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1 Introduction

One of the formidable challenges for a theory of quantum gravity is the construction of

a gravitational S-matrix which respects unitarity at high energies. Perturbative string

theories provide candidate solutions, as its four-point graviton S-matrix is exponentially

suppressed in the high-energy limit for fixed-angle scattering [1, 2]. In fact, assuming

tree-level causality [3] and unitarity [4] imposes stringent constraints, under which string

theories provide the only known analytic solutions so far.

Different string theories are understood to be equivalent through a web of strong-weak

dualities which relate different orders in the perturbative expansion [5, 6]. At tree level,

however, the low-energy description in the form of an effective action with expansion in

curvature tensors and covariant derivatives is largely unconstrained by string dualities.

More precisely, the coefficients of these higher-dimensional operators are expected to be

distinct for different string theories. Thus, if some of these coefficients turn out to be

universal, it is then conceivable that such a phenomenon reflects a deeper principle in the

theory of quantum gravity beyond the known dualities.

At low energies, closed-string theories yield an effective action that augments the

Einstein-Hilbert term SEH with higher-dimensional operators. At tree level, type-II su-

perstring theories exhibit the following expansion in the inverse string tension (or cut-off

scale) α′,

Seff = SEH − 2α′3ζ3e
−6φR4 − ζ5α

′5e−10φD4R4

+
2

3
α′6ζ23e

−12φD6R4 + · · · , (1.1)

with Einstein-frame conventions for the dilaton couplings e−nφ. The ellipsis · · · repre-

sents loop-corrections and higher-order terms in α′, while DnRm schematically represent
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contractions of covariant derivatives and Riemann tensors. The tensor structure of each

operator as well as its coefficient furnished by multiple zeta values (MZVs)

ζn1,n2,...,nr ≡
∞
∑

0<k1<k2<...<kr

1

kn1
1 kn2

2 . . . knr
r

(1.2)

can be derived by expanding string-theory graviton amplitudes in α′. MZVs can be conjec-

turally categorized according to their transcendental weight n1+n2+. . .+nr and constitute

a fruitful domain of common interest between high-energy physics and number theory. In

fact, for type-II theories, the transcendental weight for each coefficient matches the order

of α′. This property will be referred to as uniform transcendentality, and it also exists

for open strings in the type-I theory. The type-I effective action is now an expansion in

non-abelian field-strength operators tr(DnFm). In this light, uniform transcendentality for

closed strings is inherited from open strings through the Kawai, Lewellen and Tye (KLT)

relations [7].

In this letter, we conjecture that the leading transcendental coefficient at each order

in the α′-expansion of tree-level amplitudes is universal among all perturbative open- and

closed-string theories. We have explicitly verified this up to the seven-point level, and the

conjectural all-multiplicity extension is further investigated in a companion paper [8]. This

also implies that at finite α′, perturbative closed string amplitudes contain a universal piece

that correspond to the UV completion of tree-level Einstein-Hilbert graviton amplitudes.

This is given by the type-II theories. For Heterotic and Bosonic closed string theories,

this is augmented by separate terms that correspond to UV completions of amplitudes

generated by higher dimensional operators such as R2, R2φ and R3, where φ can be the

dilaton or the Tachyon. This remarkable property can be best understood by inspecting

the world-sheet correlator of the open-string amplitudes.

It was shown in [9] that the n-point tree amplitude of the open superstring can be cast

into an (n−3)! basis of disk integrals, each augmented with Yang-Mills tree amplitudes

of different color-orderings. These basis integrals exhibit uniform transcendentality upon

α′-expansion, see e.g. [10] for a proof. We claim that bosonic open-string disk integral can

be cast into the very same basis where — in contrast to the superstring — the augmented

function depends on α′. More precisely, this augmented function contains apart from the

Yang-Mills tree amplitude, additional rational functions that contain Tachyon poles. Thus

in their low-energy limit α′ → 0, the α′-corrections of the kinematic functions exclusively

involve rational numbers upon Taylor-expansion, i.e. they do not carry any transcendental

weight. This implies that the resulting α′-expansion of the bosonic string amplitude will

have the same leading transcendental pieces as found for the superstring.

The same property can be extended to closed strings by utilizing the KLT-relations [7],

which assemble closed-string tree amplitudes from products of two open-string trees. The

accompanying sin-functions with α′-dependent arguments do not alter the uniform tran-

scendentality of the type-II theory. Different double-copies of open bosonic strings and su-

perstrings give rise to three different closed-string theories — bosonic, heterotic and type-II

superstrings. Their tree amplitudes are governed by a universal basis of (n−3)! × (n−3)!
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integrals of uniform transcendentality inherited from the open-string constituents. Only

the kinematic coefficients differ between the theories, where the additional α′-corrections

specific to open bosonic strings do not introduce any transcendental weight and thereby

do not affect the leading-transcendental piece. This completes the argument for univer-

sality in closed-string interactions, namely for the O(α′n) order of the effective action, the

weight-n coefficient is universal for all perturbative closed-string theories. More over, this

representation also allows us to separate a piece of the closed string graviton amplitude

that is universal and is given by the type II theories.

This paper is organized as follows: in the next section, we give a brief review of the

organization of open superstring amplitude as a matrix of disk integrals multiplied by

the basis of Yang-Mills amplitude. We will show that through a series of Integration By

Parts (IBP) identity, the bosonic string amplitude can be cast into the very same same

form with identical integral matrix, with α′ dependent basis. In section 3, we discussed

the implication of this property for the α′ expansion of closed strings, utilising the KLT-

relations. Finally, we show that the closed string graviton amplitude for all perturbative

string theories can be naturally separated into a piece that can be identified as the UV

completion of pure tree-level Einstein-Hilbert graviton amplitudes, which is given by that

of type II theories.

2 Open-string amplitudes

The tree-level amplitude for n gluon-multiplet states in open superstring theory can be

conveniently written as [9]

AS(1, 2ρ, . . . , (n−2)ρ, n−1, n;α′) =
∑

σ∈Sn−3

Fρ
σ(α′)AYM(1, 2σ, . . . , (n−2)σ, n−1, n), (2.1)

where AS and AYM indicate color-ordered amplitudes of the superstring and super Yang-

Mills field theory, respectively. The ordering of the two amplitudes does not have to be

identical. More precisely the two ordering are labeled by ρ, σ respectively, which denote

the (n−3)! distinct permutations with legs 1, n−1, n held fixed. We will use jρ ≡ ρ(j) to

represent the j-th element in the ρ ordering. The functions Fρ
σ(α′) are disk integrals that

capture the α′-dependence,

Fρ
σ(α′) ≡

∫

0≤z2ρ≤z3ρ≤...≤z(n−2)ρ≤1

dz2 . . . dzn−2

n
∏

i<l

|zil|
silσ

{

n−2
∏

k=2

k−1
∑

m=1

smk

zkm

}

, (2.2)

with zij ≡ zi− zj . We see that ρ denotes the ordering of the integration region. We fix the

SL(2) symmetry of the disk by setting (z1, zn−1, zn) = (0, 1,∞), and we use dimensionless

Mandelstam invariants

sij...l ≡ α′(ki + kj + . . .+ kl)
2 . (2.3)

When viewed as an (n−3)!×(n−3)! matrix, the row- and column indices ρ and σ of Fρ
σ label

different integration domains and integrands, respectively, where σ acts on the subscripts
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within the curly bracket in (2.2). Note that the field-theory limit is recovered as Fρ
σ(α′) =

δρ
σ+O(α′2), and the (n−3)!-vector in (2.1) furnishes a basis of string subamplitudes under

monodromy relations [11, 12].

The α′-expansion of the integrals in (2.2) yields MZVs (1.2) whose transcendental

weight matches the degree of the accompanying polynomials in sij . Since AYM do not

depend on α′, uniform transcendentality of the integrals propagates to the open-superstring

amplitude (2.1). Initially addressed via hypergeometric functions [13, 14], the α′-corrections

of Fρ
σ(α′) at any multiplicity can be recursively generated from the Drinfeld associator [10].

Once undoing the above choice of SL(2) frame, the functions (2.2) can be identified as

a superposition of (n−3)! “single-cycle” disk integrals,

Zρ(1σ, 2σ, . . ., nσ) ≡

∫

dµn(ρ)

σ(z12z23 . . . zn1)
, (2.4)

where σ and ρ now act on all external legs in the integrand and the integration domain,

respectively, and the measure is given by

∫

dµn(ρ) ≡

∫

−∞<z1ρ≤z2ρ≤...≤znρ<∞

dz1 dz2 . . . dzn
vol(SL(2))

n
∏

i<l

|zil|
sil . (2.5)

The integral reductions performed in [9] rely on partial-fraction manipulations and integra-

tions by parts (IBP) among Zρ(1σ, . . ., nσ). At fixed ρ, these integral relations for different

choices of σ can be identified with the KK- and BCJ-relations [15–17] of AYM(. . .) [18].

However, as already exploited in a superstring context [9, 19], IBP additionally allows to

address closed subcycles of zij in the integrand such as double poles z−2
ij . Extending these

techniques to gluon amplitudes of the bosonic string yields our main result to be reported

in the following.

2.1 The bosonic open string

The tree-amplitude prescription for n-gluon scattering in the bosonic string introduces

significantly more rational functions of zij of suitable SL(2) weight than captured by the

single cycles in (2.4). In particular, one obtains more terms involving higher order poles as

well as multicycle denominators. Still, repeated use of IBP is expected to reduce all of them

to the single-cycle form and thereby to the same integral basis as seen in (2.1) and (2.2).

For example, at four-points, all double poles can be reduced by using the following identity:

∫

dµ4(ρ)

z214z
2
23

=
s12Zρ(1, 2, 3, 4)

1− s23
. (2.6)

The denominator on the right-hand side signals tachyon exchange specific to the bosonic

string and can be expanded as a geometric series (1 − sij)
−1 =

∑∞
k=0

skij . Note that for

open superstring, while such double cycle denominators are also present, the OPE among

supersymmetric vertex operators guarantees that tachyon poles as in (2.6) are suppressed

by numerators 1− sij . For explicit examples see e.g. [9, 19].
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Extending the integral reduction along the lines of (2.6) to arbitrary multiplicity leads

us to conjecture the following structure for the n-gluon tree in bosonic string theory:

AB(1, 2ρ, . . . , (n−2)ρ, n−1, n;α′) =
∑

σ∈Sn−3

Fρ
σ(α′)B(1, 2σ, . . . , (n−2)σ, n−1, n;α′). (2.7)

In comparison to the superstring result (2.1), the kinematic factors AYM(. . .) are replaced

by more general and α′-dependent objects B(. . . ;α′). Both of them are rational functions

of sij and multilinear in the polarizations ej entering via (ei · ej) and (ei ·kj), and crucially

do not carry any transcendental weights. Upon α′-expansion, the leading term reproduces

Yang-Mills tree amplitudes, and is therefore identical to that of the superstring, i.e.

B(1,. . ., n;α′) = AYM(1,. . ., n) +
∞
∑

k=1

(2α′)kBk(1,. . ., n) . (2.8)

At generic multiplicity n, the Bk(. . .)’s have homogeneity degree 4−n+2k in momenta.

The simplest instances of the subleading terms occur at the three-point level and signal

the F 3 interaction specific to the bosonic string,

B1(1,2,3) = (e1 ·k2)(e2 ·k3)(e3 ·k1) , Bk≥2(1,2,3) = 0 . (2.9)

The higher-point case requires integral reductions as in (2.6), and the resulting geometric

series yield non-zero Bk(. . .) for any value of k.

2.1.1 Explicit examples

A. Four-points. In the case of n=4, we find

B(1, 2, 3, 4;α′) = AYM(1, 2, 3, 4) + (2α′)2 (2.10)

× s13

[(

f12f34

s212(1− s12)
+ cyc(2, 3, 4)

)

−
g1g2g3g4

s212s
2
13s

2
14

]

,

with gauge invariant constituents fij ≡ (ei · ej)(ki · kj) − (ki · ej)(kj · ei) and gi ≡ (ki−1 ·

ei)si,i+1−(ki+1 · ei)si−1,i. Note that both sij and gi carry a power of α′ when extracting

the Bk(1, 2, 3, 4)’s from the second line of (2.10).

B. Five-points. At five points, after partial fractional manipulations, we require follow-

ing two identities to reduce all the integrals to a single-cycle basis (2.4):

∫

dµ5(ρ)

z223 (z15z54z41)
=

s12Zρ(1, 2, 3, 5, 4)− (1 ↔ 4)

s23 − 1
,

∫

dµ5(ρ) z25
z223z

2
15z24z45

=
s13Z(1, 3, 2, 4, 5)

1− s51
(2.11)

+
s14

1− s51

[

s12Zρ(1, 2, 3, 5, 4)− (1 ↔ 4)

s23 − 1

]

.

The resulting form for B(1, 2, 3, 4, 5;α′) is rather lengthy, and an auxiliary mathematica

notebook containing the full expression is attached.
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C. Six-points. To arrive at (2.7) at six points, we find that after partial fractions, besides

the single-cycle basis we encounter integrals of following forms,

1

(z23z34z42) (z15z56z61)
,

1

z223 (z14z46z65z51)
, (2.12)

1

z212z
2
34z

2
56

,
z36

z223z
2
56z13z14z46

,
z26

z23z34z42z
2
56z12z16

.

We have checked that indeed all above integrals can be reduced to single-cycle integral via

IBP, for instance,

∫

(s234 − 1) dµ6(ρ)

(z23z34z42) (z15z56z61)
= s13Zρ(1, 3, 4, 2, 6, 5) (2.13)

− s35Zρ(1, 6, 2, 4, 3, 5)− (3 ↔ 4) .

Note that all identities of (2.6), (2.11) and (2.13) can alternatively be derived by imposing

linearized gauge invariance under ej → kj , and the same is believed to hold for the integral

reduction at arbitrary multiplicity.

The analogous seven-point checks to arrive at (2.7) have been performed as well.

2.1.2 Universality and BCJ identities

It is crucial to note that no MZVs or transcendental weight accompany the α′-dependence

from B(. . . ;α′), due to the fact that it is a rational function. Given the uniform tran-

scendentality of the Fρ
σ(α′) and the absence of negative powers of α′ in the kinematic

factor (2.8), the transcendental weight cannot exceed the accompanying order in α′ within

the bosonic-string amplitude. At fixed order in α′, the leading-transcendental part of the

open bosonic string follows from picking up B(. . . ;α′) → AYM(. . .) in (2.8) and therefore

must agrees with the superstring amplitude. This leads to the conclusion that the leading-

transcendental pieces of the tree-level α′-expansion and the resulting tr(DnFm) interactions

are universal in open-string theories.

Although the kinematic factors Bk(. . .) in (2.8) differ from AYM(. . .) in tensor structure

and mass dimension, we will now argue that they obey the same KK- and BCJ-relations [15–

17]. The universal monodromy relations [11, 12] among bosonic-string subamplitudes have

to hold separately at each order in α′ and along with each transcendentality. Hence,

inserting (2.7) into the lowest-transcendentality pieces of the monodromy relations and

identifying B0(. . .) ≡ AYM(. . .) yields

0 = Bk(1, 2, . . . , n) +Bk(2, 1, 3, . . . , n) +Bk(2, 3, 1, . . . , n)

+ . . .+Bk(2, 3, . . . , n− 1, 1, n) (2.14)

0 = s12Bk(2, 1, 3, . . . , n) + (s12+s13)Bk(2, 3, 1, 4, . . . , n)

+ . . .+ (s12+s13+. . .+s1,n−1)Bk(2, 3, . . . , n− 1, 1, n)

for any k ≥ 0. The idea of imposing monodromy relations order by order has been ex-

ploited in [20] to derive BCJ-relations for subamplitudes of the F 3 operators as well as

the supersymmetrized D2F 4 + F 5. Moreover, an all-order argument for single-trace gluon

– 6 –
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amplitudes of the heterotic string has been given in [21]. By the same reasoning, (2.14)

can be extended to an infinity of α′-corrections labelled by ji ∈ 2N+ 1:

B
j1j2...jp
k (1, 2σ, . . . , (n−2)σ, n−1, n) (2.15)

≡
∑

τ∈Sn−3

(Mj1Mj2 . . .Mjp)σ
τBk(1, 2τ , . . . , (n−2)τ , n−1, n) .

The (n−3)! × (n−3)! matrix Mj is the coefficient of ζj when casting the α′-expansion of

Fρ
σ in (2.2) into a conjectural basis of MZVs w.r.t. rational numbers Q [22]. The entries

of Mj are degree-j polynomials in spq, see [23] for examples at multiplicity n ≤ 7.

Note that the symmetry properties (2.14) of Bk(. . .) and their deformations B
j1...jp
k (. . .)

in (2.15) are inevitable to verify permutation invariance of the world-sheet integrand for

the bosonic-string amplitude along with each transcendentality and order in α′.

3 Closed-string amplitudes

Closed-string amplitudes at tree level can be obtained from squares of open-string ampli-

tudes through the KLT-relations [7]. The accompanying factors of sin(πsij) conspire with

the α′-expansion of the open string such as various MZVs including all ζ2n cancel in a suit-

able basis w.r.t. Q [22, 24]. The selection rules were identified in [25] with the single-valued

projection of MZVs [26, 27]. A representation of the massless closed-superstring tree MS
n

which manifests the effect of these cancellations has been firstly given in [22]:

MS
n(α

′) =
∑

σ,ρ,τ∈Sn−3

ÃYM(1, 2σ, . . . , (n−2)σ, n, n−1)(S0)σ
ρ

× Gρ
τ (α′)AYM(1, 2τ , . . . , (n−2)τ , n−1, n) . (3.1)

The polarizations of the type-II supergravity multiplets stem from tensor products of

the gauge-multiplet polarizations in ÃYM and AYM. The matrix S0 has entries of order

(ki·kj)
n−3 and appears in the momentum-kernel representation [28] of the KLT-formula for

supergravity trees [29].

In order to clarify the relation between F (α′) and G(α′), we recall the organization of

the open-string α′-expansion [22]

F (α′) = 1 + ζ2P2 + ζ3M3 + ζ22P4 + ζ5M5 + ζ2ζ3P2M3 + ζ32P6 +
1

2
ζ23M3M3 + ζ7M7

+ ζ2ζ5P2M5 + ζ22ζ3P4M3 + ζ42P8 + ζ3ζ5M5M3 +
1

2
ζ2ζ

2
3P2M3M3 +

1

5
ζ3,5[M5,M3]

+ . . .+

(

9ζ2ζ9 +
6

25
ζ22ζ7 −

4

35
ζ32ζ5 +

1

5
ζ3,3,5

)

[M3, [M5,M3]] + . . . , (3.2)

where the entries of the (n − 3)! × (n − 3)! matrices Pw,Mw are degree w polynomials in

sij with rational coefficients. Once the MZVs are expressed in terms of their conjectural

basis over Q, only one independent matrix Pw or Mw occurs at each weight w along with

the primitive ζw. Any other combination of MZVs is accompanied by a matrix product as

seen in (3.2) recycling information from lower weights. The rational prefactors 1

5
, 6

25
, . . .
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along with the matrix commutators [M5,M3], . . . can be understood from the coproduct

of MZVs which can only be rigorously defined for their motivic versions. A description

of motivic MZVs which lead to a rewriting of (3.2) with unit rational coefficients can be

found in [22].

The α′-expansion of the closed string in terms of G in (3.1) only involves a subset of

the terms in (3.2) [22],

G(α′) = 1 + 2ζ3M3 + 2ζ5M5 + 2ζ23M3M3 + 2ζ7M7 + 2ζ3ζ5{M3,M5} (3.3)

+ . . .+ 2

(

9ζ2ζ9 +
6

25
ζ22ζ7 −

4

35
ζ32ζ5 +

1

5
ζ3,3,5

)

[M3, [M5,M3]] + . . . .

The matrices Pw associated with even weight and powers ζ
w/2
2 cancel from non-trivial con-

spirations in the KLT-formula. Moreover, the properties of the Mw matrices additionally

eliminate ζ3,5 and many further higher-depth MZVs from the open string expansion (3.2).

These selection rules have been identified in [25] with the single-valued projection of MZVs,

G(α′) = sv(F (α′)) , (3.4)

see [26, 27] for further mathematical background.

Together with the polarization-dependence from ÃYM, AYM, they encode the tensor

contractions of the DnRm operators in the tree-level effective action to the orders seen

in (1.1). Given the ubiquitous matrix products with summations over permutations in

Sn−3, we will drop indices henceforth and rewrite (3.1) in the condensed notation

MS
n(α

′) = ÃYM · S0 ·G(α′) ·AYM , (3.5)

where the vectors ÃYM and AYM are understood to be in the different (n−3)!-bases spelt

out in (3.1).

3.1 Universality for closed string theories

As exploited in [21] for the heterotic string, the above structure and α′-expansion of type-

II closed-string amplitudes are a property of the sphere integrals involving two copies

of the integrands in (2.2). Accordingly, the results on the integrals can be exploited in

further contexts such as gravitational tree amplitudes MH
n or MB

n in the heterotic or

the closed bosonic string which rest on one or two copies of the bosonic-string integrand

in (2.7). The only modification as compared to the superstring (3.1) is an exchange of

AYM(. . .)↔B(. . . , α′),

MH
n (α′) = ÃYM · S0 ·G(α′) ·B(α′) (3.6)

MB
n (α

′) = B̃(α′) · S0 ·G(α′) ·B(α′) , (3.7)

where the same bases of color-orderings spelt out in (3.1) are used for B̃(α′), ÃYM and

B(α′), AYM, respectively. The single-valued projection [26, 27] allows for alternative repre-

sentations in terms of G(α′) ·B(α′) = sv(AB(α′)), generalizing the analogous type-II result

of [25] based on G(α′) ·AYM = sv(AS(α′)).

– 8 –
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Clearly, the Einstein-Hilbert interaction can be recovered from (3.6) and (3.7) at lead-

ing order in α′ where G(α′) → 1, B(α′) → AYM and B̃(α′) → ÃYM. The R2-correction

at subleading order is recovered from instead setting B(α′)→ 2α′B1. Note that, by level-

matching, the tachyonic poles of the form (1 − sij...l)
−1 in B(α′) of the heterotic ampli-

tude (3.6) are cancelled by corresponding zeros in the entries of G(α′) as sij...l → 1. The

structure of (3.6) is expected to capture multitrace interactions in the gauge sector of the

heterotic string under appropriate replacement of B(α′), see [8] for further details.

In complete analogy to the open bosonic string, it is natural to organize (3.6) and (3.7)

in a double-expansion w.r.t. α′ and transcendental weight. While the kinematic fac-

tors B(. . . ;α′) with an expansion as in (2.8) only involve rational coefficients, the α′-

corrections from G(α′) still enjoy uniform transcendentality. At fixed order in α′, the

leading-transcendentality part is again obtained by truncating B(. . . , α′) → AYM(. . .) and

therefore identical in (3.5), (3.6) and (3.7). Hence, we have shown that, at leading tran-

scendentality, gravitational tree-level interactions are universal to the bosonic, heterotic and

type-II closed-string theories.

3.2 Universality of UV completion

It is instructive to consider the four-dimensional spinor helicity form of B(1, 2, 3, 4). For

different helicity choices, it takes on the following simple form:

B(1−, 2−, 3−, 4−) = −u
〈14〉〈23〉

[14][23]

(

1

(1 + s)
+

1

(1 + t)
+

1

(1 + u)
− 1

)

B(1−, 2−, 3−, 4+) = u
〈12〉〈23〉[24]

[12][23]〈24〉

B(1−, 2−, 3+, 4+) = u
〈12〉2

〈34〉2

(

1

(1 + s)
− 1

)

. (3.8)

For MHV amplitudes we will only need the last form. Thus the MHV amplitude in closed

string theories can be written as

MS
4 (1

−, 2−, 3+, 4+) = 〈12〉4[34]4 f(s, t, u) (3.9)

with the function f(s, t, u) given as:

Super f(s, t, u) =
Γ[1− s]Γ[1− u]Γ[1− t]

Γ[1 + s]Γ[1 + u]Γ[1 + t]

(

−1

stu

)

Heterotic f(s, t, u) =
Γ[1− s]Γ[1− u]Γ[1− t]

Γ[1 + s]Γ[1 + u]Γ[1 + t]

(

−1

stu
+

1

s(1 + s)

)

Bosonic f(s, t, u) =
Γ[1− s]Γ[1− u]Γ[1− t]

Γ[1 + s]Γ[1 + u]Γ[1 + t]

(

−1

stu
+

2

s(1+s)
−

tu

s(1+s)2

)

. (3.10)

Note that there is a universal − 1

stu piece, which in the low energy is simply yields the

tree-level Einstein-Hilbert graviton amplitudes. For the heterotic string the extra term

correspond to the presence of R2φ operator, where φ is the dilaton. Note that the ap-

parent Tachyon pole is cancelled by the zero at s = −1 in the gamma function produces.

– 9 –
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For the bosonic string, the two terms stem from R2φ and (R3, R2τ) respectively, where

τ is the Tachyon.

Thus we see that the UV completion of the the tree-level Einstein-Hilbert graviton

amplitude is in fact unique in all perturbative string theories. The low energy amplitudes

that stem from the presence of three-point higher-dimensional operators are completed

separately. Note that the uniqueness of the UV completion for Einstein-Hilbert, follows

directly from our conjectural form of the bosonic tree function in eq. (2.7), which has been

proven up to seven-points. It will be extremely interesting to see whether the additional

terms for heterotic and bosonic string graviton amplitudes at higher points can also be

written as separate completion for tree-amplitudes of higher dimensional operators. We

leave this for future study.

4 Conclusions

In this letter, tree-level amplitudes in all perturbative open- and closed-string theories are

argued to have universal leading-transcendental parts in their α′-expansions. Manifest uni-

versality can be achieved by casting the world-sheet correlators of the bosonic open string

into the same basis of disk integrals as the superstring, augmented with α′-dependent kine-

matic factors. We have explicitly shown that such a reorganization can be achieved up to

seven points, and the conjectural all-multiplicity extension is relegated to future work [8].

Generalizations to closed-string interactions in bosonic, heterotic and type-II theories di-

rectly follow from the KLT-relations. These universality results have greatly facilitated the

construction of matrix elements for counterterms in half-maximal supergravity [30].

It would be interesting to apply the same organizing principles to massive-state scat-

tering. We expect the same basis of disk integrals to capture tree amplitudes among any

combination of massive open-string resonances. Moreover, the structure of (3.5) is believed

to apply to closed-string trees among massive resonances upon appropriate replacements

of AYM and ÃYM.

Finally the conjectural form of eq. (2.7) leads to the interesting conclusion that the

UV completion of pure Einstein-Hilbert gravity is in fact unique amongst perturbative

string theory. The difference lies in the presence of separate terms in the amplitude that

correspond to UV completions of higher dimensional operators of the form R2, R2φ and

R3. This structure is straight forward at four-points, and it will be interesting to see if the

latter persists to higher points.
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We are grateful to Johannes Brödel, Paolo Di Vecchia, Michael Green and Henrik Johansson

for inspiring discussions and valuable comments on a draft of the manuscript. Also,

Massimo Bianchi and Andrea Guerrieri are thanked for enlightening discussions. Y-t

would like to thank Nima Arkani-Hamed for the interesting observation of uniqueness

in UV completion of Einstein-Hilbert gravity. Y-t.H. is supported by MOST under the

grant No. 103-2112-M-002-025-MY3, and O.S. is grateful to the Università di Roma Tor
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