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Abstract

Motivation: Robustness, the ability of biological networks to uphold their functionality in spite of

perturbations, is a key characteristic of all living systems. Although several theoretical approaches

have been developed to formalize robustness, it still eludes an exact quantification. Here, we pre-

sent a rigorous and quantitative approach for the structural robustness of metabolic networks by

measuring their ability to tolerate random reaction (or gene) knockouts.

Results: In analogy to reliability theory, based on an explicit consideration of all possible knockout

sets, we exactly quantify the probability of failure for a given network function (e.g. growth). This

measure can be computed if the network’s minimal cut sets (MSCs) are known. We show that even

in genome-scale metabolic networks the probability of (network) failure can be reliably estimated

from MSCs with lowest cardinalities. We demonstrate the applicability of our theory by analyzing

the structural robustness of multiple Enterobacteriaceae and Blattibacteriaceae and show a dra-

matically low structural robustness for the latter. We find that structural robustness develops from

the ability to proliferate in multiple growth environments consistent with experimentally found

knowledge.

Conclusion: The probability of (network) failure provides thus a reliable and easily computable

measure of structural robustness and redundancy in (genome-scale) metabolic networks.

Availability and implementation: Source code is available under the GNU General Public License

at https://github.com/mpgerstl/networkRobustnessToolbox.

Contact: juergen.zanghellini@boku.ac.at

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

A major characteristic of biological systems is their ‘robustness’,

i.e. the ability to perform normally under the presence of perturb-

ations (Kitano, 2002). Despite its fundamental importance, robust-

ness is hard to quantify and a comprehensive, quantitative

understanding of robustness has yet to be developed (Kitano,

2007). The problem is augmented by the fact that robustness is an

extremely general concept which obstructs efforts for an exact

definition (Stelling et al., 2004). Clearly, robustness arises as a con-

sequence of the interactions between the components in a system.

It therefore requires a network-based approach for its analysis

(Larhlimi et al., 2011).

In the following, we study a key aspect of cellular robustness,

namely structural robustness in metabolic networks (Wilhelm et

al., 2004), which is a measure of the apparent redundancy in

metabolic networks. Redundancy is one reason why specific
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(network) functions may persist in spite of changes in the net-

works’ topologies. Metabolic networks are particularly suitable

to study structural robustness as their topologies are either

well known or can be reliably reconstructed by well-estab-

lished protocols (Thiele and Palsson, 2010; Vlassis et al.,

2014).

An unbiased way to characterize all topologically feasible flux

distributions in a metabolic network can be achieved in terms of

elementary flux modes (EFMs) (Schuster et al., 2000). EFMs are

steady-state pathways that use a minimal set of reactions (enzymes)

in the appropriate thermodynamic directions. Biologically, they can

be interpreted as simple, indivisible functional building blocks,

which represent all feasible metabolic capabilities of the organism.

Thus, EFMs are likely candidates to be used in a definition of struc-

tural robustness. In fact, Wilhelm et al. (2004) were the first to de-

fine structural robustness by counting the number of EFMs in

different situations.

An alternative approach to EFMs is minimal cut sets (MCSs)

(Klamt and Gilles, 2004). These are minimal sets of reaction (en-

zyme) knockouts that completely disable a particular network

functionality. MCSs are intimately connected to EFMs. Any net-

work function can be represented by a set of EFMs. Thus, MCSs

can equivalently be defined as the minimal set of reaction knock-

outs that prevent a set of target EFMs from carrying a steady-

state flux. An MCS is therefore a so-called minimal hitting set of

the target EFMs (Klamt, 2006). If the EFMs or the MCSs are

known, the respective other can be calculated. Mathematically,

this relationship is known as duality (Berge, 1989). While EFMs

describe the possibilities to achieve a particular function, MCSs

describe the effort it takes to remove that function from the net-

work. Thus, the size distribution of the MCSs provides a meas-

ure for the structural fragility of a network (Klamt and Gilles,

2004).

One major disadvantage for both measures, the EFM-based

structural robustness measure as well as the MCS-based struc-

tural fragility measure, is that they presuppose the availability

of the complete set of EFMs and MCSs, respectively. This is a

computationally intractable problem in genome-scale metabolic

models (GSMMs).

Here, we present a novel method that overcomes the computa-

tional limitations and allows one for the first time to estimate the

structural robustness even in GSMMs. We use MCSs to calculate

the exact (structural) probability of failure (PoF) of a network. This

puts the estimation of structural robustness on a theoretically sound

fundament.

2 Theory

We consider a metabolic network made up of m (internal) metabol-

ites and r reactions. The network contains n EFMs. We use the sup-

port representation E ¼ suppðeÞ to uniquely characterize an EFM, e.

E is the set of all (reaction) indices i for which the EFM vector e car-

ries any flux, i.e. suppðeÞ ¼ fijei 6¼ 0g; with 1� i� r. We collect all

EFMs in the set E ¼ fE1; . . . ;Eng.
If we delete d reactions, several EFMs will get disabled. We repre-

sent a set of d deleted reactions by a cut set (CS) Cd of cardinality d.

Cd contains the set of (reaction) indices that get deleted. A CS Cd dis-

ables all EFMs involving any of the d deleted reactions. To study the

impact of a deletion strategy, Cd, on the network, we collect all EFMs

not affected by Cd in the set of the remaining EFMs,

ECd ¼ fE 2 EjCd \ E ¼ ;g. The complement of ECd

is denoted by

HCd

and contains all EFMs that are disabled by Cd: HCd ¼ E n ECd

.

A minimal (irreducible) set of reaction (enzyme) deletions that com-

pletely disables a given set of target EFMs, T, is called an MCS, M

(Klamt and Gilles, 2004). For any target set T we collect all l MCSs

in the set of MCSs, M ¼ fM1; . . . ;Mlg. Finally, we collect all

1� i�b ¼
r

d

 !
possible CSs Cd

i of cardinality d in the set of CSs,

Cd ¼ fCd
1; . . . ;Cd

bg.

2.1 Structural robustness: RðdÞ
For a given number d of deletions, Behre et al. (2008) defined the

network’s structural robustness RðdÞ as the average ratio of the

number of remaining EFMs to the total number of EFMs over all

possible combinations of exactly d knockouts, i.e.

RðdÞ :¼ 1

jCdj
XjCd j

i¼1

jECd
i j
jEj : (1)

We show in the Supplementary material that the network’s

structural robustness only depends on the cardinality of the net-

work’s EFMs and can easily be calculated for any number of de-

letions d by

RðdÞ ¼ 1

n

r

d

 !�1Xn

i¼1

r� jEij

d

 !
: (2)

Thus, network structural robustness is merely determined by the

EFMs’ length.

2.2 PoF: F(d)
For a given number of deletions, d, we define the network’s PoF,

F(d), as the ratio of the number of CSs that disable a particular net-

work objective, obj, to the total number of all possible combinations

of exactly d knockouts, i.e.

FobjðdÞ :¼
jCd

objj
jCdj

: (3)

CSs that disable a particular objective (i.e. the elements of

Cd
obj) are either MCSs or supersets of MCSs disabling ‘obj’. We

show in the Supplementary material that the PoF can be calcu-

lated by

FobjðdÞ ¼
r

d

 !�1 X
;6¼J�f1; ... ;lg

ð�1ÞjJj�1
r� jMJj

d � jMJj

 !
; (4)

where MJ ¼ [
j2J

Mj and J is a (multi)-index over all power sets of the

indices f1; . . . ; lg of the set M of MCSs blocking ‘obj’.

Note that the definition of the PoF requires specification of an

objective, that can be the operation of the whole system or of a par-

ticular function. A typical cellular function is the production of bio-

mass (BM). Thus, FBMðdÞ measures the probability that the deletion

of d reactions is lethal. In what follows we will drop the index for

the objective and implicitly assume that the production of BM is tar-

geted, unless stated otherwise.

Exact quantification of cellular robustness 731
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2.3 Overall structural robustness R and overall PoF

(OPoF) F
Both RðdÞ and F(d) are defined for a specific number of reaction de-

letions. Following Behre et al. (2008), we define the overall struc-

tural robustness, R, if at most (all) r reactions are knocked out, as

the weighted sum of all possible RðdÞ (Behre et al., 2008),

R :¼
Xr

d¼1

wR
d RðdÞ: (5)

Analogous to the structural robustness we define the OPoF, F as

F :¼
Xr

d¼1

wF
dFðdÞ: (6)

Behre et al. (2008) suggested to use the following weights

wR
d :¼

r

d

 !
pd with p ¼

ffiffiffi
2

r
p
�1: (7)

However, their choice is difficult to interpret in terms of a probabil-

ity distribution. That is why we opted for an appropriately selected

probability distribution function for the calculation of F. wF
d may be

naturally modeled by a binomial distribution,

wF
d :¼

r

d

 !
pdð1� pÞr�d ; (8)

which estimates the number of loss-of-function mutations with

exactly d reaction deletions assuming a constant (reaction) mutation

rate p. In typical metabolic networks, the number of reactions r is

large and the mutation rate is small. We therefore approximate the

binomial distribution with the simpler Poisson distribution,

wF
d :¼ kdexpð�kÞ=ðd!Þ; (9)

with k ¼ rp. RðdÞ; R; FðdÞ and F all range between 0 and 1.

However, while R ¼ 1 indicates a totally robust network, F ¼ 1 de-

notes the reverse, a completely fragile network.

3 Implementation and computation

The computation of the structural robustness RðdÞ according to

Equation (2) is straight forward as long as the complete set of EFMs

is known. The computation of the PoF is computationally more de-

manding as the number of summands in the sum of Equation (4) ex-

plodes combinatorially. In the following, we will outline

countermeasures to estimate the PoF even in GSMMs.

Algorithm 1. Recursive CS count

Require: mcs; deletions d; reactions r

1: for i ¼ 1 to LENGTH(mcs) do

2: csCount½i�  GET_CS_COUNT(i;mcs½i�;0; false)

3: end for

4:

5: function GET_CS_COUNT(index; cs; csCount; inRecursion)

6: foundSubset false

7: combCs mcs½index�OR cs

8: combCd CARDINALITY(combCs)

9: combCsCount CHOOSE(r� combCd;d � combCd)

10: for i ¼ 1 to ðindex� 1Þ do

11: testCs mcs½i�OR combCs

12: testCd CARDINALITY(testCs)

13: if testCd <¼ deletions then

14: if testCd> combCd then

15: combCsCount 
GET_CS_COUNT(i; combCs,

combCsCount; true)

16: else

17: foundSubset true

18: exit for loop

19: end if

20: end if

21: end for

22: if not foundSubset then

23: if inRecursion then

24: csCount csCount � combCsCount

25: else

26: csCount combCsCount

27: end if

28: end if

29: return csCount

30: end function

Table 1. Major topological properties of the MSMMs and GSMMs for the investigated Enterobacteriaceae and Blattibacteriaceae

Model ID Organism Medium M r RankðSÞ n nBM

EColi_coreþ glc (Gerstl et al., 2015) E. coli K-12 MG1655 Glucose 70 90 65 169 916 121 753

EColi_coreþ gly (Gerstl et al., 2015) E. coli K-12 MG1655 Glycerol 71 91 66 60 495 48 944

EColi_coreþ ac (Gerstl et al., 2015) E. coli K-12 MG1655 Acetate 69 88 64 1299 736

iJO1366þ glc (Monk et al., 2013) E. coli K-12 MG1655 Glucose 1165 1726 1131 n/a n/a

iJO1366þmel (Monk et al., 2013) E. coli K-12 MG1655 Melibiose 1163 1718 1128 n/a n/a

iECs_1301þmel (Monk et al., 2013) E. coli O157:H7 Sakai Melibiose 1098 1666 1057 n/a n/a

iS_1188þmel (Monk et al., 2013) S. flexneri 2a 2457T Melibiose 1 026 1 517 982 n/a n/a

iCG230þ full (González-Domenech et al., 2012) B. cuenoti Pam Full 299 342 292 n/a n/a

iCG238þ full (González-Domenech et al., 2012) B. cuenoti Bge Full 306 350 299 n/a n/a

Models were taken from Gerstl et al. (2015), Monk et al. (2013) and González-Domenech et al. (2012). Aerobic growth for Enterobacteriaceae was simulated

on minimal medium with glucose or melibiose as sole carbon source and for Blattibacteriaceae with full medium (for media compositions see Supplementary

Table S1). All reactions that could not carry a steady state flux under any circumstances for the given growth media were removed from the original models. m

and r refer to the (remaining) number of internal metabolites and reactions, respectively, for fully consistent models (represented by the respective internal stoi-

chiometric matrix, S). n and nBM refer to the total number and the number of BM producing EFMs in the respective models. An EFM analysis was not applicable

(n/a) for GSMMs.

732 M.P.Gerstl et al.

 at M
PI Study of Societies on A

pril 5, 2016
http://bioinform

atics.oxfordjournals.org/
D

ow
nloaded from

 

Deleted Text: , 
Deleted Text: ),
Deleted Text: 
Deleted Text: .,
Deleted Text: ,
Deleted Text: 
Deleted Text: 
Deleted Text:  
Deleted Text:  
Deleted Text:  
Deleted Text:  
Deleted Text: 
Deleted Text: .,
Deleted Text:  
Deleted Text:  
Deleted Text: . 
Deleted Text:  
Deleted Text:  
Deleted Text:  
Deleted Text:  
Deleted Text: . ,
Deleted Text: zero
Deleted Text: one.
Deleted Text:  
Deleted Text: Eqn.
Deleted Text: Eqn.
Deleted Text: 
Deleted Text:  
Deleted Text: 
Deleted Text: 
Deleted Text:  
Deleted Text: : 
Deleted Text: () 
Deleted Text: 
Deleted Text:  
Deleted Text:  
Deleted Text: 
Deleted Text: () 
Deleted Text: : 
Deleted Text:  
Deleted Text: :  
Deleted Text: : 
Deleted Text:  
Deleted Text: :  
Deleted Text: () 
Deleted Text: : 
Deleted Text: 
Deleted Text:  
Deleted Text: :  
Deleted Text: : 
Deleted Text:  
Deleted Text: : 
Deleted Text: 
Deleted Text:  
Deleted Text: : 
Deleted Text: 
Deleted Text: 
Deleted Text:  
Deleted Text: :   
Deleted Text:  
Deleted Text: () 
Deleted Text:  
Deleted Text: () 
Deleted Text: : 
Deleted Text:  
Deleted Text: : 
Deleted Text:  
Deleted Text: : 
Deleted Text:  
Deleted Text: : 
Deleted Text: 
Deleted Text:  
Deleted Text: : 
Deleted Text: 
Deleted Text:  
Deleted Text: : 
Deleted Text: 
Deleted Text:  
Deleted Text: : 
Deleted Text: 
Deleted Text:  
Deleted Text: : 
Deleted Text: 
Deleted Text: 
Deleted Text:  
Deleted Text: :  
Deleted Text: : 
Deleted Text:  
Deleted Text: :  
Deleted Text: : 
Deleted Text: 
Deleted Text:  
Deleted Text: : 
Deleted Text: 
Deleted Text:  
Deleted Text: : 
Deleted Text:  
Deleted Text: 
Deleted Text: 
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btv649/-/DC1
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btv649/-/DC1
http://bioinformatics.oxfordjournals.org/


Algorithm 1 implements Equation (4) by calculating the total

number of CSs for given deletions d in a recursive way. The number

of reactions in the model, as well as all mcs with a cardinality up to

the current number of reaction deletions are needed for the calcula-

tion. The algorithm calculates the number of all possible CSs for a

single MCS by the function CHOOSE, which computes the binomial

coefficient for
r� combCd

d � combCd

 !
, where combCd is the number of

deletions resulting from the combination of MCSs. In order to avoid

the consideration of a CS multiple times those CSs that have already

been calculated by other MCS, indicated by their index, are sub-

tracted. This is done by creating an intermediate CS by a logical OR

operation and then following the inclusion–exclusion principal

(Ryser, 1963) in a recursive procedure.

Algorithm 1 was implemented as multi-threaded C program which

is available at https://github.com/mpgerstl/networkRobustnessToolbox.

4 Results

In the following analysis, we used k ¼ 0:5, unless stated otherwise.

4.1 F reliably identifies structural fragility
We used a medium-scale metabolic model (MSMM) that describes

the core metabolism of Escherichia coli (see Table 1 for an overview

of the topological properties of the models used) to study the influ-

ence of the carbon source on the structural robustness and the PoF

(see Table 2). In all cases, a complete EFM and MCS analysis was

feasible.

We found that both measures indicated a strong impact of the

carbon sources although with opposing trends. The OPoF was low-

est for growth on glucose and highest for growth on acetate. We

observed that in all three growth environments the PoFs F(d) could

be well approximated (coefficient of determination, R2 > 0:999) by

a½1� bexpð�cdÞ� with three free parameters a, b and c (see

Supplementary Fig. S1). R however ranked growth on acetate to be

most robust and growth on glucose or glycerol similarly robust but

far behind growth on acetate. According to Equation (2) this implied

that for acetate EFMs were on average shorter then for glucose (see

Supplementary Fig. S2). Finally, the simple ratio between the num-

ber of BM producing EFMs and the total number of EFMs revealed

yet another ranking with the highest ratio for growth on glycerol

and the lowest ratio for growth on acetate (see Supplementary Table

S2). Comparing the different measures, we found that only the

OPoF scored the (lack of) structural robustness in E. coli consist-

ently to previous analysis (Klamt and Gilles, 2004; Stelling et al.,

2002).

4.2 R and F can be calculated exactly in MSMMs
Judged by the number of EFMs, the three growth models signifi-

cantly differed in size (see Table 1). Yet all structural robustness-

values were calculated within few seconds for any number of reac-

tion deletions. As the number of summands in Equation (4) grew

excessively for high number of reaction deletions, d, the calcula-

tion of F(d) was more demanding. We found an exponential in-

crease in the number of recursions for Algorithm 1 (see Fig. 1).

Our optimized implementation scaled consistently better than that

and allowed us to evaluate F(d) in the largest model,

EColi_coreþ glc, up to d¼9 in<10 min using 10 threads on an

Intel
VR

CoreTM i7-3930 K with two CPUs á six cores and 3.20 GHz

operated with Ubuntu 12.04.

4.3 R and F are determined by the first few deletions
We analyzed the contribution of higher-order deletions to the over-

all structural robustness and OPoF, respectively. In the best case

higher-order terms RðdÞ and F(d) vanish for d > d0 causing no error

in the sums of Equations (5) and (6). In the worst case higher-order

Table 2. Structural robustness and PoF in a core metabolic model

of E. coli growing on minimal media (see Supplementary Table S1)

and three different carbon sources (glc, glucose; gly, glycerol; ac,

acetate)

model ID R(1) R(2) R F(1) F(2) F

EColi_coreþ glc 46.32 21.54 37.98 21.11 40.45 10.31

EColi_coreþ gly 46.19 21.69 37.95 31.87 54.63 14.84

EColi_coreþ ac 50.86 26.98 42.75 42.05 67.42 19.06

We used all EFMs for the calculation of R and all synthetic lethals of

groups of up to d0 ¼ 9 reactions for the estimation of F with k ¼ 0:5. All val-

ues are listed in %

102

104

106

108

1010

 1  2  3  4  5  6  7  8  9

co
un

t

d0

Algorithm 1
Optimized code

Number of MCSs

Fig. 1. Number of recursions in Algorithm 1 as function of the number of reac-

tion deletions, d evaluated for the model EColi_coreþglc in different computa-

tion scenarios. In addition, we plotted the number of MCS (dotted line) as

function of their cardinality for the model used

10-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

 0  2  4  6  8  10

ε m
ax

d0

λ = 5.0
λ = 1.0
λ = 0.5
λ = 0.1

Fig. 2. Maximum error, e, as function of the expansion length, d0, for various k

values. Note that according to Equation (10) the maximum error only de-

pends on k and is independent of the specific topology and size of the meta-

bolic model
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terms maximally contribute to the sums. Thus, the maximum error e
is easily calculated by setting RðdÞ ¼ FðdÞ ¼ 1 for all terms d > d0,

eðd0Þ ¼
Xr

d¼d0þ1

w
ðiÞ
d ¼ 1�

Xd0

d¼0

w
ðiÞ
d ; (10)

where the last sum represents the cumulative distribution function

of w
ðiÞ
d with i 2 fF;Rg.

We found that the resulting maximum error dropped quickly

with d0 even in huge GSMMs (see Fig. 2). For instance, for k � 1 the

e drops below 10�4 if all MCSs up to cardinality six are known.

Thus, we conclude that for practical means the overall structural ro-

bustness R and the OPoF F can be approximated by the first few

terms in their respective sums

R �
Xd0

d¼1

wR
d RðdÞ; and F �

Xd0

d¼1

wF
dFðdÞ: (11)

For fixed k the OPoF F depends only on the d0 smallest MCS and

consistently converges toward its true value with increasing MCS car-

dinality. In the E. coli example used above (see Table 2), all MCSs up

to cardinality 4 were sufficient to estimate F within an error of 0.02

percentage points. However, a similar argument for the overall struc-

tural robustness R is not available. The knowledge of the d0 shortest

EFMs does not allow one to accurately estimate R. Supplementary

Figure S5 illustrates the error in the overall structural robustness as

function of the d0 shortest EFMs for the E. coli model used above. In

that case,>55% of all EFMs were required to get within a 10% error

margin.

4.4 For small k, F is well approximated in GSMMs
According to Equation (11), the OPoF could be estimated if all low

cardinality MCSs were known. Recently, von Kamp and Klamt

(2014) showed that it is in fact possible to enumerate the smallest

MCSs in GSMMs. In the following, we used their approach to calcu-

late low cardinality MCSs.

We calculated all lethal MCSs up to a cardinality of 4 in

GSMMs of three E. coli strains growing on minimal medium and

glucose or melibiose as the sole carbon source and estimated the

OPoF (see Table 3). The models represented E. coli K-12 MG1655

(iJO1366), the pathogenic enterohemorrhagic E. coli O157:H7

Sakai (iECs_1301) and the Shigella flexneri 2a 2457T (iS_1188).

Comparing the three organisms against each other revealed

that growth on glucose is more failsafe than growth on the alternative

carbon source melibiose. In fact, growth on glucose (and glucose 1-

phosphate) was found to be more robust than on any other single, ni-

trogen-free carbon source (see Supplementary Fig. S4). The two E. coli

were similarly robust (with a small advantage for E. coli K-12

MG1655), while the S. flexneri was most fragile. Although the

difference in the OPoF was small, it is indicative as the difference in F

for any two models is larger than eð4Þ. We observed the same trend not

only for F but also for F(d) for all tested cardinalities d�4, as well.

The GSMMs were also found to be more robust than the E. coli core

model. Again, in all models, F(d) could be nicely approximated by

a½1� bexpð�cdÞ� (see Supplementary Table S4).

Finally, we calculated all synthetic lethal reactions in groups of

up to d0 ¼ 6 reaction deletions and evaluated the OPoF in the

GSMMs of the endosymbiotic Blattabacterium cuenoti Bge

(iCG238þ full) and B. cuenoti Pam (iCG230þ full), see Table 4, for

full growth media containing all nutrients that were possibly taken

up, see Supplementary Table S1 for detailed media compositions.

Both strains were found to be extremely fragile with OPoFs>26%

and a maximal inaccuracy of 1� 10�4 percentage points. Any three

reaction deletions almost certainly killed these two strains (with a

small chance of survival of <5%).

4.5 Gene–centric PoFs showed same behavior as

reaction–centric PoFs
For simplicity so far we analyzed structural robustness from a reac-

tion–centric (RC) viewpoint. However, it is possible to change from

an RC to a gene–centric (GC) viewpoint while retaining our formal-

ism for the PoF calculation. PoF only requires the calculation of

MCSs. These can be calculated in an RC model as well as in a GC

model provided that a gene–reaction mapping is available as

Boolean function of the genes (as it is typically the case). GC MCSs

consider the effect of gene knock-outs on reactions based on the

evaluation of the provided Boolean rules. If the complete set of

EFMs is known, GC MCSs can be calculated using an established in-

teger programming procedure (Jungreuthmayer and Zanghellini,

2012). In GSMMs, where the complete set of EFMs is unavailable,

the dual systems approach (von Kamp and Klamt, 2014) can be

Table 3. PoFs in GSMMs of different Enterobacteriaceae growing

on minimal media (see Supplementary Table S1) and glucose (glc)

or melibiose (mel)

Model ID F(1) F(2) F(3) F(4) F eð4Þ

iJO1366þ glc 16.74 30.71 42.35 52.06 8.02 0.02

iJO1366þmel 17.17 31.42 43.24 53.04 8.22 0.02

iECs_1301þmel 17.59 32.11 44.10 53.98 8.41 0.02

iS_1188þmel 19.97 35.99 48.83 59.12 9.51 0.00

The OPoF was estimated by considering all synthetic lethals of groups of

up to d0 ¼ 4 reactions and k ¼ 0:5. All values are listed in %

Table 4. PoFs in GSMMs of B. cuenoti Bge (iCG238þ full) and

B. cuenoti Pam (iCG230þ full) growing on full media (see

Supplementary Table S1)

Model ID F(1) F(2) F(3) F(4) F(5) F(6) F eð6Þ

iCG230þ full 64.62 87.68 95.81 98.61 99.55 99.86 27.63 10�4

iCG238þ full 62.57 86.36 95.16 98.31 99.43 99.81 26.89 10�4

The OPoF was estimated by considering all synthetic lethals of groups of

up to d0 ¼ 6 reactions and k ¼ 0:5. All values are listed in %

Table 5. GC and RC PoF for various MSMMs and GSMMs

Model ID F(1) F(2) F

GC RC GC RC GC RC

EColi_coreþ glc 5.00 21.11 10.01 40.45 2.50 10.31

EColi_coreþ gly 5.71 31.87 11.46 54.63 2.86 14.84

EColi_coreþ ac 15.00 42.05 29.10 67.42 7.38 19.06

iJO1366þ glc 16.94 16.74 31.03 30.71 8.11 8.02

iJO1366þmel 17.55 17.17 32.05 31.42 8.39 8.22

iECs_1301þmel 19.14 17.59 34.65 32.11 9.12 8.41

iS_1188þmel 21.82 19.97 38.92 35.99 10.33 9.51

iCG230þ full 66.34 64.62 88.96 87.68 28.24 27.63

iCG238þfull 62.26 62.57 86.33 86.36 26.79 26.89

For the GSMMs the OPoFs were estimated by considering all synthetic le-

thals of groups of up to d0 ¼ 4 reactions and k ¼ 0:5. For these settings the es-

timation error was< 0.02 percentage points. All values are listed in %
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adopted to compute GC MCSs. The common dual approach calcu-

lates RC MCSs (ordered by ascending cardinality) by iteratively

solving a mixed integer linear program (MILP) (De Figueiredo et al.,

2009). In order to obtain a GC MCS instead of an RC MCS the

gene–reaction association has to be integrated into the MILP, which

can be achieved by means of the so-called indicator constraints.

These concepts are provided by modern MILP solvers, which allow

for the Boolean coupling of reactions and their associated genes.

We evaluated GC PoFs for models listed in Table 1 and com-

pared them against the corresponding RC PoFs (see Table 5). We

found comparable (O)PoF values except for the MSMM of E. coli,

where we observed larger differences. Yet the absolute ranking of

the organisms with respect to structural robustness remained un-

changed no matter if the GC or RC PoF was used.

5 Discussion

Here, we developed a new general measure to quantify the structural

robustness (or fragility) of metabolic networks based on the (O)PoF.

Both, PoF F(d) as well as OPoF F are based on MCSs and share anal-

ogies with the previously defined structural robustness measures

R(d) and R which rely on EFMs (Behre et al., 2008). In contrast to

R, the OPoF remains computationally feasible even in GSMMs for

two reasons: (i) the OPoF can be well estimated from the shortest

MCSs with up to d0 reaction cuts; and (ii) these d0 shortest MCSs

can be calculated with a MILP even in GSMMs (von Kamp and

Klamt, 2014). Previously, it was shown that MCSs in the (primal)

network are EFMs in a network dual to the original network

(Ballerstein et al., 2012). Thus, finding the shortest EFMs in this

dual network is equivalent to finding the low cardinality MCSs in

the primal GSMM (von Kamp and Klamt, 2014). A high perform-

ance computing infrastructure is not required for this task. Thus, the

OPoF is in principle an easily computable measure. However, due to

the combinatorial explosion of the number of summands in F(d), see

Equation (4), the evaluation is practically limited to low cardinal-

ities. This does not cause practical problems for the OPoF F as the

impact of high-cardinality MCSs on F quickly decreases (see Fig. 2).

The slope of this decrease depends on the selected probability dens-

ity that models the number of deletions that occur per mutation.

Here, we used a Poisson distribution which is typically used for the

study of rare events, like mutations (Lee et al., 2012, and references

therein). We were able to show that up to k�1 our analysis is com-

putationally feasible on standard computer infrastructure. This is

sufficient for the study of naturally occurring mutations. For in-

stance, in E. coli a mutation rate of about 10�3 per genome and gen-

eration was found (Lee et al., 2012), which is far below our limit of

k�1, as we can assume that not all mutations lead to a loss of func-

tion of metabolic enzymes. All our conclusions remained valid (data

not shown) if we used other probability densities like a binomial dis-

tribution or the one used by Behre et al. (2008), see Equation (7).

Previously, MCSs were already used to compute a so-called fra-

gility coefficient which characterized the sensitivity of a metabolic

network to deletions (Klamt, 2006; Klamt and Gilles, 2004).

Fragility was defined for each reaction as the inverse of the average

cardinality of all MCSs that were supported by that reaction. Upon

averaging the reaction-specific fragility over all reactions one ob-

tained a measure for the overall network fragility. In contrast to the

here introduced concept of the OPoF, network fragility lacks a rigor-

ous probabilistic definition and more importantly requires the com-

plete set of MCSs for its calculation. Network fragility is therefore

not applicable to GSMMs.

A clear difference between the PoF and structural robustness is

that the former is function oriented while the latter characterizes

the network. F is calculated with respect to some particular func-

tion that fails. Typically, networks perform multiple functions at

the same time, which may be differentially robust. Thus, the OPoF

is not only a topological property but also a property of the associ-

ated function. For instance, it is interesting to ask (and scope of

further analysis) whether two essential functions like cellular en-

ergy production and BM production are similarly robust. R on the

other hand characterizes the network topology by essentially meas-

uring the proportion of short EFMs in a network. This definition is

independent of any functions performed by the network. R coun-

terintuitively identified growth on acetate to be more robust than

growth on glucose which indicates that the length of EFMs may

not be an appropriate proxy for structural robustness. Even if we

selected only those EFMs that support a particular target function

(like BM production), and calculated R for the reduced set of

EFMs, we had misidentified growth on acetate as the most robust

growth environment as growth supporting EFMs on acetate were

on average ‘shorter’ than on glucose (see Supplementary Fig. S2).

For better understanding we illustrated this effect in a toy network

in Supplementary Figure S3. Thus, we propose to use the comple-

ment of the OPoF: Rnew ¼ 1� F as a new measure for structural

robustness in metabolic networks.

PoFs can be calculated equally well on the basis of reaction dele-

tions as well as on the basis of gene deletions. Some reactions in an

organism are not associated with a gene (e.g. non-catalyzed reac-

tions, reactions with unknown annotations) and can therefore not

be knocked out. Other reactions are catalyzed by several different

enzymes and are therefore more difficult to knock-out. However,

our analysis indicates that the question if an organism or a growth

condition is more robust than another can be identically answered

in both approaches.

It was criticized that structural robustness (as defined by Behre et

al., 2008) lacks the ability to identify critical enzymes, such as knot

enzymes (Min et al., 2011). This is true for the OPoF as well. For in-

stance, according to our measure, network A in Figure 3 was cor-

rectly identified to be more robust than network B. The cause for

the lack of structural robustness is not apparent from the numerical

value of the OPoF. Min et al. (2011) proposed to solve this dilemma

by considering the number of independent (i.e. non-overlapping)

EFMs, which are not available in GSMMs. However, by measuring

the specific PoF fRðdÞ for each individual reaction (enzyme) R we

are at least able to identify critical enzymes. For this purpose, we de-

fine the (reaction) specific PoF fRðdÞ

fRðdÞ :¼ jc
d
Rj
jCdj

(12)

to be the ratio between all specific CSs, cd
R, that are supported by reac-

tion R and the number of all possible CSs, Cd (and similarly for f R).

By ranking reactions according to their impact on the network we are

able to identify critical reactions which may be useful drug targets.

We calculated OPoFs in MSMMs and GSMMs of multiple

Enterobacteriaceae growing on minimal media to illustrate our con-

cept. Among these, the ordinary lab strain E. coli K-12 MG1655 grow-

ing on glucose was found to be most robust. This was consistently

observed in MSMMs and GSMMs in agreement with expectations

(Stelling et al., 2002). Moreover, catabolite repression mechanisms sup-

port this observation of glucose as a preferential growth source.

Escherichia coli K-12 MG1655 was also found to be more ro-

bust than the pathogenic E. coli O157:H7 Sakai, and the least

Exact quantification of cellular robustness 735
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robust S. flexneri 2a 2457T. While the difference between K-12

MG1655 and O157:H7 Sakai was small (but larger than the pos-

sible error), S. flexneri was clearly set apart. Due to its adaption to a

specific growth niche, S. flexneri has lost many catabolic pathways

for various nutrient sources (Bliven and Maurelli, 2012). It was

demonstrated computationally as well as experimentally that the

number of growth-supporting conditions is larger for E. coli K-12

MG1655 than for E. coli O157:H7 Sakai than for S. flexneri 2a

2457T (Monk et al., 2013). In contrast we here investigated the

OPoF as a measure of structural robustness for these organisms in a

single growth condition. Yet we found the same ranking as obtained

from counting the number of growth-supporting conditions.

Structural robustness is thought to come about from the need to sur-

vive in multiple environments. Many of these adaptations occur

through rewiring of existing enzymes (Wagner, 2013), thus increas-

ing the connectivity in the network, and—as a byproduct—also

introducing many alternative routes. These topological alternatives

can be exploited for other growth sources as well and were mirrored

in our analysis in low OPoFs.

The two strains of the highly specialized endosymbiont B. cuenoti,

which for millions of years have lived in the relatively constant envir-

onment provided by specialized cells of cockroaches (Lo et al., 2007),

were found to be extremely sensitive to loss-of-function mutations

(González-Domenech et al., 2012). This was confirmed by an ex-

tremely high OPoF of >26%. B. cuenoti was more than three times

less robust than E. coli. It is known that B. cuenoti grows only on an

extremely limited palette of metabolic substrates (Sabree et al., 2009),

which results in their low structural robustness as documented here.

Consistent with our findings above on S. flexneri this lack of structural

robustness is thought to be shaped by massive gene loss (Sabree et al.,

2010). A characteristic difference between B. cuenoti Pam and Bge is a

defunct TCA cycle in the former due to the absence of the first three

enzymatic steps (González-Domenech et al., 2012). This fact was mir-

rored in a lower structural robustness of B. cuenoti Pam compared

with Bge. Thus, we conclude that the OPoF is indeed an appropriate

measure to correctly assess the structural robustness of cells.

Here, we analyzed the structural robustness of multiple organ-

isms in several growth environments. Consistent with previous find-

ings our results confirm that structural robustness is correlated with

the ability to utilize multiple carbon sources (Papp et al., 2004).

They concluded that structural robustness is not a trait selected by

evolution but a byproduct of environmental flexibility. However,

very recently Yang et al. (2015) showed that structural redundancy

also impacts a cell factory’s ability to produce a product of interest

in the presence of perturbations. Based on predictions from

GSMMs, they argue that pathway diversification leads to robust

production capabilities under large perturbations. For instance, we

show in Supplementary Table S5 two strain designs with different

OPoFs but identical production/growth characteristics. Thus, calcu-

lating the OPoF will identify promising designs for cell factories.

Interestingly, we found that the raise in F(d) with increasing d was

well approximated by an exponential function in all investigated

models and independent of the investigated organism. Whether this is

an expression of some general topological properties of metabolic net-

works or a coincidence will be scope of further work.

6 Conclusion

We developed a consistent theory of cellular redundancy based on a

rigorous probabilistic definition of failure in metabolic networks.

The new measure, called OPoF, allows quantification of the struc-

tural robustness of biochemical reaction networks with respect to

certain functionalities. OPoF can be reliably estimated—even in

GSMMs—from low cardinality MSCs. In contrast to other meas-

ures, the OPoF quantifies structural robustness and fragility of cellu-

lar metabolism concurrent with current biological paradigms and

experimental findings. More specifically we showed that the number

of growth-supporting nutrients indirectly correlates with the organ-

isms’ OPoF. As the OPoF is easily computable, we expect that it will

be useful in increasing our understanding of key properties of meta-

bolic networks.
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