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Abstract

Computer models of cultural evolution have shown language prop-
erties emerging on interacting agents with a brain that lacks ded-
icated, nativist language modules. Notably, models using Bayesian
agents provide a precise specification of (extra-)liguististic factors
(e.g., genetic) that shape language through iterated learning (biases
on language), and demonstrate that weak biases get expressed more
strongly over time (bias amplification). Other models attempt to lessen
assumption on agents’ innate predispositions even more, and empha-
size self-organization within agents, highlighting glossogenesis (the
development of language from a nonlinguistic state). Ultimately how-
ever, one also has to recognize that biology and culture are strongly
interacting, forming a coevolving system. As such, computer models
show that agents might (biologically) evolve to a state predisposed
to language adaptability, where (culturally) stable language features
might get assimilated into the genome via Baldwinian niche construc-
tion. In summary, while many questions about language evolution
remain unanswered, it is clear that it is not to be completely understood
from a purely biological, cognitivist perspective. Language should be
regarded as (partially) emerging on the social interactions between
large populations of speakers. In this context, agent models provide a
sound approach to investigate the complex dynamics of genetic bias-
ing on language and speech.

10.1 Introduction

10.1.1 Biasing Language

In this chapter, we argue not only that the best approach to understanding
the origins and present-day diversity of language is rooted in evolutionary
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Genetic Biases in Language 257

theory, but also that extra-linguistic factors, more specifically biological ones
in our genes, may play an important role in shaping language. Likewise, these
factors do not act in a void, but interact with multiple constraints and affor-
dances on different scales in parallel. So-called cultural evolution of language
(Section 10.1.2) must thus be seen in a rich context (partially) molded by the
biological and cognitive entities that ultimately acquire, use, and transmit lan-
guage – us. Important factors in this context are therefore represented not only
by the brain – it has been recognized for a while now that the brain indeed
shapes language (Christiansen & Chater 2008) – but also by the anatomy and
physiology of the vocal tract and hearing organs. Just to illustrate, it has been
recently suggested (Butcher 2006) that the very high rates of chronic otitis
media (an infection of the middle ear that impacts hearing) affecting Australian
Aboriginal children might explain striking features of the phonological systems
of the Australian languages such as a lack of fricatives and many distinctive
places of articulation. This process of biasing, whereby extra-linguistic fac-
tors, ultimately with a genetic basis, can affect cultural evolution of language,
has been suggested to be a rather general influence playing a role in explaining
not only universal tendencies (when these biases are shared across the whole
human species) but also linguistic diversity (when the biases differ between
human populations in magnitude or direction) (Ladd, Dediu & Kinsella 2008;
Dediu 2011).
There are multiple lines of evidence supporting genetic biasing of language

and many interesting directions to explore,1 but we focus on a very specific set
of questions: What can we conclude about the nature and effects of such biases
from the body of computational modeling work and experimental approaches
(using both human subjects as well as animal models) on language change and
evolution? To this end, we begin by discussing some fundamental notions nec-
essary for a cultural evolutionary approach and the influence of genetic biases
(Section 10.1.2), followed by an overview of some relevant computer models
(such as various iterated learning approaches [Sections 10.2.1 and 10.2.2] but
alsomodels that do not belong to this tradition [Section 10.2.4]). Computational
models such as these are particularly interesting to investigate processes that
develop on long time scales, since they allow for experimental manipulation
not available otherwise (de Boer & Fitch 2010). However, a sound empirical
foundation, possible in series with other models, is hereby essential in order
to make testable predictions, such as those corroborated by the experimental
results in Section 10.2.3. Finally, we discuss models that address the possibility

1 Both authors are part (together with Dr. Scott Moisik) of the Genetic Biases in Languages and
Speech (G3bils) project, which actively investigates the influence of the vocal tract as a bias-
ing factor on phonetics and phonology (http://www.mpi.nl/departments/language-and-genetics/
projects/genetic-biasing-in-language-and-speech).
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258 Rick Janssen and Dan Dediu

of feedback from culture into the genome through the Baldwin Effect
(Section 10.3). This overview of a diverse literature (and we must highlight
the fact that few studies were designed with genetics in mind) suggests that
while genetic biases can indeed affect language, it is still too early to draw any
general conclusions regarding the strength required for such biases to become
manifest and be measurable in human populations (Section 10.4).

10.1.2 Cultural Evolution of Language

Many accounts of the nature, origins, and evolution of language do not consider
evolutionary processes to play any important role (e.g., Chomsky 1986). Even
the field of historical linguistics (e.g., Campbell & Poser 2008), which tries
to understand the factors, processes, and outcomes of language change across
time, does not have an evolutionary outlook and seems generally rather critical
of approaches that use such concepts and methods (see, for example, the quite
cold reception of modern phylogenetic approaches to questions of language
relatedness, the dating of proto-languages, and the expansion of language fam-
ilies such as Indo-European and Austronesian (e.g., Gray & Atkinson 2003;
Pagel, Atkinson & Meade 2007; Dunn, Greenhill, Levinson & Gray 2011;
Bouckaert, Lemey, Dunn, Greenhill, Alekseyenko, Drummond, Gray, Suchard
& Atkinson 2012)). On the other hand, there are other proposals that consider
biological evolution to be the main explanatory factor behind the human use
of language (e.g., Pinker & Bloom 1990), but they miss the intervening causal
role played by cultural evolution by emphasizing biological nativism.
The emphasis on biological evolution is not surprising. Darwinian theory,

based on the principles of replication, variation, and selection, has proven
to be an immensely powerful approach to explain biological complexity
(Carroll 2005). In a nutshell (and glossing over many fascinating aspects of
evolutionary biology), when a population of organisms reproduces, slight vari-
ations will be introduced in the offsprings’ genome by mutations. These muta-
tions are essentially random, most of them having a neutral or negative effect
on an organism’s phenotype. Mutations might, for instance, cause inheritable
diseases such as sickle-cell anemia (OMIM2 603903) or developmental speech
dyspraxia (OMIM602081). A small number of mutations, however, might have
positive effects. They might, for example, give an animal a slightly increased
resistance to certain pathogens, enlarged cardiovascular capacity, or enhanced
cognitive capabilities. If these improvements are small, just one of them is of
course unlikely to be saliently noticeable. However, advantageous mutations

2 For the sake of brevity, we will refer to OMIM (Online Mendelian Inheritance in Man; http://
omim.org) unique identifiers that give access to brief up-to-date descriptions and the relevant
literature.

Cambridge Core terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781316676974.010
Downloaded from https://www.cambridge.org/core. Max-Planck-Institute for Psycholinguisti, on 06 Aug 2018 at 09:46:20, subject to the

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316676974.010
https://www.cambridge.org/core


Genetic Biases in Language 259

will accumulate as an effect of selection whereby the organisms with an
increased fitness (in part ascribable to these advantageous mutations) are more
likely to reproduce, transmitting the mutations to their offspring.
A common misconception is that evolution is teleological (Hanke 2004). For

instance, the notion that we,Homo sapiens, have evolved to have large cognitive
capabilities is most likely a matter of circumstances more than anything else.3

As amatter of fact, natural selection should be viewed as a systemmerely acting
as a filter on the existing variation in a population, inmanyways similar tomany
optimization algorithms used in computer science (e.g., metaheuristics). Thus,
evolution produces ad hoc solutions that are merely appropriate for the situation
at hand, without any notion of design, aesthetics, elegance, rational insight, or
intentionality. This lack of foresight is strikingly apparent when looking at what
could be considered “design errors” such as photoreceptors pointing away from
the direction light strikes the retina in vertebrates.4 Design errors demonstrate
that showing that Darwinian processes are at work does not warrant the conclu-
sion that they should necessarily result in sophistication and, conversely, that if
we observe sophistication, Darwinian processes are per definition responsible.5

Nevertheless, natural selection is widely considered the most powerful expla-
nation for the origin of biological complexity on phylogenetic time scales (i.e.,
pertaining to the formation of taxonomic groups). As such, the proposition that
biological evolution is responsible for the complex system of language as well
seems to be a logical one (e.g., Pinker & Bloom 1990). Upon closer consid-
eration, however, given the fact that languages change much faster than any
biological evolution to fully account for it (Christiansen & Chater 2008), this
appears unlikely.
Even though the principles of replication, variation, and selection are simple,

biologists have been vigorously debating the “level” they act on. Intuitively,
this level might appear to be located at the scale of individuals, i.e., organisms
competing with each other for food andmates. The idea of group-level selection
on the other hand has been invoked to explain some widely observed behaviors
such as altruism as demonstrated by, for instance, the use of distress calls in

3 There is however considerable debate on the evolution of the human brain, ranging from an effect
of social (Dávid-Barrett & Dunbar 2013), sexual (Miller 2001), environmental (Calvin 2002), or
other selective pressures.

4 There is some debate on whether the inverted vertebrate retina is the result of a historically
frozen maladaptation or a trade-off between optical and other physiological (e.g., metabolic)
costs (Kröger & Biehlmaier 2009).

5 What is described here is also known as the logical fallacy of “affirming the consequent”
Although natural selection is one mechanism that explains complexity, other mechanisms might
do so comparably well. For instance, ice-crystal or spiral-galaxy formation does not require
descent with modification but self-organizes following mere physical, in situ interactions (e.g.,
Lin & Shu 1964).
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260 Rick Janssen and Dan Dediu

groups of meerkats when spotting a predator (Wynne-Edwards 1962; Wynne-
Edwards 1986).6 More recently, the gene-centered view of selection has been
popularized, providing an alternative for explaining altruism and introducing
the concept of the extended phenotype that reaches beyond the confines of the
biological organism and includes “expressions” such as bird nests and termite
mounds (Hamilton 1963; Williams 1966; Dawkins 1976).
Essentially, the debate on the level of selection centers on the conceptualiza-

tion of the replicating unit (or replicator) that drives evolution. Interestingly, if
Darwinism is not confined to the domain of biology alone (and why should
it?), these replicators might not just exist at different levels of a biological
system (multilevel selection; Okasha 2006; Wilson & Wilson 2008) but also
in different domains altogether. One such domain might of course be human
language. So, what might a linguistic replicator look like?7 Consider that a
human community engaged in linguistic exchange is producing a population of
utterances that are actively used in everyday speech. Similarly to how organ-
isms are “composed” of genes, utterance can be regarded to be composed of
linguemes, “building blocks” that can change and be recombined to form new
utterances (Croft 2000). Examples of these linguemes – linguistic replicators –
are phonemes, morphemes, words, or even grammatical rules. While genes
are transmitted during reproduction from parent to offspring, linguemes are
transmitted from teacher to learner, for instance during, but not restricted to,
first language acquisition during childhood. As we know, genes that are likely
to be transmitted during reproduction will, ceteris paribus, eventually spread
throughout a population. Similarly, those linguemes that are likely to be trans-
mitted from teacher to learner will eventually proliferate in a cultural population
of linguistic units. Even though there are obvious differences between genes
and linguemes, such as the degree of horizontal information flow, the encod-
ing medium, and the speed of change and transmission noise,8 there are the
(striking) common principles of reproduction, variation, and selection (Levin-
son &Gray 2012) that seem to provide a valid explanation for the complex phe-
nomenon of language without having to rely on biological determinism alone.

6 The confusion on the level of selection is also visible in the abuse of Darwnian theory in the
justification of e.g., eugenics and racialism during the early 20th century.

7 Even if this question remained unanswered, it would not invalidate the viewpoint that language
evolves in a cultural domain. Mendelian genetics has been successfully practiced before the
discovery of the encoding medium, DNA. Our current understanding of cultural evolution might
be of a comparable advancement.

8 The term “noise” should be understood in its broadest sense here. The brain has an active, heuris-
tic role in selecting which linguemes are transmitted (Christiansen & Chater 2008). Noise in
cultural selection is therefore not as uniform as in genetics but likely structured to some degree
(see e.g., Farrell, Wagenmakers & Ratcliff 2006 for the presence of pink noise – structured noise
showing self-similarity – in cognitive performance).
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Genetic Biases in Language 261

Still, we have not discussed a good analogue of selective pressure in biol-
ogy. Section 10.2 addresses this issue by explaining selection on linguemes as
a transmission bottleneck by means of a series of computer modeling exper-
iments. Interestingly, many of these models imply, as briefly mentioned in
Section 10.1.1, that cultural evolution of language converges to particular states
and that this convergence is influenced by biasing factors. Examples of these
factors could be environmental (e.g., altitude, humidity) (Everett, Blasi &
Roberts 2015), social (e.g., peer pressure, conformity bias, sexual selection),
cognitive (e.g., working memory capacity, language impairments like apha-
sia), genetic (e.g., FOXP2 (OMIM 605317), ASPM (OMIM 605481),MCPH1
(OMIM 607117)), or anatomical (e.g., hard-palate curvature, jaw length) (Hen-
rich & McElreath 2003). Biases such as these might co-exert a likely very
subtle selective pressure in cultural evolution of language, potentially provid-
ing an explanation for why languages differ. Importantly, these differences do
not imply strong biases per se: It is very unlikely that human languages differ
because populations have different innate, all-or-nothing cognitive or anatomi-
cal predispositions that allow for or prohibit certain language features. Instead,
genetics might, for example, influence a speaker’s “effort” associated with pro-
ducing certain speech sounds or patterns. These efforts might then, over time,
lead to a cascading effect via cultural evolution. In such a case, even the weak-
est bias might get amplified to the point where it could (even) lead to phonemic
discriminability (Ladd et al. 2008; Dediu 2011). In fact, this amplification effect
has been observed in computer simulations (Section 10.2.2) and, arguably, in
animal models (Section 10.2.3).
As a slightly more concrete example of anatomical biasing factors, it is not

hard to imagine a particular hard palate shape that, say, eases ingestion and
disturbs the production of particular speech gestures while facilitating others.
While speculative, similar propositions have been postulated before. For exam-
ple, Ladefoged (1984) made the observation that while Italian and Yoruba (a
Niger-Congo language) have very similar vowel systems, there are nevertheless
slight differences, possibly due to a minor anatomical between-group variance
(e.g., a slightly larger mouth opening in Yaruba speakers, lowering the second
formant in vowels). Importantly, such a very subtle, almost undetectable bias,
would not prevent any Italian from speaking Yaruba if being exposed to it from
infancy (and the other way around). On a glossogenetic level (i.e., at the time
scales concerning historical language change), however, these subtle anatom-
ical biases might become saliently expressed on a cultural, population level.
Culturally amplified biases such as these could explain the present-day dis-
tributions of features seen in human language, such as Yoruba second formant
lowering orword order, not as having arrived abruptly by a chancemutation giv-
ing rise to “language modules” (Fodor 1983) or “language acquisition devices”
(Chomsky 1965), but as (weakly) emerging from the interactions between large
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262 Rick Janssen and Dan Dediu

populations of situated speakers. This then effectively describes a dynamical
system that slowly gravitates toward particular attractors in an articulation-
landscape that is (partially) formed by these biases.
To summarize, language can thus be seen as a system evolving in itself,

thereby reducing the plausibility of strong biological, even nativist explana-
tions for its structure, diversity, and evolution. However, this does not imply
that extra-linguistic factors are of no effect. When we consider the two evolv-
ing systems – biological and cultural – in parallel, it is not hard to see how they
might be compared to how organisms, such as predator and prey or parasite
and host, are coevolving (Richerson & Boyd 2008). Likewise, culture and biol-
ogy might be exerting reciprocal selective pressure on each other, raising the
possibility that, on one hand, biology influences (or biases) culture and, on the
other, stable cultural features become “inscribed” into the (biological) genome
(Section 10.3). Even without addressing the full complexities of coevolution
(Section 10.3), we can already be sure that cultural and biological evolution
can by no means be considered independent from each other.

10.2 Computer Models of Cultural Evolution

10.2.1 Iterated Learning

As discussed in Section 10.1.2, cultural evolution of language centers on the
idea that linguistic replicators are in competition with each other, similarly to
how genes might be in biology. To investigate cultural evolution in computer
simulation, Kirby &Hurford (2002) developed the Iterated Learning (IL) agent
model. IL is of particular interest to the topic of genetic biasing not only because
it explains some features unique to human language (Hockett 1960) without any
(a priori) requirement on biological evolution but also because it allows for a
precise specification of the nature and strengths of these biases (Section 10.2.2).
Briefly summarized, IL simulates language transmission from teacher to

learner. This works by agents conveying “meanings” to each other by trans-
mitting “utterances.” At the time of this writing, there are many incarnations
of the procedure. To start of simply, in Kirby & Hurford (2002), only one pair
of teacher and learner exists at any time (a population of two), where the old
learner replaces the teacher when a new learners is introduced. This popula-
tion model is now often considered to be a sort of sequential teacher-learner
chain (Fig. 10.1). The conversion of meanings to utterances (and vice versa) is
determined by the agents’ internal rules (i.e., a “grammar”).
In the chain model, once all conveyed meanings are learned, the learner will

take the role of teacher and attempt to convey the interpreted meaning to the
next learner. By transmitting meanings from agent to agent, language trans-
mission, and thereby cultural evolution of language, is modeled. The longer
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Genetic Biases in Language 263

Figure 10.1 The IL social structure. Agents transmit utterances to each other
following the arrows. Solid arrows mark those channels available in the
monadic experiments, modeling vertical information transfer (e.g., from sin-
gle parent to single learner). Dashed arrows mark communication channels
available in polyadic setups, modeling oblique flow (e.g., teachers that teach
multiple learners, while learners learn from multiple teachers). The classi-
cal IL paradigm does not normally allow for horizontal communication (e.g,
between agents from the same “generation”). Note that there is no biological
evolution in IL: agents’ architecture remains unchanged.

the chain, the more transmissions occur and the larger the time-frame that is
modeled. Importantly (as we will see at the end of this section), the number
of meanings that have to be, in principle, expressible is much larger than the
number of permitted utterances transmitted between teacher and learner.
When having to produce an utterance, meanings to be conveyed are selected

randomly from a fixed, global pool and structured following an “Agent-Patient-
Predicate” syntax. For example, a meaning could be structured as 〈Agent =
Henk〉. When a teacher has no specified utterance associated with a meaning
to be expressed, a new utterance has to be invented. This is done by gener-
ating arbitrary-length, random character substrings for the components in the
meaning that are unknown, while the known components are simply filled
in. For example, if a teacher would utter 〈Patient = Ingrid〉 as “ingrid,”
〈Predicate = Kust〉 as “kust,”9 but have no way to express the meaning
〈Agent = Henk〉, the final utterance might become something as “fmguhba
kust ingrid.” Agents are initially naive. Therefore, when starting the sim-
ulation, all utterances produced by the first agent in the chain are completely
random.

9 Dutch third-person singular for “to kiss.”

Cambridge Core terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781316676974.010
Downloaded from https://www.cambridge.org/core. Max-Planck-Institute for Psycholinguisti, on 06 Aug 2018 at 09:46:20, subject to the

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316676974.010
https://www.cambridge.org/core


264 Rick Janssen and Dan Dediu

Learners do not simply internalize what they hear when they get exposed
to utterances, but they are able to make generalizations. The precise details of
these generalizations can vary from study to study, but what is more important
is that they all lead to similar long-term dynamics as meanings get conveyed
from agent to agent over long time periods. To summarize, all strategies follow
the principle of substituting many complex rules with fewer simpler ones, when
there is similarity between the complex rules. More precisely: when multiple
meanings are expressed by similar utterances (i.e., they have similar syntax
subtrees), a new rule is generated that substitutes the lower-level syntax instance
with a more general, higher-level rule. This rule is then applicable to many
meaning-to-utterance conversions. These more general, higher-level rules thus
enable the agent to generate compositional syntax.

Having laid out this framework of cultural evolution of language, the results
provided some interesting observations. Over many transmissions, the size of
the grammar (i.e., the number of rules converting meaning to utterance) and the
number of expressible meanings were recorded. These measurements showed
three distinct phases (Fig. 10.2).

Figure 10.2 A generalization of the phases observable in a typical IL run.
Shown is some dependent variable (DV), such as the number of expressible
meanings, over time. The second phase (Iteration 100–200) shows a chaotic
phase transition following a first phase of stabler dynamics, in turn leading to
a state of (semi-)stationary convergence.
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Genetic Biases in Language 265

In the first phase, both the number of expressible meanings and the size
of the grammar remain small, with minor fluctuations over time. Inspection
of the agents’ syntax trees show that they are completely flat. This is also
shown when inspecting the actual utterances used by the agents. These are
completely arbitrary and random. For example, the meaning 〈Agent = Henk,
Patient = Ingrid, Predicate = Kust〉 could be expressed by the utter-
ance “ddadbbbabeedaeee,” while a similar sentence 〈Agent = Sjaak,
Patient = Ingrid, Predicate = Kust〉 could be expressed by the utterance
“d.” In other words, utterances are completely idiosyncratic. Each meaning is
coupled with a unique utterance and vice versa, and there is no underlying,
general structure to them. In many ways, this first phase can be likened to a
proto-language as hypothesized to be used by earlier hominids using idiosyn-
cratic grunts or gestures to convey meaning (Dediu & Levinson 2013).
The second phase marks a period of large fluctuations in grammar and mean-

ing size, following a brief burst of rapid inflation. It appears there now exist syn-
tactic categories. Somemeaning components might now be regularly expressed
by the same set of characters, although this is only true for a small number of
them. This is reflected in the syntax trees the agents use, which are no longer
completely flat, but show occasional branching (the language is said to be par-
tially compositional). Overall, due to the large fluctuations, it is hard to under-
stand what is precisely going on in this phase. One could argue, from an opti-
mization algorithm perspective, that the agents are exploring a search space,
briefly occupying some local optima, none of them stable enough to lead to ter-
minal convergence. From a dynamical systems perspective, this second period
is typical of what is known as a phase transition, analogous to phase tran-
sitions in physical systems, e.g., freezing and melting of liquids and solids,
respectively.
Eventually however, the chaotic fluctuations in the second phase settle down

in a third, static phase where all meanings are expressible using a small num-
ber of grammatical rules. In this phase, the language is largely compositional.
The rules the agents use are applicable to many linguistic instances and syn-
tax trees reflect this by showing extensive branching of syntactic categories.
Few meanings are any longer expressed idiosyncratically. For example, the
meaning component 〈Agent = Henk〉 could be consistently expressed by the
substring “qasd.” Furthermore, the usage of particular types of meaning com-
ponents (i.e., verbs or nouns, predicates or agents/patients) is reflected in the
regular positioning in utterances. This is a clear analogue to the use of a con-
sistent word order in actual human languages. Kirby & Hurford (2002) further
illustrated the potential of the IL model by showing emergence of recursive
syntax, but now following a simplified model with agents embedded in a linear
chain. Here, utterances are propagated through the chain, with agents first tak-
ing the role of learner followed by subsequently assuming the role of teacher
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(Fig. 10.1). In this experiment, utterances were interpreted by a perceptron (a
simple type of feedforward artificial neural network), while they were produced
using statistical inferencing. Interestingly, in an additional experiment (Kirby
& Hurford 2002), the ratio of requested meaning was changed such that some
meanings were either often or rarely requested, mirroring a Zipfian distribution
(Zipf 1949). In this case, the commonly requested meanings remained idiosyn-
cratic, resisting the transmission bottleneck induced generalizations. This par-
allels the use of irregulars, like the verb “to be” in English.
How might the emergence of compositionality, and even recursive syntax,

follow from simple iterated transmission? Consider how agents need to transmit
a large number of meanings, with only a limited number of opportunities. This
information bottleneck implies that there is no “time” for learners to exhaus-
tively transmit every meaning if they were expressed by idiosyncratic utter-
ances. In such a case, old idiosyncratic utterances are “forgotten,” continuously
requiring the invention of new ones. However, if, instead of idiosyncratic utter-
ances, compositional ones could be transmitted, many more meanings would
“fit through” the bottleneck. This is because such utterances are based on a
more general grammar, applicable to many meaning instances, instead of on an
idiosyncratic grammar, which only describes very fewmeaning instances. Only
the most general rules therefore survive the selective pressure the information
bottleneck exerts, because only those general rules, applicable to many linguis-
tic instances, are invoked often enough to be guaranteed transmission. Using
Darwinian terminology: the more general linguistic replicators have a larger
chance of being summoned, thus they are “fitter,” and thus they are more likely
to actually replicate when compared to idiosyncratic replicators. This explains
how the complex system of human language can be considered as itself evolv-
ing to become learnable, instead of the agents, e.g, human beings, evolving to
learn the language. This way, it appears cultural evolution alone can be suffi-
cient for features unique to human language, such as compositionality (Hockett
1960), to emerge.
Altogether, however, one might question the claims of the IL experiments

that compositionality and recursion in the resulting languages are the effect of
the transmission bottleneck alone. First of all, instead of becoming composi-
tional, a language might equally well converge to a state where every mean-
ing is expressed by a single, simple utterance. In this case the language has
become maximally transmissible (learnable) but has not become expressive –
the language is essentially one big homonym (this issue will be further dis-
cussed in Sections 10.2.2 and 10.2.3). Second, the learning algorithm agents
use, whether based on inductive logic, neural networks, Bayesian inferencing
(Section 10.2.2), or on some other method, is an essential component of the
model that co-determines what attractors the language will converge to. For
example, in the case of neural networks, it has been shown that only particular
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types of networks lead to this convergence, while others cannot overcome an
initially naive state and initiate autocatalysis, or are unable to produce faithful
reproductions in noisy environments (Smith 2001). This latter criticism then
makes a good case that the IL experiments do not explain glossogenesis – the
(evolutionary) origin of language in our species from a non-linguistic state. In
effect, IL “merely” explains how e.g., the cognitive apparatus, once it provides
adequate functionality, is able to shape the convergence of cultural evolution,
while it says little on how this apparatus was evolved, whether it was specif-
ically tuned for language learning by domain-specific adaptation, or whether
human agents apply more general learning strategies to communicate with each
other (explaining the linguistic features we see today as a result of domain-
general exaptations – the utilization of existing adaptations already in place for
novel purposes). These, in many ways even more theoretical, questions will be
further addressed in Section 10.3. For now, it can be said that the IL framework
mainly models language change on a glossogenetic level, while ontogenetics
(i.e., developmental factors that shape the learning algorithm) are of a signifi-
cant influence but not the main focus.
Now that we have established that the learning algorithm, modeling human

cognition, has a large influence on the convergence of language via cultural
evolution, we might propose a generalization. Instead of the human brain exert-
ing biases, we could imagine, as mentioned in Section 10.1.1 and 10.1.2, that
human anatomy and physiology, even at a relatively low, mechanistic level,
might exert such biases comparably well. For example, the flexibility of the
tympanic membrane or the tone of muscles attached to the ossicles in the inner
ear might impose low-level perceptual biases. Alternatively, during speech pro-
duction, it is not hard to imagine how the shape of the vocal tract, such as hard-
palate curvature or lower vocal tract volume, could make the production of par-
ticular speech sounds easier or harder, exerting biases in their own terms. As
theorized (Section 10.1.2), biases such as these might get saliently expressed
even when very small because they can be amplified when iteratively transmit-
ted from speaker to learner. However, bias amplification rest on models with
strong assumptions, the Bayesian IL models, addressed in Section 10.2.2.

10.2.2 Bayesian Iterated Learning

The IL models discussed in Section 10.2.1 explain human language as a system
emerging from the interactions between agents, strongly implying that com-
monly seen linguistic features need not be biologically innate or had to evolve
by natural selection. However, a series of follow-ups on the IL experiments
casts doubts on these assumptions, while making interesting predictions in their
own right. The IL models were based on agents using various algorithms such
as ones based on neural networks or inductive logic. However, Griffiths and
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Kalish (2007) use agents that use Bayes’ theorem (Eq. 10.1) to reason about
language features.

P(h|d) = P(d|h)P(h)∑
h∈H P(h)P(d|h)

(10.1)

In the context of IL, Bayes’ theorem (Eq. 10.1) describes how agents derive
a distribution of language hypotheses (called the posterior distribution, or
P(h|d)) from the observed data (in the form of a likelihood distribution, P(d|h))
and some sort of bias (a prior distribution on language hypotheses, P(h)). This
bias could, for instance, represent the neural, anatomical, or genetic biases dis-
cussed in Section 10.1.2. (The denominator in Eq. 10.1 denotes a normalizing
factor.)
To provide a concrete illustration of how this works, consider an IL chain as

described in Section 10.2.1, but now with Bayesian agents transmitting utter-
ances to each other (Fig. 10.1). Suppose an agent would have to decide on word
order in the utterances they produce, Subject-Object-Verb (SOV) or Subject-
Verb-Object (SVO). If the agent’s prior distribution would be uniform, i.e.,
express a 50% preference for either SVO or SOV, the posterior distribution
would be completely determined by what word order is used by a teacher agent,
and how likely this data is expected to be under different language hypotheses
(for example, perceiving an SVO sentence could imply a 95% likelihood that
the teacher agent generated it under an SVO hypothesis). Conversely, if this
likelihood distribution would be uniform, the prior would dominate. Of course,
these simplified situations would not normally occur and the posterior distribu-
tion on language hypotheses would always be a product of both likelihood and
prior.
Once a posterior distribution has been established, there still remains the

issue of what hypothesis an agent will select. To simplify, two options are avail-
able: sampling and maximizing. When agents are sampling, language hypothe-
ses are selected with a chance proportional to their probability in the pos-
terior distribution. When maximizing, the hypotheses with the largest poste-
rior is selected. Interestingly, the selection strategy used has a large effect on
the resulting languages. When sampling, languages converge on a (Markov
chain’s) stationary distribution that exactly mirrors the prior. This has the impli-
cation that, if human agents are equivalent to Bayesian samplers, the languages
we see today strongly reflect biologically innate predispositions. When max-
imizing, however, convergence is less well understood, but largely seems to
reflect only the ordering of the hypotheses in the prior distribution. For exam-
ple, if the prior distribution would express an 80% bias for SVOword order and
a 20% bias for SOV, we would expect SVO to be used more often than SOV,
but likely not following the 80–20 ratio.
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Kirby, Dowman and Griffiths (2007) emphasized the amplification of weak
priors by maximizer populations, i.e., a prior with only a slight edge over
the other priors might come to dominate over time. This would imply that
strong effects (e.g., common speech patterns of phonemes, “universals”) would
not require strong biases (e.g., neural modules). Smith and Kirby (2008) then
demonstrated that a population of maximizer agents is the evolutionary stable
one over a sampler population, i.e., a maximizer population will resist inva-
sion by a sampler minority, but not the other way around. The reason for this
is that maximizers are more certain what other agents are doing (i.e., maximiz-
ing, selecting the most likely language hypothesis, just like themselves) while
with samplers there is a larger chance agents will choose different hypothe-
ses. Since we know that maximizing is the evolutionary stable strategy, and
since we know that maximizing can amplify biases, the authors conclude that,
altogether, selection should be neutral with regards to prior strength. In other
words, cultural evolution leads to shielding of bias strength (Kirby et al. 2007).

While intriguing, we must emphasize that these conclusions make a num-
ber of assumptions that could be questioned. First, there is the assumption that
a bias’s strength is conspicuously apparent to listeners, and that they all are
comparably salient (in other words, that they all have an effect of compara-
ble magnitude on perceived utterances). But we know that many high-level
language features are invariant to lower-level details (e.g., allophones). For
instance, a large bias that induces prohibitive effort on producing the voiced
bilabial stop [b], will have no effect on phonemic intelligibility in Spanish
if the biased speaker would simply shift to a voiced labiodental fricative [v].
Second, it is assumed biases have homogeneous peripheral costs, i.e., they
are all similar in their effects on an organism’s fitness besides the commu-
nicative one. But if a particular weak bias is disproportionately costly with
respect to, for instance, the ability to swallow or breathe, that bias is probably
still selected against. Thus, the notion of selectively neutrality only applies to
the bias’s effects on communicative accuracy. Third, IL assumes that not only
the utterances but also associated meanings are observable by agents. How-
ever, it is less clear how “meanings,” particularly more abstract ones, can be
observed by human speakers. Fourth, it is known that the apparent dichotomy
between maximizers and samplers Bayesian IL postulates in reality follows a
continuum (Kirby et al. 2007); agents can occupy a position that is intermediate
between sampling and maximizing. Such agents (that are thus not perfect sam-
plers) over time approximate the behavior of maximizers, causing the eventual
language distribution to mirror only the prior ordering. Finally, it is assumed
that language transmission can be likened to vertical transmission in a linear,
monadic chain (i.e., each learner is being taught by exactly one teacher) or
to a population of infinite size (Griffiths & Kalish 2007) (Fig. 10.1). When
situated in heterogeneous, polyadic chains (e.g., learners having two or more
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teachers), however, language convergence strongly diverges from the monadic
chain behavior.
In Smith (2009), it was shown that a polyadic chain of sampling agents con-

verges to the language that has the largest prior, while languages with weaker
priors get suppressed. This runs contrary to the monadic results that show sam-
plers converging on a distribution that exactly mirrors the prior, suggesting a
type of conformist dynamic. Furthermore, increasing bottleneck size increases
transmission fidelity and promotes convergence on the strongest prior (contrary
to a monadic chain, where a smaller bottleneck leads to faster prior expression
(Kirby et al. 2007)). Similar deviating results have been shown by Ferdinand
and Zuidema (2009). First, they showed that homogeneous polyadic maximiz-
ers behave almost the same asmonadicmaximizers do, while polyadic samplers
no longer converge to the prior distribution. This is explained by the observa-
tion that a learner might receive data as a product of multiple teacher agents that
might have entertained different language hypotheses. In other words, the data
learners receive is generated from a “virtual” distribution they have no explicit
internal representation for, therefore they can no longer be Bayesian rational.
The study also investigated heterogeneous polyadic chains where learners had
different prior distributions (e.g., teacher agents had different biases). When
agents were sampling, the language eventually reflects the average of multiple,
homogeneous sampler runs. When maximizing, things get more obfuscated, as
language convergence codepends on prior strength and likelihood structure and
distinctiveness.
In Dediu (2008, 2009), complete populations of spatially dispersed agents

were investigated, thereby including horizontal information flow instead of
the purely vertical or oblique transmission seen in the standard IL chains
(Fig. 10.1). Dediu (2008) showed that (in populations of non-Bayesian agents)
two kinds of biases had different effects on language convergence. With the
“initial expectation” bias (e.g., an innate predisposition for some language
features), these biases very soon get overruled by linguistic drift. However,
the “rate of learning” bias (e.g, an adaptive tendency to acquire particular
language features) behaves more akin to Bayesian monadic samplers in the
sense that weak biases get amplified through cultural transmission. Second,
in Dediu (2009), actual Bayesian agents were then used in the population
model, which showed that agents (whether samplers or maximizers) behave as
monadic chains of samplers, contradicting the results from the polyadic chains
from (Ferdinand & Zuidema 2009; Smith 2009).
These anomalies resulting from relaxing assumptions imply that caremust be

taken when generalizing findings obtained from Bayesian IL models. The find-
ings in Dediu (2008, 2009), Ferdinand and Zuidema (2009), and Smith (2009)
give strong testament to the issue of how to interpret the notions of Bayesian
maximizing and sampling agents and to what extend human agents behave as

Cambridge Core terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781316676974.010
Downloaded from https://www.cambridge.org/core. Max-Planck-Institute for Psycholinguisti, on 06 Aug 2018 at 09:46:20, subject to the

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316676974.010
https://www.cambridge.org/core


Genetic Biases in Language 271

them. Even in the simple, monadic Bayesian chains introduced by Griffiths
and Kalish (2007), it is hard to generalize conclusions on samplers and maxi-
mizers to human “agents” since we cannot assume human beings are Bayesian
rational in the first place (Ferdinand & Zuidema 2009). Given this insight, it
seems that the claim that cultural evolution of language converges on a distribu-
tion that mirrors speakers’ innate biases is definitely too strong. This is further
highlighted by the results that show that different social topologies (vertical or
oblique monadic or polyadic chains, or horizontal populations of agents) can
result in different outcomes of the convergence process, and these results some-
times even contradict each other. Such apparent paradoxes, however, can possi-
bly be explained by noticing that the experiments use, for instance, slightly dif-
ferent learning algorithms. As we have seen, a similar sensitivity is seen in the
population architecture the IL models follow, and the question which structure
is most powerful and most realistic remains unanswered (Mesoudi & Whiten
2008). We note that this sensitivity to initial conditions is typical of complex
systems, implying that one cannot explain cultural evolution of language using
only a reductionistic, component-based account, but that one, at some point,
needs to include the interactions between said “components.” This leads us to
raise the question to what extend predictions made by reductionist models such
as Bayesian IL are corroborated by experiments on human subjects, which is
discussed in Section 10.2.3.
Many of the anomalies of the Bayesian models could potentially be

addressed by extending the hypothesis space the agents use in some way
or another. For example, Burkett and Griffiths (2010) modified their original
model to allow for multiple, heterogeneous teachers by using a hyperprior (a
prior distribution over nested prior distributions; Bernardo & Smith, 2009).
Using the same approach, Smith, Tamariz, and Kirby (2013) explicitly showed
that compositionality in language depends not only on a requirement for learn-
ability or generalizability but also on expressivity (a concern we raised in
Section 10.2.1 and that is also observed in IL studies on human subjects; see
Section 10.2.3). Using these modifications, it is theoretically possible to model
any cognitive process by using nested hypothesis spaces in a hierarchical con-
figuration (Perfors 2012). However, we argue that this more complete specifi-
cation of the hypothesis space, powerful as it might be, negates one of the most
appealing aspects of Bayesian IL, namely its simplicity and its tractability. In
these cases, the use of Bayesian agents, in terms of epistemological comprehen-
sibility, reverts to paradigms that are often regarded as opaque, such as artificial
neural networks.
To conclude, the Bayesian IL models give us some strong suggestions on

how genetic biases might be expressed in languages, but one should keep in
mind that they are strongly reductionist in nature, while describing a system
that shows all the characteristics of being dynamical. The prediction that genes
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might be shielded from natural selection following cultural evolution of lan-
guage should therefore probably not be taken as the final word on this topic,
although it is an intriguing one nonetheless (see Section 10.3 for another exam-
ple of shielding). Probably the main take-home message from these studies is
that genetic biases can indeed affect the outcome of cultural evolution of lan-
guage, but in very complex ways, and that bias strength is probably not linearly
related to its outcome.

10.2.3 Human Subject Trials and Animal Models

One obvious way of validating the IL models is by testing if human subjects
perform in a similar manner. A follow-up on the computational IL studies
employed chains of human “agents” that had to generate and transmit utter-
ances (strings of characters) describing meanings (pictograms that represented
colored, moving objects, e.g., a blue, spiralling square) (Kirby, Cornish &
Smith 2008). Utterance-meaning pairs were then relayed to a second subject
tasked with replicating them, in the process transmitting them to a third learner,
etc.
Results showed that the “language” the subjects produced converged to an

underspecified state (i.e., many homonyms were used), paralleling some of
the computational IL experiments mentioned in Sections 10.2.1 and 10.2.2
by Smith et al. (2013). However, when homonyms were filtered in the trans-
mission line, the utterances became much more expressive while remaining
learnable. Again, mirroring the computational IL models, utterances became
increasingly structured (i.e., compositional) further down the IL chain. More-
over, since, from the subjects’ perspective, both experiments were of an indis-
tinguishable nature, it was concluded that subjects’ intentions, learning strate-
gies, or linguistic background (e.g., their native language) were not a factor in
the outcome. However, we speculate that this latter conclusion (on linguistic
background) is based on using homogeneous subject pools with little variation.
More specifically, if pools were used that grouped subjects on cultural or eth-
nic background, language convergence is more likely to be different between
groups. If this hypothesis indeed was to be established, it could suggest possible
innate/acquired biases.
Similar studies on human subjects (Perfors & Navarro 2011; Perfors &

Navarro 2014) showed comparable results, but instead of using pictograms,
stimuli consisted of simple squares of different sizes and colours. Multiple tri-
als were conducted where the stimulus space followed a smooth gradient (i.e.,
stimuli each differed from each other to a similar extend) or a more discontinu-
ous one (i.e., some stimuli were very similar, while others were very different).
In the gradient condition, utterances converged to an underspecified state, simi-
lar to the pictogram stimuli without the expressivity requirement by Kirby et al.
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(2008) and what was emphasized in the Bayesian model by Smith et al. (2013).
With the discontinuous stimuli, however, the language used at the end of the
IL chain reflected the discrete profile of the stimulus-space, even without any
explicit requirement for expressivity. In other words, language convergence is
influenced not only by innate (e.g., genetic, neural, anatomical) biases but also
by the environment (represented by the stimuli distribution) subjects were sit-
uated in. A discontinuous environment (i.e., one that provides, one could say, a
template for semantic categorizations and an implicit requirement for expres-
sivity) is then able to prevent language convergence to an underspecified state.
Furthermore, while the Bayesian sampler studies predict faster convergence
with smaller bottlenecks (Section 10.2.2), Perfors andNavarro (2014) show that
a larger bottleneck will reflect the environmental biases more strongly. Indeed,
a small bottleneck leads to another instance of convergence to an underspec-
ified state (one could say, learners had not enough information to deduce any
requirement for expressivity). Overall then, any notion of (genetic) biases can
only be considered in a situated context. Not only is the cultural expression of
such biases dependent on the interactions between agents, but the (inanimate)
environment itself is a factor as well.
As we have seen, the human subject experiments (Kirby et al. 2008; Perfors

& Navarro 2011; Perfors & Navarro 2014), as well as their computational ana-
logues discussed in Sections 10.2.1 and 10.2.2, consider cultural evolution of
language by generating some form of utterance to express multiple meanings.
When this requirement for expressivity is relaxed, the language is probable to
converge to a non-compositional, underspecified state, potentially undermining
the predictive power of the IL paradigm. A second point of attention on human
subject IL studies is that utterances are defined to be discrete, i.e., decompos-
able in principle (e.g., a string is composed out of discrete characters). This
decomposabilitymight be less inherent to continuous speech. Finally, one could
argue that the results rely on an existing predisposition for language process-
ing in adults, as was already mentioned in Section 10.2.1. In reality, it is first
language acquisition in infants that we should consider to be essential in the
replication phase in cultural evolution language.
Results by Verhoef and de Boer (2011) and Verhoef, de Boer, and Kirby

(2012) argue that these critiques are refutable by proposing a generalization
of the traditional IL setup. Instead of having subjects tasked with conveying
meanings using discrete utterances, they were required to replicate sounds with
a slide whistle. This way, any implicit linguistic assumptions the subjects might
impose on the task were attempted to be negated, while also lessening any
inherent compositional structure by using a continuous signal. Following this
approach, four chains of ten subjects were investigated, each showing a gradual
increase in systematic recombination of signals and their utilization in form-
ing compositional utterances. This was also confirmed by showing that the
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normalized distance between subjects’ received and produced utterances
decreased the more often is was transmitted. Moreover, the Shannon entropy
(i.e., the “information density” or “signal uncertainty”; Shannon 1948) of pro-
duced utterances decreased likewise, confirming the increasingly composi-
tional nature of signals and their usage of shared elements.
The human subject experiments discussed so far seem to largely corroborate

the predictions of the computational IL models. However, we argue that there
are notable interpretational differences. First of all, in the computational mod-
els, agents had perfect memory. When they heard an utterance they were able
to, in principle, replicate it flawlessly. Thus, the information bottleneck exerting
selective pressure in cultural evolution is usually regarded as a logistic one: An
agent can only transmit as many sounds as the bottleneck provides an opportu-
nity for. However, the experiments with human subjects strongly suggest that
the bottleneck is a result of limited memory capacity. Subjects are not able to
learn all utterances by heart, even if they were exposed to all of them (Verhoef
& de Boer 2011; Verhoef et al. 2012), and they are therefore forced to resort to
making generalizations. Insofar, this bias in human subject IL seems to be, for
a large part, cognitive in origin.
Intriguingly, although animal communication is often judged to be qual-

itatively different from human language (Hockett 1960), cultural evolution
has also been established in nonhuman animals. A study by Fehér, Wang,
Saar, Mitra, and Tchernichovski (2009) investigated “language” convergence
in zebra finches, Taeniopygia guttata, using an experimental design largely
similar to the IL studies. When growing up in isolation, the structure of the
songs zebra finches produce is markedly different from those produced by
zebra finches interacting with each other, demonstrating unusually long syl-
lable duration, stuttering, and more broadband noise. In a first experiment, four
zebra finches grown up in such a socially isolated situation served as tutors for
juveniles. The juveniles, however, did not copy the tutors’ song structure with
high fidelity. Instead, the songs appeared more similar to the wild-type songs.
When transmitted in succession from bird to bird, like in the IL experiments,
song structure approached the wild type asymptotically. A similar convergence
was found when isolates were founding, genetically as well as culturally, small
colonies of zebra finches that allowed for horizontal transmission.
Conceptually, the zebra finch study directly addresses the influence of

(genetic) biasing in cultural evolution. More specifically, there seems to be
an intrinsic bias that forces the zebra finches to converge on the wild-type
song structures, even when founded by isolates. This has a number of possi-
ble explanations. First, we suggest that the song structures in isolates and the
tutored birds is resultant of one and the same bias and that the expression of
this bias accumulates the more often it is transmitted (as would be expected
from the amplification of weak biases following Bayesian IL usingmaximizers;
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Section 10.2.2). In that case, however, the precise nature of the bias (e.g.,
anatomical, perceptual) is hard to pin down on face value. Alternatively, how-
ever, one might propose that the bias does not manifest in the isolates at all,
implying some transmission factor between individuals is responsible for the
wild-type convergence. For instance, it might be possible that the zebra finch
mimicking behavior introduces a bias that is unused and therefore not expressed
when birds develop in isolation. Perceptual biases, again likely not of impor-
tance in isolates’ song structure, might introduce convergence to wild-type
songs equally well. However, production biases (e.g., anatomical) seem less
likely, since song production is a factor that is of comparable utilization in
both isolates’ as tutored birds’ songs. Finally, there might be some sort of
sexual selection in the colony model, e.g., females are more likely to mate
with males that produce wild-type–like songs (although this seems unlikely
given the observation that both (single-sex) chain as well as (mixed-sex) colony
experiments produce similar (i.e., wild-type songs).

10.2.4 Self-Organization of Vowel Space

The IL model (Sections 10.2.1 and 10.2.2) is a powerful approach and its
predictions have been supported by human subject as well as animal mod-
els (Section 10.2.3). Furthermore, Bayesian IL (Section 10.2.2) allows the
precise specification of priors that can be interpreted as representing innate
biases with an (ultimately, at least partial) genetic basis. A problem however,
as already addressed in Section 10.2.2, is its contradictory, strongly reduction-
ist nature while describing language as an emergent property in a dynami-
cal system. Moreover, the provided precision in defining priors constitutes a
double-edged sword. More specifically, when modelling a natural system, the
bias is often not known in detail and therefore hard to formalize in a Bayesian
way. An alternative strategy is to look at cultural evolution of language from
a self-organizing, dynamical systems perspective, in many ways resembling
exemplar-based phoneme perception models (e.g., Kruschke 1992; Johnson
2005).
A study by de Boer (2000a, 2000b) showed that a self-organizing,

population-level system can explain vowel dispersion in human languages
accurately. Pairs of agents are iteratively selected to play an “imitation game.”
One agent initiates the game by transmitting a vowel that the imitator tries to
match to one of its internally stored vowel prototypes using the Euclidean dis-
tance between formants. The imitator in turn produces a vowel based on the
selected prototype, which the initiator in turn matches to a prototype as well.
If both agents classify the same prototype, the communication game is a suc-
cess and the imitator’s prototype is shifted toward the perceived vowel. New
prototypes are produced following unsuccessful games when the closest match
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has a matching history too successful to be discarded. The prototype space is
periodically cleansed based on the success history of prototypes.
The results show that, after 200 games, clusters in the vowel space start to

form, explained by the fact that agents try to imitate each other while there is
(cultural) selective pressure to have a maximum number of maximally distin-
guishable vowels. Thus, after 2,000 iterations, the vowel space is occupied by
a few, tight clusters that are (between-cluster) maximally dispersed. An exper-
iment where agents were periodically removed and new agents were inserted
(where younger agents were able to change their vowel repertoire more easily,
modeling first language acquisition in infants) showed similar results. Promis-
ingly, the vowel clusters to which the experiments converged showed strik-
ing similarities with those seen in human languages (cf. Schwartz, Boë, Vallée
& Abry 1997). Later studies used a similar self-organization approach, now
including a temporal dimension (Zuidema& de Boer 2009; de Boer & Zuidema
2010). In doing so, it was shown that common sounds were reused but at dif-
ferent points in time. In effect, this strategy maximizes dispersion by using the
temporal dimension as a distinguishability axis, leading to the development of
(a system analogous to) combinatorial phonology that is often cited as unique
to human language (Hockett 1960). Thus again, it appears some language prop-
erties can be explained without any need for nativism or biological evolution.
Although designed as a self-organizing system, themodel by de Boer (2000a,

2000b) still incorporates an explicit, procedural definition of the language
games agents play, both in terms of how agents communicate with each other
as well as how they organize their phonemes internally. Moreover, the study
therefore relies on the assumption that agents had the a priori capacity to com-
municate and that they experienced an explicit pressure to exploit this capacity.
Thus, similarly to the IL models described earlier (Section 10.2.1), the studies
do not explain glossogenesis, but are confined to the domain of cultural evolu-
tion of language when the capacity for it is already established. To address this,
Oudeyer (2005a, 2005b) used an approach similar to de Boer (2000a, 2000b)
but now basing agents’ internals on self-organizing maps (SOMs) (Kohonen
1982, 2001). SOMs are often used for the purpose of dimensional reduction
(akin to multidimensional scaling) and they are therefore applicable to map
a high-dimensional input vector (e.g., the first few formant frequencies of a
waveform) to some internal representation of fewer dimensions, argued to be
biologically realistic. Subsequently, they can also be used to map an internal,
high-dimensional representation onto a lower-dimensional output vector. More
technically, an SOM consists of a layer of parallel neurons that each express
a sensitivity for a particular input vector, where activation in one neuron will
“bleed over” to neighboring ones (e.g., following a Gaussian distribution). Crit-
ically, these maps, as the name suggests, self-organize in that those neurons that
yield the highest activation to an input vector tune themselves to respond to that
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vector even more strongly. Following this architecture, Oudeyer (2005b) uses
two of these SOMs, one perceptual and one motor map, in series to transform
speech sounds into articulatory gestures. For this purpose, the two maps are
fully connected and these connections are updated using a Hebbian learning
rule (Hebb 1949). Pairs of agents are randomly selected: one produces a sound
that the other one hears. Furthermore, the study used quasi-realistic10 vowel
production and perception models, similar to those used in de Boer (2000a,
2000b).
In a first experiment (Oudeyer 2005a), however, vowel production was sim-

plified, i.e., the mapping from the articulatory gestures to acoustics was linear.
This nevertheless demonstrated that agents interacting with each other self-
organize their vowel space around a few attractors, what could be called ana-
logues to the prototypes in de Boer (2000a, 2000b). Interestingly however, this
organization also emerged when agents were only allowed to self-talk, as in the
babbling of infants. Expectedly, agents did not converge on a shared vowel dis-
persion pattern in this scenario, as was the case when agents were interacting
with each other.
The experiment, while showing clear vowel convergence, did not reflect a

vowel distribution seen in actual human populations. The second experiment
(Oudeyer 2005a), however, using the more realistic gesture-to-vowel mapping,
illustrated a more convincing picture in that respect: The distribution of vowel
frequencies (i.e., how many vowel “phonemes” emerged in the simulations)
clearly approximated that seen in human populations (Ladefoged &Maddieson
1998). Moreover, the dispersion in the vowel space showed a close resemblance
to human language as well. Furthermore, in the follow-up (Oudeyer 2005b),
combinatoriality (i.e., the reuse of segments at different points in time) in the
vowel system was demonstrated by extending the model with a temporal neural
map that self-organized through pruning the less active neurons (simulating, in
a way, apoptosis – programmed cell death), allowing the production of (small
and indeed combinatorial) sequences of vowels.
While the convergence on a discrete, one could claim phonological, vowel

system occurs without the explicit intention to communicate, and even without
any contact with peers whatsoever, the degree of realism of the “vocal tract”
(linear versus parameterized) leads to different outcomes of the self-organizing
process, given a tentative example of anatomical biasing. This issue was further

10 We use the term “quasi,” since the suggested realism is derived from numerical transformations.
More precisely, vowels are produced using three parameters: lip rounding, tongue height, and
tongue fronting. Vowel perception is based on a modified Barks transformation (Zwicker 1961)
that accounts for relative narrow-band, high-frequency perceptual indiscriminability in human
subjects. Thus, there is no simulated “physicality” in these models, but they remain relatively
abstract, quasi-realistic instead.
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emphasized in Oudeyer (2005a) that introduced a (“metabolic”) energy cost on
vocal tract “displacements,” again resulting in different vowel dispersion pat-
terns. None of these dispersion patterns were realistic, however. This, the author
concludes, could have been expected, since dynamical systems are notoriously
sensitive to initial conditions and perturbations of any kind. Failing to accu-
rately model even a single biasing factor might therefore result in totally dif-
ferent outcomes. This realization then raises questions on the self-organization
approach, particularly on what level of abstraction would be appropriate when
modeling human language, i.e., with the aim tomake testable predictions. More
concretely, how would one estimate whether all relevant (genetic, anatomical,
or other) biasing factors are accounted for while keeping the model, follow-
ing Occam’s razor, as simple as possible? These questions remain as of yet
unanswered.
Overall, and more theoretically, the self-organizing models describe a form

of ontogenetic development – phenotypic plasticity – that can be conceptual-
ized to work in conjunction with natural selection. It is not hard to imagine how
the search space of human language features and parameters is enormous, and
that natural selection in isolation is possibly not powerful enough to explore
this space efficiently (Ball 1999). In that regard, ontogenetics such as self-
organizing processes might actually amplify natural selection. For example, the
studies by de Boer (2000a, 2000b) showed that language-like self-organization
processes took place for a large range of parameters that determined the behav-
ior of the SOMs. Thus, the target volume natural selection has to find to let
language emerge is drastically inflated by application of this “local search.”
In more ethological terms, this can be visualized by imaging natural selection
traversing a search space of phenotypes in a relatively slow but robust fashion
(i.e., emphasizing specialism), while ontogenetics allows for lifetime adapta-
tions (i.e., emphasizing generalism) (Turney 1996). The realization that phe-
notypic plasticity might play a major role in biological evolution will probably
have a massive effect on our understanding of evolutionary theory (Pigliucci
2007). For instance, this interaction might lead to another example of a situa-
tion where genes are being shielded from natural selection (since ontogenetics
allow for a wider range of genetic polymorphisms to be effective). These inter-
actions between phylogenetics, glossogenetics, and ontogenetics is discussed
further in Section 10.3.

10.3 Cultural Feedback

So far, we have mainly discussed how genetics might bias cultural evolution of
language, acting through neurocognition and the anatomy and physiology of
the production and perception systems. This is a simplification of the natural
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situation, however. For example, not only does human physiology shape lan-
guage on a cultural level, but certain language features might conceivably
become assimilated into the genome, and this genome, in turn, shapes lan-
guage acquisition, processing, production, and perception. This thus effectively
describes a dynamical system that would consist of three layers coupled in a
feedback loop: genes, physiology, and culture.
The Baldwin Effect (Baldwin 1896) has generated considerable interest,

describing the interaction between genes and phenotypic plasticity. First, the
effect postulates that organisms might evolve to a state predisposed to adapt-
ability. For example, organisms might develop complex nervous systems that
allow them to cope with a dynamic environment. Secondly, the effect proposes
that such ontogenetically acquired traits can be internalized into the organism’s
genome. Thus, even if we observe language modules or other biasing candi-
dates in human anatomy and physiology, we cannot conclude a causal role. On
the contrary, it might very well be the case that culturally expressed language
features have caused the development of these (physiological) traits, instead of
the other way around.
Investigations on the Baldwin Effect have a history of computational mod-

elling. Hinton and Nowlan (1987), for instance, show that the use of pheno-
typic plasticity enables an organism to explore a search space of phenotypes
and how, as mentioned in Section 10.2.3, this can be considered a form of
local search on top of natural selection. Once optima are ontogenetically found,
they increase an organism’s fitness, after which they can subsequently be inter-
nalized into the genome, trading flexibility (generality) for optimality (speci-
ficity) when the situation requires. However, more recent experiments have cast
doubts on the assimilation of language features expressed on a cultural level.
For example, there are strong suggestions that in certain situations, described
in Sections 10.2.3 and 10.2.4, ontogenetics or particular convergence patterns
following cultural evolution might lead genes to be shielded from natural
selection/assimilation.
In the domain of language evolution, the Baldwin Effect is often regarded

from the niche construction interpretation, which states that the expression of
stable language features (a stable cultural niche) exerts selective pressure on
individuals to assimilate those features (Deacon 1997; Odling-Smee, Laland &
Feldman 2003). Eventually, the predispositions to express particular language
features might become so strong they appear “innate” (i.e., they are developed
before birth, but the concept of innateness is notoriously complex; Mameli &
Bateson 2006), via a process known as canalization (Waddington 1942). Such
mechanisms might explain many cases of gene-culture coevolution such as the
persistence of the adaptation to digest fresh milk in populations with dairy
traditions (Richerson&Boyd 2008; Laland, Odling-Smee&Myles 2010; Rich-
erson, Boyd & Henrich 2010; Richerson & Christiansen 2013).

Cambridge Core terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781316676974.010
Downloaded from https://www.cambridge.org/core. Max-Planck-Institute for Psycholinguisti, on 06 Aug 2018 at 09:46:20, subject to the

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316676974.010
https://www.cambridge.org/core


280 Rick Janssen and Dan Dediu

The Baldwin Effect is conceptually closely related to the evolutionary mech-
anisms of adaptation and exaptation (Gould & Vrba 1982). To reiterate, adap-
tation describes the evolution of a novel, domain-specific trait (e.g., teeth for
mastication), while exaptation relates to the co-option of existing traits for pur-
poses they were not originally adapted for. An example of exaptation is the co-
opting of feathers that some theropod dinosaurs used for thermo-regulation but
with slight modifications were utilized to aid in flight in, e.g., birds (Ostrom
1976). Another example of exaptation might be the use of the lungs to pro-
duce vocalizations in animal communication or, more speculatively, of domain-
general pattern recognition capabilities of the human brain in language cogni-
tion (Christiansen & Chater 2008). This latter example is particularly relevant
because it is largely in line with the IL models discussed in Section 10.2, which
describe how agents endowed with only general learning algorithms are able
to produce complex languages without requiring any language modules.
As mentioned earlier in this section, some degree of modularity of mind

might still arise out of selective pressure from sufficiently stable linguistic
niches, leading to a possible genetic encoding to express the corresponding lin-
guistic features. The required stability of this assimilation was investigated by
Baronchelli, Chater, Christiansen, and Pastor-Satorras (2013), who used a par-
ticle model to run simulations on populations of “generalist” and “specialist”
individuals. They showed that specialist individuals only evolved when they
were confronted with a situation that allowed for little genetic and environ-
mental change. When environmental change was larger, generalist individuals
were favored. Drawing a parallel to language-gene coevolution, because lan-
guage changes fast, this might imply that generalist speakers are favored, i.e.,
those that do not evolve language-specific adaptations.
Preluding the more general, abstract findings by Baronchelli et al. (2013),

Chater, Reali, and Christiansen (2009) demonstrated that the assimilation of
language features indeed requires a low rate of linguistic change in a computer
simulation where language features exert selective pressure on the genome.
More specifically, in the (unrealistic) scenario where the rate of linguistic
change was equal to the rate of genetic change, assimilation is already sub-
stantially reduced when compared to when language was completely stable
(let alone if the rate of linguistic change is higher). When the language was
in turn partially (i.e., 50%) genetically determined, this provided a stabilizing
influence that increased the assimilation rate. However, this ratio of genetic
determinism appeared to be so (again, unrealistically) high that no distinction
could be made between having a selective pressure from language and having
no selective pressure at all (i.e., random genetic drift). In other words, the 50%
genetic determinism scenario describes a situation in which the language can,
for all intents and purposes, be said to be complete genetically determined, a sit-
uation that is extremely unlikely. Furthermore, high linguistic change favoured
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the evolution of “neutral” alleles that allowed for more flexibility in expressing
language features, while slow linguistic change lead to the evolution of alle-
les expressing such language features by genetic determinism (Baronchelli,
Chater, Pastor-Satorras & Christiansen 2012). A similar finding was found
when multiple populations were simulated that had interlingual contact: When
an individual’s fitness was codetermined by its ability to learn a foreign popu-
lation’s language, this again lead to the evolution of neutral alleles. Finally, the
study also showed that features assimilated during a phase of slow linguistic
change (e.g., during a proto-language) mutate into neutral alleles when the rate
of change increases. Thus, the authors conclude that it is unlikely that assimi-
lated remnants of a proto-language we might have spoken in the past still reside
in our genome.
While interesting, most models on the Baldwin Effect make a number of

simplifying assumptions. First of all, it is assumed that genes isomorphically
correspond with linguistic features and that all these features had equal weight
in expressing meaning. However, given what we know about the genetic bases
of language (Fisher 2006), this assumption is almost certainly false. A second
simplification is that all cultural linguistic features are equally stable. However,
this has been long demonstrated not to be the case for human language (e.g.,
Maddieson 1984; Schwartz et al. 1997; Dunn et al. 2011), having lead to the
suggestion of “universals” in the first place. Stable features such as these are
of course more likely candidates for assimilation than unstable ones or those
the stability of which is homogeneous and indistinct (such as in Chater et al.
2009, where this was recognized but not further addressed). Finally, the studies
assume a simple, linear quantification of the cost of flexibility, i.e., the more
plastic an organism, the longer it will take to arrive at the right phenotype.
However, this quantifies only one of a number of cost associations with learning
(Mayley 1996); none of them likely to have a linear signature.
To summarize, although the validity of Baldwinian niche construction with

respect to cultural evolution of language is still debated, with multiple authors
contradicting each other, we should consider that apparent domain-specific lan-
guage modules or other adaptations, even if they were conclusively demon-
strated, still do not imply the biological evolution of language-specific adapta-
tions. Following this reasoning, if onewere to discover apparent biasing factors,
it might be the case that these only evolved after some stable linguistic feature
became expressed, i.e., conforming to the selective pressure exerted from lan-
guage itself instead of the other way around.

10.4 Conclusion

Biological and cultural evolution show striking similarities (Section 10.1.2).
While not exact homologues, the principles of replication, variation, and
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selection are found in both domains. This has the potential to explain linguis-
tic features without the need to invoke “universals,” “language modules,” or
the (purely) biological evolution of language. However, we are by no means
stating that human languages do not, to some extent, show a degree of semi-
universality, that certain cortical areas aremore involved in language processing
than others, or that biological natural selection is of no importance to explain
the complexities of language. Nevertheless, the concept of cultural evolution
is a large explanatory factor in itself and should be considered to interact in
close conjunction with biological and physiological mechanisms. This insight
is a shift away from the dominant, cognitivist perspective of speech percep-
tion and production, instead considering human language to (weakly) emerge
from the interactions between speakers. Importantly, none of these speakers
have any a priori, explicit internalization or predisposition to express linguis-
tic features, but are exerting a social force on language convergence, shap-
ing it in subtle, nonspecific ways. Extra-linguistic factors as well as innate
biases speakers might have are therefore of importance, but we cannot hope to
fully understand this convergence when taking a full reductionist approach is
isolation.
Two frameworks are often used in computational modeling of cultural evo-

lution. Iterated learning provides the benefit that it makes accurate, strong pre-
dictions. The “standard” IL experiments have, for instance, demonstrated the
emergence of compositionality, recursion and the appearance of irregulars in
Zipfian distributions (Section 10.2.1). Furthermore, using Bayesian agents in an
IL framework provides a precise, tractable specification of biasing factors and,
in doing so, illustrates how certain learning strategies might result in an ampli-
fication of weak biases, eventually hypothesized to lead to selective neutrality
(or “shielding”) of bias strength (Section 10.2.2). Furthermore, the results are
supported by trials on human subjects and by animal models (Section 10.2.3).
However, as all models, IL forms an abstraction from the real world and rests on
numerous assumptions. Relaxing those expectedly weakens some of the afore-
mentioned predictions.
An alternative to using IL is to take the complex systems route, emphasizing

self-organization to an even greater extent than IL and claiming that, for exam-
ple, vowel space dispersion can be explained from the interactions between
agents that might not even have any a priori conception of language, empha-
sizing glossogenesis that IL does not address (Section 10.2.4). More conceptu-
ally, these models illustrate how developmental, self-organizing processes can
amplify the ability for natural selection to explore the vast search space of phe-
notypes, adding a degree of flexibility that selection alone does not provide.
However, they also explicitly show that, an observation also relevant for IL,
these systems are very sensitive to initial conditions and on-the-fly perturba-
tions. In the end, our aim is to obtain a model that is as simple as possible,
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without losing predictive power. This observed sensitivity of complex systems
then questions what the appropriate level of abstraction for modeling cultural
evolution of language is.
Extending this question from the topic of genetic biasing to gene-language

coevolution raises more, similar issues (Section 10.3). It has long been recog-
nized that ontogenetically acquired traits can be internalized into the genome.
Language features have often been proposed to be candidates for this assimila-
tion following Baldwinian niche construction, where plastic flexibility is traded
for genetic rigidity when the environment is sufficiently stable. Computer mod-
els, however, question the feasibility of this hypothesis, showing that language
features have to be very stable indeed or they need to be, for an unreasonable
part, genetically determined for assimilation to occur. Once more, however,
these models make a number of nontrivial assumptions, casting doubt on the
validity of their level of abstraction. Overall, they, together with the divided lit-
erature from the biological sciences, illustrate that assimilation cannot be ruled
out and therefore that, even if we would establish something like a cortical lan-
guage module encoding word order, it would not imply its biological evolution
as a causal factor. Instead, it might be that a (stable) cultural feature assumes
that role and that any apparent adaptations are, upon close inspection, mere
exaptations of existing traits.
To conclude this chapter, we hope to have shown the potential for using com-

puter modeling to investigate the evolution of language as multiple, interacting
domains subject to similar Darwnian principles, emphasizing the role of cul-
tural evolution and the biasing effects genetics might have. While many ques-
tions remain to be answered, we regard this approach to be essential to fully
account for the vast richness of human language and encourage a further tran-
scendence of traditional disciplinary boundaries in this endeavour.
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