CA, USA).
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