High-Affinity Sites Form an Interaction Network to Facilitate Spreading of the MSL Complex across the X Chromosome in *Drosophila*

Graphical Abstract

Highlights
- HAS frequently occur at regions with enriched long-range contacts on the X chromosome
- Global X chromosome architecture is sex- and MSL complex-independent in flies
- roX HAS dynamically organize within the X territory depending on transcriptional status
- The MSL complex uses spatial proximity to spread and affects nucleosome pattern at HAS

Authors
Fidel Ramírez, Thomas Lingg, Sarah Toscano, ..., Job Dekker, Thomas Manke, Asifa Akhtar

Correspondence
akhtar@ie-freiburg.mpg.de

In Brief
Combining chromosome conformation analyses with fly genetics, Ramírez et al. show that high-affinity sites (HAS), positioned at hubs of long-range chromatin contacts, arrange in a sex- and MSL complex-independent manner on the X chromosome. The MSL complex spreads via spatial proximity and regulates local chromatin remodeling rather than influencing global chromatin architecture.

Accession Numbers
GSE58821
High-Affinity Sites Form an Interaction Network to Facilitate Spreading of the MSL Complex across the X Chromosome in *Drosophila*

Fidel Ramírez,1,7 Thomas Lingg,1,2,7 Sarah Toscano,1,7 Kin Chung Lam,1,2,7 Plamen Georgiev,1 Ho-Ryun Chung,3 Bryan R. Lajoie,4 Elzo de Wit,5 Ye Zhan,4 Wouter de Laat,6 Job Dekker,4,6 Thomas Manke,1 and Asifa Akhtar1,*

1Max Planck Institute of Immunobiology and Epigenetics, 79108 Freiburg, Germany
2Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
3Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany
4Program in Systems Biology, Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605-0103, USA
5Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences and University Medical Center Utrecht, Uppsalalaan 8, 3584 CT Utrecht, the Netherlands
6Howard Hughes Medical Institute
7Co-first author
*Correspondence: akhtar@ie-freiburg.mpg.de
http://dx.doi.org/10.1016/j.molcel.2015.08.024

SUMMARY

Dosage compensation mechanisms provide a paradigm to study the contribution of chromosomal conformation toward targeting and spreading of epigenetic regulators over a specific chromosome. By using Hi-C and 4C analyses, we show that high-affinity sites (HAS), landing platforms of the male-specific lethal (MSL) complex, are enriched around topologically associating domain (TAD) boundaries on the X chromosome and harbor more long-range contacts in a sex-independent manner. Ectopically expressed roX1 and roX2 RNAs target HAS on the X chromosome in *trans* and, via spatial proximity, induce spreading of the MSL complex in *cis*, leading to increased expression of neighboring autosomal genes. We show that the MSL complex regulates nucleosome positioning at HAS, therefore acting locally rather than influencing the overall chromosomal architecture. We propose that the sex-independent, three-dimensional conformation of the X chromosome poises it for exploitation by the MSL complex, thereby facilitating spreading in males.

INTRODUCTION

The organization of chromosomes within the nucleus and the spatial arrangement of genes within a chromosome territory are gaining fundamental importance during epigenetic control of gene expression (Quinodoz and Guttman, 2014). Notably, the regulatory mechanisms of sex chromosomes offer ideal paradigms to understand how the expression of an entire chromosome, and, therefore, thousands of genes at once, can be controlled by epigenetic mechanisms (Brockdorff and Turner, 2015).

Dimorphic sex chromosomes genetically determine sex in many organisms. In the XX/XY sex determination system, males are heterogametic (XY), and females are homogametic (XX). To overcome the risk of an unequal transcriptional output, different organisms have evolved independent strategies (termed “dosage compensation”) to balance the X chromosomal gene dose between the sexes (Vicoso and Charlesworth, 2006). In mammals, expression of the long non-coding RNA (lncRNA) Xist from only one of the two female X chromosomes leads to recruitment of silencing complexes in *cis* through which this chromosome becomes compacted and heterochromatinized (Heard and Disteche, 2006). In *Drosophila melanogaster*, dosage compensation happens on the single male X chromosome by formation of the male-specific lethal (MSL) complex, which promotes an approximately 2-fold transcriptional upregulation (Conrad and Akhtar, 2011). The MSL complex consists of four core proteins (MSL1, MSL2, MSL3, and males absent on the first [MOF]) which, together, form a hetero-octameric complex that is further stabilized by the integration of two lncRNAs, called RNA on the X chromosome (roX) 1 and 2, by the ATP-dependent RNA helicase maleless (MLE) (Keller and Akhtar, 2015). The formation of this ribonucleoprotein complex is believed to occur at the roX gene locus because roX RNAs are the only components of the complex being produced within the nucleus.

Based on both genetic and genomic analyses, the complex is thought to first target genomic regions called high-affinity sites (HAS), which include the roX genes, and then to spread to lower-affinity sites. During this process, MOF acetylates histone H4 lysine 16 across the entire X chromosome, which ultimately upregulates transcription (Conrad and Akhtar, 2011). However, how HAS are organized to allow the complex to reach the whole X chromosome continues to be an enigma. The MSL complex preferentially binds to an active chromatin environment containing a consensus sequence motif, called the MSL recognition
Figure 1. HAS Are Enriched at TAD Boundaries

(A) Normalized Hi-C counts at 10-kb resolution for the region 11.6–13.0 Mb in chromosome X of S2 cells. From the top, the tracks are as follows: partitioning of the genome into TADs; HAS as defined by Straub et al. (2008); HAS reported by Alekseyenko et al. (2008) (originally called chromosome entry sites [CESs]); roX2 CHART (Simon et al., 2011); roX2 ChIRP (Chu et al., 2011); roX1 domain-specific ChIRP (Quinn et al., 2014); MLE, MSL1, and MSL2 ChIP-seq (Straub et al., 2013); and active and inactive genes in S2 cells (Cherbas et al., 2011). Vertical lines are high-resolution HAS based on roX2 and MSL2 binding.

(B) Distribution of distances from the boundaries to HAS (top, blue) and from boundaries to the same number of shuffled random regions (bottom, gray) within chromosome X. The x axis represents the distance in kilobases from HAS to the boundary in bins of 5 kb. The y axis represents the number of HAS per bin.

(C) TAD separation score (Supplemental Experimental Procedures) around HAS showing the tendency of the MSL complex to land at boundaries. Lower scores indicate better TAD separation.

(legend continued on next page)
element (MRE), that is flanked by sequences of elevated GC content (Alekseyenko et al., 2012; Conrad and Akhtar, 2011). However, these features, although moderately enriched on the X chromosome, are also found on autosomes, and, therefore, it has not been possible to fully characterize HAS. Current models are based on linear genomic analysis or DNA fluorescent in situ hybridization (DNA FISH) on a few individual loci (Grimaud and Becker, 2009) without accounting for the potential influence of global chromosome conformation.

In this study, we used genome-wide chromosome conformation capture (Hi-C), a technique that enables the study of all chromosomal interactions within a genome at once (Lieberman-Aiden et al., 2009). This was further complemented by circularized chromosome conformation capture followed by deep sequencing (4C-seq) (Splinter et al., 2012) and three-dimensional double label DNA FISH (3D DNA FISH) analysis on single cells to study the interaction patterns of individual loci on the X chromosome. Our data highlight a distinct mechanism in flies in which specific features at topologically associating domain (TAD) boundaries on the X chromosome provide an advantageous location for the MSL complex to spread to spatially close regions and induce dosage compensation. Moreover, we show that, rather than modifying global chromosomal domain organization, the MSL complex acts locally by inducing chromatin remodeling at HAS.

RESULTS

High-Affinity Sites Occur Preferentially at Boundaries of Topologically Associating Domains

Previously published Hi-C studies in fruit flies could not address male-specific dosage compensation because either sex-mixed embryos (Sexton et al., 2012) or the female Kc cell line (Hou et al., 2012) alone were used. Therefore, we generated wild-type Hi-C contact maps using the restriction enzyme HindIII for two widely used male model cell lines, CME W1 cl.8+ (Currie et al., 1988) (clone-8) and Schneider’s line 2 (Schneider, 1972) (S2) in biological duplicates. To ensure consistent comparisons, we also reprocessed previously published Hi-C contact maps for mixed-sex embryos and for Kc cell lines using the same mapping and normalization procedures (Figures S1A and S1B; Table S1). The correlation within replicates was very high for raw and corrected Hi-C counts (0.96 Pearson correlation in both cases, Figures S1C–S1F) as was the correlation between different cell types when raw and corrected Hi-C counts were considered. For the corrected counts we see an expected power-law decay of interaction frequencies with increasing genomic distance (Hou et al., 2012; Lieberman-Aiden et al., 2009; Sexton et al., 2012) and a similar decay for all chromosomes in the different Hi-C datasets (Figures S1G–S1I).

When combining our Hi-C data for S2 cells with published high-resolution roX occupancy sites (indicative of HAS) from capture hybridization analysis of RNA targets (CHART) (Simon et al., 2011) and chromatin isolation by RNA purification (ChiRP) (Chu et al., 2011) for this cell type, we observed that HAS have a tendency to localize at or near TAD (Dixon et al., 2012; Hou et al., 2012; Nora et al., 2012; Sexton et al., 2012) boundaries on the X chromosome. This can be seen readily by simple visual inspection of the data (Figure 1A; Figures S2A and S2B). To corroborate this finding, we used a domain caller (Experimental Procedures; Figures S3A–S3C) to define TAD boundaries in S2 and clone-8 cells. Because the TAD structure is highly conserved between the cell types studied (Figure S3D), the boundaries obtained for S2 and clone-8 cells are very similar to the published domain partitions for Kc (Hou et al., 2012) and Drosophila embryos (Sexton et al., 2012; Figures S3E and S3F). For the X chromosome, we identified a total of 257 HAS using the genome-wide mapping of roX2 (Simon et al., 2011) and MSL2 (Straub et al., 2013) (see also Table S2 and Supplemental Experimental Procedures). This association to TAD boundaries is significantly different from a random distribution (p = 1.9 × 10−11; Fisher’s exact test, on the number of overlaps between boundaries and HAS; Supplemental Experimental Procedures). We found that 68% of HAS lie within a 20-kb distance of the nearest boundary. When calculated within a 5-kb distance, 45% of HAS are located near a boundary, in contrast to 9% expected by chance (Figure 1B; Figure S3G). To further validate this finding, we computed the TAD separation score at each HAS (Supplemental Experimental Procedures; Figures S3A and S3B) and verified that it tends to have a minimum, which is indicative of boundary regions, at HAS (Figure 1C). For comparison, similarly low values are obtained when the TAD separation score is evaluated at architectural protein binding sites (APBSs) (Van Bortle et al., 2014), which are thought to localize at TAD boundaries (Dixon et al., 2012; Hou et al., 2012; Sexton et al., 2012; Sofueva et al., 2013; Van Bortle et al., 2014; Figure S3H). When studying dosage-compensated genes (measured by downregulation of expression upon MSL2 depletion; Zhang et al., 2010), we found that they appear frequently either upstream or downstream of HAS (Figure 1D) in a pattern similar to the one observed for TAD boundaries that separate active and inactive chromatin (Figure S3I). Taken together, we conclude that the apparent linear arrangement of HAS along the genome follows a particular pattern dictated by the 3D TAD organization.

HAS Show More Enriched Hi-C Contacts in a Sex-Independent Manner

Previous analyses of Hi-C data have shown that active chromatin regions tend to interact (Lieberman-Aiden et al., 2009; Sexton et al., 2012). Moreover, boundary regions have been shown to be enriched in Hi-C contacts (Hou et al., 2012; Rao et al., 2014), and long-range contacts between architectural proteins have also been suggested (Liang et al., 2014). Because HAS are frequently associated with active chromatin (Alekseyenko et al., 2012) and appear at boundaries, we explored the possibility that the spreading in cis of the MSL complex could be mediated by long-range associations of HAS. Using a method similar to the paired end spatial chromatin analysis (PE-SCAn) (de Wit et al., 2012), up to 30 kb away from HAS. For dosage compensation, only genes showing activity are colored. The heatmap rows were divided into four clusters based on the kmeans algorithm using deepTools (Ramírez et al., 2014). See also Tables S1 and S2 and Figures S1, S2, and S3.
A
Hi-C corrected contacts at restriction fragment resolution (~3.5Kbp)

B
HAS-HAS and random

C
Fraction of chromosome X (with p < 0.05)

D
4C viewpoint at HAS

E
HAS-HAS enrichment of 4C ligations

F
HAS annotation

G
Random

H
Independent

I
Number of reads per Mb

(legend on next page)
that only contained a boundary (Figure S5A). We additionally had, on average, more long-range contacts than the bins that only contained a boundary but no HAS (Figure S5A). This result suggests that HAS tend to be associated to boundaries with more long-range contacts.

We validated our Hi-C results using 4C-seq on male S2 and female Kc cell lines (for 4C viewpoints, see Table S4). Figure 2D and Figure 5B show comparisons of adjusted p values where the high correspondence between Hi-C and 4C can be seen. These comparisons show that our estimations of long-range contacts are reliable and can be reproduced by a different experimental and processing method as the one used for Hi-C. Furthermore, the 4C data allowed us to explore the enriched contacts at short genomic distances (5–10 kb) that are not possible with Hi-C. At this resolution, we consistently detect HAS-HAS-enriched contacts that remained unchanged between the male and female cell lines (Figure 2E; Figure S5C).

Depletion of MSL2 or MSL3 Does Not Change Global TAD Organization

The similarity between male and female results from Hi-C and 4C experiments suggested that, contrary to expectations (Grimaud and Becker, 2009), the MSL complex may not alter the conformation of the X chromosome. To directly investigate this, we generated Hi-C data in male S2 cells depleted of the MSL complex members (via RNAi-mediated knockdown of either MSL2 or MSL3; Figure S6A) and compared it with control knockdown (EGFP RNAi) or wild-type Hi-C samples. The resulting Hi-C counts showed a high correlation between all samples (Figure S6B), whereas the HAS-HAS-enriched contacts of the knockdown samples did not differ from those of the wild-type or EGFP RNAi control (Figure S6C; Table S3), and the TAD structure remained virtually identical (Figure S6D). These data indicate that the dosage compensation machinery in *Drosophila* does not broadly alter chromosomal topology but, rather, acts over a pre-existing chromosome conformation independent of sex.
The X Chromosome Harbors Stronger MREs at Boundaries Compared with Autosomes

Because TAD boundaries are present on all chromosomes and are frequently enriched for long-range contacts (Figure S4B), we next addressed the relationship between TADs and HAS located on the X chromosome. Previous lower-resolution approaches have shown that HAS tend to be located at gene bodies or at the end of genes (Alekseyenko et al., 2008; Gilfillan et al., 2006). Using the high-resolution HAS derived from the CHART (Simon et al., 2011) and ChIRP (Chu et al., 2011) methods, we observe that HAS often appear on intronic regions (35%) and in the proximity of gene ends (51%), which include the 3’ UTR exon and convergent gene ends (Figure 2F). Moreover, HAS are almost never found at coding exons. The genomic distribution of the MRE associated to HAS over the different gene annotations revealed that gene ends are significantly enriched for MREs that are bound by the MSL complex (i.e., HAS) (Figure 2G). Also, HAS are always associated with active genes decorated with the histone H3 lysine 36 trimethylation (H3K36me3) histone mark and tend to have a DNA sequence with higher binding energy (transcription factor affinity prediction [TRAP] score; Thomas-Chollier et al., 2011), containing usually several copies of the MRE. When we considered only MREs that are at gene ends, are in active chromatin, have a log (TRAP score) of higher than −2, and are within 20 kb of the nearest boundary, we found that such a combination of features is enriched on chromosome X (Figures 2H and 2I). These data suggest that a combination of MREs, chromatin state, and gene architecture is required for the specificity of the MSL complex toward the X chromosome.

Differential Positioning of Active Regions within the X Chromosomal Territory

Correlation of expression and long-range contacts revealed that transcriptionally active HAS show more contacts compared with HAS located within inactive genes (Figures 3A and 3B). Analysis of two prominent HAS, roX1 and roX2, allowed us to explore this finding in more detail. In clone-8 cells, both roX RNAs are actively transcribed (Cherbas et al., 2011), whereas more than 99.5% of S2 cells do not show roX1 expression (Johansson et al., 2011), and female Kc cells do not express any of the roX genes (Cherbas et al., 2011). In contrast, genes surrounding roX1 and roX2 are expressed similarly in the three cell lines (Figure 3C). We observed a greater number of long-range contacts when the roX genes are active (Figure 3D; Figures S6E and S6F), although no changes were seen on the TAD structure. Next we explored whether this difference between the two roX loci in the number of long-range contacts is reflected by their nuclear positioning in individual cells. For this, we performed 3D DNA FISH for roX1 and roX2 in clone-8 and S2R+ cells (a derivative of the original S2 cells with a similar transcriptional profile) and measured the radial distances of the probes to the center of mass of the MSL1-immunostained region (MSL territory) (Figure 4A; Table S5). In clone-8 cells, both expressed roX genes showed almost equal distance distributions, whereas, in S2R+ cells, the non-expressed roX1 appeared to be farther away compared with the expressed roX2 (p = 1.9 × 10−4, t test, one-tailed) (Figure 4B). In clone-8 cells, both roX probes can be found almost equally often outside of the MSL territory (17% of roX1 and 14% of roX2 signals), whereas, in S2R+ cells, roX1 is found outside more than three times as often as roX2 (28% versus 8%, Figure 4C). Taken together, the differences in the relative locations of roX1 and roX2 with respect to the MSL territory in clone-8 and S2R+ cells suggest that such positioning is related to their transcriptional activity. Consistent with this hypothesis, we observed that a FISH probe over a non-HAS (dpr8, inactive gene) was more frequently found outside of the MSL territory in comparison with two different HAS (HAS1 and HAS2, active genes) with respect to roX2 (Figure 4D). These data suggest that differential positioning of active regions within chromosomes could serve as an elegant mechanism for tissue-specific fine-tuning without changes in TAD structure, therefore providing plasticity for gene regulation while maintaining stability of the overall chromosome shape.

The MSL Complex Spreads from HAS to Spatially Proximal Regions

Knowing that HAS are located at regions often engaging in long-range contacts, we tested whether this is a sufficient condition for targeting of the MSL complex to loci in 3D proximity to the roX genes by studying a previously unnoticed, large (~2.67-Mb) insertion of chromosome 3L (chr3L, ~796,745–3,448,912) into the X chromosome (chrX, ~14,809,484) that was revealed by our Hi-C analysis of S2 cells (Figure S7A) and is most likely present in one of the two X chromosomes in the tetraploid S2 cells. This large region appears to be enriched for the MSL3 protein—a hallmark of MSL complex spreading in chromatin immuno-precipitation sequencing (ChIP-seq) data—as we did not detect typical HAS. In Figure 5A, we only see seemingly spurious roX peaks that are not consistent between the two methods used to determine roX-DNA contacts (CHART, Simon et al., 2011; ChIRP, Chu et al., 2011) and did not observe other MSL proteins. For comparison, an X-linked region of similar size as the insertion contains, on average, 30 HAS. Using a
Figure 4. Differential Positioning of HAS Relative to the MSL Territory
(A) Representative maximum intensity projections of confocal image stacks of 3D FISH experiments with roX1 (green) and roX2 (orange) probes in S2R+ and clone8 male D. melanogaster cells. MSL1 immunostaining is shown in red, and DNA is counterstained with Hoechst (blue). Scale bar, 2 μm.
(B) 3D distances from the center of mass of probes to the center of mass of the MSL territory. Graphs show the distribution of roX1 and roX2 probes in the different bins within the two cell lines: clone-8 (left) and S2R+ cells (right).
(C) Percentage of cells in which either roX1 or roX2 are localized outside the MSL territory, as demarcated by MSL1 immunostaining, in clone-8 (left) and S2R+ cells (right). Scale bars, 2 μm. n = 64 for clone-8 cells and 71 for S2R+ cells.

(legend continued on next page)
4C viewpoint on the translocated region, we observed long-range contacts with the X chromosome. The same viewpoint in Kc cells, lacking this translocation, did not show any contacts (Figure S7B). These data demonstrate that, by being physically associated to the X chromosome, the MSL complex can spread via long-range contact over a region lacking HAS.

The MSL Complex Can Target a HAS Independent of the Proximity of the roX RNA Production Site

As a testable prediction following the above observations, we expected that autosomes would also display MSL spreading when a roX gene is placed in the appropriate region. In an adaptation of a classical rescue experiment (Meller and Rattner, 2002), we next generated transgenic flies carrying as a sole source of roX IncRNA a roX2 insertion on the right arm of the third chromosome (3R) at a precise position (86F8) in a roX1/2 double mutant background. The inserted roX2 gene was complemented with an array of lac operon sequences and an EGFP-fused lacI as a reporter to visualize the transgene without the need of DNA FISH (Supplemental Experimental Procedures). Consistent with previous reports (Kelley et al., 1999), roX RNA produced from the autosomal roX insertion properly targeted the X chromosome, enabling functional dosage compensation and restoring male viability. Moreover, the roX transgene was able to recruit the MSL complex to the ectopic insertion site, where, in addition to local spreading of the MSL complex into direct flanking regions on the autosome (seen in salivary gland polytene chromosomes), we repeatedly detected MSL binding at band 88B on the third chromosome (Figure 5B). Interestingly, this cytological position resides ~2.6 Mb away from the insertion site, with no detectable binding within an ~1.7-Mb region in between targeted bands, supporting an involvement of the 3D conformation. Although S2 and clone-8 cells are not expected to share the 3D structure of polytene chromosomes, it is quite remarkable that, out of many other possibilities, we detect an enrichment of HiC contacts in S2 (Figure S7C) and clone-8 cells (data not shown) between 86F and 88B. This suggests that HAS (such as roX loci) enable spreading of the MSL complex to interaction sites that can be far away on a linear scale and that do not necessarily need to be HAS themselves. We further confirmed this observation by two independent approaches involving the ectopic expression of roX1 and roX2 genes from an autosomal location (VK33 on chromosome 3L) in the roX1/2 double-null background: insertion of UAS-driven roX1 or roX2 genes and translocation of an X chromosomal segment containing either roX1 or roX2 genes to the ectopic site. In all cases, the autosomally expressed roX fully rescued male lethality and induced MSL targeting to the X chromosome, as seen in polytene chromosome spreads (Figure 5C). A non-functional roX RNA lacking important stem loop structures and expressed from VK33 under its native promoter, on the other hand, was not able to rescue male lethality and led to diminished or mis-targeting to the chromo-

center (Ilik et al., 2013; Figure 5D; Figure S7D). These experiments verify that the properties of the ectopic roX1/2 are independent of the promoter or location of the roX genes but require an intact roX structure.

It has been proposed that the X chromosomal territory forms in a self-organizing process around the roX genes by attracting HAS (Grimaud and Becker, 2010). However, such a model seems incompatible with the targeting of the X chromosome observed for polytenic chromosomes in the previous experiments unless the autosomal roX2 was looping into the X chromosomal territory to physically reach the X chromosome. To test this, we analyzed intact nuclei from the LacO-roX2 line where we observed the formation of a distinct additional MSL territory surrounding the ectopic insertion of roX2, frequently distant to the main MSL territory in three different tissues (salivary glands and fat body [examples of polytenic tissues] as well as imaginal discs [diploid tissue]) (Figure 5E). These results suggest that physical proximity is not necessary for the transfer of roX RNA from its production site to its targets on the X chromosome and that it can occur efficiently despite a possibly distinct 3D chromosome conformation of different tissues. Still, we also show that spreading to spatially proximal regions, situated at a long genetic distance, is possible because the extra MSL territory surrounding the insertion site appears discontinuous on polytene chromosome squares (Figure 5B).

Ectopic Insertion of roX-HAS Leads to Transcriptional Upregulation of Neighboring Autosomal Genes In Vivo

To further investigate the spreading of the MSL complex from ectopic roX2 HAS to nearby autosomal locations, we isolated RNA from flies with or without ectopic roX2 HAS and measured the expression of ten genes upstream and ten genes downstream of the insertion site. Active genes surrounding the ectopic roX2 HAS showed a consistent upregulation of expression in comparison with control flies (Figure 6A). To complement this analysis, we performed ChIP-seq with an antibody against MOF from the same transgenic larvae. On autosomes, MOF binds only to gene promoters, whereas, on the X chromosome, it also binds to gene bodies (Kind et al., 2008; Figure 6B, right). In transgenic flies carrying an ectopic roX2, MOF binds not only to the bodies of active genes surrounding the autosomal insertion point but also at a distance from it (Figure 6B, left and center). Importantly, we could detect MOF binding at the body of active genes up to 0.5 Mb upstream (Figure 6B) and 2 Mb downstream of the insertion site (data not shown). This suggests that the presence of a HAS on an ectopic autosomal location enables MOF to spread to proximal and distal regions on autosomes. To further validate the influence of ectopic roX insertion on the expression of neighboring genes, we also determined the expression of genes neighboring a different transgene used in this study (i.e., the X chromosomal translocation to 65B2 on chromosome arm 3L [VK33], where roX2 is expressed under its native promoter).

(D) Three additional DNA FISH probes (dpr8, HAS1, and HAS2) were used in S2 cells, paired with roX2, to study their positioning with respect to the MSL territory. Representative pictures of each probe pair are shown, with the percentage of probes escaping the MSL territory indicated at the bottom left of each panel. Shown above is a schematic of the genomic location of all probes used in this study on the X chromosome of D. melanogaster. Scale bars, 2 μm. n = 45 for HAS1, for HAS2, and 30 for dpr8.

See also Table S5.
and also observed enhanced expression of ten genes surrounding this insertion site (Figure 6C). Taken together, these observations corroborate that the presence of a roX2 HAS enables the MSL complex to spread distally from the site of insertion and that it has activating potential on gene expression in vivo.

Nucleosome Positioning at HAS Is Dependent on the Presence of MSL2
Investigating functional HAS more closely, we observed that they tend to display increased DNasel hypersensitivity (Figure S7E). We therefore asked whether the local chromatin structure of HAS can be influenced by the MSL complex. To this end, we mapped the positioning of nucleosomes in S2 cells by treating the chromatin with micrococcal nuclease, followed by deep sequencing (MNase-seq) (Mavrich et al., 2008). We found nucleosome-depleted regions on HAS, flanked by well positioned nucleosomes (Figure 7A). To test whether the MSL complex has any roles in maintaining the nucleosome configuration, we performed MNase-seq analysis in S2 cells depleted of MSL2. Strikingly, the nucleosome pattern around HAS was lost upon depletion of MSL2 (p < 2.2e-16; Supplemental Experimental Procedures), whereas it was preserved at the transcription start site (TSS).

We conclude that the MSL complex is crucial for the maintenance of the local nucleosome arrangement, specifically at HAS.

DISCUSSION
This study provides a first step toward understanding the role of chromosome conformation in dosage compensation in *D. melanogaster*. We observe that HAS, the landing regions of the MSL complex on the X chromosome, frequently reside in proximity to TAD boundaries. We demonstrate that HAS are enriched in Hi-C contacts to each other and to other X chromosomal regions and that this organization remains comparable between male and female cells.

The Conformation-Based Affinity Model Explains MSL Complex Targeting and Spreading on the X Chromosome
Our analysis revealed that HAS are characterized by a combination of DNA sequence (MREs), chromatin state (active), and gene architecture, which drives the specificity of the MSL complex toward the X chromosome (Figure 7B, Targeting). Our data suggest that when the MSL complex binds to HAS, it then spreads (either via an active mechanism or via diffusion) to spatially close regions to place the histone H4 lysine 16 acetylation (H4K16ac) mark on active genes (Figure 7B, Spreading). We propose a “conformation-based affinity” model based on the strategic location of HAS at highly interconnected regions of the *D. melanogaster* X chromosome that efficiently distribute the MSL complex over the X chromosome by attracting the MSL complex to cis-interacting HAS on the X chromosome. This system ensures that only this chromosome is specifically and globally targeted. By spreading from those HAS over short (3D) distances, all active genes on the X chromosome are then reached and acetylated without influencing the autosomes. We suggest that this system is resilient to major perturbations, exemplified by the large autosomal insertion from chromosome 3L and the ectopic expression of the roX genes that produce viable cells and flies, respectively (Figure 5).

The MSL Complex Is Crucial for Maintaining Nucleosome-Free Regions at HAS
Our MNase-seq analysis shows, for the first time, a direct effect of the MSL complex on nucleosome organization specifically on HAS (Figure 7A) and not on the TSS, despite prominent binding of MSL1/2 to promoter regions. The MSL complex may act similar to a pioneer DNA binding protein (Magnani et al., 2011) to establish nucleosome patterns at HAS and may act on neighboring active regions rather than modifying TAD boundaries. This system may be unique to flies because the *Drosophila* dosage compensation evolved a fine-tuning transcription activation mechanism rather than a complete shutdown of gene transcription as seen in mammalian X chromosome inactivation. It would be very interesting to see how nucleosome positioning is affected upon Xist binding in mammals.

HAS Locate at Regions with Abundant Long-Range Contacts to Facilitate Spreading
Although many factors, including the CCCTC-binding factor (CTCF) as well as tRNA and housekeeping genes, have been shown to be enriched at boundaries (Dixon et al., 2012; Hou et al., 2012), the demonstration of an enrichment of functional HAS in regions with abundant long-range contacts suggests that this is a general phenomenon and that such an effect can be produced by HAS.

Figure 5. Insertion of an Autosomal Fragment into the X Chromosome and of the roX2 HAS into an Ectopic Autosomal Location
(A) Hi-C heatmap of chromosome 3L, highlighting a 2.67-Mb translocation (chr3L, ~796,745–3,468,912) into chromosome X. Figure S7/B shows 4C long-range contacts from the translocation to chromosome X.
(B) The autosomal insertion of LacO-roX2 (green) into 86F8 on chromosome arm 3R efficiently targets the MSL complex (MSL1, red) to the X chromosome in males and causes local spreading from the insertion site in polytene chromosomal immunostaining of salivary glands from male third-instar larvae. DNA is stained with Hoechst 33342 (blue). Figure S7/C contains the Hi-C counts from the insertion point on band 86F8 in S2 cells. Scale bars, 5 μm.
(C) Left: rescue of roX2(∆MGGTA) and roX2(∆MGGTA, roX2+) double mutant (roX2−/−) male-specific lethality by daGal4-induced expression from a full-length (FL) UAS-roX1 transgene (#1) or UAS-roX2 transgene (#2) or by expression driven by endogenous promoters upon translocation (TL) of roX1 (#3) or roX2 (#4) to the third chromosome. All transgenes are inserted in the same autosomal location (VK33). Transgenic males surviving to adulthood were counted and normalized to female siblings (100% viable, ~1,100 flies/genotype). Columns show averages of n ≥ 3 separate crosses ± SD. See Experimental Procedures for details of the genetic crosses. Below the graph is a schematic of the transgenes used. Right: two representative polytene chromosome squashes are shown for roX2−/−, TLroX1/2. Scale bars, 5 μm.
(D) A mutant form of roX RNA lacking important stem-loop structures is expressed from the VK33 autosomal insertion. This causes inefficient targeting of the MSL complex (MSL1, red) to the X chromosome and mislocalization of H4K16 acetylation (green), as visualized on polytene chromosomal immunostaining of salivary glands from male third-instar larvae (see Supplemental Experimental Procedures and Figure S7/D for further details). Scale bars, 20 μm.
(E) As (C) but showing intact nuclei of whole salivary glands (top), fat body cells (center), and imaginal disc diploid cells (bottom). X indicates the X chromosome, and arrowheads point to the region around the lacO-roX2 autosomal insertion. Scale bars, 5 μm.
See also Figure S7.
Figure 6. Ectopic Insertion of a HAS Leads to Spreading of MOF to and Enhanced Expression of Neighboring Autosomal Genes

(A) A HAS on a autosomal location causes an upregulation of autosomal genes. Expression of autosomal genes neighboring roX2 insertion was analyzed by qRT-PCR. Flies analyzed were roX double mutant (roX<sup null</sup>) combined with either a transgene carrying LacO-roX2 (under the endogenous promoter, LacO-roX2, blue

(legend continued on next page)
et al., 2012; Sexton et al., 2012), by dissecting the targeting and spreading activity of the MSL complex for the X chromosome we offer a plausible explanation behind the advantages of HAS localization. HAS are enriched at the X chromosomal boundaries and not at autosomal boundaries, where all other boundary factors will bind indiscriminately. Furthermore, we found that the few HAS that are not near a boundary also occupy locations of an elevated number of long-range contacts (Figure S5A), indicating that HAS form interaction hubs for the spreading of the MSL complex.

Activity of roX Genes Is Associated with a Higher Abundance of Long-Range Contacts

Hi-C as well as in vivo immunofluorescence show that active roX genes have more contacts and are closer to each other than inactive regions (Figure 3). These observations are in line with previous reports showing that active chromatin compartments interact more often with each other (Lieberman-Aiden et al., 2009; Sexton et al., 2012) and that active chromatin localizes to the interface of the chromosomal territory (Nagano et al., 2013). Our results imply that different transcriptional programs in each cell line or tissue are likely to be associated with a particular arrangement of long-range contacts, suggesting that the dosage compensation must be flexible to act over such diverse conformations without disturbing them. This idea is consistent with the observation that the chromosome conformation remains unchanged after knockdown of the MSL complex (Figures S6A–S6D), and stays in contrast to mammalian X inactivation, which involves chromatin condensation, gene inactivation, and alterations in chromosome conformation (Nora et al., 2012).

IncRNAs Work Differently in Coordinating Fly and Mammalian Dosage Compensation

Dosage compensation mechanisms in flies and mammals lead to opposite outcomes; namely, gene activation versus gene repression. However, both systems use IncRNAs transcribed from the dosage-compensated X chromosome. roX1 and roX2 RNA are expressed from the male hyperactivated X chromosome in D. melanogaster, whereas Xist is expressed from the inactivated X chromosome in mammalian females (Brockdorff and Turner, 2015; Grimaud and Becker, 2010). Recent work has shown that Xist spreads to distal sites on the X chromosome. Interestingly, this spreading is dependent on the spatial proximity of sites distal to the Xist gene (Engreitz et al., 2013; Simon et al., 2013). This is further exemplified by ectopic expression of Xist from chromosome 21, where Xist spread only in cis on this chromosome (Jiang et al., 2013). In our study, ectopic insertion of roX transgenes on autosomes demonstrated that the roX/MSL complex can reach the X chromosome and rescue male lethality (Figures S5B–S5D). Therefore, acting in trans is a special feature of roX RNAs (in conjunction with the MSL complex) not observed for Xist, indicating that the two systems utilize the respective IncRNAs differently. In both systems, however, the IncRNAs need to be functional because the stem loop structures of the roX RNAs are required for dosage compensation in D. melanogaster (Ilik et al., 2013; Figure S7D), whereas Xist needs the “A repeat domain” to induce mammalian X chromosome inactivation (Engreitz et al., 2013). The distinct mechanisms utilized by the Xist and roX RNAs exemplify the great versatility by which IncRNAs can be involved in the global regulation of single chromosomes and might reflect important differences between the two systems. In mammals, only one of the two X chromosomes needs to be inactivated. Therefore, a trans action of Xist RNA on the sister X chromosome would be detrimental to the organism. In contrast, the dosage-compensated X chromosome is present singularly in males in Drosophila. However, because the roX RNAs can act in trans, it may be disadvantageous to target the activating MSL complex to active genes on autosomes, hence the need for specific target regions (the HAS) unique to the X chromosome.

Faster Evolution of the X Chromosome May Favor Positioning of HAS to Interaction Hubs

To fully understand the occurrence of HAS at sites with extensive long-range interactions on the X chromosomes, it could be helpful to consider evolutionary models proposing that X chromosomes tend to evolve faster than autosomes (faster X effect) (Vicoso and Charlesworth, 2006). Under the faster X effect, traits only beneficial for males can introduce significant changes specific to the X chromosome on a short evolutionary timescale (Parsch and Ellegren, 2013; Vicoso and Charlesworth, 2006). Based on these and other observations suggesting that the X chromosome in flies is different from autosomes (Alekseyenko et al., 2012; Gallach, 2014; Meisel and Connallon, 2013; Zhang and Oliver, 2010), we assume that selective pressures on males favored the occurrence of HAS at regions of increased interactions, like TAD boundaries. Future analyses of different Drosophila species will open exciting opportunities to study the evolutionary changes of HAS in the context of X chromosomal architecture. Moreover, conformation-based affinity could be a
A

High Affinity Sites (HAS)

GS1 HNAi

MSL2 RNAi

Transcription Start Sites (TSS)

GS1 HNAi

MSL2 RNAi

Position from HAS (bp)

Position from TSS (bp)

Position from HAS (bp)

Position from TSS (bp)

Position from HAS (bp)

Position from TSS (bp)

-500

500

-500

500

-500

500

-500

500

B

1. Targeting

MSL complex

HAS can be bound by the MSL complex irrespective of proximity

chromosome X

2. Spreading

chromosome X

MSL spreads from HAS to spatially proximal regions

HAS

roX1

roX2

C

Drosophila

Mammals

X chromosome

Autosome

roX Insertion

X chromosome

Autosome

XIST Insertion

targeting + proximity spreading

roX IncRNA can act in trans to target and spread along the chromosome X but shows limited spreading in cis on autosome

only proximity

XIST IncRNA only acts in cis to silence the chromosome where it is expressed

(legend on next page)
generic mechanism for other regulatory elements to exert their functions. It remains to be seen in which contexts the in cis versus in trans action of different IncRNAs is essential for their function and how chromosome conformation, long-range contacts, HAS, and regulation of transcription have co-evolved for dosage compensation.

EXPERIMENTAL PROCEDURES

Hi-C Experimental Procedure and Analysis

Hi-C in S2 or clone-8 cells using HindIII as restriction enzyme was carried out as described by Belton et al. (2012) with the following minor modifications. Starting material for all samples was 50 million insect cells/sample. After lysis, samples were taken up in 125 μl and split into two aliquots of 50 μl (Hi-C samples), and the remaining 25 μl (3C control) were used to adjust for the smaller size of the Drosophila genome compared with mammalian cells. Accordingly, for each 3C control, only half of the volumes per tube were used compared with the original protocol. For details, see Supplemental Experimental Procedures.

4C-seq Experimental Procedure and Analysis

4C-seq in S2 and Kc cells was carried out as described by Splinter et al. (2012) with minor modifications as follows. 50–100 million S2 cells or Kc cells, fixed as described above, were used for two biological replicates. DpnII (New England Biolabs) was used as the primary and Csp6I (Thermo Scientific) as the secondary restriction enzyme. For each viewpoint, two 160-ng PCR reactions (8 cycles Biolabs) was used as the primary and Csp6I (Thermo Scientific) as the second-described above, were used for two biological replicates. DpnII (New England Biolabs) was used as the primary and Csp6I (Thermo Scientific) as the secondary restriction enzyme. For each viewpoint, two 160-ng PCR reactions (8 cycles with a 55°C annealing temperature, followed by 18 cycles at 63°C) were prepared and cleaned up. All different viewpoint libraries for one biological replicate were mixed equimolarly and sequenced on separate lanes on an Illumina HiSeq2500 DNA sequencer. Primer sequences and coordinates for the experiments can be found in Table S4.

Fly Culture and Genetics

Details of fly culture conditions and genetics are explained in the Supplemental Experimental Procedures.

FISH

Fluorescence in situ hybridization procedures were performed as described previously (Vaquerizas et al., 2010). To perform DNA FISH, approximately ten 5-kb regions were chosen in the genome and amplified by PCR from genomic DNA with five to ten primer pairs, each covering around 0.5–3 kb. Primer sequences are available upon request. The roX1 probe sequence was taken from Vaquerizas and Becker (2009). The HAS1 and HAS2 probes were designed and generated for this study.

Nucleosome Positioning Analysis in Drosophila

Nucleosome positioning analysis using MNase-seq was performed essentially as described in Mavrich et al. (2008). For details of the analysis, see the Supplemental Experimental Procedures.

ACKNOWLEDGMENTS

We thank all members of the A.A. laboratory for discussions and especially F. Dünder, A. Gaub, T. Aktas, T. Khantam, T. Chelmicki, I. Ilk, and N. Ilovino for critical reading of the manuscript. We thank G. Arib and I. Ilk for generating the lacO-roX2 and UAS-roX1/2 fly lines, respectively; M. Shvedunova for initial help with imaging; A. Panhale for culturing clone-8 cells; and N. Gutierrez for support with the generation of FISH probes. We thank U. Bönisch and E. Betancourt for help with deep sequencing. This work was supported by EU-funded “EpGeneSys” and DFG: CRC992 and DFG: CRC746 (to A.A.). A.A. is part of the DFG-funded BIOSSII excellence cluster.

REFERENCES

ACCESSION NUMBERS

The accession number for the Hi-C, 4C-seq, MNase-seq, and ChiP-seq raw and processed data reported in this paper is GEO: GSE58821.

Supplemental information

Supplemental information includes Supplemental Experimental Procedures, seven figures, and five tables and can be found with this article online at http://dx.doi.org/10.1016/j.molcel.2015.08.024.

AUTHOR CONTRIBUTIONS

Figure 7. Depletion of the MSL Complex Severely Affects Nucleosome Positioning at HAS but not at the TSS

(A) Summary plots (top) and heatmaps (bottom) showing normalized nucleosome occupancy for regions centered around HAS (left, n = 257) and active TSSs (right, n = 5985) in control (GST RNAi) and MSL2-depleted cells (MSL2 RNAi). A bar representing the nucleosome signal is shown below. (B) Conformation-based affinity model. We propose a model in which chromosome X is targeted via HAS by the MSL complex independently of spatial proximity (right, n = 5985) in control (GST RNAi) and MSL2-depleted cells (MSL2 RNAi). A bar representing the nucleosome signal is shown below.

