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Abstract

This thesis reports the experimental realisation of a single-photon switch and
transistor. To this end, Rydberg blockade in electromagnetically induced trans-
parency (EIT) is used to create an interaction between two light pulses at the
single photon level. In the experiment, a gate pulse containing one incoming
photon on average is stored as a Rydberg excitation in an ultracold atomic gas
using EIT. Subsequently a target light pulse is sent through the atomic ensem-
ble. Without the gate pulse, the medium would be transparent due to EIT and
the transmission would be high. If a gate excitation has been stored, however,
Rydberg blockade suppresses the transmission of the target light pulse. The
stored gate photon can be retrieved after the transmission of the target light. A
retrieved photon heralds successful storage. In the corresponding postselected
subensemble the transmission of the target light is reduced by an extinction
factor of 0.05. This reduction is robust if the number of incoming gate photons
or target photons is varied.

In a conceptually improved version of the experiment, a single-photon tran-
sistor is realised that shows a gain above unity. The gain quantifies the change
in the transmitted target photon number per incoming gate photon. For one
incoming gate photon on average, a gain of 20 is observed. The improved exper-
iment uses a Förster resonance, the benefit of which becomes directly evident
in an improved gain and extinction.

If a Rydberg excitation is created during the gate pulse, then the transmis-
sion of the target light pulse drops substantially. By setting a discrimination
threshold for the number of detected target photons, it is possible to detect in
a single shot with a fidelity of 86% whether a Rydberg excitation was created
during the gate pulse. Since the gate excitation is not retrieved by the target
light, this detection method is nondestructive.
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1. Introduction

1.1. Switching with Single Photons

The transistor is the device that lies at the heart of signal processing. The
invention of the electronic transistor [1–3] led to a remarkable development in
computing over the past decades. Since the 1960s, the minimal energy cost
of computation has been a prominent issue and power dissipation has been
identified as one of the main limitations for increasing computational power [4–
6]. Inspired by the prospect that optical technologies allow for high bandwidths
at low power dissipation, the concept of an all-optical computer was born [7,8].
The key requirement for many of the proposed designs is the availability of all-
optical transistors [9, 10]. This creates a fundamental interest in the ultimate
low-power limit of such a device which is reached when a single photon at the
input of the transistor is sufficient to change the output of the transistor.

A single-photon transistor operates at the level of single quanta. It therefore
marks the boundary between a world where classical physics suffices for the
description of nature and a world that is governed by the rules of quantum
physics. These quantum laws can provide us with capabilities that go beyond
the possibilities of classical information processing. Arguably the first example
of practical relevance was the quantum key distribution protocol BB84 which
showed that quantum laws can be used for cryptography [11]. This laid the
basis for research in the field of quantum communication [12]. Although some
technologies that have emerged from this field have already been commercialised,
the realisation of long distance quantum communication channels is still the
subject of current research. In particular, the proposal that quantum repeaters
could overcome the problem of light attenuation in optical fibres has attracted
a great deal of attention [13].

Concurrent to the developments in the field of quantum communication, the
idea of a quantum computer, that could be used to solve certain computational
problems more efficiently than any classical computer, took shape [14]. The
most famous example for such a problem is prime factorization that could be
solved in polynomial time using Shor’s algorithm on a quantum computer [15,
16]. Similarly, other quantum algorithms have been identified that promise
to outperform their classical counterparts. Most notably, the Grover search
algorithm was proven to be superior to any algorithm running on a classical
computer [17]. For a historical account of the beginnings of quantum computing
and communication see for example Ref. [18]
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1. Introduction

Various quantum systems are being investigated to determine their feasibil-
ity for quantum information purposes, including neutral atoms [19], ions [20],
quantum dots in semiconductors [21], colour centres in diamond [22, 23], nu-
clear spins [24] and superconducting materials [25]. The aim of many of these
experiments is to develop building blocks of a universal quantum computer [26].
The most prominent building block is the two qubit gate [27]. However, special-
purpose quantum computers that can only serve for a limited range of appli-
cations are also being explored. A contentious example is that of a quantum
annealer [28,29], which is already commercially available.

Single photons also offer a possible platform for quantum information pro-
cessing owing to some of their unique properties [30]. Due to their comparably
weak coupling to the environment their quantum properties are well protected
against decoherence. At the same time their degrees of freedom can be eas-
ily controlled using standard optical components. Two qubit gates for photons
have already been realised [31–34] following a proposal to use linear optics and
single ancillary photons [35]. However, inherently probabilistic schemes of this
kind are very hard to scale to large systems [36]. By contrast, the realization of
a deterministic quantum gate for photons is a goal that is yet to be achieved.

Traditionally, all-optical switching with a large number of photons has been
dominated by methods from nonlinear optics like optical bistability [37] or
nonlinear media in optical interferometers [38]. In recent years, considerable
progress has been made towards lower light levels by using nonlinear optical
waveguides and fibres [39–41]. Beyond classical nonlinear optics, other systems
have emerged, that exhibit high optical nonlinearities even for relatively low pho-
ton numbers. For example, a single quantum emitter such as one molecule [42]
can be very easily saturated and can therefore be used to create interactions
between photons. In order to increase the coupling between the light and the
quantum emitter, high finesse optical resonators are used in the field of cavity
quantum electrodynamics [43]. Here, neutral atoms [44–46] or single quantum
dots in solid state systems [47–49] serve as the quantum emitters.

A different avenue pursued in implementing photon-photon interactions is the
use of atomic ensembles. Here, for instance, optical instabilities can be used for
all-optical switching [50]. Many ideas, however, are based on electromagneti-
cally induced transparency (EIT) [51], a phenomenon where a normally opaque
medium is made transparent by the application of a laser field. EIT can be ac-
companied by a drastic change in group velocity, making it possible to generate
slow and fast light. EIT is related to laser-induced coherent phenomena in 3-
level atoms which have been studied since the 1960s (see e.g. Refs. [52,53]) such
as coherent population trapping [54, 55]. In 1991, EIT in optically thick sam-
ples was observed [56]. “This experiment has been often considered the starting
point for ... [the development that] later prompted the beautiful demonstration
of Slow and Fast Light” [53]. Related proposals predicted that large optical
nonlinearities can be achieved with EIT [57–60]. By confining light into a hol-
low core fibre loaded with atoms, optical switching with ∼ 100 photons could
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be observed [61] using EIT. The drastic change in group velocity that can be
created with EIT [62] can be used to efficiently convert light into an atomic
excitation [63, 64]. An effective interaction between light pulses can then be
created, for example, by elastic collisions between the atoms [65–67]. Similarly,
normal mode splitting in an optical cavity can be used to implement an all-
optical transistor. All-optical switching with 2.5 to 5 incoming photons was
achieved in this way in a recent experiment [68].

1.2. Rydberg Blockade

A promising approach to single-photon switching, that has emerged recently and
is employed in this thesis, is to combine EIT with the exaggerated properties of
Rydberg atoms in order to create interactions between photons. Due to their
large radius, Rydberg atoms are very sensitive to their environment and, in
particular, to the presence of other Rydberg atoms. In fact, in rubidium the
van der Waals interaction between two Rydberg atoms is typically enhanced by
20 orders of magnitude compared to two ground state atoms.

The exaggerated properties of Rydberg atoms compared to ground state
atoms have been studied for a long time [69]. The seminal proposal [70] to
use their long-range dipole-dipole interaction for implementing quantum gates
between two neutral atoms generated a lot of new interest in Rydberg atoms [19].
The central idea is that two atoms which are close to each other cannot be si-
multaneously excited to a Rydberg state. This Rydberg blockade forms the
basis of many other proposals. In particular, it has been established that quan-
tum information processing using Rydberg blockade can also be performed in
atomic ensembles [71]. In addition, it was suggested that Rydberg blockade
can be used for the creation of single-atom and single-photon sources [72], the
generation of many-particle entanglement [73–76] or the implementation of a
quantum simulator [77].

Inspired by these prospects, a lot of experimental effort has been dedicated
to studying Rydberg blockade. Rydberg blockade was first observed in 2004 as
a suppression of excitation to Rydberg states in an atomic gas [78,79] and later
in sub-Poissonian atom counting statistics [80, 81]. Shortly afterwards, it was
shown, that a Förster resonance can be used to enhance Rydberg blockade [82].
Furthermore, it was experimentally demonstrated that Rydberg blockade can
be observed in the coherent excitation of Rydberg atoms [83–87]. In 2010,
entanglement [88] and the first quantum gate for neutral atoms [89] was achieved
using Rydberg atoms.

Early during this development, it was realised that EIT can be used to map
the properties of Rydberg atoms onto light fields [71], thereby creating inter-
actions between photons. Based on this, it was suggested that deterministic
photonic quantum gates can be realised using Rydberg blockade in EIT [90–93].
In addition, correlated states of light can be generated [92,94,95].
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1. Introduction

The manner in which interactions between photons arise in EIT with Rydberg
states can be understood with the following consideration. If a photon enters
a medium that is made transparent by Rydberg EIT, it becomes a Rydberg
polariton. This is a propagating excitation consisting of a photonic component
and a Rydberg component. Since Rydberg atoms interact strongly with each
other, Rydberg polaritons do so as well. As a consequence of the interaction, the
medium becomes absorptive if more than one polariton propagates in it. The
transmission of more than one photon is therefore blocked. This is the optical
manifestation of Rydberg blockade.

The starting point of investigating interactions between Rydberg polaritons
was the demonstration of EIT with Rydberg states [96]. This was followed by
the first observation of Rydberg blockade in EIT in the form of a suppression
of on-resonance EIT transmission [97]. Evidence for non-classical behaviour
in Rydberg EIT was first given by the measurement of photon-antibunching
[98–100] and later by the demonstration of photon-polariton entanglement [101].
Furthermore, in a correlation measurement of the transmitted light in Rydberg
EIT a conditional phase shift and polarisation entanglement was observed [102].

1.3. This Thesis

During this thesis work, we used Rydberg blockade in EIT to implement the
first single-photon switch [103]. This is an all-optical switch where a single gate
photon suffices to switch the transmission of a target light pulse. To this end, a
gate light pulse, containing one photon on average, is stored in an ultracold en-
semble of 87Rb atoms using EIT. In the absence of the gate pulse, the medium
is transparent for a subsequent target light pulse due to EIT. However, if a
gate excitation is stored, Rydberg blockade will suppress the transmission of
the target light pulse. On average, we observe a reduction of the target trans-
mission by a factor of 0.81. The stored gate photon can be retrieved from the
atomic ensemble after the transmission of the target light. A retrieved photon
heralds successful storage. The corresponding postselected subensemble shows
a reduction of the transmission by a factor of 0.05.

For the realization of the single-photon switch, it was first necessary to char-
acterise as well as improve EIT and storage of light with Rydberg states in our
system. Furthermore, the observation of Rydberg blockade was a key step on
the way to realising the single-photon switch. Rydberg blockade was verified
by detecting photon-antibunching with g(2)(0) = 0.18 and observing saturation
effects in EIT.

In a conceptually improved experiment a single-photon transistor was demon-
strated [104]. Like the single-photon switch, this device operates with one in-
coming gate photon. In addition, it shows a gain above unity.1 Gain quantifies

1Note that a single-photon transistor does not violate the no-cloning theorem [105] despite
the fact that it operates with single quanta of light and shows gain.
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the change in the transmitted target photon number per incoming gate photon.
Gain or fan-out is important for practical applications as it quantifies how many
subsequent stages can be driven [10]. In addition to having gain, all-optical tran-
sistors should be cascadable [10], which means that the output of the transistor
must be compatible with the input of the next stage. In the optical domain,
this means that the gate and the target light have to be operated at the same
wavelength.

The single-photon transistor presented in this thesis exhibits a gain of ∼ 20
[104]. It benefits considerably from the use of a Förster resonance. Evidence for
this is provided by experimental data showing that the gain is enhanced near
the Förster resonance.

As a first application, the mechanism that forms the basis of the transistor is
used for the nondestructive detection of a Rydberg excitation. Here we exploit
that the successful storage of a gate photon in a Rydberg state leads to a large
reduction in the detected target photon number. This allows us to estimate in
a single shot with a fidelity of above 0.86 whether a Rydberg excitation was
created during the gate pulse.

This thesis is organised as follows: Chap. 2 introduces the theoretical back-
ground of EIT and the storage of light, as well as Rydberg atoms. Chap. 3
describes the experimental apparatus. Chap. 4 is dedicated to various char-
acterization measurements relating to EIT, storage of light in Rydberg states,
and Rydberg blockade. In Chap. 5, experimental results demonstrating a single-
photon switch are presented. Chap. 6 reports the experimental observation of
a single-photon transistor exhibiting gain. Finally, Chap. 7 concludes with an
outlook.

During an earlier stage of this thesis work, we experimentally studied the
switching of light pulses with thousands of photons using four wave mixing in a
Bose-Einstein condensate [67]. The results are extensively covered in a previous
dissertation [106]. Therefore they are only briefly summarised in App. D.
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2. Theoretical Background

This chapter discusses the theoretical foundations of the experiments presented
in this thesis. Chap. 2.1 gives a short introduction into electromagnetically in-
duced transparency (EIT) and the storage of light in ultra-cold atomic ensem-
bles. Chap. 2.2 outlines important properties of Rydberg atoms. In addition,
the dipole-dipole interaction between Rydberg atoms is discussed with regard to
the performed experiments. At the end of this chapter the concept of Rydberg
blockade is explained in the context of EIT.

2.1. Storage of Light using Electromagnetically
Induced Transparency

Electromagnetically induced transparency (EIT) is a quantum interference effect
which makes a normally opaque medium transparent due to the presence of
a light field called control field. In addition the dispersive properties of the
medium are strongly altered leading to a drastic slow down and compression of
incoming light pulses (Chap. 2.1.1). By ramping the intensity of the control field
to zero, a light pulse can be stored in the medium and retrieved at a later point
in time (Chap. 2.1.2). This chapter largely follows Refs. [51, 63] with special
emphasis on the differences to previous works at this experiment [107].

2.1.1. Electromagnetically Induced Transparency

The simplest system in which EIT can be observed is the three-level atom.
Fig. 2.1(a) shows an energy level diagram in ladder configuration. It consists
of a ground state |g〉, an excited state |e〉, and a second long-lived state |r〉.
Population in the states |e〉 and |r〉 can decay by spontaneous emission with
rates Γe and Γr � Γe. A control laser field with angular frequency ωc couples
the states |e〉 and |r〉. We study the propagation of a weak signal light field
that is near resonant with the transition |g〉 ↔ |e〉. As shown in Fig. 2.1(a) we
introduce the detuning of the control and the signal light field, as well as the
two-photon-detuning

∆s = ωs − ωeg, ∆c = ωc − ωre, δ2 = ∆s + ∆c. (2.1)

ωeg and ωre denote the angular frequencies of the transitions |g〉 ↔ |e〉 and
|e〉 ↔ |r〉 respectively. The coupling of a light field to the atom can be expressed
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Figure 2.1.: (a) Three-level atom in ladder configuration. A strong cou-
pling field with Rabi frequency Ωc and detuning ∆c couples state |e〉 and
|r〉. A weak signal field with Rabi frequency Ωs and detuning ∆s drives the
transition |g〉 ↔ |e〉. The two-photon detuning is defined as δ2 = ∆s + ∆c.
The states |e〉 and |r〉 decay by spontaneous emission with rates Γe and Γr.
(b) Susceptibility χ as a function of signal detuning ∆s for |Ωc| = 2Γe and
∆c = 0. At ∆s = δ2 = 0, χ is zero and the slope of Re(χ) is positive. The
signal pulse experiences normal dispersion and and can be slowed down in
the medium. (c) Susceptibility χ as a function of control detuning ∆c for
|Ωc| = 2Γe and ∆s = 0. The FWHM of the line is call EIT linewidth γEIT.

by the Rabi frequency Ω = dijεE/~. Here dij denotes the electric dipole matrix
element of the transition |i〉 ↔ |j〉, ε the polarisation vector and E the complex
amplitude of the electric field. In an interaction picture and using the rotating
wave approximation we obtain the Hamiltonian in a matrix representation with
respect to the basis {|g〉, |e〉, |r〉} in analogy to Ref. [51]

H = −~
2

 0 Ω∗s 0
Ωs 2∆s Ω∗c
0 Ωc 2δ2

 . (2.2)

The normalised state
|D〉 ∝ Ω∗c |g〉 − Ωs|r〉 (2.3)

is obviously an eigenstate of Eq. (2.2) for δ2 = 0. Since it does not overlap with
the fast decaying state |e〉 it is called a dark state.

In a typical EIT experiment all atoms are initially prepared in state |g〉 and no
light fields are applied at the beginning. Switching on the control field couples
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2.1. Storage of Light using Electromagnetically Induced Transparency

the unpopulated states |e〉 and |r〉. The population remains in state |g〉. For
Ωs = 0 the state |g〉 is identical to |D〉. If the signal light pulse enters the
medium with slowly varying amplitude, the population adiabatically follows
the state |D〉. As the system remains in the dark state the signal pulse does
not experience any absorption. This is known as electromagnetically induced
transparency. As long as the two-photon resonance condition δ2 = 0 is fulfilled,
this result does not depend on ∆c or Ωc.

To describe the propagation of a signal light pulse in a medium with particle
density % we study the electric susceptibility χ. Adiabatic elimination of the
weakly populated states |e〉 and |r〉 in analogy with Ref. [51] yields an expres-
sion1 for the linear susceptibility

χ = χ0γeg
i(γrg − 2iδ2)

|Ωc|2 + (γrg − 2iδ2)(γeg − 2i∆s)
. (2.4)

Here we use

χ0 =
2%|deg|2

ε0~Γe
(2.5)

where deg is the electric dipole matrix element of the signal transition. γrg
describes the dephasing of the states |g〉 and |r〉, i.e. a contribution to the
time evolution of the density matrix given by ρ̇rg = −γrgρrg/2. Analogously,
γeg = Γe + γe,dephas determines the decay of ρeg, where γe,dephas accounts for the
dephasing of the state |e〉. Strictly speaking, this is only true for Markovian
dephasing that can be described by coupling to a thermal bath [51]. However,
it is possible to include finite laser linewidths for Lorentzian line shapes by
replacing2 γrg → γrg + γs + γc and γeg → γeg + γs [108] . Here, γs and γc
are the full width at half maximum (FWHM) linewidths of the probe and the
control light, respectively. Further it is assumed that there are no correlations
between the noise of the two lasers. In the remainder of this chapter, we neglect
dephasing, i.e. γrg = 0 and γeg = Γe

Fig. 2.1(b) shows the real and imaginary part of χ as a function of the signal
detuning ∆s for the case ∆c = 0. χ is zero at δ2 = ∆s = 0. Consequently the
medium is transparent. This is strictly true for a monochromatic light field.
However for a light pulse with a typical duration of the temporal envelope ∆τs,
the Fourier limit requires that the pulse has a frequency distribution ∆ωs with

∆τs∆ωs ≥ 1. (2.6)

Hence it is necessary to analyse χ not only at δ2 = 0, but also in the vicinity of
the two-photon resonance.

1Formulas in Ref. [51] are for the Λ system. Expressions for the ladder configuration are
obtained by replacing ∆c → −∆c and Ωc → Ω∗c . The sign of Re(χ) in Ref. [51] is probably
a misprint.

2This corresponds to the convolution of χ with two Lorentzians with FWHM of γs and γc.
This is an approximation that, for example, accounts for shot to shot fluctuation of the
laser frequencies. Note, that the linewidths in Ref. [108] are half width at half maximum.
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2. Theoretical Background

To estimate the width of the frequency window with low absorption we expand
Im(χ) in δ2 around zero up to the second order. The transmission of the signal
intensity through a medium of length L is then given by

T = exp (−kpL Im(χ)) ≈ exp

(
− 4δ2

2

∆ω2
trans

)
, ∆ωtrans =

|Ωc|2√
ΓegΓe ·ODcyc

.

(2.7)
Close to the two-photon resonance, the transmission profile can be approximated
by a Gaussian with FWHM of ∆ωT = ∆ωtrans

√
ln 2. Here ODcyc = %σcycL is

the optical depth of the medium for a closed transition, σcyc = 3λ2/2π the
resonant scattering cross section and λ = 2π/kp the wavelength of the signal
light. Consequently a signal light pulse with sufficiently narrow bandwidth
∆ωs � ∆ωtrans can propagate almost without absorption in the medium.

In the context of Rydberg blockade, it is also interesting, how a detuning of
the control field affects the transmission of the signal light at ∆s = 0. Fig. 2.1(c)
shows the susceptibility as a function of ∆c. The dip in Im(χ) has a FWHM of

γEIT =
|Ωc|2

Γe
(2.8)

which is called the single-atom EIT linewidth. Unlike ∆ωtrans, γEIT is indepen-
dent of the atomic density and the length of the medium and is thus useful for
quantifying Rydberg blockade in EIT (cf. Chap. 2.2.6).

The group velocity vgr of a light pulse on EIT resonance can be drastically
reduced compared to the vacuum speed of light c if dRe(χ)/dωs is large. This
effect is called slow light. Experimentally a reduction of the group velocity by 7
orders of magnitude was demonstrated [62]. At two-photon resonance we obtain
from Eq. (2.4) [51]

vgr =
c

1 + ngr

,
1

ngr

=
|Ωc|2

c%σcycΓeg
(2.9)

with group index ngr. Consequently the light pulse gets spatially compressed
by a factor of vgr/c on entering the medium. The temporal envelope of the
light pulse remains unaffected. On leaving the medium the original light pulse
is restored.

Further insight into the pulse propagation on two-photon resonance can be
gained from a quasiparticle picture in which a signal light pulse propagating
along the z direction can be described by a dark-state polariton [63]

Ψ(z, t) = cosϑẼp(z, t)− sinϑ
√
%ρrg(z, t)e

i∆kz (2.10)

with the mixing angle related to the group index vgr by

tan2 ϑ = ngr. (2.11)
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2.1. Storage of Light using Electromagnetically Induced Transparency

Here Ẽp = Ep/
√
~ωs/2ε0 is the normalised, slowly varying signal field strength

and ∆k = k
‖
c + kp, where k

‖
c is the projection of the coupling-field wave vector

along the wave vector of the signal field. ρrg is the single-atom off-diagonal
density-matrix element between the states |r〉 and |g〉. This quasiparticle is a
coherent superposition of an electromagnetic and an atomic component. In the
limit of low group velocity vgr � c the mixing angle is ϑ → π/2. This means
that the dark-state polariton has an almost purely atomic character.

2.1.2. Storage of Light

So far the control field was assumed to be time-independent. By varying Ωc in
time it is possible to store a signal light pulse in the medium and retrieve it at
a later point in time. This can be understood using Eq. (2.9). A reduction in
control intensity leads to smaller group velocities. If Ωc is adiabatically ramped
to zero, the signal light pulse can be completely stopped. After a variable dark
time τd the control laser can be ramped up again and the light pulse resumes
propagation finally leaving the medium.

The directed retrieval of the light pulse from the ensemble can also be under-
stood from a different point of view. For simplicity we restrict ourselves to the
case where the signal light pulse only contains a single photon and the atomic
cloud consists of N atoms. The stored light pulse can then be described by a
Dicke state3 [109,110]

|D1
N−1〉 =

1√
N

N∑
j=1

ei∆kxj |g1, ..., rj, ..., gN〉. (2.12)

Here, ∆k = ks + kc is the wave vector of the excitation. Furthermore, the
notation |g1, ..., rj, ..., gN〉 means that the j-th atom is in the Rydberg state (see
App. A for details). xj describes the position of atom j. In this picture, the
ramp-up of the control field during retrieval leads to a coherent and collective
emission of a photon from the ensemble. The light emitted from all the different
atoms interferes destructively except in the direction of the input light pulse. For
this to work, the atomic ensemble must be much larger than one wavelength of
the signal light. This concept can easily be extended to higher photon numbers.

We will now discuss the question of whether varying Ωc in time leads to
additional absorption. In the dark-state polariton picture the deceleration of
a light pulse corresponds to an increase in the mixing angle ϑ. As long as the
change in Ωc is sufficiently slow, the state vector of the system adiabatically
follows the dark state (2.10) and no additional absorption occurs. Specifically,
the change in Ωc has to occur on a time scale τa given by [110]

τa �
v0

gr

c

Γe
cσcyc%Γeg

, (2.13)

3As explained in Chap. 2.2.6, the first Dicke state (2.12) can also be created by utilising
Rydberg blockade [71].
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2. Theoretical Background

where v0
gr is the group velocity before storage. The second factor on the right

side of this equation is less than 1 ps for typical experimental parameters. Since
this deceleration process is coherent, it can be reversed. It should be noted that
in most practical situations vgr � c and therefore a diabatic switch-off only
results in loss of the very small electric component of the polariton [51].

An important quantity in storage experiments is the storage and retrieval
efficiency ηsr = Eout/Ein. This is the energy of the light pulse after storage
and retrieval Eout, relative to the energy of the input light pulse Ein. For ef-
ficient storage two requirements have to be met. First, the light pulse has to
be sufficiently long to fulfil the condition ∆ωs � ∆ωtrans for high EIT trans-
mission. Second, the duration of the light pulse must be small enough such
that it can be fully compressed into the medium, i.e. vgr/L < 1/∆τs. Eq. (2.6)
yields vgr/L < ∆ωs. Experimentally, high storage efficiency requires high optical
depth [111,112] and an appropriate choice of |Ωc|.

Efficient retrieval relies on the spatial coherence of the stopped polariton.
Various decoherence mechanisms can lead to a decay in the retrieval efficiency
over time. One example is a finite spatial coherence length of the gas. During
storage, a signal and a control photon are absorbed, leading to a momentum
transfer to the atoms in |r〉 of ~∆k = ~kp + ~kc. Hence they start moving
with recoil velocity vrec = ~∆k/m relative to the atoms in |g〉. After moving a
distance greater than a coherence length, the retrieval efficiency is significantly
reduced. In a thermal gas with temperature T the motion of the atoms yields
a spatial coherence length that approximately equals the thermal de-Broglie
wavelength λdB = ~

√
2π/mkBT , with atom mass m and Boltzmann constant

kB [113]. A more detailed analysis which can be found in App. A shows that
ηsr decays as a function of the dark time like a Gaussian with 1/e-time

τ =
λdB

|vrec|
√

2π
. (2.14)

It should be noted that the dephasing that is responsible for the decay of ηsr
is not necessarily identical with the dephasing described by γrg in Eq. (2.4).
ηsr can, for example, decay like a Gaussian due to the thermal motion of the
atoms, whereas dephasing described by γrg always leads to an exponential decay
of coherence.

This also becomes clear by considering finite laser linewidths. As the lasers
are switched off during the dark time, the laser linewidths do not affect the
decay time in storage and retrieval experiments. However, the laser linewidths
do affect the maximal EIT transmission.

Additional potential reasons for the decay of the retrieval efficiency are, for
example, spatially inhomogeneous electric or magnetic fields. If |r〉 is a Rydberg
state then collisions with ground state atoms can also cause dephasing. This is
discussed in Chap. 4.4.

12



2.2. Rydberg Atoms

2.2. Rydberg Atoms

Rydberg atoms are highly excited atoms. They have been extensively studied
in the past and many of their properties are well known. This is particularly
true for the alkali atom rubidium. The properties relevant for this thesis are
summarised in Chap. 2.2.1. A more thorough introduction can be found in
Refs. [69, 114]. For a quantitative understanding of Rydberg atoms, detailed
knowledge of their valence electron’s wavefunction is required. How it can be
calculated numerically is shown in Chap. 2.2.2. Rydberg atoms are very sensitive
to external electric fields. More details on this can be found in Chap. 2.2.3. The
single photon switch and transistor discussed in this thesis is based on the dipole-
dipole interaction between Rydberg atoms. Therefore this topic is covered by
Chap. 2.2.4. Interestingly, the dipole-dipole interaction can be enhanced by the
use of a Förster resonance, as explained in Chap. 2.2.5. Finally, Chap. 2.2.6
introduces the concept of Rydberg blockade and how it can be exploited in EIT
with Rydberg states.

2.2.1. Basic Properties

Rubidium atoms are similar to hydrogen, because they have one valence electron,
also referred to as the Rydberg electron, orbiting around a positively charged
core. In Rydberg atoms the valence electron mostly resides near its classical
outer turning point (s. Fig. 2.2(b)) and thus far away from the core. There,
it is only sensitive to the net charge of the core which gives a −1/r Coulomb
potential. Hence many properties of Rydberg atoms are very similar to those of
hydrogen. An important difference between the two of them, however, is that
the 87Rb+ core contains 36 electrons in the inner shells which have finite size.
The charge distribution of the 87Rb+ core plays a role when the electron comes
near the core. In this situation, two effects become relevant. First, the screening
of the nucleus’ charge by the core electrons is reduced and second the electron
can polarise the core. As a result of these two effects, the eigenstates of rubidium
are more tightly bound than their counterparts in hydrogen. This is particularly
relevant for states with low angular momentum quantum numbers l which have
a large spatial overlap with the core. The difference in binding energies of
Rydberg electrons compared with those of hydrogen can be parameterised by
the empirical quantum defects δnlj. The binding energy is then given by [69]

En,l,j =
−hcRy

(n− δnlj)2
, (2.15)

where for alkali atoms the constant Ry is related to the Rydberg constant R∞ =
109737.316 cm−1 via Ry = R∞M/(M +me). Here M is the mass of the atom’s
core and me the mass of the electron. The quantum defects strongly depend on
l. The much weaker dependence on the quantum number of the total angular
momentum of the valence electron j is due to the fine structure splitting. By
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2. Theoretical Background

considering small n-dependent corrections, improved agreement between W and
experimental data can be achieved. The quantum defects are obtained by fitting
the empirical expression [115]

δnlj = δ0 +
δ2

(n− δ0)2
(2.16)

to spectroscopic data. For the s, p, and d states of 85Rb these can be found in
Ref. [116] and for the f states of 85Rb in Ref. [117]. δ0 is approximately 3.13
and 2.65 for the s and p states of rubidium respectively. 87Rb and 85Rb have
essentially identical quantum defects. For l > 3 the quantum defects are less
than 4·10−3 for n ≥ 30 [117,118]. These states have practically the same energies
like their equivalents in hydrogen and are therefore called the hydrogenic states.

The properties of highly excited Rydberg states are mostly governed by their
binding energy, which is determined by the effective principal quantum number
n∗ = n−δnlj. Hence their scaling behaviour with n∗ is similar to hydrogen [119].
Important properties are summarised in Tab. 2.1 and values are given for the
100S1/2 state of 87Rb. The orbital radius4 of the Rydberg electron’s wavefunc-
tion is very large compared to that of the ground state. As a result of the
small spatial overlap with the ground state wavefunction, Rydberg states have
a fairly long spontaneous lifetime which scales like (n∗)3 and is 1.3 ms for the
100S1/2 state [120]. The large orbital radius is also associated with large radial
matrix elements between neighbouring states. This makes them very sensitive
to electric fields and blackbody radiation. The blackbody radiation induces
transitions to neighbouring states thus reducing the lifetime of Rydberg states.
For the 100S1/2 state, the lifetime in the presence of spontaneous emission and
blackbody radiation at a temperature of T = 300 K is 336µs [120]. The sensi-
tivity to electric fields results in a very strong van der Waals interaction between
Rydberg atoms. This is crucially important to this thesis and is the subject of
Chap. 2.2.4. Finally, as the Rydberg electron’s wavefunction has little overlap
with the atomic nucleus, the hyperfine coupling is small compared to all other
relevant energy scales and can usually be neglected.

2.2.2. Radial Wavefunction

To calculate radial matrix elements it is necessary to solve Schrödinger’s equa-
tion for the valence electron. Using atomic units5 (a.u.) and the infinite-nuclear-
mass approximation, the equation can be written as(

−1

2
∇2 + V (r)

)
ψ(r, θ, φ) = En,l,jψ(r, θ, φ). (2.17)

4Orbital radius is defined as
∫∞

0
rRn,l(r)r

2dr with radial wavefunction Rn,l(r) as in
Chap. 2.2.2.

5Atomic units are used throughout Chaps. 2.2.2 to 2.2.5.
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2.2. Rydberg Atoms

Quantitiy Scaling 87Rb 100S1/2 Ref. Chap.

Binding energy E (n∗)−2 h · 351 GHz [116]
Energy difference En − En−1 (n∗)−3 h · 7.35 GHz [116]
Orbital radius (n∗)2 0.74µm [69]
nS1/2 hyperfine-struct. interval (n∗)−3 h · 36 kHz [116]

Radiative lifetime (T = 300 K) 336µs [120]
Static electric polarisability α0 h · 6.2 GHz V−2cm2 [121] 2.2.3
Van der Waals coefficient C6 (n∗)11 h · 56 THzµm6 [122] 2.2.4

Table 2.1.: Properties of Rydberg atoms. Their dependence on the effective
principal quantum number n∗ is analogous to hydrogen and can be expressed
by power laws. For high n many properties are strongly altered compared to
ground state atoms.

Here r is the distance between the valence electron and the nucleus, and V (r) is
the core potential which is spherically symmetric. Consequently the wavefunc-
tion ψ(r, θ, φ) = Rn,l(r)Y

l
ml

(θ, φ) is separable into a radial part Rn,l(r) and an
angular part which is given by the spherical harmonics Y l

ml
(θ, φ). Inserting this

into Eq. (2.17) yields a differential equation for the radial wavefunction of the
electron[

−1

2

(
∂2

∂r2
+

2

r

∂

∂r

)
+
l(l + 1)

2r2
+ V (r)

]
Rn,l(r) = En,l,jRn,l(r). (2.18)

Rn,l(r) has to fulfil the normalisation condition∫ ∞
0

|Rn,l(r)|2r2dr = 1. (2.19)

To account for deviations of V (r) from the Coulomb potential of hydrogen,
an l-dependent model potential [123]

Vl(r) = −Zl(r)
r
− αc

2r4

(
1− e(r/rc)6

)
(2.20)

can be used, where αc is the static electric dipole polarisability of the ionic core.
The first summand in Eq. (2.20) describes the screened Coulomb potential of
the core with radial charge

Zl(r) = 1 + (Z − 1)e−a1r − r(a3 + a4r)e
−a2r, (2.21)

where Z is the charge number of the nucleus. The second summand in Eq. (2.20)
reflects the core polarisability. rc, a1, a2 and a3 are coefficients that are obtained
from fits to experimental data with αc = 9.0760 a.u. kept fixed [123]. To cal-
culate quantities that are only sensitive to the radial wavefunction at large dis-
tances from the core, like radial matrix elements for high-n states, the potential
can be approximated by

V (r) ≈ −1

r
− αc

2r4
. (2.22)
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2. Theoretical Background

Figure 2.2.: Radial wavefunction of the 100S1/2 state calculated with Nu-
merov’s algorithm. (a) Comparison of the radial wavefunctionsa of rubidium
and hydrogen. The wavefunction for rubidium is shifted towards the core. (b)
Corresponding radial probability density for rubidium. The valence electron
spends most of the time far away from the core.

aThe scaling is motivated by the fact that for (2l + 1)2 < r < (n∗)2 the amplitude
of R̃ is approximately constant [124].

Rn,l(r) can be calculated by numerical integration of Eq. (2.18). To obtain an
approximately constant number of grid points per oscillation period of Rn,l(r),
a square root scaling of r is used. Substituting

r̃ =
√
r, R̃ = r3/4Rn,l(r) (2.23)

into Eq. (2.18) we obtain6 [124](
− ∂2

∂r̃2
− 8En,l,j r̃

2 +

(
2l + 1

2

) (
2l + 3

2

)
r̃2

− 8− 4αc
r̃6

)
R̃ = 0. (2.24)

This differential equation can be solved using the Numerov algorithm [125] and
binding energies E from Eq. (2.15). Following [126] we perform the integration
inwardly with a step size of 0.01, starting at an outer radius ro = 2n(n + 15)
which is much larger than the classical turning point of the wavefunction. The
boundary conditions we use are R̃|ro = 0 and ∂R̃/∂r̃|ro . 0. At small radii the
model (2.20) becomes unphysical. For low l we hence stop integration at an inner
radius of ri = 3

√
αc which only causes a small error in calculated matrix elements.

For high l, we truncate the wavefunction at an inner radius where the solution
starts diverging [126]. To verify the performance of the numerical integration,

6The sign of the third summand in Ref. [124] is probably a misprint.
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2.2. Rydberg Atoms

the result can be compared to the analytical solution of Eq. (2.18) for hydrogen.
The scalar product between numerical and analytical result typically deviates
from unity by less than 4 · 10−4 for n ≥ 20.

Fig. 2.2(a) shows the numerically calculated radial wavefunction for the state
100S1/2 of rubidium and hydrogen. Because of the increased binding energy of
rubidium’s valence electron compared to hydrogen, the wavefunction is shifted
to smaller radii. Fig. 2.2(b) shows the corresponding radial probability density
which has a maximum near the classical outer turning radius. Therefore, the
valence electron spends most of the time far away from the core.

The radial matrix elements for transitions from the 5P state of 87Rb to the
nS and nD Rydberg states can also be calculated numerically and are approx-
imately given by [19]

RnS
5P = 0.014× (50/n)3/2a0 and RnD

5P = −0.024× (50/n)3/2a0, (2.25)

where a0 is the Bohr radius.

2.2.3. Electric Fields

Compared to ground state atoms, Rydberg atoms are very sensitive to electric
fields. A static electric field E causes a mixing of the energy eigenstates of the
bare atom resulting in an energy level shift, known as the Stark shift. Using
the electric-dipole approximation, an atom exposed to a static electric field is
described by the Hamiltonian [126]

H = Hatom − d ·E (2.26)

with the electric dipole moment of the atom given by d. Choosing the z di-
rection along the orientation of the electric field, E = Ez ẑ, we can write the
coupling term as −dzEz. In the fine-structure basis {|n, l, j,mj〉}, the electric
field therefore couples bare states with selection rules |∆l| = 1 and ∆mj = 0.
The latter reflects the fact that the Stark Hamiltonian (2.26) commutes with
the z component of the the total angular momentum operator Jz. The off-
diagonal matrix elements −Ez〈n′, l′, j′,mj|dz|n, l, j,mj〉 can be evaluated using
standard angular momentum algebra [127] and numerically calculated radial
matrix elements (cf. Chap. 2.2.2). The diagonal matrix elements are given by
the binding energies En,l,j according to Eq. (2.15). Because of the ∆m selection
rule, the eigenenergies can be calculated for each mj separately by numerical
diagonalisation.

Fig. 2.3 shows the obtained energy levels as a function of electric field strength
E around n = 97 for the mj = 1/2 and mj = 3/2 manifolds. Such a graph is
usually called a Stark map. It is clearly visible that the quantum defects and
the spin-orbit coupling lift the degeneracy of the energy levels with l ≤ 3. For
l > 3, however, these effects are neglected and hence these states show a linear

17



2. Theoretical Background

0.0 0.1 0.2 0.3 0.4
electric field (V/cm)

352

350

348

346

bi
nd

in
g 

en
er

gy
 / 

h 
(G

Hz
)

100S1/2

100P3/2

100P1/2

98D5/2

98D3/2

97

(a) |mj |=1/2

0.0 0.1 0.2 0.3 0.4
electric field (V/cm)

100P3/2

98D5/2

98D3/2

97

(b) |mj |=3/2

Figure 2.3.: Stark maps near 100S1/2 in Rb for |mj | = 1/2 (a) and |mj | =
3/2 (b). At fairly low electric fields, on the order of 0.1 V/cm, mixing with
adjacent l states becomes relevant. In the calculation, states with 92 ≤ n ≤
102 and l ≤ 20 were included, which gives sufficiently good convergence for
the low-l states.

Stark shift for small energies. The separation of the two extreme states of the
l > 3 manifold is approximately given by [114]

∆Ehyd ≈ 3n(n− 1)Ez. (2.27)

The stark maps for ±mj are identical as follows from the symmetry properties7

of the Hamiltonian (2.26) [127]. At low fields, where the interaction energy
−d · E is small compared to the detuning of neighbouring energy eigenstates,
the Stark Hamiltonian (2.26) can be treated with perturbation theory. For
the energetically non-degenerate states in our calculation, this gives, in leading
order, a shift that depends quadratically on the electric field

∆EStark = −1

2
α0E

2, (2.28)

where α0 is the static electric polarisability of the Rydberg atom. For a state
|n, l, j,mj〉 the polarisability α0 is given by

α0 = −2
∑

(n′,l′,j′)6=(n,l,j)

|〈n′, l′, j′,mj|dz|n, l, j,mj〉|2

En,l,j − En′,l′,j′
(2.29)

7This is a consequence of the fact that the electric field does not break the time-reversal
symmetry of the Hamiltonian H. If Θ is the antiunitary time-reversal operator [128]
which has the properties ΘxΘ−1 = x, ΘpΘ−1 = −p and ΘJΘ−1 = −J then the relation
Θ|γ, j,mj〉 ∝ |γ, j,−mj〉 holds. From [H,Θ] = 0 it follows that the states |γ, j,±mj〉 are
degenerate.
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2.2. Rydberg Atoms

with binding energies En,l,j. The sign of α0 depends on the coupling strength
and detuning of the neighbouring states. A numerical calculation of the po-
larisability for the 100S1/2 state of rubidium using the same parameters as in
Fig. (2.3) yields α0 = h · 6.2 GHz/(V/cm)2 which is in good agreement with
experiments [121] where the authors found α0 = h · [2.202(28) · 10−9 (n∗)6 +
5.53(13) · 10−11 (n∗)7] MHz/(V/cm)2.

2.2.4. Electric Dipole-Dipole Interaction

As outlined in Chap. 1, the interest in Rydberg atoms stems from the fact that
they show long-range dipole-dipole interactions which are large compared to
that of ground state atoms. Consider a pair of atoms, A and B, at a distance
R which is larger than the extension of the atoms. The z-axis is chosen along
the internuclear axis. The leading order of the electrostatic interaction between
the atoms is then given by the dipole-dipole interaction8 [129]

Vdd(R) =
dAdB − 3dA,zdB,z

R3
, (2.30)

where dA,B are the electric dipole moments of atoms A and B with respect to
their core. The whole system is then described by the Hamiltonian

H = H0 + Vdd(R), (2.31)

where H0 is the Hamiltonian in the absence of dipole-dipole interaction.

Introducing the spherical components of a vector V [127]

V
(1)
±1 =

1√
2

(∓Vx − iVy), V
(1)

0 = Vz, (2.32)

which form a spherical tensor of rank one, Eq. (2.30) can be written as [127]

Vdd(R) =
d

(1)
A,−1d

(1)
B,+1 + 2d

(1)
A,0d

(1)
B,0 + d

(1)
A,+1d

(1)
B,−1

R3
= −
√

6
1

R3
T

(2)
0 . (2.33)

In the last expression, the dipole-dipole interaction is expressed by the compo-
nent T

(2)
0 of a rank two spherical tensor T

(2)
q which is constructed as a tensor

product of the spherical tensors d
(1)
A,qA

and d
(1)
B,qB

by [127, Eq. (5.1.5)]

T (2)
q =

∑
qA,qB

d
(1)
A,qA

d
(1)
B,qB
〈1, qA, 1, qB|1, 1, 2, q〉 (2.34)

using Clebsch-Gordan coefficients. According to Eq. (2.33), the dipole-dipole in-
teraction couples states such that the individual atoms obey the dipole selection
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Figure 2.4.: Eigenenergies as a function of atomic separation in the presence
of dipole-dipole interaction according to Eq. (2.38). For R→∞ the eigenen-
ergies are identical to those in the absence of dipole-dipole interaction. At
shorter distances the eigenstates repel each other due to the interaction. The
asymptotes for R→ 0 and R→∞ are drawn with dashed and dotted lines,
respectively.

rules |∆l| = 1, ∆j ∈ {0,±1} and ∆mj ∈ {0,±1}. The sum M = mjA +mjB is
a conserved quantity.

Let us now consider the situation where Vdd couples two pair states9 |ψAψB〉
and |ψ′Aψ′B〉. The energy difference between these states in the absence of Vdd
is given by

∆Ep = E ′A + E ′B − EA − EB. (2.35)

Because in Rydberg atoms ∆Ep is determined by the energy defects, it is referred
to as the pair state energy defect or Förster energy defect. The Hamiltonian
(2.31) can be expressed in the basis {|ψAψB〉, |ψ′Aψ′B〉} by

H =

(
−∆Ep

2
−C3

R3

−C3

R3

∆Ep

2

)
. (2.36)

Here the real coefficient C3 is given by C3 =
√

6〈ψAψB|T (2)
0 |ψ′Aψ′B〉. In the case

of product states, C3 can be written as the product

C3 = D ·Rn′
Al

′
A

nAlA
R
n′
B l

′
B

nB lB
(2.37)

8Using the Born-Oppenheimer approximation, the motion of the atoms is neglected. In ad-
dition, retardation effects do not play a role as wavelengths corresponding to the transition
energies to the neighbouring Rydberg states, which dominate the dipole-dipole interaction,
are on the order of centimetres which is small compared to the size of the atom cloud used
in this thesis.

9This notation is used for pair states that are symmetrised in order to fulfil the commutation
relations of bosons. In Chap. 2.2.5 the symmetrisation of specific pair states is demon-
strated. Sometimes readability is facilitated by the use of unsymmetrised product states
|ψA〉A|ψB〉B . If this is the case, it is explicitly stated.
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of an angular part D and a part that only depends on the radial matrix elements

R
n′
Al

′
A

nAlA
and R

n′
B l

′
B

nB lB
[127]. D can be calculated using angular momentum algebra

(cf. App. B, Ref. [129]). The Hamiltonian (2.36) can be easily diagonalised
yielding eigenvalues

E±(R) = ±
√

∆E2
p/4 + C2

3/R
6. (2.38)

The eigenenergies depend on the separation R between the atoms and are de-
picted in Fig. 2.4(a). The characteristic radius

Rc = |C3/∆Ep|1/3 (2.39)

marks the transition between two regimes.
For R � Rc, the dipole-dipole interaction Vdd(R) only results in a small

perturbation to the bare atom states. Therefore, the eigenenergies can be ap-
proximated by

E±(R) = ±1

2
|∆Ep| −

C6,±

R6
(R� Rc) (2.40)

with the van der Waals coefficients C6,± = ∓C2
3/|∆Ep|. This limit is called the

van der Waals regime in which the interaction potential is proportional to 1/R6.
For R� Rc, the interaction dominates the Hamiltonian (2.36) and we obtain

for the eigenenergies

E±(R) = ±C3

R3
(R� Rc). (2.41)

This is called resonant dipole-dipole regime. Here, the eigenenergies scale as
1/R3, similar to the potential of two static dipoles.

The above treatment, where only two pair states were considered, is a good
approximation if all other pair states are far detuned or the coupling to them
is small. Often more pair states have to be taken into account and the corre-
sponding Hamiltonian has to be diagonalised numerically. For large R, however,
where the dipole-dipole interaction is small compared to the spacing of the en-
ergy levels, second order perturbation theory is applicable [129]. The energy
shift of a pair state |Ψi〉 is given by ∆EvdW = −C6,i/R

6, with

C6,i = −
∑
j 6=i

|〈Ψj|
√

6T
(2)
0 |Ψi〉|2

Ep,i − Ep,j
. (2.42)

Here the sum runs over all other pair states |Ψj〉 with pair state energies Ep,j. As
the matrix element in Eq. (2.42) scales as (n∗)4 and the energy between adjacent
states as (n∗)−3, the C6 coefficients are proportional to (n∗)11. Theoretical
predictions for the C6 coefficients of the pair states |nl, nl〉 in alkali atoms can
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Figure 2.5.: Pair state energy defects in rubidium as a function of principal
quantum number. (a) For |nS1/2, nS1/2〉, four states with the same sign
dominantly contribute to the C6 coefficient resulting in a repulsive van der
Waals interaction. (b) For |nS1/2, (n− 2)S1/2〉, the pair state energy defects
for two states change their sign near n = 70 and nearly vanish (s. inset).
Thus, they create a Förster resonance with a large C6 coefficient.

be found in Refs. [122, 129]. For the |100S1/2, 100S1/2〉 state, C6 is quoted in
Tab. 2.1.

Strong and long-range dipole-dipole interactions require small pair state de-
fects ∆Ep. Fig. 2.5(a) shows the Förster energy defects of pair states that are
relevant for the van der Waals coefficient of the state |ψAψB〉 = |nS1/2, nS1/2〉 in
rubidium. According to the selection rules of the dipole-dipole interaction, this
state only couples to neighbouring p-states. The pair states with the smallest
detuning are the four states |nPj1 , (n−1)Pj2〉 with j1, j2 ∈ {1/2, 3/2}. Note that
these pair states show Zeeman degeneracy which has to be considered when cal-
culating the energy eigenvalues of the system [129]. The combination of these
states results in a repulsive van der Waals interaction.

The Förster energy defects for the state |nS1/2, (n− 2)S1/2〉, which are shown
in Fig. 2.5(b), exhibit a more interesting behaviour. Near n = 70 the energy
defects of |(n − 1)P1/2, (n − 2)P3/2〉 and |(n − 1)P3/2, (n − 2)P1/2〉 are close to
zero and the dipole-dipole interaction is resonantly enhanced. This is called a
Förster resonance and will be discussed in detail in Chap. 2.2.5.

2.2.5. Förster Resonances in Rubidium

In many experiments it is desirable to attain the strongest possible interaction
between Rydberg atoms. Strong interaction can be achieved if it is resonantly
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2.2. Rydberg Atoms

enhanced by a Förster resonance [130, 131], which occurs when two pair states
become degenerate. Close to resonance, the C6 coefficient of the van der Waals
interaction and the characteristic radius Rc of Eq. (2.39) are drastically en-
hanced. Right at resonance Rc diverges leading to a long-range 1/R3 interaction
potential for all R.

In rubidium the pair state |X〉 = |nS1/2, (n − 2)S1/2〉 is almost degenerate
with |Y1〉 = |(n− 1)P1/2, (n− 2)P3/2〉 and |Y2〉 = |(n− 1)P3/2, (n− 2)P1/2〉 near
n = 70, as shown in Fig. 2.5(b). In this chapter the dipole-dipole interaction
for these states will be discussed in more detail.

First we consider only two pair states |X〉 and |Y1〉. Abbreviating |a〉 =
|nS1/2〉, |b〉 = |(n − 2)S1/2〉, |c〉 = |(n − 1)P1/2〉 and |d〉 = |(n − 2)P3/2〉, these
pair states can be written as the sum of product states |X〉 = 1√

2
(|a〉A|b〉B +

|b〉A|a〉B) and |Y1〉 = 1√
2
(|c〉A|d〉B+ |d〉A|c〉B). Using that the Hamiltonian (2.31)

is symmetric under particle exchange, its matrix elements can be written as

〈X|H|Y1〉 = 〈a|A〈b|BH |c〉A|d〉B + 〈b|A〈a|BH |c〉A|d〉B. (2.43)

For the states considered here, the first and second terms on the right side of
Eq. (2.43) are proportional to R

(n−1)P
nS R

(n−2)P
(n−2)S and R

(n−2)P
nS R

(n−1)P
(n−2)S , respectively.

As the radial matrix elements are dominantly determined by the valence elec-
tron’s wavefunction at large r, they mostly depend on the difference between the
effective principal quantum numbers ∆n∗. The radial matrix elements in the
first term of Eq. (2.43) have ∆n∗ ≈ ±0.5 compared to ∆n∗ ≈ ±1.5 in the second
term. Hence the first term is much larger than the second. For the states consid-
ered here, they differ by a factor of 56. It is therefore justified to approximate
the matrix element (2.43) by the expression 〈X|H|Y1〉 ≈ 〈a|A〈b|BH|c〉A|d〉B,
which only contains product states. The same argument holds for 〈X|H|Y2〉.

So far we have neglected the fact that more quantum numbers are needed
to characterise the atom pair. In a coupled basis the quantum numbers of the
atom pair’s total angular momentum J and M = mjA + mjB can be used for
this purpose [129]. The states |X, J,M〉, |Y1, J,M〉 and |Y2, J,M〉 then span
subspaces UX , UY1 and UY2 , respectively.

We we will now analyse the dipole-dipole interaction in the coupled basis.
The off-diagonal matrix elements can be evaluated using Eq. (2.37). Due to the
dipole selection rules, Vdd does not couple states within the subspaces UX and
UY1 ∪UY2 . All matrix elements of states belonging to the same pair of subspaces
have the same radial matrix elements and can only differ in their angular part
D. D only depends on the quantum numbers J and M of the states involved.
All non-zero angular matrix elements D for the states |X, J,M〉 and |Y1, J

′,M ′〉
are shown in Fig. 2.6. The dipole-dipole interaction only couples states having
the same M . Only the states |X, 1,±1〉 couple to more than one state, namely
the states |Y1, 1,±1〉 and |Y1, 2,±1〉.

The problem can be further simplified by considering that, in the subspace
that is spanned by the states |Y1, 1,±1〉 and |Y1, 2,±1〉, it is possible to choose
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Figure 2.6.: Angular matrix elements DJ ′,M ′

J,M of the dipole-dipole interaction
for the channel |S1/2, S1/2〉 ↔ |P1/2, P3/2〉. The selection rule ∆M = 0 for
the dipole-dipole interaction is obvious. The transition M = 0 ↔ M = 0 is
only allowed if ∆J is even. All matrix elements share a common prefactor
1/9
√

2.

a basis {|Y1, v±,±1〉, |Y1, w±,±1〉} such that only the states |Y1, w±,±1〉 couple
to |X, 1,±1〉. The corresponding basis transformation is given by(

|Y1, v±,±1〉
|Y1, w±,±1〉

)
=

1√
28

(
∓
√

27 −1

−1 ±
√

27

)(
|Y1, 1,±1〉
|Y1, 2,±1〉

)
. (2.44)

In the new basis, the dipole-dipole interaction leads to a pairwise coupling of
states. For each decoupled subspace the Hamiltonian can be diagonalise ana-
lytically and the eigenvalues are given by Eq. (2.38). For the states considered
here, the eigenvalues are shown in Fig. 2.7 (dotted lines). In general the C3

coefficients can be different in each decoupled subspace and depend on the spe-
cific fine structure states involved. Note that some of the eigenenergies belong
to eigenspaces with dimension larger than one.

As the states |Y2,M, J〉 have only a small detuning from the states |X,M, J〉,
they have to be included in the calculation. It is straightforward to numerically
diagonalise the Hamiltonian (2.31) in each decoupled subspace. The numerically
obtained eigenvalues are shown in Fig. 2.7 (solid lines). Corrections to the two-
level system become relevant at short interatomic distances.

From Fig. 2.7 it also becomes obvious that certain states are not affected
by the dipole-dipole interaction at all (blue lines). They are states that do
not couple to any other state due to the angular momentum algebra. This
phenomenon is called Förster zero [129]. In experiments requiring large dipole-
dipole interactions, Förster zeros can be a limiting factor. It is advantageous for
our experiment that states that are adiabatically connected to the |S1/2, S1/2〉
threshold do not show any Förster zeros, as can be inferred from Fig. 2.7.
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Figure 2.7.: Pair state energies in the vicinity of the state |69S1/2, 67S1/2〉
in rubidium. Only the states shown here are included in the calculation. If
states belong to the same decoupled subspace, then they are drawn in the
same colour. The dotted lines show the result when the |68P1/2, 67P3/2〉 state
is also neglected. The dashed lines indicate the radii, where the energies of
the states that are adiabatically connected to the |69S1/2, 67S1/2〉 threshold
are shifted by 1 MHz relative the threshold. The relevant radial matrix ele-

ments are R
68P1/2

69S1/2
= 4664 a0 and R

67P1/2

67S1/2
= 4713 a0. For R → ∞, the state

|68P3/2, 67P1/2〉 is detuned by ∆E/h = 2.8 MHz.

It is worth mentioning that often a superposition of pair states is addressed
during laser excitation. This is because, typically, the internuclear axis sub-
tends an angle β with the wave vector of the light. The states |X, J,M〉 with

quantisation axis along the internuclear axis are related to the states ˜|X, J,M〉
with the quantisation axis along the wave vector by [127] |X, 1, 1〉|X, 1, 0〉

|X, 1,−1〉

 =

 cos2 β
2

1√
2

sin β sin2 β
2

− 1√
2

sin β cos β 1√
2

sin β

sin2 β
2

− 1√
2

sin β cos2 β
2




˜|X, 1, 1〉
˜|X, 1, 0〉
˜|X, 1,−1〉

 . (2.45)

In many of our experiments, the lasers excite the state

˜|X, 1, 1〉 = cos2 β

2
|X, 1, 1〉 − 1√

2
sin β |X, 1, 0〉+ sin2 β

2
|X, 1,−1〉. (2.46)

The states |X, 1,±1〉 have the same C3 coefficients and therefore the same en-
ergies. According to Fig. 2.7, however, the state |X, 1, 0〉 has a smaller C3. This
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2. Theoretical Background

can be a disadvantage if large C3 coefficients are desired. The worst case occurs
at β = π/2, where the population in |X, 1, 0〉 is maximal and has a value of 1/2.

In some experiments, however, we excite the states ˜|n1S1/2,mj = 1/2〉 and

˜|n2S1/2,mj = −1/2〉 corresponding to (|X, 0, 0〉+ |X, 1, 0〉)/
√

2.
In our experiments, β is typically poorly controlled. If a propagating Rydberg

excitation passes a frozen excitation, β typically changes as a function of time.
For two copropagating excitations, β is typically time-independent, but has a
value that is only well-controlled in the uninteresting case where the temporal
distance between the excitations is large.

2.2.6. Rydberg Blockade

The van der Waals interaction between two Rydberg atoms is very large com-
pared to that of two ground state atoms or a ground state and a Rydberg
atom. In fact, the van der Waals coefficient of the |100S1/2, 100S1/2〉 state of
rubidium is 20 orders of magnitude larger than that of the |5S1/2, 5S1/2〉 ground
state [122, 132]. This has far-reaching consequences for the laser excitation of
an atom pair at a distance of several micrometers, as illustrated in Fig. 2.8(a).
A light field that is resonant with the transition from the ground state |g〉 to a
Rydberg state |r〉 of the atoms, can excite one of the atoms. At large atomic
separations, it is also possible to excite both atoms to the pair state |rr〉. At
shorter distances, however, the van der Waals potential causes an energy shift
of |rr〉. Hence the laser field only off-resonantly couples the states |gr〉 and |rr〉
and the excitation of both atoms to the state |rr〉 is suppressed. This is com-
monly known as Rydberg blockade [70, 71]. In this context, the displacement of
the Rydberg state |rr〉 is also referred to as the blockade shift.

The exact size of the blockade shift is not important for observing blockade
as long as it is larger than a certain threshold Vthr > 0. This threshold might
be given by the linewidth of the Rydberg state or the excitation light. Since
the lifetime of highly excited Rydberg states is long compared to the typical
time scales of many experiments, Vthr is usually defined by the properties of
excitation light such as power and pulse length. For a given Vthr the blockade
radius Rb is defined as

|Vdd(Rb)| = Vthr, (2.47)

where Vdd is the dipole-dipole interaction potential that is experienced by the
state |rr〉. For the van der Waals interaction, the blockade radius is therefore
Rb = |C6/Vthr|1/6. If two atoms are less than Rb apart, then excitation of both
atoms is strongly suppressed.

Fig. 2.8(b) shows the numerically calculated blockade radius for Vthr/h =
1 MHz for the pair states |nS1/2, nS1/2,M = 1〉 and |nS1/2, (n − 2)S1/2,M =
1〉. The obtained dependence of the blockade radius on the principal quantum
number n can be understood by looking at the pair state defects in Fig. 2.5. For
the pair states |nS1/2, nS1/2,M = 1〉, all relevant p-states have negative Förster
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Figure 2.8.: Rydberg blockade during the laser excitation of Rydberg atoms.
(a) Schematic energy diagram of atom pair states |gg〉, |gr〉 and |rr〉. The
|rr〉 state is shifted because of the dipole-dipole interaction. For internuclear
distances shorter than the blockade radius Rb, the excitation of both atoms
to a Rydberg state with resonant light is suppressed. (b) Blockade radius for
Vthr/h = 1 MHz in rubidium. For the pair state |nS1/2, nS1/2,M = 1〉, the

blockade radius increases proportional to n11/6. For the state |nS1/2, (n −
2)S1/2,M = 1〉, the Förster resonances near n = 51, 70, 111 lead to local
maxima of the blockade radius. Local minima can be attributed to principal
quantum numbers where the dipole-dipole couplings to different pair states
compensate each other. For the states |nS1/2, nS1/2〉 and |nS1/2, (n−2)S1/2〉,
the calculation includes four and eight neighbouring pair states, respectively.

defects leading to a blockade radius that approximately increases as n2. The
states |nS1/2, (n− 2)S1/2,M = 1〉 show Förster resonances near n = 51, 70, 111.
They are responsible for a strongly increased blockade radius compared to that of
the states |nS1/2, nS1/2,M = 1〉. Resonant dipole-dipole interaction also leads to
strong mixing of the coupled pair states. This can affect the Rydberg blockade.
Local minima, for example near n = 53, 70, 90, can occur when channels with
positive and negative C6 coefficients compensate each other.

The Rydberg blockade is not restricted to atom pairs but can also be observed
in atomic ensembles. If the spatial extension of the atomic ensemble is much
less than the blockade radius, then the situation becomes particularly simple
because here only a single atom can be excited to the Rydberg state by resonant
laser light. Excitation of more than one atom is suppressed due to the Rydberg
blockade. Hence a Fock state with N = 1 Rydberg atoms is prepared [71, 72].
This state can be described by the Dicke state of Eq. (2.12). Its properties can
be mapped onto a light field, thus yielding a single-photon source [98].

Rydberg blockade in EIT As outlined in Chap. 1, large optical nonlinearities
on the few-photon level can be achieved in EIT with Rydberg states. In our
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experiments, they are used to create an interaction between single photons,
which is the physical mechanism that forms the basis of the single-photon switch.
Therefore, this chapter discusses how this interaction arises in Rydberg-EIT.

First, we consider signal light propagating in an atomic ensemble on EIT
resonance with ∆s = 0 and ∆c = 0, as discussed in Chap. 2.1. An incoming
signal photon propagates inside the medium as a dark-state polariton with a
large atomic component. If the state |r〉 in Fig. 2.1(a) is a long lived Rydberg
state, then the polariton becomes very sensitive to other Rydberg excitations.
In fact, if several Rydberg polaritons propagate inside the medium, then the van
der Waals interaction leads to absorption and the transmission of more than one
photon at a time is suppressed.

Two Rydberg polaritons propagating at a distance R experience a van der
Waals potential VvdW(R) which leads to an energy shift of the state |r〉. In
the EIT level scheme of Fig. 2.1(a), this corresponds to a non-zero control field
detuning ∆c = VvdW(R)/~. As can be seen in Fig. 2.1(c), this gives rise to
a non-vanishing Im(χ) and therefore to absorption. This provides the basis
for a possible definition of a blockade radius for Rydberg polaritons. As a
threshold, half the single-atom EIT linewidth of Eq. (2.8) can be used, i.e.
Vthr = γEIT/2 [99]. For the van der Waals potential this gives the blockade
radius

Rb =

∣∣∣∣2C6Γe
~Ω2

c

∣∣∣∣1/6 . (2.48)

Note, that this definition neglects the effects of dephasing on EIT. Furthermore,
it is not the only possible definition and others exist in the literature. An
alternative approach, for example, is to use the experimentally obtained FWHM
linewidth of the EIT transmission window ∆ωT as Vthr [97], which yields a
blockade radius

Rb =

∣∣∣∣ C6

~∆ωT

∣∣∣∣1/6 . (2.49)

In the following we study the absorption that a propagating Rydberg po-
lariton experiences when it encounters a stationary Rydberg excitation. We
consider a simple, one-dimensional model which is a good approximation if the
blockade radius is large compared to the transverse extend of the polaritons.
The extinction ε, which is defined as the transmission through the medium in
presence of the stationary excitation divided by the transmission in absence of
the stationary excitation is then approximately given by

ε ≈ exp

(
2Rb

la,EIT

− 2Rb

la

)
. (2.50)

Here la is the absorption length for the signal light in absence of the control
field. la,EIT is the absorption length experienced by the propagating polariton
due to imperfect EIT.
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The experiments presented in this thesis were performed using ultracold clouds
of 87Rb atoms. The apparatus for the preparation of the atomic clouds was cov-
ered extensively by previous dissertations [106,107,133–137]. Chap. 3.1 therefore
only gives a rough overview of the experimental procedure and summarises the
most important details. The excitation of Rydberg atoms required the imple-
mentation and characterisation of a new laser system. This is the subject of
Chap. 3.2. Finally, in Chap. 3.3 the optical setup that was used for the realisa-
tion of the single-photon switch and transistor is discussed in more detail. This
also includes a description of the necessary stray light filtering and the light
detection at the single-photon level.

3.1. Preparation of Ultracold Atomic Samples of
Rubidum

The experiments presented in this thesis strongly benefit from the properties of
an atomic ensemble with densities and temperatures close to the phase tran-
sition to a Bose-Einstein condensate (BEC). One reason is that the coherence
time in storage and retrieval experiments increases with lower temperature (cf.
Eq. (2.14)). This is particularly important if the differential recoil is large. In
addition, at lower temperatures the atomic gas can be held in weaker optical
dipole traps. This reduces undesired dynamical Stark shifts and photoionisa-
tion processes. Many other experiments in the field operate at somewhat higher
temperature and turn off all trapping light before exciting Rydberg states.

Preparation of an ultracold ensemble in an optical dipole trap For the
preparation of a cloud of 87Rb atoms at densities of 1012 − 1014 cm−3 and tem-
peratures of 300 − 400 nK, a cooling scheme comprising several stages is pur-
sued. The first step is to trap and cool 87Rb atoms in a magneto-optical trap
(MOT) [138], which is loaded from the background gas of a vapour cell [133].
Subsequently, a short resonant laser pulse transfers the atoms to a second MOT,
which is located in a glass cell with lower background pressure (< 10−11 mbar).
These two steps are repeated several times to increase the particle number in
the second MOT. After polarisation gradient cooling, the atoms are optically
pumped into the hyperfine state |F,mF 〉 = |1,−1〉 and stored in a magnetic trap
in Ioffe-Prichard configuration [139]. Here the cloud is adiabatically compressed
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Figure 3.1.: Coil configuration and position of the crossed-beam optical
dipole trap. The MOT coils create the magnetic field gradient for the second
MOT. The Pinch-coils, Ioffe-bars and compensation coils form the magnetic
trap. The fast ramp coils and the gradient compensation coils are used as
electrodes in this thesis. The beams of the optical dipole trap are illustrated
in red.

and further cooled by radio-frequency induced evaporative cooling [140].
For the final step, the atoms are transferred into a crossed-beam optical dipole

trap at a wavelength of 1064 nm (cf. Fig. 3.1(a)) [141]. The vertical beam has
a round beam profile with a waist (1/e2 radius of intensity) of 90µm and a
typical power of 0.1 W. The horizontal beam is elliptically shaped with waists
wx = 60µm and wz = 1 mm at a typical power of 4 W. The trapping light is red
detuned from all ground state transitions approximately resulting in a harmonic
potential with measured trap frequencies (ωx, ωy, ωz)/2π = (136, 37, 37) Hz.
During the subsequent hold time of 1 s the cloud thermalises and further evap-
orative cooling takes place. The size of the cloud depends on its temperature,
which was different during various experiments performed. Typically, thermal
clouds with N = 1.5 × 105 atoms at temperatures of T = 330 nK were used,
corresponding to rms radii of (σx, σy, σz) = (7, 24, 24)µm. The particle number
can be controlled by varying the number of loading cycles of the MOT.

The potential created by the dipole trap is attractive for atoms in the ground
state, but it is repulsive for atoms in highly excited Rydberg states. As the
Rydberg electron is only weakly bound, the potential that is experienced by the
atom can be approximated by that of an electron in an oscillating electric field
of the form E(x) = E0(x) cosωdptt, where ωdpt = 2πc/1064 nm is the angular
frequency of the dipole trap light. The resulting time-averaged ponderomotive
potential is given by [142]

Vp(x) =
e2|E0(x)|2

4meω2
dpt

. (3.1)

The associated polarisabilty has the opposite sign compared to that of the
ground state of 87Rb. For the vertical dipole trap beam the maximal pondero-
motive potential is ca. Vp = kB × 5µK, where kB is the Boltzmann constant.
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The light of the dipole trap can also cause photoionisation of the Rydberg
atoms. For given intensities of the dipole trap, a photoionisation rate on the
order of 0.8 Hz is expected for the 50S1/2 state of rubidium [143]. The photoion-
isation cross section decreases for higher principal quantum numbers.

Magnetic field alignment After the transfer of atoms into the dipole trap the
atoms are in the hyperfine state |F,mF 〉 = |1,−1〉, with the quantisation axis
chosen along the y-axis. A magnetic field of |B| = 1.5 G along the same axis
preserves the spin polarisation of the atoms during and after the switch-off of
the magnetic trap.

For the implementation of the single-photon switch, however, the magnetic
field must be aligned parallel to the z-axis and the atoms must be prepared
in the state |F,mF 〉 = |1,−1〉, with the quantisation axis chosen as the same
axis. This can be achieved by adiabatically rotating the magnetic field using
three coils that are usually used for the compensation of the earth’s magnetic
field (not shown in Fig. 3.1). The rotation of the magnetic field is performed
during the hold time in the dipole trap mentioned above, following the procedure
described in Ref. [107]. After the rotation, a magnetic field Bz > 0.2 G is applied
to preserve the spin state of the atoms.

Absorption imaging The properties of the atomic sample, such as the particle
number and the temperature, can be measured using absorption imaging. To
this end, the dipole trap is switched off abruptly and the atom cloud starts
expanding in free fall. The cloud is illuminated by a beam that is near-resonant
with the cycling transition of 87Rb on the D2 line. The shadow cast by the
atoms is detected by a CCD camera. For the detection of atoms in the 5S1/2

F = 1 ground state of 87Rb, an additional repump laser on the transition
F = 1↔ F ′ = 2 of the D2 line is necessary. Details can be found in Ref. [134].

Coarse timing After preparing the atoms in the optical dipole trap, experi-
ments are typically performed for 1 s. The particle number in the trap decays
exponentially with a 1/e time of approximately 1.7 s, leading to a considerable
change in particle density within the 1 s measurement interval. During the sub-
sequent 200 ms the signal laser is swept across the EIT resonance in order to
obtain an EIT spectrum for every prepared sample. Afterwards the dipole trap
is switched off and an absorption image is taken. Hereafter a new atomic cloud
has to be prepared. A new atomic sample is loaded every 15 s.

Optical dipole potential created by the control field In EIT with the Ryd-
berg states of 87Rb, a strong control light field at a wavelength of λ = 475 nm is
used which creates an optical dipole potential for the ground state atoms in the
ensemble. The 5S1/2 ground state of rubidium has a dynamical polarisability
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of α5s = −163 a.u. [19] at the control wavelength. The resulting potential is re-
pulsive so that it pushes the atoms away. After time averaging over one optical
period, the potential is estimated to be Vc = −α5sE

2
c (r)/4, where Ec(r) is the

electric field amplitude of the control beam at position r. At a typical control
power of Pc = 32 mW and a beam waist of 12µm (cf. Chap. 3.3) this yields a
maximal potential height of Vc,0 = kB × 5.1µK, which is large compared to the
temperature of the cloud.

To mitigate the effects of the repulsive potential, all experiments are oper-
ated in a pulsed mode with a cycle repetition time tcyc. The control laser is only
switched on for a short time tc,on � tcyc, typically on the order of a few microsec-
onds. As the distance travelled by the atoms in such a short time is small and
as tcyc is much shorter than all trap oscillation periods, it is justified to consider
the the potential after a time averaging over one cycle. In a typical experiment,
tc,on is shorter than tcyc by a factor of 50, yielding 〈Vc,0〉 = Vc,0/50 = kB×0.1µK.
For a thermal gas, this reduces the density in the centre of the trap by ∼ 10%,
which can often be neglected.

In some experiments, however, a higher ratio tcyc/tc,on is used. For these
experiments, we model the combined trap potential as

Vtrap =
m

2
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ω2
xx

2 + ω2
yy

2 + ω2
zz

2
)

+ 〈Vc,0〉 exp

(
−2

x2 + y2

w2
c

)
. (3.2)

Here, m is the rest mass of 87Rb and wc the waist of the beam creating the
repulsive potential, which propagates along the z direction (cf. Chap. 3.3).

3.2. Laser System for Two-Photon Rydberg
Excitation

For the EIT experiments with Rydberg states, presented in this theses, light
sources at the wavelength of the signal and the control transitions are required.
In the experiments, the signal field drives transitions of the D1 line of 87Rb
at a wavelength of λ = 795.0 nm. The control field couples the 5P1/2 state to
Rydberg states with n ≥ 30. For these transitions, light at wavelengths ranging
from 477.1 to 473.7 nm is necessary.1

For the realisation of a single-photon switch based on Rydberg blockade
in EIT, it is desirable to achieve small EIT linewidths ∆ωtrans for two rea-
sons. Firstly, the Rydberg blockade radius increases for narrower EIT lines
(cf. Chap. 2.2.6) leading to better switching contrast of the single-photon
switch. Secondly, narrow EIT lines are associated with low group velocities
(cf. Fig. 2.1(b) and Eqs. (2.8), (2.9)), which allow for better signal pulse com-
pression and hence higher storage efficiencies.

1Corresponding wavelengths for the two-photon excitation over the D2 line of 87Rb are 482.6
and 479.1 nm and are also covered by the laser system.
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3.2. Laser System for Two-Photon Rydberg Excitation

Figure 3.2.: Laser system for the two-photon excitations of Rydberg atoms.
A Fabry-Perot resonator serves as a frequency reference. An external cavity
diode laser (ECDL) at λ = 795 nm is stabilised to the resonator. A frequency
shifter allows for tuning of the laser frequency relative to the cavity resonance.
The resonator is stabilised against long-term drift by comparing the ECDL
light with a frequency comb. A Ti:Sa laser, operating at λ = 950 nm, is
stabilised to the resonator and provides light at λ = 475 nm after second
harmonic generation (SHG) in a nonlinear crystal. A second laser system,
consisting of an ECDL, a tapered amplifier (TA) and an SHG stage, also
generates light at λ = 475 and is stabilised relative to the Ti:Sa laser.

EIT relies on the coherent coupling of the excited state |e〉 to the Rydberg
state |r〉 by the control field. The finite control laser linewidth leads to a re-
duction of transparency on EIT resonance and a broadening of the transmission
window [108]. Likewise, the linewidth of the signal laser should be much smaller
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3. Experimental Setup

than the EIT linewidth to minimise undesired absorption. For the reasons men-
tioned above, a laser stabilisation scheme was implemented which offers a narrow
linewidth of both the control and the signal lasers2 as part of this thesis.

The heart of the laser system is a Fabry-Perot resonator (FPR) which serves
as a frequency standard for both the signal and the control laser. The resonator
has a length of L = 100 mm corresponding to a free spectral range of 1.5 GHz.
The spacer is manufactured from Invar, an alloy with a low thermal expansion
coefficient. The length of the resonator may be varied by up to 1µm using a piezo
ceramic tube. The spacer, the piezo tube and the mirrors are arranged such that
the longitudinal thermal expansion coefficients of all elements approximately
cancel each other. Both mirrors have a curvature radius of Rm = −150 mm,
which results in a stable resonator with the degeneracy of the low TEM modes
lifted. The resonator has a finesse of F795nm ≈ 1800 and F950nm ≈ 1000 at
795 nm and 950 nm, respectively. It is mounted to the optical table using a
combination of two silicone pads of different elasticity for vibration isolation.
A composite housing lined with foam plastic protects the cavity from acoustic
disturbances. The length of the cavity drifts around 5 nm per hour under typical
lab conditions and 10 mW of light coupled into the cavity.

The signal light is created by an external cavity diode laser (ECDL, Toptica
DL-100 ) with 100 mW output power and a free-running linewidth > 1 MHz.3

The frequency stabilisation and linewidth reduction scheme is illustrated in
Fig. 3.2. The laser frequency is stabilised to a mode of the resonator using
the Pound-Drever-Hall (PDH) technique [145, 146]. To this end, some light
from the laser is phase-modulated at a frequency of 10.6 MHz and coupled into
the resonator. The reflected light is detected with a photodiode and a PDH
error signal is created. This is fed into the frequency control unit of the laser
(Toptica FALC 110 ) which closes the feedback loop. The loop bandwidth is
approximately 600 kHz. The frequency of the laser relative to the resonator
resonance can be tuned to arbitrary values by placing an optical frequency shifter
in the feedback loop. This is implemented using a fibre-base phase modulator
(Jenoptik, PM785HF ) and only utilising the first sidebands of the modulated
light.

The Fabry-Perot resonator is subject to long-term drifts and has to be actively
stabilised. An optical frequency comb (Menlo Systems, FC 1500-250 ) is used
as a long-term stable frequency reference. Therefore light from the signal laser
is superimposed on a photodiode with light from the frequency comb. The
resulting beat note signal in the frequency range from 5 to 125 MHz is mixed
with a local oscillator of frequency fLO. A frequency to voltage converter4 is used

2Strictly speaking, the two-photon linewidth is relevant for EIT. Using Rydberg EIT, the
combined linewidth can be stabilised [144]. For high-n Rydberg states, however, this
scheme is prone to systematic errors, e.g. due to electric fields.

3For the measurements presented in Chap. 6, a different ECDL (Toptica DL pro) with
improved performance was used.

4A frequency to voltage converter in this frequency range can be realised in various ways. For
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3.2. Laser System for Two-Photon Rydberg Excitation

to generate an error signal with the zero-voltage offset corresponding to 2.5 MHz.
The error signal is fed into an integral-controller which applies feedback to the
piezo actuator of the resonator. The loop bandwidth is chosen not to exceed
100 Hz. This is crucial as the frequency comb is not stable at short time scales
and special care has to be taken so as not to transfer noise to the cavity. The
absolute frequency of the signal laser can be adjusted by choosing the frequency
of the local oscillator fLO.

The linewidth of the stabilised signal laser was measured with an indepen-
dent Fabry-Perot resonator using a side-of-fringe technique. The obtained rms
linewidth is less than 100 kHz for integration times shorter than 100 ms. This
is a factor of 2 lower than if the same diode laser is directly stabilised to the
frequency comb.

The control field is created by frequency-doubling the light originating from
a Ti:Sa laser (Coherent MBR-110 ) which is pumped with 12 W from a 532 nm
laser (Coherent Verdi V18 ). The Ti:Sa laser is operated at a wavelength of
around λ = 950 nm and has an output power of up to 1.2 W. The light is guided
through a lithium-triborat crystal which is placed in a ring resonator (Toptica
SHG pro). After frequency doubling, up to 360 mW of light at a wavelength
of λ = 475 nm is available. The frequency of the Ti:Sa laser is stabilised to
the same Fabry-Perot resonator as the signal laser using a PDH scheme. To
this end the light is superimposed with the signal light on a dichroic mirror.
The same EOM is used for the phase modulation. The light reflected from the
cavity is again spatially separated by a dichroic mirror and detected. Feedback
to the Ti:Sa laser is provided through an improved and adapted version of the
commercial controller of the laser. The loop bandwidth is 30 kHz.

The linewidth of the light was characterised before and after frequency dou-
bling. The rms linewidth of the Ti:Sa laser obtained from an out-of-loop mea-
surement is approximately 100 kHz at an integration time of 100 ms which trans-
lates to an rms linewidth of 200 kHz in the blue spectral region.5 Improvements
to the power and the stability of the laser system can be achieved by creating
a slow permanent flow of nitrogen gas through the laser resonator, thereby pre-
sumably minimising the disturbing effects of water absorption lines that can be
found in the spectral region around λ = 950 nm.

The second laser system providing light at a wavelength of λ = 475 nm is a
commercially available system (Toptica TA-SHG-pro) consisting of an ECDL, a
tapered amplifier (TA) and a frequency-doubling stage that is identical to the
one used in the Ti:Sa system. It delivers an output power of up to 960 mW at
λ = 475 nm. Frequency stabilisation is achieved by referencing the ECDL to the

example, a frequency counter with analogue output (Stanford Research Systems, SR620 )
can be used. Alternatively, the frequency offset locking scheme demonstrated in Ref. [147]
can be applied.

5The noise spectrum shows that the largest contribution to rms linewidth stems from the
etalon modulation of the Ti:Sa laser. If the etalon modulation is temporarily switched off,
then linewidths of below 30 kHz were observed.
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Ti:Sa laser. For the Rydberg states used in the experiment the optical frequen-
cies of both lasers typically differ by 20 to 40 GHz before the SHG stages. To
stabilise this frequency difference, light from the Ti:Sa laser is phase-modulated
with a fibre-based modulator (Photline NIR-MPQX800 ) with frequencies up to
20 GHz and superimposed with light from the ECDL on a fibre-coupled photo-
diode (New Focus 1554-A). The modulation frequency is chosen such that the
first or second sideband creates a beat signal at 6.9 GHz. After amplification
(Microwave Solutions MSH55566609 ) the signal is mixed (Minicircuits ZMX-
10G+) with a local oscillator at a frequency of 6.8 GHz. The resulting frequency
difference is phase stabilised to a second local oscillator at 100 MHz using a laser
controller (Toptica mFALC ) that provides feedback to the ECDL.

3.3. Beam Geometry

Before the signal and control light reaches the atoms, it passes several optical
elements that allow precise control of the spatial, temporal and polarisation
mode as well as the exact frequency.

The power of the signal light can be adjusted using an acousto-optic mod-
ulator (AOM). Typical rise and fall times are 30 ns. The AOM is set up in a
double-pass configuration, which allows rapid frequency sweeping of the signal
light over a range of 20 MHz, while only minimally changing the spatial mode
of the transmitted light. Subsequently, the light is coupled to a single-mode op-
tical fibre for spatial mode filtering. An electro-optic modulator (EOM, Qioptiq
LM0202 P 5W KD*P) is used for quickly switching between horizontal and
vertical polarisations. The EOM consists of two pairs of KD*P crystals, where
one crystal in each pair is rotated by 90◦ to minimise thermal drifts. The linear
polarisation of the incoming light is at an angle of 45◦ to the optical axis of the
crystals. The switching contrast is typically better than 1:100 with rise- and
fall-times of 20 ns. A polarisation maintaining fibre guides the light to the exper-
iment. The fibre is aligned such that both linear polarisations a are maintained.
Fig. 3.3 illustrates how the light is applied to the atoms. A combination of λ/2
and λ/4 waveplates rotates the polarisation such that the signal light is either
left-handed (L) or right-handed (R) circularly polarised in front of the glass
cell, thereby compensating polarisation changes caused by the optical elements
in the beam path. An achromatic corrected lens which is placed at a distance of
130 mm from the atoms focuses the signal beam to a waist of ws = 8µm at the
position of the atoms. A small beam waist is important as it determines how
many Rydberg polaritons can propagate next to each other. Ideally, it should
be much smaller than the blockade radius Rb such that all transversal degrees
of freedom are frozen out and a one dimensional system is realised.

The signal light that is transmitted through or retrieved from the atomic
cloud is collected by a lens system with high numerical aperture of NA = 0.19
and coupled to a single-mode optical fibre which guides the light to the detection
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Figure 3.3.: Optical setup for performing Rydberg-EIT experiments. The
signal light from an optical fibre is focused onto the atom cloud in parallel to
the magnetic field. The control light is superimposed with the signal light on
a dichroic mirror focused onto the cloud by the same lens. A second control
field can be applied, counter-propagating the signal light. The retrieved light
is collected by a lens system coupled to a single-mode optical fibre that guides
the light to the detection setup. This consists of two APDs and a non-
polarising beam splitter (NPBS) for correlation measurements.

setup.

The power of the control light originating from the frequency-doubled Ti:Sa
can be controlled by an AOM in single-pass configuration. Rise- and fall-times
are measured to be 30 ns. Similar to the signal beam setup, the polarisation can
be rapidly switched between R and L by a combination of an EOM (Qioptiq
LM0202 P VIS KD*P) and waveplates. The control beam is superimposed
with the signal beam on a dichroic mirror. The same lens as the one that is
used for the signal light focuses the beam onto the atomic cloud, where it has
a spot size of wc = 12µm. This is a trade-off between two goals. On the one
hand, it is necessary to achieve sufficiently high Rabi frequencies at the light
power, that is available. On the other hand, the Rabi frequency should be
homogeneous across the transverse extend of the probe beam as required for
best EIT performance. The transmission of one wall of the glass cell for light at
a wavelength of λc = 475 nm is Tcell = 0.83. A mirror can be placed between the
lens and the glass cell for optimising the overlap of the two beams on a CCD
camera.
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3. Experimental Setup

The power regulation of the second control beam created by the frequency
doubled ECDL/TA system is realised in a manner similar to the first beam. The
beam’s polarisation at the position of the atoms is statically set by a combination
of waveplates. The beam is superimposed with the signal beam in a counter-
propagating configuration. To this end, a dichroic beam splitter is placed in
the focal point of the lens system (cf. Fig. 3.3). Two achromatic lenses of the
detection system focus the beam onto the atomic cloud with a waist of wc =
21µm. The transmission of the pair of lenses at a wavelength of λ = 475 nm is
T = 0.61.

The detection setup is placed in a lightproof box to which light originating
from the atom cloud is guided by an optical fibre. For the detection of light
on the single-photon level, avalanche photodiodes (APD, PerkinElmer SPCM
AQR-16 ) with a quantum efficiency of 50% and a dark count rate of 30 Hz are
used. In order to be able to perform correlation measurements, a non-polarising
50:50 beam splitter and two APDs are used. The probability that a transmitted
signal photon is detected is 27%.6

Special care has to be taken to ensure that background light impinging onto
the detectors is kept to a minimum. The single-mode optical fibre used for
detection provides spatial filtering. Spectral filtering can be achieved by a com-
bination of interference filters. Control light at a wavelength of λ = 475 nm
can efficiently be suppressed using a long-pass filter (Semrock FF01-515/LP).
The strong control light causes stray light that originates from the glass cell or
something inside of it, even in the absence of atomic cloud, and has a broad
spectrum in the wavelength region around 795 nm. This can be suppressed by
placing two narrow bandpass filters (Semrock FF01-800/12 ) at an angle of 0◦

and 20◦ in front of the detectors. The remaining dark count rate is typically
170 Hz.7

6For the experiments presented in Chap. 6 the detection efficiency is 24% due to modification
to the setup.

7This value strongly depends on the alignment of the control beams, their power and the
duration for which they are switched on. After the control light is switched on, the count
rate increases on a time scale of 500µs before it saturates to a constant value. The quoted
number corresponds to a typical control light exposure during experiments.
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4. EIT and Storage of Light with
Rydberg States

In this chapter characterization measurements of EIT and storage of light with
Rydberg states, that are important for a quantitative understanding of the
results of Chaps. 5 and 6, are presented. Many of the effects shown are the sub-
ject of current research and have only recently been observed by various groups.
Chap. 4.1 discusses Rydberg EIT spectra as obtained from our apparatus at very
low signal light levels. At higher signal photon rates, Rydberg blockade effects
can be observed in EIT which is the subject of Chap. 4.2. Light that is stored in
Rydberg states using EIT and subsequently retrieved shows photon antibunch-
ing. Experimental data demonstrating this effect can be found in Chap. 4.3.
In the single-photon switch experiments of Chap. 5, long coherence times are
necessary to retrieve the gate photon at the end of each experiment. This al-
lows to perform postselection which helps in analysing the switch performance.
Therefore, Chap. 4.4 reports the experimental progress made in understanding
and decreasing decoherence in our system. The electric field at the position of
the atoms is a very important quantity due to the high static polarisability of
Rydberg atoms. Therefore Chap. 4.5 shows how it can be characterised using
Stark spectroscopy based on Rydberg EIT. This makes it possible to apply an
electric field of known strength at the position of the atoms.

4.1. EIT with Rydberg States

The foundation of all experiments presented in this thesis is the observation of
EIT in our apparatus. Fig. 4.1(a) shows the atomic states of 87Rb that are nor-
mally used (cmp. Fig. 2.1(a)). For the states |g〉 and |e〉, the hyperfine quantum
numbers are good quantum numbers. For the Rydberg state |r〉, however, the
hyperfine splitting can usually be neglected (cf. Tab. 2.1) and it is sufficient to
describe the problem in a fine structure basis. The spontaneous decay rate of
the state |e〉 is Γe = 2π× 5.75 MHz, where the probability for a decay into state
|g〉 is Γeg/Γe = 1/2. The signal light drives transitions on the D1 line of 87Rb
at a wavelength of 795.0 nm. The control field couples the excited state |e〉 to
the Rydberg states nS1/2. The electric dipole matrix element of this transition
is given by dre = eΞRnS

5P , where e is the elementary charge. The angular part of
the matrix element Ξ can be calculated using angular momentum algebra [127].
For this specific transition, it is Ξ =

√
2/3. The radial matrix elements RnS

5P
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Figure 4.1.: EIT spectrum with the Rydberg state 67S1/2. (a) EIT level
scheme. The hyperfine quantum numbers of the states |g〉 and |e〉 are
|F,mF 〉 = |1,−1〉 and |F,mF 〉 = |2,−2〉, respectively. The fine structure
quantum numbers of the state |r〉 are |J,mJ〉 = |1/2,+1/2〉. (b) Measured
EIT spectrum for Rydberg state 67S1/2. The control field has a single-photon
detuning of ∆c ≈ 0 and a Rabi frequency of Ωc/2π = 10 MHz. The solid line
shows a fit of Eq. (4.1) to the data.

can be evaluated using Eq. (2.25). The signal pulse is switched on for 200µs.
The control light is ramped up simultaneously with the signal light and lasts
for 220µs. The signal pulse can therefore leave the cloud before the control
pulse is switched off, even if the signal pulse is delayed due to a reduced group
velocity. The experiment is repeated every tcyc = 1 ms. A magnetic field of
1.1 G is applied along the z-direction.

A signature of EIT is the appearance of a transparency window in the ab-
sorption profile of the atomic cloud due to the presence of the control field.
Fig. 4.1(b) shows a transmission spectrum that was recorded using the Rydberg
state 67S1/2 in a co-propagating beam geometry (cf. Fig. 3.3). A transmission
peak can clearly be seen in the centre of the spectrum. A low signal photon
rate of 1.75 MHz is chosen in order to minimise Rydberg blockade effects that
are separately studied in Chap. 4.2.

The EIT spectrum can be analysed using the simple, empirical model

T = exp

(
− OD

1 + (2(∆s −∆0)/Γe)2

)
+ T0 exp

(
−(∆s −∆1)2 4 ln 2

∆ω2
T

)
. (4.1)

The first term is the atomic absorption line with optical depth OD and natural
linewidth Γe. ∆s is the detuning of the signal light. ∆0 is the centre of the line
and accounts for shifts of the signal transition, e.g. due to magnetic fields. The
second term empirically models EIT by a Gaussian transmission profile with
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4.2. Rydberg blockade in EIT with Rydberg states

maximal transmission T0 and FWHM ∆ωT . ∆1 determines the centre of the
EIT window. It is related to the control light detuning ∆c, but also includes
Zeeman shifts.

Fitting Eq. (4.1) to the data in Fig. 4.1(b) yields an optical depth of OD =
5. For comparison, the parameters of the cloud can be used to estimate the
transmission averaged over the transverse beam profile 〈T 〉. Equating this with
〈T 〉 = e−OD yields OD = 8 for an atom number of 1.5×105 and a temperature of
T = 0.33µK. The agreement is fair considering that the optical depth obtained
from the fit is prone to systematic errors. The reason for this is the diffraction
due to the inhomogeneity of the atomic cloud combined with the spatial mode
filtering of the detection fibre. The fit yields a maximal EIT transmission of T0 =
0.67 at a linewidth of ∆ωT/2π = 1.8 MHz. The linewidth is much smaller than
the natural linewidth of the transition Γe. The agreement with the theoretical
prediction of Eq. (2.7) which yields ∆ωT/2π = 6.4 MHz is moderate. One
possible reasons for this is an imperfect overlap between signal and control
beam leading to a reduced Ωc.

Ideally, the transmission on EIT resonance should be close to unity. Var-
ious effects can lead to a reduced EIT transmission and a broadening of the
line. Assuming that the imperfect EIT is due to Markovian dephasing of
ρrg or Lorentzian laser line shapes (cf. Chap. 2.1.1), we can use the model
T = exp(−OD Im(χ)/χ0) with χ from Eq. (2.4) to extract the dephasing
rates. A fit to the EIT spectrum in Fig. 4.1(b) with γeg/2π = 5.75 MHz
yields a dephasing rate of the Rydberg state relative to the ground state of
γrg/2π = 0.5 MHz. We compare this result to the measured rms laser linewidths
of σs/2π = 0.1 MHz and σc/2π = 0.2 MHz for the signal and control laser, re-
spectively (cf. Chap. 3.2). Assuming that the noise spectra of the lasers are
Gaussian and that they can be approximated by a Lorentzian with the same
FWHM, we obtain the estimate γeg ≈

√
8 ln 2(σs + σp) = 2π × 0.7 MHz. This

suggests, that the maximal EIT transmission and the width of the EIT window
is limited by the laser linewidths.

4.2. Rydberg blockade in EIT with Rydberg states

Rydberg blockade can directly be observed in EIT with Rydberg states. It
manifests itself in a saturation of the transmitted signal photon rate for an
increasing incident signal light power [97] and in the photon statistics of the
transmitted signal light [99]. Understanding the saturation is important because
it limits the performance of the single-photon switch as detailed in Chap. 5.

The saturation of transmitted signal photon rate can be understood quali-
tatively from a simple picture. On EIT resonance, a single signal photon can
ideally be transmitted through the cloud without absorption. However, if sev-
eral photons enter the medium, then due to Rydberg blockade, only one atom
can be excited to the Rydberg state and contribute to the dark state polariton.
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Figure 4.2.: Rydberg blockade for copropagating excitations. (a) Rydberg
blockade causes a non-linear absorption for signal photons transmitted on EIT
resonance. The signal pulse duration is kept fixed. For small Nin, the number
of transmitted photons is linear in Nin (dotted line). For large Nin, however,
the number of transmitted photons levels off and approaches a constant value
(dashed line) due to Rydberg blockade. The solid lines shows a fit of Eq. (4.2)
to the data. (b) The g(2) correlation function of the transmitted light (here
for Nin = 1.7) exhibits strong photon antibunching as a consequence of the
Rydberg blockade. The solid line shows a Gaussian fit.

All other atoms act as resonant two-level atoms and absorb the excess photons.
This is true as long as the cloud is much smaller than the blockade radius. But
even if this restriction is dropped, a saturation can still be observed because
in a finite size medium a limited number of Rydberg atoms can be excited at
typical distances on the order of the blockade radius.

In order to be able to observe blockade effects, we now use the Rydberg
state 100S1/2, which has a larger C6 coefficient compared to the state 67S1/2

used in the previous chapter and therefore shows more pronounced Rydberg
blockade. The experiment is performed with a thermal cloud consisting of 2.2×
105 atoms at a temperature of 0.43µK. An optical depth of OD = 15 is inferred
from a measured of an EIT spectrum and shows fair agreement with OD = 10
calculated from the parameters of the cloud. The control power is Pc = 32 mW
resulting in a measured EIT transmission window of ∆ωT/2π = 4.0 MHz. For
the parameters given, Eq. (2.48) yields a blockade radius Rb = 14µm.

During the experimental sequence, the control light is switched on for 1µs.
The signal light is ramped up simultaneously, but only lasts for ts = 0.4µs. The
signal pulse can therefore leave the cloud before the control pulse is switched off
(cf. Chap. 4.1). This pulse sequence is repeated every tcyc = 100µs. A magnetic
field of ∼ 0.2 G along the z axis preserves the spin orientation.

In the experiment, the number of incoming signal photons Nin is varied and
the number of transmitted photons Nout recorded on EIT resonance. The results
are shown in Fig. 4.2(a). At low signal intensities, Nout is proportional to Nin

with a proportionality factor of T0 = 0.30. T0 is the maximal EIT transmission
in the limit of low signal photon numbers. Nout levels off for higher Nin as
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a consequence of Rydberg blockade. The solid line shows a fit of a simple
model [103]

Nout = bT0

(
1− e−Nin/b

)
(4.2)

to the data. The model is one-dimensional which is justified as the blockade
radius Rb = 14µm is larger than the transversal extension of the signal beam
ws = 8µm (cf. Chap. 3.3). The light pulse is divided into b bins of equal
duration. In each bin, only one photon experiences an overall transmission
of T0, whereas all extra photons are subject to absorption due to the Rydberg
blockade. Since the absorption length la = 1/σ% ≈ 5µm, where σ is the resonant
absorption cross-section of the signal transition and % the atom density1, is
short compared to 2Rb, it can be assumed that all extra photons are completely
absorbed. The best-fit values obtained are b = 1.7 for the number of bins2

and T0 = 0.30 for the maximal EIT transmission. The number of transmitted
photons therefore saturates at bT0 = 0.51.

Antibunching in the transmitted light. The Rydberg blockade can also be
observed when studying the normalised second-order correlation function g(2)(τ)
of the transmitted photons. In order to detect correlations, a non-polarising
beam splitter and two single-photon detectors are used (cf. Fig. 3.3). In the
experiment, detection events at the two detectors with a time delay of τ are
counted and normalised to the average photon rate.

Fig. 4.2(b) shows g(2)(τ) evaluated for the same data as shown in Fig. 4.2(a)
at Nin = 1.7. The correlation function exhibits antibunching with g(2)(0) =
0.17(1). This gives evidence that the transmitted light is non-classical unlike
the incoming light that is derived from a laser where g(2)(τ) = 1 for all τ . The
solid line shows a Gaussian fit to extract the rms correlation time τc = 0.23µs.
We compare this to the prediction in Ref. [99] τc = 1.05

√
8OD/γEIT = 0.12µs.

The agreement is fair. The deviation might be due to the inhomogeneity of the
medium. Note that τc is quite different from the simple estimate Rb/vg ∼ 0.05µs
obtained from the group velocity vg =

√
2πσz/tdelay = 0.3 km/s, where σz is the

rms radius of the cloud in the direction of propagation and tdelay = 0.25µs is
the measured group delay. This is likely due to the fact that propagation effects
cannot be neglected as discussed in Ref. [99].

1Here, we approximate the medium as homogeneous with density % = %p/2, where %p is the
peak atomic density.

2The number of bins b = 1.7 agrees well with the simple estimate b ≈ ts/τc = 1.7, obtained
from the signal pulse duration ts divided by the measured rms width τc = 0.23µs of the
antibunching feature in Fig. 4.2(b).
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Figure 4.3.: Rydberg blockade in the storage and retrieval using the Rydberg
state 100S1/2. (a) Timing diagram for the control field. The control power Pc
is a factor of 2 larger for the retrieval than for the storage. (b) Transmitted
signal photons with (red line) and without atoms (black line). The incoming
light pulse contains on average Nin = 1.0 photons. The stored light pulse can
be retrieved with an efficiency of ηsr = 0.08 after a dark time of τd = 0.15µs.
(c) g(2) correlation function for the retrieved light. The data is binned over
the whole retrieved light pulse. For an incoming photon number of Nin = 1.0,
a pronounced antibunching is observed.

4.3. Rydberg blockade in Storage and Retrieval of
Light

Rydberg blockade can also be observed in the storage and retrieval of light with
Rydberg states. Here, it leads to antibunching in the retrieved light. This
mechanism can therefore be utilised to build single-photon sources [98, 100].

To demonstrate this effect, a storage and retrieval experiment is performed us-
ing the Rydberg state 100S1/2. The parameters of the atomic cloud are the same
as in the correlation measurements in Chap. 4.2. In contrast to the level scheme
of Fig. 4.1(a), however, the states |F,mF 〉 = |2, 0〉 and |J,mJ〉 = |1/2,−1/2〉
are used for |e〉 and |r〉, respectively.3 The angular parts of electric dipole ma-
trix elements are Ξs = 1/3 and Ξc = 1/

√
12 for the signal and the control

transition [127].
The storage and retrieval sequence is shown in Figs. 4.3(a) and (b) for Nin =

1.0 incoming photons on average. First, the control field is switched on with a
power of Pc = 16 mW to make the medium transparent for the signal light due
to EIT. Next, the signal light pulse is applied. It is shaped as a Gaussian that is
cut off in the centre (Fig. 4.3(b), black curve).4 Without cutting, its rms width
would be ts = 0.2µs. This is short compared to τc in Fig. 4.2(b). Therefore,

3These states are also used in the switch experiment in Chap. 5 for the gate photon.
4This shape was found to optimise storage and retrieval efficiencies [107].
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Figure 4.4.: Antibunching in retrieved light. g(2)(0) increases as a function
of incoming photon number Nin. For higher Nin, the probability of creating
more than one Rydberg excitation increases due to imperfect longitudinal
blockade.

g(2)(τ) is close to its minimal value for the whole pulse. We thus expect a small
g(2), even if we bin over the complete light pulse.

The wavelength of the signal field is set such that the two-photon resonance
condition δ2 = 0 for EIT is fulfilled. As a consequence, the light pulse is slowed
down and compressed in the medium. The control laser is switched off simul-
taneously with the signal pulse with a ramp time of 30 ns, in order to store the
light pulse. After a dark time of τd = 0.15µs, the control light is switch on
again for the retrieval of the light pulse5.

Experimental results are shown in Fig. 4.3(b) (red line). The first peak shows
an undesired non-zero transmission during the gate pulse due to imperfect stor-
age. The second peak is light that is retrieved from the cloud with a storage
and retrieval efficiency of ηsr = 0.08. The Rabi frequency of the control light
was optimised for high ηsr (see also Ref. [107]). Several imperfections limit ηsr:
The transmission on EIT resonance is measured to be T0 = 0.46 and thus con-
siderably affects ηsr. The measured optical depth of OD = 3.2, combined with
an EIT linewidth of ∆ωT/2π = 3.3 MHz, leads to an insufficient compression of
the light pulse and thus the storage efficiency is further reduced.6

We now analyse the photon statistics of the retrieved light by evaluating
the normalised second order correlation function g(2)(τ). τ is now an integer
multiple of the cycle period tcyc = 100µs and the data is binned over the whole
retrieved pulse from t = 0.14µs until 0.34µs (cf. Fig. 4.3(b)). Results are shown
in Fig. 4.3(c). Photon antibunching is clearly visible. The imperfect suppression
of g(2)(0) is consistent with a cloud that is longer than the blockade radius. For
the given parameters of the ensemble, the rms radius of the cloud along the

5The power and length of the control pulse is chosen such that the cloud experiences the
same repulsive potential (cf. Chap. 3.1) as in the experiments in Chap. 5

6ηsr strongly depends on the Rydberg state used. Lower principal quantum numbers usually
reduce dephasing. As a consequence, higher storage and retrieval efficiencies are achieved.
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4. EIT and Storage of Light with Rydberg States

direction of propagation is σz = 28µm, which is larger than the blockade radius
of Rb = 18µm. Transversally, however, the transmission is well blocked because
the waist of the signal beam of 8µm is much smaller than the blockade radius.

Further experimental evidence for this conclusion is provided by Fig. 4.4,
where g(2)(0) is shown as a function of the number of incoming photons. The
suppression of g(2)(0) becomes weaker for higher photon numbers. This again
agrees with the fact that the medium is longer than the blockade radius. In this
situation the probability of storing more than one photon increases for higher
incoming photon numbers and g(2)(0) increases along with it.

4.4. Decoherence in Storage and Retrieval of Light

In storage and retrieval experiments, like the one shown in Fig. 4.3(b), the
storage and retrieval efficiency ηsr decays as a function of dark time τd due to
dephasing. For many applications, such as the experiments in Chap. 5, long
coherence times are important. Therefore, decoherence mechanisms that affect
ηsr are discussed in this chapter.

In order to experimentally determine the dephasing rate, Nin ≈ 1 photons
are stored in the atomic cloud and retrieved after a dark time τd. The number
of retrieved photons Nout is measured as a function of τd and an exponential
decay with time constant τdec is fitted to the data (cf. inset in Fig. 4.5). The
dephasing rate is then defined as 1/τdec.

The experimental data in Fig. 4.5 show that the dephasing rate depends
linearly on the density % of the surrounding ground-state atoms.7 This can be
attributed to a shift of the Rydberg state due to elastic collisions of the Rydberg
electron with the ground-state atoms.

Such shifts were first observed in the absorption spectra of highly excited
sodium atoms [148] and can qualitatively explained by a simple picture. For
the Rydberg state 100S1/2, the valence electron is delocalised over a distance of
∼ 1µm, as can be seen in Fig. 2.2. The electron spends most of the time close to
the classical turning radius, where it becomes quasi-free. At high ground-state
atom densities the spatial extend of the electron wavefunction is larger than the
mean interatomic distance, so that interactions between the electron and the
ground state atoms start to play a role. As the electron is very slow close to the
classical turning point, only s-wave scattering takes place between the electron
and a ground state atom. The interaction potential can thus be described by
the Fermi pseudo potential [149]

VFermi(r) =
2π~2a

me

δ(r), (4.3)

7The transitions shown in Fig. 4.1(a) were used. The power of the control light was Pc =
17 mW for storage and retrieval.
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Figure 4.5.: Density dependent dephasing of the coherence between the Ry-
dberg state 100S1/2 and the atomic ground state. The measured dephasing
rate increases linearly with atomic density. Inset: measurement of the de-
phasing rate at a peak density of ∼ 2 × 1012 cm−3, where the experiment is
normally operated. The retrieved photon number Nr decays as a function of
dark time τd. An exponential fit yields the 1/e dephasing rate.

where me is the electron mass and r is the distance between the electron and
the ground-state atom. a is the s-wave scattering length for the collision of an
electron with a neutral ground state atom. For the 5S1/2 ground state of 87Rb
it is 0.627a0 and −16.1a0 for the singlet and triplet channel, respectively [150].

If the number of atoms within the electron wavefunction is high, a mean
field approach can be pursued which predicts an energy shift of the Rydberg
state [149,151]

~∆m =
2π~2a

me

% (4.4)

that is proportional to the particle density %. For densities of % = 1×1013 cm−3,
Eq. (4.4) yields ∆m/2π ≈ 0.04 MHz and ∆m/2π ≈ −1 MHz for the singlet and
triplet scattering length, respectively. The experimental observation of such an
energy shift in an ultracold gas of 87Rb atoms has recently been reported in
Ref. [151].

Note that the mean field result (4.4) is independent of the principal quantum
number. For low principal quantum numbers or low atomic densities, however,
the mean-field approximation breaks down.8

In our experiment, the atom density is not homogeneous. As a consequence,
the phase evolution of the Dicke state |DN−1

1 〉 in Eq. (2.12) is inhomogeneous
across the sample which results in a spatial dephasing of |DN−1

1 〉. A detailed
explanation and a theoretical model can be found in App. A. The model predicts
a linear dependence of the dephasing rate on the peak atom density in agreement

8The situation, where the number of ground state atoms within the electronic wavefunction
is ∼ 1, is studied separately in App. C.
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Figure 4.6.: Dependence of dephasing rate on the principal quantum num-
ber. For lower principal quantum numbers the dephasing rate approaches
the dephasing rate estimated from the temperature of the cloud (blue dashed
line). The solid red line shows a fit of a power law 1/τ = 1/τtherm +A · (n∗)a
to the data.

to the experimental observation. Fitting a linear function to the data in Fig. 4.5
yields a slope of 0.17µm3/µs. This matches quite well the theoretical estimate
of 0.18µm3/µs (cf. App. A). The dephasing rate at zero density obtained from
the fit is 1/τdec = 0.8µs−1. According to Eq. (2.14), the dephasing rate due to
thermal motion is expected to be 0.14µs−1 for a copropagating beam geometry
and a temperature of ∼ 450 nK. Indeed, if we change the beam geometry from
copropagating to counter propagating, we do not observe longer coherence times
in spite of the fact the recoil is reduced by a factor of 4. This suggests that
further decoherence mechanisms play a role.

Fig. 4.6 shows how the dephasing rate depends on the principal quantum
number n.9 At n = 45 a dephasing rate of 0.19(1)µs−1 is observed, which is
close to the theoretical estimate 1/τtherm ∼ 0.13µs−1 for dephasing due to the
thermal motion of the atoms. Subtracting 1/τtherm from the data and fitting a
power law yields an exponent of a = 3.3(4). If the dephasing were due to electric
field gradients, we would expect an exponent between 6 and 7 (cf. Chap. 2.2.3)
in the limit of the quadratic Stark effect. We numerically find that an exponent
of 6.5 is obtained at an electric offset field of ∼ 25 mV/cm (cf. Chap. 4.5). The
origin of the measured scaling behaviour is thus unclear.

Similar experiments reported in Ref. [98] used a magnetic field of 4.3 G and
observed a dephasing rate of 0.4(1)µs−1 for the 90S1/2, which is consistent with
the decoherence expected from atomic motion because Ref. [98] operated at
higher temperature. If a magnetic field of 1.3 G is applied in our experiment

9The data were taken at peak atomic densities of around %p ∼ 2×1012 cm−3 and temperatures
of approximately T ∼ 0.4µK. The control power was optimised for best retrieval efficiency
for each data point. A magnetic field of ∼ 0.2 G was applied. We experimentally verify
that the dephasing rate does not depend on the number of incoming photons. Typically
we use Nin ∼ 6.
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and the electric field is reduced by a factor of two to 12 mV/cm, a dephasing rate
of better than 1/τdec = 0.5µs−1 is observed for the 100S1/2 state. This suggests
that a spatially inhomogeneous electric field might partly be responsible for the
observed decoherence.

4.5. Stark Spectroscopy using EIT

Rydberg atoms are very sensitive to electric fields. As can be seen in Fig. 2.3,
at electric fields as small as ∼ 50 mV/cm the state, adiabatically connected
to the 100S1/2 state at zero field, crosses the hydrogenic manifold which leads
to a strong state mixing. Therefore knowledge of the electric fields present
in the experiment is very important and their compensation desirable.10 The
amplitude of the electric field at the position of the atoms can be determined by
measuring the Stark splitting of the nD3/2 Rydberg state using EIT. By properly
choosing the principal quantum number n, the sensitivity of this measurement
can be adjusted. In the example shown here, we use the Rydberg state 90D3/2.
The signal light drives the transition from |F,mF 〉 = |1,−1〉 to |F,mF 〉 = |2, 0〉
of the D1 line of 87Rb. The control field is σ− polarised and therefore couples
to the mJ = −1/2 and mJ = −3/2 Zeeman sublevels of the 90D3/2 state. A
magnetic field of B ∼ 1.1 G is applied along the z direction and causes a Zeeman
splitting of these states of ∆B/2π = gJµBB/h = 1.2 MHz, where gJ = 4/5 is
the Landé factor and µB the Bohr magneton.

Even if we do not deliberately apply an electric field, stray electric fields
are present in our experimental setup. Together with the magnetic field, they
cause a measured level splitting of the states with mJ = −1/2 and mJ = −3/2
of ∆split/2π = 3.8 MHz (see inset in Fig. 4.7). Although the fields are not
parallel, we simply subtract the estimated Zeeman splitting ∆B/2π = 1.2 MHz
and compare the result to a numerically calculated Stark spectrum. This yields
an electric field of ∼ 25 mV/cm.

This stray electric field can be partially compensated by an externally applied
electric field. To this end, we use the optical table and the dBy/dx-gradient com-
pensation coils of our apparatus (cf. Fig. 3.1) as the electrodes. This should
predominantly create an electric field along the x direction. But the surround-
ing coils of the magnetic trap drastically shield the electric field such that no
additional Stark effect at the position of the atoms is observed. If the voltage,
however, is only switched on for the short 2.5µs of the EIT experiment, the
shielding is incomplete and the Stark splitting is altered.11

10If all electric offset fields are compensated, then the Stark effect is quadratic and, for
example, dephasing of the Dicke state (2.12) due to electric field gradients is only a second
order effect.

11Like in a Faraday cage, shielding arises from a rearrangement of charges in the copper of
the coils. During the rearrangement, electric currents have to flow. The time scale for
reaching a new steady state depends on the paths these currents take. If they have to
flow through the coils, then this time scale is given by the pulse response time τresp of the
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U =0x

Figure 4.7.: Stark spectrum of the state 90D3/2. The graph shows EIT
transmission spectra for different applied electrode voltages Ux. The lines
are numerically calculated Stark spectra. The dashed (solid) line shows the
expected resonance position for the |mJ | = 1/2 (|mJ | = 3/2) state. The
relation between electric field Ex and applied voltage is given by Ex = (Ux−
Ux,0)/ξ. The parameters ξ = 2.8× 10−3 cm−1 and Ux,0 = −7.9 are obtained
from a fit (see text). A theoretical estimate for ξ can be found in Ref. [152].

Fig. 4.7 shows how the measured EIT transmission spectra change if a voltage
Ux is applied at the electrodes. Two EIT transmission windows are visible
corresponding to the mJ = −1/2 and mJ = −3/2 Zeeman sublevels of the
90D3/2 state. By fitting the model of Eq. (4.1), extended by a second EIT
window, to the data, the EIT line positions can be extracted. If the numerically
calculated Stark spectrum is fitted to the obtained resonance positions,12 the
electric field components along and perpendicular to the x direction, Ex and Eyz,
can be determined. The fit yields Ex = 0 at an applied voltage of Ux,0 = −7.9V.
The remaining electric field is Eyz = 12 mV/cm.

The Stark spectrum in Fig. 4.7 also shows that the transmission on EIT
resonance decreases and the linewidth increases at electrode voltages Ux cor-

circuit formed by the inductance of the coils L ∼ 10µH and their resistance R ∼ 10 mΩ.
This yields approximately τresp = L/R ∼ 1 ms. If after a fast ramp-up of the electrode
voltage the steady state has not yet been reached, the shielding is imperfect. Further
details can be found in Ref. [152].

12For the numerically obtained eigenenergies of the states with |mJ | = 1/2 and |mJ | = 3/2,
a set of functions ωi,num(E) with i ∈ {1/2, 3/2} can be created by interpolation. Here, E

is the electric field. The fit function is then given by ωfit,i = ωnum,i

(√
E2

x + E2
yz

)
+ ∆0

with Ex = ξ(Ux − Ux,0). The free fit parameters are the electric field in the yz plane
Eyz, the electric field along the x axis per applied voltage ξ, the electrode voltage Ux,0

corresponding to Ex = 0 and a detuning ∆0 that determines the centre of the EIT line at
zero electric field.
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responding to higher electric fields. This indicates that decoherence becomes
larger at higher electric fields. The reason for this is unclear.

One can only speculate about the origin of the stray electric field at Ux = 0.
Stray charges on the surface of the glass cell, which is only 1.5 cm away from
the atoms, are a potential sources of electric fields.
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5. Single-Photon Switch based on
Rydberg Blockade

This chapter presents the experimental realisation of a single-photon switch
based on Rydberg blockade. Most of these results have been published in
Ref. [103]. The chapter starts with a brief introduction in Chap. 5.1, explaining
the basic concept of the switch. This is followed, in Chap. 5.2, by a description
of the experimental sequence and how a switch can be implemented in an ul-
tracold cloud of 87Rb. In Chap. 5.3, the experimental results demonstrating the
single-photon switch are shown and discussed. Chap. 5.4 shows how the switch
can be used to measure the lifetime of the Rydberg blockade. The single-photon
switch relies on the suppression of undesired retrieval of light that is stored in
the atomic ensemble. The performance of the polarisation switching scheme
that is used for this purpose is discussed in Chap. 5.5.

5.1. Basic Concept

The strategy that is used to realise a single-photon switch is visualised by the
cartoon illustration in Fig. 5.1. An atomic medium is made transparent for
signal light by Rydberg EIT. Therefore, a target light pulse sent through the
medium experiences high transmission. If, however, a gate pulse that contains
one incoming photon on average is sent into the atomic cloud and stored as a Ry-
dberg excitation using the storage of light techniques explained in Chaps. 2.1.2
and 4.3, then the medium becomes opaque due to Rydberg blockade. If now
a target light pulse is sent through the medium, it gets absorbed. After the
application of the target pulse, the stored gate excitation can be retrieved from
the medium.

To achieve a good switching contrast, two conditions have to be fulfilled.
Firstly, the target photons must not be able to pass the blockaded volume in
the transverse direction. We ensure this by focusing the signal light to a waist
which is smaller than the blockade radius ws . Rb. Secondly, the target light
has to experience substantial absorption if a Rydberg excitation was created in
the medium. Hence, the absorption length for the signal target light la,t = 1/σ%
has to be short compared to twice the blockade radius, i.e. la,t � 2Rb. Here,
σ = 3ξtλ

2
s/2π is the absorption cross section for the signal target light with

wavelength λs, the branching ratio ξt and % the atom density.
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(a) HIGH transmission

target
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2Rb
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target

Figure 5.1.: Cartoon illustration of a single-photon switch. (a) The medium
is normally transparent for the target light. (b) The gate photon is stored
in the atomic cloud as a Rydberg excitation. Within the blockade sphere
(blue) with radius Rb the medium becomes opaque. (c) The target photons
are absorbed.

5.2. Experimental Sequence

This chapter describes how the single-photon switch is implemented in our ex-
periment, using the Rydberg state 100S1/2. In particular, the exact timing
sequence is presented, the choice of the atomic levels is discussed and finally
important parameters are listed. Note that the characterisation measurements,
shown in Chaps. 4.2 and Chaps. 4.3, were performed in the same parameter
regime as the experiments presented here.

Fig. 5.2(a) shows the timing sequence of the incoming light pulses. The signal
gate pulse has the shape of a Gaussian that is cut off in the centre. Without
cutting, its rms width would be 0.2µs. After a dark time τd = 0.15µs, the signal
target pulse is applied. A light pulse at the control wavelength, with power of
Pc,s = 16 mW, is used to store the gate pulse in the form of a Rydberg excitation
(cf. Chap. 4.3). A second control light pulse with a power of Pc,t = 32 mW
creates EIT for the target light. A third control light pulse with the same power
is used to retrieve the gate Rydberg excitation from the cloud. This gate-target
sequence is repeated with a cycle repetition time of tcyc = 100µs. The control
beam originates from the Ti:Sa-SHG laser system and copropagates with the
signal beam (cf. Fig. 3.3).

The target control light must be prevented from reading out the stored Ry-
dberg excitations. Fig. 5.2(b) shows how this is achieved by using orthogonal
polarisations for the gate and target pulse. The gate photon is stored in the
Rydberg state |rg〉 with quantum numbers |J,mJ〉 = |1/2,−1/2〉 using σ− po-
larised control light. During the dark time, the polarisation of the control field
is switched to σ+. Hence the target control light cannot couple the stored Ryd-
berg excitations to any state in the 5P1/2 manifold, because such a state would
require mJ = −3/2 contradicting J = 1/2. For the retrieval, the polarisation
is switched back to σ−. Note that this scheme cannot be implemented with
|et〉 = |5P3/2〉 and thus the D1 line of 87Rb is used for the signal light.

To improve the performance of the single-photon switch, the signal light is
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Figure 5.2.: (a) Timing of incoming light (see text). (b) Atomic level scheme
for the single-photon switch. The signal light with polarisations σ+ and σ−

couples the ground state |g〉 = |5S1/2, F = 1,mF = −1〉 with the excited
states |eg〉 = |5P1/2, F = 2,mF = 0〉 and |et〉 = |5P1/2, F = 2,mF = −2〉
for the gate and the target pulse, respectively. The control light with polar-
isations σ− and σ+ couples the states |eg〉 and |et〉 with the Rydberg states
|rg〉 = |100S1/2,mJ = mI = −1/2〉 and |rt〉 = |100S1/2,mJ = +1/2,mI =
−3/2〉.

switched from σ+ for the gate to σ− for the target pulse. The reasons for this
are based on the following considerations. On the one hand, good switching
contrast requires the absorption length for the target light la,t = 1/%σ to be
short compared to the blockade radius Rb,t. This suggests that a large atomic
density should be used. On the other hand, a large retrieval efficiency for the
gate excitation can only be achieved at low atomic densities due to the dephasing
effects discussed in Chap. 4.4. In fact, we choose the peak atomic density to
be ∼ 2.4 × 1012 cm−3 to keep the dephasing to a minimum, as can be seen in
Fig. 4.5. At these densities, we must choose a target signal transition with
large absorption cross section σ to obtain a sufficiently short absorption length.
We therefore choose σ− polarised target light such that the strongest available
transition on the D1 line with a branching ratio of 1/2 is driven.

This transition, however, is not compatible with the polarisation switching
scheme for the control light mentioned above, because the signal target light
couples to the state |et〉 with the hyperfine quantum numbers |F,mF 〉 = |2,−2〉.
This stretched state has no component of mJ = 1/2, where J,mJ are the fine
structure quantum numbers, and σ− polarised control light cannot couple this
state to the 100S1/2 state. Hence, we choose σ+ polarised control light during
the target pulse. In a copropagating beam geometry, the only choice for |eg〉
is thus the state |F,mF 〉 = |2, 0〉 which requires the gate signal light to be σ+

polarised. Consequently, the absorption cross section on the signal transition
is a factor of 6 smaller for the gate than for the target pulse. This leads to
reduced storage efficiencies for the gate excitation. This, however, can partially
be compensated by appropriately adjusting the Rabi frequency of the control
field. Also, it is worth mentioning that the storage efficiencies can theoretically
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gate target
measured

theory
measured

theory
spectra spectra

EIT peak transmission T0 0.40 0.18
EIT linewidth ∆ωT/2π (MHz) 3.3 1.7 4.0 4.0
Optical depth OD 3.2 3.5 15 10

Angular matrix el. control [127] 1/3
√

2/3
Control Rabi frequency Ωc/2π 4.7 MHz 9.4 MHz
Absorption length la 30µm 5µm
Blockade radius Rb, cf. Eq. (2.48) 18µm 14µm

Table 5.1.: EIT properties. If possible, they are obtained from measured
spectra. For comparison, theoretical estimates are calculated from the pa-
rameters of the atomic cloud as in Chap. 4.1. A cloud of N = 2.2×105 atoms
at a temperature of T = 0.43µK is used for all experiments in this chapter.

be increased by elongating the atomic cloud along the propagation direction of
the signal light while keeping the atomic density constant. If the on-resonance
EIT transmission is high, this should not affect the switching contrast.

Tab. 5.1 summarises important properties that are associated with the tran-
sitions shown in Fig. 5.2(b). The two central requirements for the realisation
of a switch are met: Firstly, on the target transition, the absorption length
la,t is small compared to 2Rb. Secondly, the blockade radius is larger than the
waist of the signal beam of ws = 8µm. During the experiment, a magnetic
field of B ∼ 0.2 G is applied along the z axis to preserve the spin orienta-
tion. The resulting Zeeman splitting between the Rydberg states |rg〉 and |rt〉
is ∆B/2π = gsµBB/h ≈ 0.6 MHz, where gs ≈ 2 is the Landé factor of the elec-
tron and µB the Bohr magneton. This is much smaller than the measured EIT
linewidths listed in Tab. 5.1.

An important feature of the switch is that we are able to retrieve the gate
excitation at the end of the experimental sequence. Therefore long coherence
times are necessary. At a peak atomic density of ∼ 2.4×1012 cm−3, in a storage
and retrieval experiment, the number of retrieved gate photons decays with 1/e
time scale of ∼ 0.9µs (cf. Fig. 4.5). As the dephasing is not dominated by
the thermal motion, the recoil transfer during storage can be neglected and it
is sufficient to apply the signal and control fields in copropagating fashion (cf.
Fig. 3.3).
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Figure 5.3.: Single-photon switch. (a) Input-power timing sequence repro-
duced from Fig. 5.2(a) for reference. (b) Experimental results. The black
data show the average number of transmitted signal photons for an aver-
age number of incoming signal photons during the gate pulse of Ng = 1.0.
The green data show a reference measurement with Ng = 0. The extinc-
tion between black and green target-pulse data is ε = 0.812 ± 0.001. The
deviation from ε = 1 is clearly observed, thus demonstrating a single-photon
switch. The average number of incoming target signal photons is Nt = 1.7.
The subensemble postselected on the detection of a retrieved photon yields
ε = 0.051± 0.004.

5.3. Experimental Demonstration of a
Single-Photon Switch

The experimental results demonstrating the single-photon switch are shown in
Fig. 5.3. The gate pulse is derived from a laser and contains Ng = 1.0 photons
on average. The black data show two large peaks. The first peak is an undesired
nonzero transmission during the gate pulse due to imperfect storage. The second
large peak shows the number of transmitted target photons which is reduced
compared to the green reference data. There are also two smaller peaks in the
black data: one at the beginning of the target interval, which can be attributed
to undesired partial retrieval of the stored gate excitation, the other at the
beginning of the retrieval interval, corresponding to the desired retrieval of the
gate excitation.

To quantify how well the gate pulse reduces the transmission of the target
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Figure 5.4.: (a) Dependence of the extinction ε on the incoming average
photon number in the gate pulse Ng. Large Ng reduces the probability of
storing zero Rydberg excitations, resulting in improved average extinction
in the total ensemble. The subensemble that is postselected conditioned on
detecting a retrieved gate excitation shows a drastically improved extinction.
This proves that the non-ideal extinction in the total ensemble is dominantly
limited by the storage efficiency. (b) Dependence of the extinction ε on the
incoming average photon number in the target pulse Nt. ε is fairly robust
against changing Nt. All lines show fits to models from Ref. [103].

signal photons, we use the extinction

ε =
Nt,trans with gate signal pulse

Nt,trans without gate signal pulse
, (5.1)

where Nt,trans denotes the mean number of transmitted target signal photons in
one gate-target cycle. A reduction of ε below 1 is clearly observed in Fig. 5.3,
thus realising an all-optical switch. As the average number of signal photons in
the incoming gate pulse Ng is only 1.0, this measurement demonstrates a single
photon switch.1

As the signal light is derived from an attenuated laser beam, the incoming
gate photons have a Poissonian number distribution so that there is a noticeable
probability that more than one photon enters the medium. However, the prob-
ability of storing more than one photon is negligible due to Rydberg blockade
among the gate photons before storage, as discussed in Chap. 4.3.

If the storage of different gate photons is uncorrelated, then the number of
excitations stored will be Poissonian too. This is expected for small Ng where
blockade among gate photons has little relevance. Hence, the probability of

1 After the start of the gate-target cycle, a new equilibrium of the atomic density establishes
on a time scale that is given by the slowest trap oscillation period. Hence, typically
data from the first 50 ms after the start of the gate-target cycle are not processed. After
950 ms, the density has dropped due to particle loss such that a new atomic sample has
to be loaded. Every second gate-target cycle is a reference measurement with Ng = 0 to
minimise systematic errors.

58



5.3. Experimental Demonstration of a Single-Photon Switch

0 1 2 3 4 5 6 70
1
2
3
4
5

6 x 1 0 - 3

 

 

he
ral

din
g p

rob
ab

ility

N g

Figure 5.5.: Heralding probability ph for the data in Fig. 5.4(a). ph increases
linearly for small Ng. The offset at Ng = 0 corresponds to the probability
of detecting a dark count pd = 1.4 × 10−4. ph levels off for large Ng due to
Rydberg blockade, similar to the data shown in Fig. 4.2(a). The solid line
shows a fit to the model in Ref. [103].

storing zero excitations is ps,0 = exp(−βNg) for small Ng. Here β is the storage
efficiency in the absence of Rydberg blockade. Even if suppression of the target
transmission by a Rydberg excitation is perfect, ps,0 sets a lower boundary on
the extinction ps,0 ≤ ε.

A quantitative understanding of how well a single Rydberg excitation sup-
presses the target transmission can be obtained by postselecting the data on
successful retrieval events. The corresponding extinction ε does not depend
on the storage efficiency β. For the data shown in Fig. 5.3, the postselected
subensemble shows a drastically improved extinction of ε = 0.051± 0.004. This
means that it is mostly limited by the finite probability for creating a gate
excitation in the medium.

Fig. 5.4(a) shows how the extinction depends on the number of incoming gate
photons Ng. Even for Ng = 0.17, we observe a deviation of ε from 1 by 4.5
standard errors in the total ensemble. As the gate photons create blockade for
each other, the simple estimate above is only applicable for small Ng. Hence, β
can be obtained from the absolute value of the slope β = |dε/dNg| at Ng → 0.
A fit to the data yields β = 0.19.

The postselected subensemble shows a drastically improved extinction. For
very small Ng, the postselected extinction deteriorates slightly. This is because,
for small Ng, the heralding probability, shown in Fig. 5.5, decreases so that
background counts during the retrieval interval contribute an increasing fraction
to the heralded events.

One can model the effects of the dark counts during the retrieval interval [103].
A fit of this model to the postselected data in Fig. 5.4(a) shows that the extinc-
tion in the absence of these dark counts would be ε = 0.022±0.003. We compare

59



5. Single-Photon Switch based on Rydberg Blockade

0 2 0 4 0 6 0 8 0 1 0 00 . 0
0 . 2
0 . 4
0 . 6
0 . 8
1 . 0

τp o p = 2 4  µs

N g = 6

τp o p = 6 0  µs

 

 

ex
tin

ctio
n ε

d a r k  t i m e  � d  ( µs )

    ρp = 2 . 0 x 1 0 1 3 c m - 3

    ρp = 2 . 4 x 1 0 1 2 c m - 3
          

          

Figure 5.6.: Decay of Rydberg blockade. The extinction ε in the total
ensemble decays as a function of the dark time τd between gate and target
pulse. The decay is most likely caused by population decay of the Rydberg
atoms. Higher density of surrounding ground-state atoms, characterised by
the peak density %p, causes a faster decay. Exponential fits to the data yield
1/e times of τpop = 24 and 60µs. The blue data serve only to illustrate the
density dependence. Normally, we do not operate at such high density.

this value to the rough theoretical estimate of Eq. (2.50). Assuming that the
medium is homogeneous with length 2σz, we obtain la,EIT ≈ −2σz/ lnT0 =
28µm. Inserting this and the parameters from Tab. 5.1 into Eq. (2.50) yields
ε = 0.013, which is in fair agreement with the value obtained from the fit.

Fig. 5.4(b) shows the dependence of ε on Nt at fixed target pulse duration.
The dependence is rather weak, showing that the single-photon switch is fairly
robust. The lines show fits to models from Ref. [103]. The slight deterioration
of ε for larger Nt is due to the fact that scattering target signal photons reduces
the atomic density, thus reducing the absorption. But this occurs only when
averaging over a large number of cycles for each atomic gas. The deterioration
of ε for small Nt is due to background photodetection events due to an undesired
readout of stored gate photons during the target pulse.

5.4. Lifetime of the Rydberg Blockade

The Rydberg blockade is quite robust. On one hand, Fig. 5.4(b) shows that
the extinction ε depends only weakly on Nt. On the other hand, Fig. 5.6 shows
that it only decays slowly as a function of the dark time τd between gate and
target pulse. This decay is much slower than the dephasing rate observed in Fig.
4.5. While the decay of retrieval in Fig. 4.5 is sensitive to phase coherence and
displays a time scale of ∼ 1µs, the decay of blockade in Fig. 5.6 is only sensitive
to Rydberg population. An exponential fit (solid line) to the low-density data
(red) with τd ≥ 10µs yields a 1/e time of 60µs. Data for shorter times seem
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Figure 5.7.: Decay of extinction during the target light pulse. The black
data show the average number of transmitted signal photons for an average
number of incoming signal photons during the gate pulse of Ng = 6.1. The
green data show a reference measurement with Ng = 0. Note that the target
light pulse is longer than in Fig. 5.3. The ratio of the two data sets decays
with a 1/e time of 2.6± 0.2µs.

to deviate slightly from the extrapolated fit curve (dotted line). A model based
on spontaneous emission and blackbody radiation predicts a 336µs lifetime for
the 100S1/2 state (cf. Tab. 2.1). We obtain a hint at a possible origin of the
deviation from the measured decay time of the blockade by comparing this
decay time with a measurement at 8 times higher atomic density (blue data),
where the population lifetime is only 24µs. This suggests that the collisions of a
Rydberg atom with ground-state atoms are responsible for the decay.2 Possible
processes include associative ionisation [153] or ion pair formation [154]. Related
observations were reported in Ref. [151].

5.5. Decay of Extinction

We not only observe a decay of extinction during the dark time between gate
and target pulse but also during the target pulse itself. This decay takes place
on a much faster time scale than the one observed in Fig. 5.6. The decay
becomes apparent if we increase the duration of the target signal light pulse
to 2µs. Accordingly, the target control pulse is extended to 2.5µs. Fig. 5.7
shows an exemplary data set that exhibits the decay of extinction during the
target pulse.3 The green data show a reference measurement with Ng = 0 and
Nt = 6.1. It is evident that the transmitted target photon rate decays. Note
that the incoming signal light pulse is rectangular. The origin of this decay is
currently unclear. A possible reason could be undesired storage of target signal

2This hypothesis is supported by the data in Chap. 6, where a lifetime of the Rydberg state
69S1/2 is measured that is close to the theoretical predictions.

3These data were recorded at a peak atomic density of %p = 2.0 × 10−13 cm−3 and a tem-
perature of ∼ 0.26µK.
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Figure 5.8.: Suppression of undesired retrieval during the target pulse. Only
the target interval is shown (cf. Fig. 5.3) and no target signal light is applied.
The number of incoming gate photons is Ng = 0.9 on average. If the polar-
isation of the control light is not switched (blue), then the signal gate light
is retrieved with a 1/e time of 0.110(3)µs. Switching the control polarisation
from σ− to σ+ suppresses the amplitude of the retrieval signal.

light due to dephasing.
The black data show the transmitted signal photons for Ng = 6.1. The first

pulse is light leaking through the cloud due to imperfect storage. The second
pulse is the transmitted signal target light. We divide these data by the reference
data and obtain a 1/e time of 2.6±0.2µs from an exponential fit that is assumed
to decay to 1.4 Because of the decay of the extinction, the duration of the target
light pulse that is useful for switching is limited to a few microseconds.

One contribution to the decay of the extinction comes from the undesired
retrieval of the gate excitation by the target control light. This undesired re-
trieval is largely suppressed by the switching of control light polarisation from
σ− for the gate pulse to σ+ for the target pulse (cf. Chap. 5.2). To quantify
this suppression, we repeat the experiment of Chap. 5.3, without signal target
light applied. Fig. 5.8 shows the signal light that is retrieved while the target
control light is applied.

For reference, we first study the case where the polarisation of the control
light remains at σ− (blue data). Here, we observe a quick rise of the retrieved
signal light followed by a decay with a 1/e time of τretr = 0.110(3)µs. If, instead,
the polarisation is switched to σ+ (red data), then the retrieved signal displays
much less amplitude and a much slower decay. The amplitude is so small and
the decay so slow that the signal-to-noise ratio of the data does not suffice for
extracting the 1/e time.

To obtain a coarse estimate for this 1/e time, nonetheless, we note that the
ratio of the amplitudes of the red and blue data is∼1:7.5 A simple model suggest

4Varying Nt between 1.5 and 32, we observe 1/e times between ∼ 4.7µs and ∼ 1.3µs.
5It is unclear why this ratio is not better. A measurement of the purity of the linear
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5.5. Decay of Extinction

that the rate at which signal photons are retrieved is (ηc/τretr) exp(−t/τretr),
where ηc is a constant that incorporates the photon collection efficiency and the
initial population of the Rydberg state. Hence, we can estimate the 1/e time for
the blue data to be ∼ 7 times that of the red data, yielding the coarse estimate
τretr =∼ 0.8µs.

This estimate is somewhat shorter than the 1/e time observed in Fig. 5.8. On
one hand, this suggests that the estimate is not very accurate because one would
expect the 1/e time in Fig. 5.7 to be shorter than this estimate; on the other
hand, it suggests that undesired retrieval actually contributes significantly to the
decay of extinction observed in Fig. 5.7. At this point, it might be tempting to
take additional data to rigorously pin down the origin of the problem. Instead,
we decided to eliminate undesired retrieval as described in Chap. 6.1 instead of
studying the origin of the problem in detail.

polarisations immediately after the EOM yields an intensity ratio of 1:100. Assuming
that the wave vector of the signal light is parallel to the magnetic field and that the wave
plates are rotated correctly, one would expect that the ratio of the retrieved amplitudes
should match the intensity ratio after the EOM.
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6. A Single-Photon Transistor
using a Förster resonance

This chapter reports the realisation of a single-photon transistor that exhibits
a gain of 20. The majority of the experimental results has been published in
Ref. [104]. The single-photon transistor builds on the experiments presented
in Chap. 5 and is a much improved version thereof. Chap. 6.1 discusses the
conceptual advances that lead to the observation of gain. In Chap. 6.2 the new
atomic level scheme and the experimental sequence are described. In the subse-
quent Chap. 6.3, the experimental data showing a single-photon transistor with
gain are presented. A major advancement compared to previous experiments is
that a Förster resonance is utilised in order to achieve strong Rydberg block-
ade at fairly low principal quantum numbers. Experimental evidence for the
benefits of the Förster resonance are given in Chap. 6.4. In Chap. 6.5, the non-
destructive optical detection of a Rydberg excitation in a single experimental
shot is demonstrated as a first application of the transistor.

6.1. Conceptual Advances

One of the main limitations of the single-photon switch of Chap. 5 is that is
does not show a gain above unity. The gain is defined as

G =
∆Ntrans

Ng

=
|Ntrans, ref −Ntrans|

Ng

, (6.1)

where Ntrans is the number of transmitted target photons and Ntrans,ref is the
reference value for Ng = 0. The single-photon switch of Chap. 5 exhibits a gain
of ∼ 0.24.

There are various strategies that could solve this problem in principle. Some
obvious candidates are increasing the duration of the target pulse, increasing the
input intensity of the target pulse, increasing the EIT transmission by reducing
dephasing, and improving the storage efficiency.

Increasing the duration of the target pulse does not yield much higher gain in
Chap. 5, because the extinction decays on a time scale of a few microseconds, a
problem which, as suggested by Chap. 5.5, has a significant contribution from
undesired retrieval. To overcome this problem, we decided to base the suppres-
sion of undesired retrieval on using different principal quantum numbers ng and
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6. A Single-Photon Transistor using a Förster resonance

nt for the gate and target pulse, respectively. Hence, the frequencies of the con-
trol light pulses differ by many gigahertz so that the target control light cannot
induce a noticeable amount of undesired retrieval.

As high-efficiency frequency shifters for these frequencies are not available,
this means that the control light fields must be produced in two different lasers,
namely the two 475 nm lasers described in Chap. 3.2. This strategy has the
drawback that setting up the second laser, its beam path, and its frequency
stabilisation represent a considerable amount of additional effort compared to
the measurements in Chap. 5 which use only one control laser. Once, this effort
is expended, however, this scheme offers significant additional advantages at
very little additional experimental effort.

Having two lasers available, we can utilise the Förster resonance for nt =
ng− 2 ∼ 70 discussed in Chap. 2.2.5. This leaves the blockade radius between a
stored gate excitation and a propagating target excitation essentially the same
as in Chap. 5. At the same time, it reduces self-blockade1 within the target
pulse because the blockade radius between two propagating target excitations
is much reduced. This increases the gain.

Another benefit of using the Förster resonance is the use of lower principal
quantum numbers which reduces dephasing, as discussed in Chap. 4.4. This
increases the transmission on the EIT resonance which, in turn, increases the
gain. In addition, the decay of the green data in Fig. 5.7 might be explained
as undesired storage caused by dephasing. Hence, a reduction in dephasing
might be expected to reduce this decay. Indeed, this expectation agrees with
our observations in Chap. 6.3. This also increases the gain.

We find that the combination of all these improvements leads to a 1/e time
for the decay of the extinction of ∼ 100µs compared to only a few microseconds
in Chap 5.5. Hence, increasing the target pulse duration now does increase the
gain far above unity.

The improved scheme offers even more benefits. The reduced dephasing also
increases the storage efficiency which improves the extinction and the gain. Us-
ing different principal quantum numbers makes it possible to choose the same
polarisation for both, the gate and the target signal light pulse. This increases
the electric-dipole matrix element for the gate signal transition, which increases
the storage efficiency and thus the gain. The reduced principal quantum num-
bers also increase the radial part of the electric-dipole matrix elements for both
control transitions by a factor of ∼ 1.7 according to Eq. (2.25), correspondingly
reducing the laser powers required to achieve the same Rabi frequencies.

1Increasing the input power of the target signal pulse is still not very useful because of the
self-blockade, but the transmitted intensity at similar input power is increased.
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6.2. Experimental Sequence

6.2. Experimental Sequence

Fig. 6.1(a) shows the atomic level scheme that is used for the single-photon
transistor. The signal light is σ− polarised for both the gate and the target
pulse and therefore drives the strongest available transition on the D1 line with
branching ratio 1/2. The σ+ polarised control light couples to Rydberg states
with principal quantum number ng and nt = ng − 2 for the gate and the target
control light, respectively. The angular matrix element for these transitions is√

2/3 [127].
The two control light beams originate from two different lasers. The gate

control beam counterpropagates the signal beam (cf. Fig. 3.3) and is derived
from the ECDL-TA-SHG laser system. The target control beam copropagates
with the signal beam and originates from the Ti:Sa-SHG laser system. The
gate and target control light have powers of Pc,g = 17 mW and Pc,t = 10 mW,
respectively.

The timing sequence is similar to the one in Chap. 5.2 and is depicted in
Fig. 6.1(b). The main difference is that the target signal light pulse has a
duration of 200µs. The gate-target pulse sequence is repeated with a cycle
repetition time of tcyc = 1 ms. After ∼ 500 gate-target cycles, a new atomic
sample is prepared.2

For the experimental realisation of the single-photon transistor, an ultracold
cloud of 1.5× 105 atoms at a temperature of T = 0.33µK is used. A magnetic
field of 1.1 G is applied along the z direction. An EIT spectrum, measured
for characterisation purposes on the target transition, is shown in Fig. 4.1 and
discussed in Chap. 4.1 in detail. The key features are a peak transmission of
T0 = 0.67, a linewidth of ∆ωT/2π = 1.8 MHz, and an optical depth of OD = 5.
For the gate transition, the maximal transmission T0 = 0.56 is slightly smaller
at a similar linewidth. Based on these data we can estimate the blockade radii.
For the |69S1/2, 67S1/2,M = 1〉 state, a van der Waals coefficient of C6 = 2.3×
1023 a.u. can be calculated using Eq. (2.42).3 This yields a blockade radius
of Rb = 16µm according to Eq. (2.49). This value is similar to the blockade
radius for the target light in Chap. 5. For comparison, the state |67S1/2, 67S1/2〉
has a much smaller C6 of −3.6 × 1021 a.u., which yields Rb = 8µm. Based on
the properties of the atomic cloud, the absorption length for the target light is
estimated to be la,t = 10µm.4

2Like in Chap. 5, we discard the first 50 ms after starting the gate-target cycles. However,
we typically only process the subsequent 100 ms because the atom number drops faster
than in Chap. 5.

3Only the coupling to the pair state |68P1/2, 67P3/2〉 is considered. Rb is so large, that the
van der Waals approximation is correct within 10%. Details can be found in Chap. 2.2.5,
in particular in Fig. 2.7.

4The time-averaged repulsive potential created by the control light is 〈Vc,0〉 = kB × 0.16µK
and therefore cannot be neglected (cf. Chap. 3.1). Taking the potential into account, we
obtain an atomic density at the centre of the trap of %0 = 1.3×1012 cm−3. Approximating
the medium as homogeneous with density %0/2 yields the absorption length quoted in the
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Figure 6.1.: (a) Level scheme for the single-photon transistor. Gate and
target pulse each consist of signal light and control light for EIT. Both pulses
use the same signal transition, but the control light operates at different fre-
quencies, thus reaching different Rydberg states |rg〉 and |rt〉. The hyperfine
quantum numbers are F = 1,mF = −1 and F = 2,mF = −2 for states
|g〉 and |e〉, respectively, whereas both Rydberg states have mJ = 1/2 and
mI = −3/2. The fact that the principal quantum numbers ng and nt = ng−2
differ suppresses undesired retrieval of stored gate excitations by target con-
trol light much more efficiently than the polarisation scheme of Chap. 5.2.
In addition, both signal light pulses profit from a large electric-dipole matrix
element. We typically operate at ng = 69. (b) Input power timing scheme
not to scale (see text).

6.3. A Single-Photon Transistor with Gain

Fig. 6.2 shows experimental results demonstrating a single-photon transistor
with gain. The number of transmitted target signal photons is shown for Ng =
1.0 incoming gate signal photons (red circles). The area under the curve reveals
the number of transmitted target signal photons Ntrans. A measurement with
Ng = 0 (green triangles) yields a corresponding reference value of Ntrans, ref =
171(2). The gain as defined in Eq. (6.1) is observed to be G = 20(1) at Ng = 1.0.
This is far above unity, thus clearly demonstrating the realisation of a single-
photon transistor.5

For long target pulse duration, the transmitted target photon number ap-
proaches the reference, as seen in Fig. 6.2. We divide the data by the reference,
and obtain a 1/e time of τ = 0.10(1) ms from an exponential fit. This is not far
from the excited-state lifetime, due to radiative decay at room temperature, of

text.
5The gain sets an upper bound on the number of identically constructed transistors that can,

in principle, be driven. For cascading the transistor, however, achieving better extinction
would be desirable.
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Figure 6.2.: Single-photon transistor. The number of transmitted signal
photons is shown for Ng = 1.0 incoming signal gate photons (red circles).
For reference, the same number is shown in the absence of target signal light
Ng = 0 (green triangles). The lines show exponential fits multiplied by a step
function. The ratio of the areas under the two data sets yields an extinction
of ε = 0.89(1). For short target pulse duration the extinction is ε = 0.75(1).
The gain is G = 20(1). This is far above unity, thus demonstrating a single-
photon transistor.

0.14 ms [143], showing that undesired retrieval of gate excitations and inelastic
collisions only have a small effect. As a consequence of the decay, increasing the
duration of the target pulse does not lead to a considerably higher gain.

The transmission of the reference target pulse is T0 = 0.49(1) on EIT reso-
nance for an incoming target photon number of Nt,in = 350. This improvement
in T0 by a factor of ∼2.5 with respect to Chap. 5 is mostly due to the lower
principal quantum number, which reduces self blockade6 and dephasing. Exper-
imentally varying ng in the range between 60 and 75, we find that T0 depends
approximately linearly on ng with a slope of ∆T0/∆ng ∼ −0.01. Increasing
the number of incoming target photons does not result in a higher gain, as
self-blockade leads to a saturation of the transmitted target photon number.7

6.4. Observation of a Förster Resonance

The performance of the single-photon transistor benefits from the Förster reso-
nance near ng = 70, which is discussed in Chap. 2.2.5. The extinction and gain

6Evaluation of a g(2) correlation function yields g(2)(0) = 0.62(2) compared to g(2)(0) =
0.17(1) for the |100S1/2〉 state in Fig. 4.2(b).

7In the present experiment, the C6 coefficient that is relevant for the van der Waals interac-
tion of two target polaritons is a factor of ∼ 60 smaller than for the interaction between
the a target polariton and a gate excitation. By using a different atomic level scheme, it
might be possible to increase this factor thus further reducing self blockade.
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Figure 6.3.: Effect of the Förster resonance on the single-photon transistor.
(a) Theoretical estimates of the energy mismatch ∆E in Rb at infinite inter-
atomic distance (cf. Fig. 2.5(b)). The measured values of the extinction (b)
and the gain (c) clearly profit from the Förster resonance. The target pulse
is operated at nt = ng − 2. The lines show Lorentzian fits to guide the eye.

in parts (b) and (c) of Fig. 6.3 both show a clear resonance. The positions of the
resonances coincide with the zero-crossings of the calculated pair state energy
defects which are shown in part (a) for comparison.

The results in Fig. 6.3 constitute a rather unconventional method of detecting
a Förster resonance. Compared to the standard approach in cold atom experi-
ments found in the literature, it does not rely on field ionisation [82, 155–157].
The observed dependence of the extinction on the principal quantum number is
mainly due to a change in blockade radius. Since the blockade radius is propor-
tional to C

1/6
6 , the resonance is fairly broad. The enhancement of the blockade
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6.5. Nondestructive Detection of a Rydberg Excitation

radius in the vicinity of the Förster resonance is therefore very robust. It should
be noted that the extinction relates to the blockade radius in a non-trivial way.
According to the simple one-dimensional model (2.50), the measurement loses
its sensitivity to Rb for large 2Rb/la,t because the slope dε/dRb decreases. This
leads to a further broadening of the resonance. On the other hand, the blockade
radius in Fig. 6.3 varies roughly by a factor of two. This means that the con-
dition Rb � wc for perfect transverse blockade is not fulfilled for all ng. This
reduces the extinction far away from the resonance. In addition, it should be
noted that close to the Förster resonance state mixing is not negligible and can
also affect the blockade.

6.5. Nondestructive Detection of a Rydberg
Excitation

Because of the gain, storing a gate excitation has a drastic effect on the trans-
mitted light. This holds not only for the mean value Ntrans of the transmitted
photon number but also for its probability distribution. We measure the his-
togram for the number of detector clicks Nc registered during a 30 µs long target
signal pulse.8

Figure 6.4 shows this histogram. The data for Ng = 1.0 show a bimodal struc-
ture with a clearly visible minimum between the peaks. Clearly, the peak near
Nc = 8 detector clicks is expected to be identical to the reference distribution
with Ng = 0, but with the total number of events reduced by an overall factor
p0, which is the probability that zero Rydberg excitations are stored during the
gate pulse. A fit (red dotted line) yields p0 = 0.60. Subtracting this fit from
the data for Ng = 1.0 yields the black solid line.

The red dotted line and the black solid line have well-separated peaks. Hence,
the value of Nc obtained in a single experimental shot reveals whether the
number of Rydberg excitations NRyd stored during the gate pulse was zero
or nonzero. We set a threshold Nthr and assign NRyd = 0 if Nc > Nthr and
NRyd 6= 0 otherwise. Let c0 and c1 denote the probability that this assignment
is correct if the initial state were ideally prepared with NRyd = 0 and NRyd 6= 0,
respectively. To define the fidelity for estimating whether a Rydberg excitation
was stored, we follow the conservative definition of Ref. [158] that the fidelity F
is the minimum of c0 and c1. From Fig. 6.4 we find that the choice Nthr = 5.5
maximises the fidelity, yielding F = 0.86. Note that the results for p0 and F
depend on the choice of the cutoff value Ncut of Nc for fitting p0. In particular,

8These data are recorded with N ∼ 2.4 × 105, T = 0.27 µK, (Pc,g, Pc,t) = (35, 22) mW,
a dark time of 0.15µs between gate and target pulse, a target control pulse duration of
100µs, and tcyc = 0.7 ms. The maximal EIT transmission is T0 = 0.62. The repulsive
potential created by the control light is 〈Vc,0〉 = kB×0.51µK resulting in an atomic density
in the centre of the trap of %0 = 8.5 × 1011 cm−3. This yields a target absorption length
of la,t = 15.5µm.
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Figure 6.4.: Bimodal distribution. The histogram for the number of detector
clicks Nc during the target pulse is shown. The reference pulse with Ng = 0
(green triangles) has mean value 〈Nc〉ref = 8.62(4) and variance 9.87. It is
well approximated by the Poisson distribution with this mean value (green
dashed line). The distribution for Ng = 1.0 (red circles) is bimodal. Its
peak near Nc = 8 is caused by events in which zero gate excitations were
stored. This peak is identical to the green line except for an overall factor
p0, expressing the probability for storing zero excitations. A fit (red dotted
line) to the data with Nc > 9.5 yields the best-fit value p0 = 0.60. The black
solid line shows the difference between the red data and the red fit curve. It
represents the histogram if a Rydberg excitation was stored. From the value
of Nc measured in a single shot, one can infer whether a Rydberg excitation
was stored. Setting the discrimination threshold to Nthr = 5.5 (dash-dotted
vertical line) yields a fidelity for this inference of F = 0.86 (see text).

for Ncut � 9.5 the black solid curve contributes noticeably to the red data,
causing the fit to overestimate p0 and F , whereas for Ncut � 9.5 the fit must
infer the peak height only from data far out on the wings of the distribution
which is prone to produce incorrect results. A detailed analysis shows that fits
with 7.5 ≤ Ncut ≤ 12.5 produce reliable values, with p0 varying between 0.60
and 0.64 and with F between 0.86 and 0.88. F = 0.86 can therefore be regarded
as a conservative estimate with respect to the choice of Ncut.

The value of p0 determined here can be used to estimate the storage efficiency
ηs = Ns/Ng, where Ns is the number of stored excitations. On the one hand, the
solid bound ηs ≥ 1−p0 is reached if the probability of storing more than one ex-
citation is neglected. Using p0 = 0.64, we obtain 0.36 ≤ ηs. On the other hand,
as self blockade of the gate pulse is not very pronounced, one could approxi-
mate the number of stored excitations as Poissonian, so that p0 = exp(−Ns)
and p0 = 0.60 would yield the less conservative estimate ηs ∼ 0.51. It is obvious
that improved storage efficiencies would lead to a higher gain and an improved
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6.5. Nondestructive Detection of a Rydberg Excitation

extinction.
The histograms, shown in Fig. 6.4, can also be used to estimate the extinction

if a gate excitation is present. To this end, the average transmitted photon
numbers for the black and green curve in Fig. 6.4 are calculated. Subsequent
division yields an extinction of ε = 0.25. We compare this to the rough estimate
from Eq. (2.50). With a absorption length of la,t = 15.5µm calculated from the
cloud parameters and the EIT absorption length la,EIT = −2σz/ lnT0 = 90µm,
we obtain ε ∼ 0.17 for a blockade radius of Rb = 16µm. The agreement is fair
considering the approximations made. This suggests that higher gain and better
fidelities can be attained by reducing la,t. This could be achieved by reducing
the duty cycle of the experiment which leads to higher atomic densities in the
centre of the trap. Alternatively, an atomic transition with larger electric dipole
moment could be used for the signal light such as the cycling transition of the
D2 line in 87Rb. This should reduce the absorption length by a factor of two
compared to the transition currently used.

Repeated detection of a Rydberg excitation As the measurement is non-
destructive, it is repeatable within the same experimental shot. It is therefore
natural to study how much the assignments of two consecutive measurements
correlate with each other. To this end, we analysed the first 66µs of the trans-
mitted target signal light of the data set that is shown in Fig. 6.2. We math-
ematically split the 66µs time interval in the data analysis into two parts of
equal duration. We assign Ri = 0 (Ri = 1) Rydberg excitations if the number
Nd of detector clicks in time interval i ∈ {1, 2} is above (below) the threshold
Ncut. We use the Pearson correlation coefficient

ρR1,R2 =
cov(R1, R2)√

cov(R1, R1) cov(R2, R2)
(6.2)

to quantify the correlations between the two measurements [159]. Here,
cov(X, Y ) = 〈XY 〉 − 〈X〉〈Y 〉 denotes the covariance. ρR1,R2 = 1 indicates
perfect correlation, whereas ρR1,R2 = 0 indicates uncorrelated variables.

Our experiment with Ng = 1.0 yields ρR1,R2 = 0.45(1). Ideally, this should
be 1. For reference, we also study the Ng = 0 case and obtain ρref

R1,R2
= 0.07(2).

This nonzero value indicates that there is a background of correlations, but
obviously it is small. For comparison, we find fidelities F1 = 0.87 (F2 = 0.80)
along with p0 = 0.72 (p0 = 0.77) for the first (second) 33µs, both at Ncut = 3.5

To develop a theoretical expectation for ρR1,R2 , we write X (or X̄) if there is
actually a Rydberg excitation present (or absent). As F1 ≈ F2, we approximate
P (Ri = 1|X) = c1 and P (Ri = 0|X̄) = c0 to be independent of i ∈ {1, 2}.
Furthermore, we assume that the following conditional probability factorises
P ((R1 = 1 ∩ R2 = 1)|X) ≈ P (R1 = 1|X)P (R2 = 1|X) = c2

1. We use the
same approximation for similar expressions. Hence, the model neglects the
decay of the Rydberg excitation. Moreover, as Ncut is chosen to maximise
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F = min(c0, c1), we find c0 ≈ c1 ≈ F and obtain the prediction

ρR1,R2 = (2F − 1)2 p0(1− p0)

Y (1− Y )
, Y = p0(1− F ) + F (1− p0). (6.3)

Using the values of F and p0 from the first (second) interval yields the prediction
ρR1,R2 = 0.48 (ρR1,R2 = 0.28). Hence, the above result agrees pretty well with
the expectation of this simple model.

The measured value of ρR1,R2 is further away from unity than the value of F .
The reason for this is firstly that F and ρR1,R2 incorporate the errors from one
and two measurements, respectively, and secondly that F = 1/2 and ρR1,R2 = 0
define the limits where nothing is learnt from a measurement.
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7. Outlook

The realisation of a single-photon transistor brings various applications into
reach. The first application has already been demonstrated in this thesis. It is
the nondestructive detection of a Rydberg excitation.

This method could be used to monitor the spatial and temporal dynamics of a
single Rydberg excitation [160–162]. A recent experiment demonstrated nonde-
structive imaging capabilities for Rydberg atoms, but was unable to reach suffi-
cient sensitivity to detect a single excitation in a single experimental shot [163].
Single-shot data acquisition capabilities of single excitations offer the possibil-
ity to record full probability distributions and correlation functions. Moreover
real-time trajectories from single excitations could be recorded.

The detection method is also of practical relevance for quantum memories
[164], where it could be used to herald the successful storage of a photon in the
memory. After a storage event is heralded, the Rydberg excitation could be
transferred into a long-lived ground state.

Furthermore, the single-photon transistor could be used for the detection of an
optical photon with high sensitivity. Therefore, higher storage efficiencies would
be necessary. The best storage and retrieval efficiencies that have been reported
for EIT with atomic ground states are ηsr = 0.78 [165].1 If the stored photon
were retrieved with high efficiency, then this would constitute a nondestructive
detection of a single photon [166].

The single-photon transistor could also be used to create coherent superpo-
sitions of quantum states with macroscopically different photon number, which
are also called cat states [167]. To this end, the single-photon transistor could
be placed inside an optical resonator that is resonant with the signal light.
If the atomic ensemble is transparent, then the signal light will be transmit-
ted, whereas the absorption inside the atomic gas will lead to reflection from
the first mirror. This would convert the transmission-absorption switch into a
transmission-reflection switch which could operate at low dissipation and deco-
herence. First steps into this direction are reported in Ref. [168].

In addition to these applications, the single-photon transistor is a first step
on the way to realising deterministic quantum logic gates for photons based
on Rydberg blockade [90–92, 169]. In most proposals, the prerequisite for the
implementation of quantum gates is that a single gate photon would have to
switch the phase of a target photon . Such a phase switch could then be extended
to a full quantum gate.

1The storage efficiency might actually be higher as the finite retrieval efficiency is included.
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A. Dephasing in Storage and
Retrieval Experiments

In this appendix, we study the influence of dephasing on the retrieval efficiency
in storage and retrieval experiments. Two mechanisms are separately analysed.
First, we consider the effects of thermal motion. Thereafter, we investigate the
consequences of a density-dependent energy shift of the Rydberg state due to
collisions with ground state atoms as observed in Chap. 4.4.

We consider a gas of N atoms all of which are initially in the internal state
|g〉. In addition, the j-th atom is in the spatial wave function uj(xj). We write
the initial state as1

|g1, ..., gN〉 =
∏
j

uj(xj)|gj〉. (A.1)

Assuming one incoming signal photon and perfect storage efficiency, the EIT
storage process creates the Dicke state |D(0)〉 = |D1

N−1〉 of Eq. (2.12).
During the dark time τd in storage and retrieval experiments the Dicke state
|D(τd)〉 evolves in time. We simplify the description of the retrieval process
by assuming that the control laser only couples to the state |D(0)〉 and that all
population in |D(0)〉 is converted into light during the retrieval. This population
is |〈D(0)|D(τd)〉|2 so that the storage and retrieval efficiency is

ηsr = |〈D(0)|D(τd)〉|2 . (A.2)

Thermal atomic motion. We now study the time evolution of the Dicke state
|D(τd)〉 due to the recoil transferred during storage. During the dark time τd,
each term in the sum in |D〉 picks up a phase factor exp(−iEτd/~) with the
energy E. We choose the energy such that the internal state with exactly one
excitation has zero energy. Only the kinetic energy remains. Furthermore, we as-
sume that the j-th atom is in a plane wave state with uj(xj) = exp(ikjxj)/

√
V ,

where V is the quantisation volume and kj the initial momentum of the j-th
atom. After the dark time τd the state has evolved to

|D(τd)〉 = exp

(
−iτd

~
2m

(∆k2 +
∑

l k
2
l )

)
1√
N

N∑
i=1

ei∆k(xj−vjτd)|g1, ..., rj, ..., gN〉,

(A.3)

1The right hand side is a mixed representation, where the spatial part is taken in a position
representation, whereas the internal part is representation free. The left hand side is only
a symbolic abbreviation.
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where vj = ~kj/m. |g1, ..., rj, ..., gN〉 is the same state as in Eq. (A.1) except
that the internal state of the j-th atom is |r〉. Inserting this into Eq. (A.2) yields
for the retrieval efficiency

ηsr =

∣∣∣∣∣ 1

N

∑
j

exp(−ivreckjτd)

∣∣∣∣∣
2

=
1

N2

(
N +

∑
j,l,j 6=l

exp(ivrec(kj − kl)τd)

)
,

(A.4)
where vrec = ~∆k/m.

We now consider a thermal Boltzmann distribution for the wave vectors of the
initial state. Hence, the wave vectors of different atoms are uncorrelated and the
single-particle distribution is given by Gaussian with rms width σk =

√
mkBT/~.

From Eq. (A.4) we obtain

ηsr =
1

N
+
N − 1

N
exp

(
−(σkvrecτd)

2
)
≈ exp

(
−(σkvrecτd)

2
)
, (A.5)

where we assume N � 1. Using the definition of the thermal de-Broglie wave-
length λdB = ~

√
2π/mkBT , we attain the result in Eq. (2.14).

Inhomogeneous atomic density. We now study how an inhomogeneous atom
density can lead to a decay of the retrieval efficiency as a function of dark time.
We assume that the atomic density is only inhomogeneous along the propagation
direction z of the signal light. Further, we assume that the incoming signal
light pulse is rectangular and so long that it is never completely inside the
medium. If we neglect absorption, the polariton flux Φpol = ρpol(z)vgr(z) is
constant, even inside the medium. Here ρpol is the local polariton density and
vgr(z) = c/(1 + ngr(z)) the local group velocity. The polariton density before
storage is then given by

ρpol(z) =
Φpol

c
(1 + ngr(z)). (A.6)

Efficient storage is only possible if the polaritons have only a small electromag-
netic component before storage. According to Eqs. (2.10) and (2.11), this is the
case if ngr � 1. For simplicity we assume unity storage efficiency if ngr(z) ≥ 1
and zero storage efficiency else. The polariton density after storage is then given
by

ρstore(z) = ρpol(z)θ(ngr(z)− 1) ≈ Φpol

c
ngr(z)θ(ngr(z)− 1), (A.7)

where θ is the Heaviside function. In the last step, we assumed ngr(z)� 1. Since
the group index before storage ngr(z) is proportional to the atomic density %(z)
(cf. Eq. (2.9)), the probability of creating a Rydberg excitation is proportional
to %(z), as long as θ has value 1.

We now consider the situation where the Rydberg atoms experience a po-
tential ~∆m(z) = ~∆p%(z)/%p due to collisions with ground state atoms. Here
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Figure A.1.: Dephasing due to a density-dependent energy shift of the Ry-
dberg state according to Eq. (A.10). The retrieval efficiency decays to 1/e at
∆pτd = 3.57.

∆p = 2π~a%p/me is the potential depth (cf. Eq. (4.4)) which is proportional to
the peak atomic density %p. Each term in the Dicke state |D〉 then picks up a
phase factor exp(−i∆m(zj)τd). Neglecting the recoil during storage, the time
evolution of the Dicke state is given by

|D(τd)〉 =
1√
N

N∑
i=1

e−i∆m(zj)τd |g1, ..., rj, ..., gN〉. (A.8)

According to Eq. (A.2), the retrieval efficiency after the dark time τd is given
by

ηr =

∣∣∣∣∣ 1

N

∑
j

e−i∆m(zj)τd

∣∣∣∣∣
2

≈
∣∣∣∣∫ d3x

%(z)

N
θ(ngr(z)− 1) e−i∆m(z)τd

∣∣∣∣2 . (A.9)

Here we used a continuum approximation (N � 1) to replace the sum over
all atoms by an integral weighted with the atomic density. In our model, the
atomic density distribution along the z direction is given by a Gaussian with
peak density %p and rms width σz. In x and y direction it is constant. If we
assume that only one photon is stored in the cloud then the probability2 to find
a Rydberg excitation at position z is exp(−z2/2σ2

z)/
√

2πσz.
Substituting z̃ = z/σz and abbreviating g(z̃) = exp(−z̃2/2)/

√
2π yields

ηr =

∣∣∣∣∫ dz̃ g(z̃) e−i∆pτd
√

2πg(z̃)

∣∣∣∣2 . (A.10)

Note that integral in Eq. (A.10) does not depend on the rms width σz of the
atomic cloud. The retrieval efficiency ηr is a function of only one parameter

2Since in typical experiments the peak group index is on the order of 106, the Heaviside
function in Eq. (A.7) can be replaced by unity, because the integral (A.10) is dominated
by the region where θ has value 1.
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∆pτd. A numerical result for this function is shown in Fig. A.1. It reaches 1/e
at ∆pτd = 3.57. Hence the 1/e time τdec obeys

1

τdec

=
∆p

3.57
=

2π~a
3.57me

%p. (A.11)

So this model predicts a linear dependence of the dephasing rate on the peak
atomic density %p. As a matter of fact, this linear trend is fairly insensitive to
many details of the model such as the assumption that the shape of the cloud
is Gaussian.

The model predicts a slope of 1/τdec%p = 0.18µm3/µs, which, given the sim-
plicity of the model, is in surprisingly good agreement with the experimental
results in Chap. 4.4.
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B. Angular Matrix Elements of the
Dipole-Dipole Interaction

In this appendix the matrix elements of the dipole-dipole interaction as intro-
duced in Sec. 2.2.4 are explicitly calculated. The procedure is similar to the one
used in Ref. [129], where the dipole-dipole interaction is analysed in the fine-
structure basis. Here the matrix elements are calculated for the product states
|nA, lA, jA〉 ⊗ |nB, lB, jB〉. These matrix elements can be used to obtain matrix
elements of bosonic symmetrised pair state (cf. Chap. 2.2.5). For a textbook
on angular momentum algebra see e.g. Ref. [127].

In the coupled basis the two-atom state can be described by the total angu-
lar momentum of the atom pair J , its projection onto the z-axis M and the
remaining quantum numbers γ = nA, lA, jA, sA, nB, lB, jB, sB, which are related
to degrees of freedom of the individual atoms. Here s = 1/2 is the spin of the

valence electron. In this basis the matrix elements of T
(2)
q can be evaluated using

the Wigner-Eckart theorem [127]

〈γ′, J ′,M ′|T (k)
q |γ, J,M〉 = (−1)J

′−M ′
(

J ′ k J
−M ′ q M

)
(γ′, J ′||T (k)||γ, J). (B.1)

Here the matrix denotes a Wigner 3-J symbol and (γ′, J ′||T (k)||γ, J) a reduced

matrix element. Since the tensors d
(1)
A and d

(1)
B , which form the tensor product

T
(2)
q , act on two different subsystems, the reduced matrix element is given by

[127, Eq. (7.1.5)]

(γ′, j′A, j
′
B, J

′, ||T (k)||γ, jA, jB, J) = (γ′A, j
′
A||d

(kA)
A ||γA, jA) (γ′B, j

′
B||d

(kB)
B ||γB, jB)

×
√

(2J + 1)(2J ′ + 1)(2k + 1)


j′A jA kA
j′B jB kB
J ′ J k

 . (B.2)

The curly brackets denote a 9-J symbol. For each subsystem the reduced matrix
elements can be further factorised considering that the total angular momentum
j is composed of an orbital angular momentum l and a spin s. The reduced
matrix element can then be evaluated separately by [127, Eq. (7.1.7)]

(n′, l′, s, j′||d(k)||n, l, s, j) = (−1)l
′+s+j+k

√
(2j + 1)(2j′ + 1)

×
{
l′ j′ s
j l k

}
(n′, l′||d(k)||n, l), (B.3)
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where the curly brackets denote a 6-J symbol. Finally, the reduced matrix
element (nl′||d(k)||nl) can be expressed by [127, Eq. (5.4.5)]

(n′, l′||d(k)||n, l) = (−1)l
′√

(2l′ + 1)(2l + 1)

(
l′ 1 l
0 0 0

)
Rn′,l′

n,l (B.4)

with radial matrix element

Rn′,l′

n,l =

∫ ∞
0

Rn′,l′(r)rRn,l(r)r
2dr. (B.5)

The radial matrix elements can be obtained by numerical integration of the
wavefunction (cf. Chap. 2.2.2).
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C. Rydberg Molecules

As discussed in Chap. 4.4, the presence of a ground state atom within the
electronic wavefunction of the Rydberg state leads to s-wave scattering of the
electron from the neutral atom. The interaction can be described by the pseudo-
potential (4.3). In the limit of many ground state atoms, the perturbation of the
electronic wave function can be treated in a mean field approach which results
in an energy shift of the Rydberg state. In this appendix we study the opposite
limit, where on average only one ground state atom resides within the classical
radius of the Rydberg electron and the mean-field approximation fails.

Since the triplet scattering length aT = −16.1a0 is negative, the interaction
is attractive and bound states between the Rydberg atom and a ground state
atom are possible. The potential experienced by a ground state atom can be
approximated by [170]

V (R) =
2π~2aT
me

|ψ(R)|2, (C.1)

where me is the rest mass of the electron and |ψ(R)|2 the probability to find
the electron at position R. These long range molecules were first observed for
low principal quantum numbers using a spectroscopy technique based on laser
excitation and field ionization [171]. Very recently, molecular resonances could
also be observed for higher principal quantum numbers [172]. The measured
binding energies are below ∼ h× 2 MHz for n ≥ 50 such that ultracold atomic
gases are necessary to resolve them.

Indeed, these weakly bound Rydberg molecules can also be observed in storage
and retrieval experiments similar to the one explained in Chap. 4.3. In the
following experiments, the signal light drives the transition from 5S1/2, F = 1,
mF = −1 to 5P1/2, F ′ = 2, mF ′ = −2. The control light is resonant with the
transition from 5P1/2, F = 2 to the Rydberg state nS1/2 and is σ+ polarised.
The density of the atoms is typically chosen such that approximately one ground
state atom resides within the electronic wave function of the Rydberg state. For
the |60S1/2〉 state, for instance, a peak atomic density of %p = 9.7 × 1012 cm−3

(T = 0.35µK) is used. This yields ∼ 0.8 atoms within the orbital radius of
0.27µm (cf. Tab. 2.1). The incoming signal pulse typically contains Ng ∼ 4
photons.

Fig. C.1(a) shows the retrieval efficiency as a function of dark time τd for
n = 60. A high contrast oscillation with frequency ωB/2π = 457 ± 3 kHz is
visible (red points). We attribute this oscillation to the excitation of Rydberg
molecules where the oscillation frequency corresponds to the binding energy
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Figure C.1.: Excitation of Rydberg molecules. (a) The retrieval efficiency
for storage in the 60S1/2 state (red data) shows an oscillatory behaviour
which can be attributed to storage in a superposition of an atomic and a
molecular state. At lower density (blue data) the Franck-Condon overlap for
the excitation of two ground state atoms to a Rydberg molecule is reduced
and the amplitude of the oscillation is much weaker. An empiric model is
fitted to the data to extract the oscillation frequency (solid line). (b) The
dependence of the oscillation frequency on the principal quantum number is
shown as a double logarithmic plot. The solid line shows the fit of a power
law (n∗)−a to the data.

~ωB.1

The appearance of oscillations can be explained in the following way. The
molecular state is red detuned from the atomic Rydberg state by its binding
energy. If the EIT linewidth is larger than the binding energy then one part
of the incoming signal photons is stored in the Rydberg state |r〉, another part
is stored in the molecular state |m〉. Hence, in the Dicke state of Eq. (2.12)
one has to replace |rj, gk〉 by |cjk〉 = cosα|rj, gk〉+ sinα|mjk〉 in each summand
|g1, ..., rj, ..., gN〉 and additionally sum over all k 6= j. Due to the binding energy,
the time evolution of the state |cjk〉 during the dark time τd is |cjk(τd)〉 =
cosα|rj, gk〉+sinα exp(−iωBτd)|mjk〉. Here, we choose the energy such that the
internal state with exactly one Rydberg excitation has zero energy. Insertion
into Eq. (A.2) yields the temporal evolution of the retrieval efficiency

ηr = |〈cjk(0)|cjk(τd)〉|2 = cos4 α + sin4 α + 2 sin2 α cos2 α cosωBτd. (C.2)

Hence we expect that the retrieval efficiency oscillates with a frequency corre-
sponding to the binding energy of the molecules.

According to Eq. (C.2), the visibility of the oscillation is reduced for smaller
mixing angles α. In the experiment we can reduce the mixing angle by lowering

1Oscillations in the retrieval efficiency can also be caused by a misalignment between the
magnetic field and the wave vector of the signal or control light [173]. In this case, the
oscillation frequency would be proportional to the strength of the magnetic field B. We
therefore check experimentally that the oscillation frequency does not depend on B by
varying it between 0.2 and 1.2 G.
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the atomic density because this reduces the Franck-Condon overlap for exciting
two ground state atoms to a molecular state. The blue data points in Fig. C.1(a)
are recorded at %p = 1.5×1012 cm−3 and T = 0.27µK, which yields ∼ 0.1 atoms
within the electronic wavefunction of the Rydberg atom. Indeed, the amplitude
of the oscillation is strongly reduced.

Fig. C.1(b) shows how the oscillation frequency depends on the principal
quantum number. For higher principal quantum numbers, the oscillation fre-
quency decreases. Fitting a power law (n∗)a to the data we can extract the
scaling behaviour with the effective principal quantum number n∗, which yields
an exponent of a = −6.01± 0.13. This is in fairly good agreement with the re-
sults in Ref. [172], where −6.26± 0.12 was measured. The absolute frequencies
agree with an excitation of dimers in our experiments. Comparison with the
spectroscopic data in Ref. [172] suggests that predominantly the first vibrational
state of the molecules is addressed.

The particular strength of this spectroscopy method for Rydberg molecules
is that the resolvable binding energies can be much smaller than, for example,
the EIT linewidths, as all light fields are switched off during the dark time.
Currently, the lowest detectable binding energy is given by decoherence.
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D. Coherent Logic Gate for Light
Pulses based on Storage in a
BEC

As outlined in Chap. 1, Rydberg EIT is not the only possibility to create in-
teractions between weak light pulses. An alternative strategy is to temporarily
convert light pulses into atomic excitations. In atomic ensembles, this conversion
can be achieved by storage of light techniques that are based on Raman tran-
sitions [174] or EIT. The atomic excitations can then interact with each other.
Subsequently, the atomic excitations can be converted back to light. With re-
gard to applicability of this strategy in quantum information applications, it is
important to show that all involved processes, that means storage, interaction
and retrieval, are coherent. One possible interaction mechanism for atomic exci-
tations are s-wave collisions between pairs of ground-state atoms [65,66]. Based
on this, the implementation of a photon-photon quantum gate in a Bose-Einstein
condensate (BEC) was proposed in Ref. [66].

In the course of this thesis, experiments were performed that demonstrate
the key ingredients of this proposal, namely the interaction between atomic
excitations due the elastic collisions and the coherence of the overall process
including the creation of the excitation and their conversion to light at the end.
This appendix gives an overview over these experiments. They are explained in
detail in the dissertation [106]. The results have been published in Ref. [67].

Fig. D.1(a) illustrates the experimental procedure for the implementation of a
coherent logic gate. Signal light is stored in a BEC that is prepared in the atomic
state |1,0〉 with internal state |1〉 and wave vector 0. This is achieved with the
help of a control field such that a Raman transition into a second ground state
|2〉 is driven. The signal light is coherently stored in the atomic state |2,k〉.
The momentum ~k arises due to the recoil experienced by the atoms during the
Raman transfer. A second signal pulse is applied in a different geometry and
stored in the atomic state |2,k + q〉. After the preparation, the populations in
the states |1,0〉, |2,k〉 and |2,k + q〉 are approximately equal.

During the following dark time of 0.4 ms, atomic four-wave mixing (FWM)
takes place and a BEC in a new momentum component |1, q〉 is created. The
FWM can be intuitively understood as an atomic scattering process. An atom
in state |1,0〉 collides with an atom in state |2,k + q〉. The existing BEC in
state |2,k〉 creates bosonic enhancement for an atom to emerge in this state.
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D. Coherent Logic Gate for Light Pulses based on Storage in a BEC
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Figure D.1.: Logic gate based on atomic FWM. (a) Experimental scheme.
Two Raman pulses are applied, preparing three BECs with momenta 0, k
and k + q. During the subsequent dark time, atomic FWM creates a BEC
with momentum q. Arrows indicate the propagation direction of the light
beams. Circles represent atomic momentum components. The internal states
are colour coded: white denotes |1〉, red denotes |2〉. A third light pulse with
only control light applied retrieves the signal light. The retrieved light will
have a component propagating downward if FWM took place. (b) Logic
gate. The retrieved photon number propagating downward is shown for four
different experimental settings, in which the signal beams during Raman
pulses 1 and 2 are turned on or off independently. This demonstrates an
AND gate for classical light.

As a consequence of conservation of total momentum and total internal state
energy for elastic scattering, the collisional parter is scattered into state |1, q〉.
Conservation of energy requires that the relation k · q ∼ 0 has to be fulfilled
[175,176]. This corresponds to phase-matching in optical FWM.

After the dark time, the atomic states are mapped back onto light fields. To
this end, the BEC is illuminated by a control light pulse. Each atom in internal
state |2〉 is transferred back into internal state |1〉 in a Raman process under
emission of a photon. These Raman processes are bosonically stimulated by
the two BECs in the states |1,0〉 and |1, q〉. The stimulated growth of atomic
population in these two BEC is called Raman amplification of matter waves
(AMW) [177,178]. Along with the population growth in |1,0〉 and |1, q〉, signal
light with two momentum components is emitted, one propagating downward,
the other rightward (cf. Fig. D.1(a)).

The downward propagating component is only created if the state |1, q〉 is
populated. This is only possible if atomic FWM has occurred. FWM, however,
only takes place if both signal pulses are applied during both Raman pulses.
This can be used to realise an AND gate, where the two classical signal pulses
are the input and signal light in the downward propagating component is the
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output. The experimental results are shown in Fig. D.1(b).
From a theoretical point of view, Raman AMW is is analogous to a stimulated

Raman process [178], except that the emission is bosonically stimulated not by
application of a second laser beam but by the presence of a second BEC. Hence
we expect, that Raman AMW generates light in a phase coherent way with the
relative phase of the two BECs determining the phase of the emitted light.

We verify the phase coherence of the retrieved light by creating population
in the momentum component |2,k − q〉. Raman AMW then also generates
light from the BECs pair |1,0〉 and |2,k − q〉 which is also emitted into the
downward direction. The two light fields interfere on a detector and a beat note
is observed which proves the coherence of all involved processes.
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PhD thesis, Max-Planck-Institut für Quantenoptik, Garching and Tech-
nische Universität München (2003).

[135] T. Volz, Ultracold Rubidium Molecules, PhD thesis, Max-Planck-Institut
für Quantenoptik, Garching, and Technische Universität München (2007).

[136] N. Syassen, Interacting Feshbach Molecules, PhD thesis, Max-Planck-
Institut für Quantenoptik, Garching and Technische Universität München
(2008).

[137] D. M. Bauer, Optical Control of a Magnetic Feshbach Resonance, PhD
thesis, Max-Planck-Institut für Quantenoptik, Garching and Technische
Universität München (2009).

[138] H. J. Metcalf and P. Van der Straten, Laser Cooling and Trapping
(Springer, Heidelberg, 1999).

[139] D. E. Pritchard. Cooling neutral atoms in a magnetic trap for precision
spectroscopy. Phys. Rev. Lett. 51, 1336 (1983).

[140] C. J. Pethick and H. Smith, Bose-Einstein Condensation in Dilute Gases
(Cambridge University Press, Cambridge, 2002).

[141] R. Grimm, M. Weidemüller, and Y. B. Ovchinnikov. Optical dipole traps
for neutral atoms. Adv. At. Mol. Opt. Phys. 42, 95–170 (2000).

[142] S. Dutta, J. Guest, D. Feldbaum, A. Walz-Flannigan, and G. Raithel.
Ponderomotive optical lattice for Rydberg atoms. Phys. Rev. Lett. 85,
5551–5554 (2000).

101



Bibliography

[143] M. Saffman and T. Walker. Analysis of a quantum logic device based on
dipole-dipole interactions of optically trapped Rydberg atoms. Phys. Rev.
A 72, 022347 (2005).

[144] R. P. Abel, A. K. Mohapatra, M. G. Bason, J. D. Pritchard, K. J. Weath-
erill, U. Raitzsch, and C. S. Adams. Laser frequency stabilization to
excited state transitions using electromagnetically induced transparency
in a cascade system. Appl. Phys. Lett. 94, 071107 (2009).

[145] R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J.
Munley, and H. Ward. Laser phase and frequency stabilization using an
optical resonator. Appl. Phys. B 31, 97–105 (1983).

[146] E. D. Black. An introduction to Pound-Drever-Hall laser frequency sta-
bilization. Am. J. Phys. 69, 79 (2001).

[147] U. Schünemann, H. Engler, R. Grimm, M. Weidemüller, and
M. Zielonkowski. Simple scheme for tunable frequency offset locking of
two lasers. Rev. Sci. Instrum. 70, 242 (1999).

[148] E. Amaldi and E. Segre. Effect of pressure on high terms of alkaline
spectra. Nature 133, 141 (1934).

[149] E. Fermi. Sopra lo spostamento per pressione delle righe elevate delle serie
spettrali. Nuovo Cim. 11, 157–166 (1934).

[150] C. Bahrim, U. Thumm, and I. I. Fabrikant. 3Se and 1Se scattering lengths
for e-+ Rb, Cs and Fr collisions. J. Phys. B 34, L195–L201 (2001).

[151] J. B. Balewski, A. T. Krupp, A. Gaj, D. Peter, H. P. Büchler, R. Löw,
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