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Abstract

We consider the free propagation of totally symmetric massive bosonic fields in

nontrivial backgrounds. The mutual compatibility of the dynamical equations and

constraints in flat space amounts to the existence of an Abelian algebra formed

by the d’Alembertian, divergence and trace operators. The latter, along with the

symmetrized gradient, symmetrized metric and spin operators, actually generate

a bigger non-Abelian algebra, which we refer to as the “consistency” algebra. We

argue that in nontrivial backgrounds, it is some deformed version of this algebra that

governs the consistency of the system. This can be motivated, for example, from

the theory of charged open strings in a background gauge field, where the Virasoro

algebra ensures consistent propagation. For a gravitational background, we outline

a systematic procedure of deforming the generators of the consistency algebra in

order that their commutators close. We find that equal-radii AdSp × Sq manifolds,

for arbitrary p and q, admit consistent propagation of massive and massless fields,

with deformations that include no higher-derivative terms but are non-analytic in

the curvature. We argue that analyticity of the deformations for a generic manifold

may call for the inclusion of mixed-symmetry tensor fields like in String Theory.ar
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1 Introduction

It is a challenging task to construct consistent interacting theories of higher-spin (HS)

fields. Generic interactions of massless fields in flat space are in tension with HS gauge

invariance, and this leads to various no-go theorems [1, 2, 3, 4, 5]. Consistency issues arise

even for the free propagation of HS fields in nontrivial backgrounds as the corresponding

equations of motion and constraints may cease to remain mutually compatible, as noticed

first by Fierz and Pauli [6]. A Lagrangian formulation is free from the latter kind of

difficulties, but generically suffers from the Velo-Zwanziger problem: the resulting system

of equations may allow superluminal propagation [7, 8, 9, 10].

A consistent Lagrangian description of free massive HS fields may be furnished by

appropriate non-minimal terms, at least for backgrounds with constant curvature [11,

12, 13, 14, 15]. The resulting equations of motion are rather simple, but this simplicity

is obscured at the Lagrangian level [11]. One may wonder whether consistency can be

achieved without taking any recourse to the Lagrangian formulation. Indeed, it is possible

to systematically deform the dynamical equations and constraints to render them mutually

compatible in some nontrivial backgrounds [16, 17]. Moreover, consistent interactions

with other dynamical fields could be introduced more easily at the level of equations of

motion. After all, nonlinear equations for interacting HS gauge fields in AdS space have

been successfully constructed [18], but their Lagrangian embedding is very difficult [19].

In this article, we will restrict our attention only to totally symmetric massive bosonic

fields. A spin-s boson is customarily represented by a rank-s symmetric traceless Lorentz

tensor, say ϕµ1···µs . The dynamical equations and constraints that describe its free prop-

agation in flat space−the Fierz-Pauli equations−are given by:(
∂2 −m2

)
ϕµ1···µs = 0, ∂ · ϕµ1···µs−1 = 0, ϕ′µ1···µs−2

= 0, (1)

where a dot denotes contraction of indices w.r.t. the Minkowski metric and a prime denotes

a trace. The first one of these equations is the Klein-Gordon equation for mass m, while

the second and third are respectively the divergence and trace constraints. The constraints

are crucial in the counting of propagating degrees of freedom. In D spacetime dimensions

this number is given by
(
D−4+s

s

)
+ 2
(
D−4+s
s−1

)
, which of course reduces to 2s+ 1 in D = 4.

The mutual compatibility of the Fierz-Pauli equations (1) is automatic, thanks to

the commuting nature of ordinary derivatives. This is no longer true in a nontrivial

background since covariant derivatives do not commute. In a constant electromagnetic

background, for example, one may consider the minimal coupling by replacing the ordinary

derivatives with covariant ones, ∂µ → Dµ, to obtain(
D2 −m2

)
ϕµ1···µs = 0, D · ϕµ1···µs−1 = 0, ϕ′µ1···µs−2

= 0. (2)
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The mutual compatibility is lost as the equations imply an unwarranted constraint:

iqFα
(µ1ϕµ2···µs)α = 0, (3)

which disappears when the background is turned off, and so the system (2) does not

describe the same number of degrees of freedom as in flat space.

However, the covariantization (2) of the Fierz-Pauli equations (1) is a näıve attempt.

One may systematically incorporate non-minimal corrections to the minimally coupled

equations (2) in order to restore consistency [16, 20]; this systematics amounts to the

closure of an algebra generated by the deformed d’Alembertian, divergence and trace

operators. In this article, we argue that a bigger algebra (including more operators than

just the d’Alembertian, divergence and trace) governs the consistency of propagation and

interactions of HS fields. The trio therefore generates a subalgebra of the latter algebra.

The organization of this article is as follows. In the remaining of this section, we

explain the operator formalism that will be used throughout this article. In Section 2,

we elucidate what we mean by the “consistency” algebra for free HS fields in flat space

and why it is relevant. To motivate the importance of such an algebra, we consider in

Section 3 the theory of charged open strings in a constant electromagnetic background,

where it is the Virasoro algebra whose closure ensures consistency. We devote Section

4 to the free propagation of HS fields in a gravitational background, where under some

simplifying assumptions we outline a systematic procedure of deforming the generators

of the consistency algebra in order that their commutators close. We show among others

that equal-radii AdSp×Sq manifolds, for arbitrary p and q, consistently propagate totally

symmetric massive bosonic fields without invoking higher-derivative kinetic terms. More-

over, these manifolds admit the propagation of massless fields just like AdS space. We

conclude in Section 5 with some remarks and open questions.

The Operator Formalism

In the operator formalism, contraction and symmetrization of indices are realized through

auxiliary variables, so that tensor operations are much simplified in terms of operator

calculus. Symmetric fields are represented by generating functions:

ϕ(x, u) =
1

s!
ϕµ1···µs(x) eµ1a1 (x)ua1 · · · eµsas (x)uas , (4)

where eµa is the vielbein and ua is an auxiliary tangent variable. The action of the covariant

derivative is defined as a differential operator involving both x and u:

∇µ = ∇̄µ + ωµ
abua

∂
∂ub
, (5)
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with ∇̄µ being the standard covariant derivative acting on naked tensorial indices, and

ωµ
ab the spin connection. We will work only with the contracted auxiliary variable and

the associated derivative:

uµ ≡ eµa(x)ua, dµ ≡ eaµ(x) ∂
∂ua

. (6)

Then the vielbein postulate implies [∇µ, u
ν ] = 0 and [∇µ, dν ] = 0. The commutator of

covariant derivatives on a scalar function of u and d will be given by:

[∇µ,∇ν ] = Rµνρσ(x)uρdσ. (7)

2 Consistency Algebra in Flat Space

Let us note that the isometries of D-dimensional Minkowski space are captured by the

Poincaré group ISO(D− 1, 1), which incorporates the momentum as generator of space-

time translations and the Lorentz generators. For flat space, where eµa = δµa , one can

construct the following set of basic operators [21]:

g =
{
∂2, d · ∂, d2, u · ∂, u2, u · d

}
, (8)

which commute with the Poincaré generators. The set (8) comprises six operators: the

d’Alembertian ∂2, divergence d · ∂, trace d2, symmetrized gradient u · ∂, symmetrized

metric u2, and spin u · d. The first three appear in the Fierz-Pauli equations (1), which

can now be rewritten as:

∂2ϕ = m2ϕ, d · ∂ ϕ = 0, d2ϕ = 0. (9)

The mutual compatibility of these equations can be reexpressed in terms of the following

commutation relations:[
∂2, d · ∂

]
= 0,

[
∂2, d2

]
= 0,

[
d · ∂, d2

]
= 0, (10)

which imply that the d’Alembertian, divergence and trace form an Abelian algebra.

The algebra (10) is in fact a subalgebra of a non-Abelian algebra generated by all the

elements of g. In particular, the d’Alembertian operator by definition is the commutator

of divergence and gradient:

[ d · ∂, u · ∂ ] = ∂2. (11)
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The other nontrivial commutators include:[
d · ∂, u2

]
= 2u · ∂, (12.1)[

d2, u · ∂
]

= 2d · ∂, (12.2)[
d2, u2

]
= 4u · d+ 2D, (12.3)

[ d · ∂, u · d ] = d · ∂, (12.4)

[u · d, u · ∂ ] = u · ∂, (12.5)[
d2, u · d

]
= 2d2, (12.6)[

u · d, u2
]

= 2u2. (12.7)

The “consistency” algebra we will consider is simply the set of operators g enumerated

in Eq. (8), given the nontrivial commutation relations (11)–(12). Note that this algebra

commutes with the Poincaré generators. In a generic manifold, one may have a different

set of isometry generators if any. Yet, it makes sense to talk about some deformed version

of the operators (8), and require that they generate an algebra. Moreover, the deformed

d’Alembertian, divergence and trace operators should generate a subalgebra (perhaps non-

Abelian) to ensure that the deformed Fierz-Pauli equations remain mutually compatible.

3 Charged Open String in EM Background

To motivate the important role played by such an algebra, we take recourse to String

Theory. For a flat background, one can construct an infinite set of Virasoro generators

that commute with the target-space isometry. Of course, Poincaré symmetry is broken by

the presence of a constant electromagnetic (EM) background, but the Virasoro algebra

prevails for charged open strings modulo deformations of the individual generators [11].

It is the Virasoro algebra whose closure ensures consistent propagation of the massive HS

string excitations in a constant EM background.

The world-sheet sigma model for a charged open bosonic string in a constant EM

background is exactly solvable [11, 22]. Upon quantization, one finds the usual infinite

set of creation and annihilation operators1:

[ aµm, a
†ν
n ] = ηµνδmn, [ aµm, a

ν
n ] = [ a†µm , a

†ν
n ] = 0 m,n ∈ N1, (13)

along with the Virasoro algebra

[Lm, Ln] = (m− n)Lm+n + 1
12
D(m3 −m)δm,−n , (14)

1These operators are well defined in the regimes of physical interest.
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which is the same as in flat space. The Virasoro generators do get deformed in the EM

background. For example, one has (with α′ = 1
2
)

L0 = −1
2
D2 +

∞∑
m=1

(m+ iG)µνa
†µ
m a

ν
m + 1

4
TrG2, (15.1)

L1 = −i
[√

1 + iG
]
µν

Dµaν1 +
∞∑
m=2

[√
(m+ iG)(m− 1 + iG)

]
µν
a†µm−1a

ν
m, (15.2)

L2 = −i
[√

2 + iG
]
µν

Dµaν2 + 1
2

[√
1 +G2

]
µν
aµ1a

ν
1

+
∞∑
m=3

[√
(m+ iG)(m− 2 + iG)

]
µν
a†µm−2a

ν
m, (15.3)

where Dµ is the covariant derivative up to a rotation,

Dµ =
(√

G/qF
)µ

ν Dν , [Dµ, Dν ] = iqF µν , (16)

with q = q0 + qπ being the total charge of the string, and

G =
1

π

[
tanh−1(πq0F ) + tanh−1(πqπF )

]
. (17)

The physical state conditions for string states translate into a set of Fierz-Pauli equa-

tions for the string fields. The dynamical equations and constraints are deformed, and

their mutual compatibility is guaranteed by the Virasoro algebra (14).

Restricting attention to totally symmetric fields, as we do in this article, means that

we consider only the first Regge trajectory of string excitations and exclude the subleading

Regge trajectories. This is tantamount to switching off all the creation and annihilation

operators but a†µ1 and aµ1 , which leaves us with only five nontrivial Virasoro generators:

L0, L±1 and L±2. In flat space, this quintet combines with the number operator, N ≡∑∞
n=1 na

†
n ·an, to generate what we call the “consistency” algebra for symmetric fields. In

a constant EM background, however, this smaller set of operators no longer constitute an

algebra, and one needs to turn on all the creation and annihilation operators to construct

a set of operators that do form a closed algebra−the Virasoro algebra [24]. In other words,

consistency of string field theory in a constant EM background is achieved through the

inclusion of mixed symmetry fields. Our simplified approach does not include this feature,

and may therefore lead to possibilities that are not realized in String Theory [23].
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4 Consistency Algebra in Curved Manifolds

In a curved background, the ordinary derivatives will be replaced by covariant derivatives:

∂µ → ∇µ, which do not commute but follow Eq. (7). Therefore, when the operators (8) are

näıvely covariantized, their commutators give rise to terms proportional to the curvature

tensor and its derivatives, and so the consistency algebra ceases to close in general. In

this section, we will outline a systematic procedure to deform these generators such that

the consistency algebra closes.

First, let us note that the contracted auxiliary variable uµ and the associated derivative

dµ can be considered as a pair of creation and annihilation operators:

[dµ, u
ν ] = δνµ, [dµ, dν ] = [uµ, uν ] = 0. (18)

We start the deformation procedure with the following ansatz for the divergence:

d ∗ ∇ ≡ Hµνdµ∇ν , (19)

where Hµν is a function of the curvature tensor and its derivatives. For simplicity, we

consider neither the possible dependency of Hµν on the contracted auxiliary variable

and its associated derivative nor the appearance of higher spacetime derivatives. By

Hermiticity, we also have the deformed gradient:

u ∗ ∇ ≡ Hµ
νuµ∇ν . (20)

In view of Eq. (11), we now define the deformed d’Alembertian operator � as the com-

mutator of the deformed divergence (19) and gradient (20):

� ≡ [ d ∗ ∇, u ∗ ∇ ]. (21)

To write it more explicitly, we further make a simplifying assumption that Hµν is a

symmetric tensor. Then, the deformed d’Alembertian (21) reads:

� = H2
µν∇µ∇ν +Hµ

αH
ν
βR

αβρσ (gµρuνdσ + uνuρdµdσ) + · · · , (22)

where the ellipses stand for terms containing derivatives of the Riemann tensor.

Unlike in flat space, the d’Alembertian operator now has a non-vanishing commutator

with the divergence. It is of the form:

[ d ∗ ∇, � ] = Xµνρσ∇µuνdρdσ + Yµνd
µ∇ν + · · · , (23)

where the tensors X and Y are given by

Xµνρσ ≡ −3H2
µαHρβR

αβ
νσ −Hµ

αHν
βHρ

γRαγβσ , (24.1)

Yµν ≡
(
3H2

µρHαβ −HµρH
2
αβ

)
Rαρβ

ν , (24.2)
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and again the ellipses stand for terms containing derivatives of the curvature.

The commutator (23) must close up to the deformed divergence and a suitably de-

formed trace to form a deformed counterpart of the subalgebra (10). This would ensure

the mutual compatibility of the dynamical equations and constraints. Now, the form of

X and Y suggests that the generic solution for H, if any, is very non-linear and possibly

non-analytic in the curvature. Since the generic problem is hard to solve, one can make

a case by case study to find allowed backgrounds that could close the consistency algebra

under the given assumptions. Below we consider one particular class of backgrounds:

AdSp×Sq with equal radii but arbitrary p and q. As we will show, such manifolds indeed

close the consistency algebra.

AdSp × Sq with Equal Radii

Note that any AdSp × Sq is a symmetric space, i.e., its Riemann tensor is covariantly

constant. This immediately sets to zero all the terms denoted by the ellipses appearing

in Eqs. (22) and (23). Moreover, if the radii of AdSp and Sq have the same value l, the

manifold is also conformally flat. The nontrivial parts of the Riemann tensor are then the

traceless Ricci tensor Sµν and the curvature scalar R. These quantities are given by2

Sµν =
p+ q − 2

(p+ q) l2
(
−q δab + p δij

)
, (25.1)

R = − 1

l2
(p− q)(p+ q − 1), (25.2)

where the indices a, b = 0, 1, . . . , p− 1 refer to AdSp, and i, j = 1, 2, . . . , q to Sq.

We now claim that the deformation tensor Hµν is given by

Hµ
ν =

p

p+ q

(
δµν −

(p+ q) l2

p(p+ q − 2)
Sµν

)
. (26)

It is easy to see that this quantity is actually a covariant projector,

Hµ
ρH

ρ
ν = Hµ

ν , Hµ
µ = p, (27)

which also satisfies

Hµ
ρS

ρ
ν = −q(p+ q − 2)

(p+ q) l2
Hµ

ν . (28)

Given the properties (27) and (28), one finds that the commutator (23) indeed closes:

[ d ∗ ∇, � ] = − 2

l2
((2u ∗ d+ p− 1)d ∗ ∇ − 2u ∗ ∇ d ∗ d) , (29)

2Curiously, whenever p = q, the former quantity squares to unity while the latter vanishes.
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where an asterisk denotes, as usual, the contraction of a pair of indices w.r.t. the covariant

projector Hµν , and d ∗ d is identified as the deformed trace operator.

The whole set of operators forming the consistency algebra is given by

g̃ = { �, d ∗ ∇, d ∗ d, u ∗ ∇, u ∗ d, u ∗ u } . (30)

While the commutation relation (11) is directly taken into account by the defining com-

mutator (21), the relations (12.1)–(12.7) are deformed respectively into

[ d ∗ ∇, u ∗ u ] = 2u ∗ ∇, (31.1)

[ d ∗ d, u ∗ ∇ ] = 2d ∗ ∇, (31.2)

[ d ∗ d, u ∗ u ] = 4u ∗ d+ 2p, (31.3)

[ d ∗ ∇, u ∗ d ] = d ∗ ∇, (31.4)

[u ∗ d, u ∗ ∇ ] = u ∗ ∇, (31.5)

[ d ∗ d, u ∗ d ] = 2d ∗ d, (31.6)

[u ∗ d, u ∗ u ] = 2u ∗ u. (31.7)

The only other nontrivial commutator is the Hermitian conjugate of Eq. (29):

[u ∗ ∇, � ] = +
2

l2
(u ∗ ∇(2u ∗ d+ p− 1)− 2u ∗ u d ∗ ∇) . (32)

Therefore, the consistency algebra closes up to deformations of the generators that

depend on the curvature. Note that the algebra makes sense even for q = 0, in which

case Sµν = 0, and the projector Hµν reduces to the AdSp metric. The resulting algebra is

simply the one for AdSp space [25, 26]. This is not surprising given the fact that maximally

symmetric spaces do admit consistent propagation of HS fields. The new result is that

even AdSp × Sq manifolds, with equal radii but arbitrary p and q, do the same without

invoking higher-derivative terms. In fact, the algebra for q 6= 0 might be considered as a

covariant uplift of the AdSp algebra.

It is expected that AdSp × Sq admits propagation of massless HS fields. To confirm

this, let us consider gauge transformations of ϕ:

δϕ = (u ∗ ∇)λ, (33)

which are on shell, i.e., the gauge parameter λ satisfies(
�− µ2

)
λ = 0, (d ∗ ∇)λ = 0, (d ∗ d)λ = 0. (34)

On the other hand, the field ϕ itself satisfies the Fierz-Pauli equations:(
�−m2

)
ϕ = 0, (d ∗ ∇)ϕ = 0, (d ∗ d)ϕ = 0. (35)
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Masslessness will correspond to the appearance of gauge symmetry for some particular

values of the mass parameters µ2 and m2. Requiring that Eqs. (33) and (34) consti-

tute a gauge symmetry of the system (35), one can make use of the commutation rela-

tions (21), (31.2) and (32) to arrive at the following results:

µ2 = 0, M2
0 l

2 = s2 + s(p− 6)− 2(p− 3), (36)

where the mass parameter M2
0 is related to m2 through the equations:(

�−m2
)
ϕ =

(
∇ ∗∇−M2

0

)
ϕ = 0. (37)

Thus a massless point M2
0 does exist, as expected.

5 Remarks & Outlook

In this article, we have argued that the consistency of free propagation of massive HS

fields in nontrivial backgrounds can be attributed to the existence of an algebra, which

we refer to as the consistency algebra. For totally symmetric bosonic fields, this alge-

bra is generated by six operators: the d’Alembertian, divergence, trace, symmetrized

gradient, symmetrized metric, and spin, which do get deformed in the presence of a back-

ground. Note that the consistency algebra is expected to take into account more than

just the mutual compatibility of the Fierz-Pauli equations since the latter is realized only

as a subalgebra. It is possible that the incorporation of the symmetrized gradient, sym-

metrized metric, and spin operators in the consistency analysis is tantamount to assuring

a Lagrangian embedding of the system.

One of our results is that AdSp × Sq manifolds, with equal radii but arbitrary p and

q, admit consistent propagation of totally symmetric massive and massless bosonic fields

without invoking higher-derivative terms. Curiously, the AdS5 × S5 solution of String

Theory belongs to this class of manifolds. However, as already emphasized towards the

end of Section 3, consistency in String Theory is supposed to be realized in a different

way, perhaps with the inclusion of mixed-symmetry fields. A key feature of our result is

indeed its non-analyticity in the neighborhood of flat space−the deformation tensor Hµν ,

spelled out in Eq. (26), blows up as the quantity SµνS
µν goes to zero (l→∞). For String

Theory in AdS5 × S5 it is possible that the deformed Virasoro generators are actually

smooth in the neighborhood of zero curvature, just like they are for an EM background.

To simplify analysis, we did not consider the most general ansatz for the deformation

tensor Hµν . Neither did we include higher-derivative kinetic terms. In particular, Hµν

may depend on the contracted auxiliary variable and its associated derivative, and may

contain an antisymmetric part. These possibilities will be taken into account in some

9



future work [24]. It would be interesting to find what other backgrounds, if any, may

not require higher-derivative kinetic terms to admit consistent propagation of totally

symmetric massive and massless fields. Closing the algebra for more generic backgrounds

might however be impossible without invoking mixed symmetry fields and/or higher-

derivative kinetic terms.

One expects that the consistency algebra should also prevail beyond free theory. At the

level of interactions, non-linearities will show up in the dependency of the generators on the

dynamical fields themselves. A systematic procedure for closing the consistency algebra

for such non-linear deformations may shed some light on the nature of HS interactions.

We leave this as future work.
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