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We present an extension of the time-dependent configuration-interaction singles (TDCIS) method to the
computation of the electron kinetic-energy spectrum in photoionization processes. Especially for strong and long
ionizing light pulses, the detection of the photoelectron poses a computational challenge because propagating the
outgoing photoelectron wave packet requires large grid sizes. Two different methods that allow for the extraction
of the asymptotic photoelectron momentum are compared regarding their methodological and computational
performance. The first method follows the scheme of Tong et al. [X. M. Tong, K. Hino, and N. Toshima, Phys.
Rev. A 74, 031405(R) (2006)], where the photoelectron wave function is absorbed by a real splitting function.
The second method following that presented by Tao and Scrinzi [L. Tao and A. Scrinzi, New J. Phys. 14, 013021
(2012)], measures the flux of the electron wave packet through a surface at a fixed radius. With both methods
the full angle- and energy-resolved photoelectron spectrum is obtained. Combined with the TDCIS scheme, it
is possible to analyze the dynamics of the outgoing electron in a channel-resolved way and, additionally, to
study the dynamics of the bound electrons in the parent ion. As an application, one-photon and above-threshold
ionization of argon following strong XUV irradiation are studied via energy- and angle-resolved photoelectron
spectra.
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I. INTRODUCTION

With the development of new light sources such as free-
electron lasers (FELs) and attosecond laser sources, the interest
in strong-field physics and multiphoton processes has grown
because they provide the experimental means to control and
image atomic and molecular systems and to test theoretical pre-
dictions of nonlinear processes [1–5]. The photon energies of
FELs extend from the UV to the x-ray range and the intensities
are such that they permit the investigation and control of inner-
shell processes, Auger decay, or above-threshold ionization
(ATI) [6,7]. Above-threshold ionization, first observed in the
1970s [8], is a highly nonlinear phenomenon in which more
photons are absorbed than are needed for ionization. The pulse
durations of FELs can be as short as a few femtoseconds [9].
With these pulse properties typical atomic time scales that
extend from a few attoseconds to tens of femtoseconds can
be accessed in order to study electronic dynamics in atoms,
molecules, and clusters [10–12]. In the strong-field regime,
multiphoton processes play a significant role, especially if
the photon energies lie in the UV to x-ray range [13–15].
In general, in this frequency range a diversity of processes
must be faced. The removal of a deep inner-shell electron is
followed by various processes depending on the atomic states
and the photon energy [16]. If the laser pulse is strong enough,
also multiphoton inner-shell ionization [17] as well as ATI
processes can occur.

Experimentally, photoelectron spectroscopy is a powerful
tool to analyze and quantify the processes that happen due
to the irradiation of complex systems [18,19]. For instance,
in early experiments with intense light sources in the 1980s
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the angular distribution in ATI of xenon was measured [20]
in order to understand the ATI phenomenon. Synchrotron
radiation was used to obtain high-quality angular distributions
of electrons in photoionization of atoms [21,22]. Also in
recent experiments photoelectron spectroscopy has been used
to reveal decay mechanisms and multiphoton excitations in
deep shells of atoms [23] and to understand the origin of the
low-energy structure in strong-field ionization [24,25].

The process of photoionization has been studied extensively
[26–30], e.g., in argon or xenon [31,32]. In the weak-field limit,
where the light-matter interaction can be treated perturbatively,
the photoelectron spectrum has been calculated with methods
that also include correlation effects. Most prominent examples
are post-Hartree-Fock methods that use reference states, e.g.,
correlation methods such as the configuration interaction
[27,33], the coupled-cluster method [34], and the random-
phase approximation [35–37]. Furthermore, approaches con-
structing continuum wave functions, such as R-matrix theory
[38], have been applied to calculate photoionization cross
sections [39] and photoelectron angular distributions [40];
taking into account the interaction of the liberated electron
with other atomic orbitals has led to the explanation of the
giant dipole resonance of the 4d subshell in xenon [27].

In the strong-field regime the description of the ionized
wave packet is challenging due to the nonperturbative inter-
action between the electrons and the light pulse. Therefore,
the calculation of photoelectron spectra is numerically more
demanding than in the weak-field limit. Furthermore, many-
body processes are often neglected in the strong-field regime
and single-active-electron (SAE) approaches have become a
standard tool [41–44] where correlation effects are omitted.
Nevertheless, recently, extensions to many-body dynamics
have been presented, e.g., R-matrix theory [45–49], two-
active-electron theory [50–52], and time-dependent restricted-
active-space configuration-interaction theory [53,54].
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Generally, the calculation of the photoelectron spectrum can
be done after the pulse is over by projecting the photoelectron
wave packet onto the eigenstates of the field-free continuum.
However, this approach requires large numerical grids and
its application is very limited even in the SAE cases. For
this reason, new methods were developed to calculate the
spectrum using wave-packet information in a fixed spatial
volume much smaller than the volume that would be needed to
fully encapsulate the wave packet at the end of the strong-field
pulse. There exist several approaches to overcome the obstacle
of large grids, e.g., by measuring the electronic flux through a
sphere at a fixed radius [55] or splitting the wave function into
an internal and an asymptotic part [56,57] where the latter is
then analyzed to yield the spectrum. The first implementation
of the flux method in the strong-field case is the time-dependent
surface flux (t-SURFF) method introduced by Tao and Scrinzi
[58]. It has recently been extended to the description of
dissociation in molecules [59]. Tong et al. [41] applied the
splitting approach to strong-field scenarios. With both methods
double-differential photoelectron spectra can be calculated.

Our method for treating the electron dynamics within atoms
is based on the time-dependent configuration-interaction sin-
gles (TDCIS) scheme [60]. The Schrödinger equation is solved
exactly by wave-packet propagation in the configuration-
interaction singles (CIS) basis. The TDCIS approach [61]
includes interchannel coupling and allows investigating the
wave-packet dynamics and in particular the impact of cor-
relation effects between the photoelectron wave packet and
the remaining ion as discussed, e.g., in Refs. [62–64]. It
is versatile with respect to the electric-field properties (also
multiple pulses can be chosen) and it has proven especially
successful for strong-field studies [63–66].

In Sec. II we present the theoretical details of how the
photoelectron spectrum is obtained within the TDCIS scheme:
The wave-function splitting method [41] is described in
Sec. II B and the time-dependent surface flux method [58]
in Sec. II C. In Sec. III the two methods are analyzed with
respect to their efficiency within TDCIS and are compared
briefly. As an application we calculate and study the angle- and
energy-resolved photoelectron spectrum of argon irradiated by
strong XUV radiation. A summary and short outlook in Sec. IV
conclude the article. Atomic units are used throughout except
otherwise indicated.

II. THEORY

A. Theoretical background

The time-dependent Schrödinger equation of an N -electron
system is given by

i
∂

∂t
|�N (t)〉 = Ĥ (t)|�N (t)〉. (1)

Considering linearly polarized light, the Hamiltonian takes the
form

Ĥ (t) = Ĥ0 + Ĥ1 + �̂p · �A(t), (2)

where �A(t) is the vector potential.1 Here Ĥ (t) is the full N -
electron Hamiltonian; Ĥ0 = T̂ + V̂nuc + V̂MF − EHF contains
the kinetic energy T̂ , the nuclear potential V̂nuc, the potential
at the mean-field level V̂MF, and the Hartree-Fock energy EHF;
Ĥ1 = 1

|r12| − V̂MF describes the Coulomb interactions beyond

the mean-field level; and �̂p · �A(t) is the light-matter interaction
within the velocity form in the dipole approximation.

Within the CIS approach only one-particle–one-hole exci-
tations |�a

i 〉 with respect to the Hartree-Fock ground state |�0〉
are considered. Therefore, the wave function (now omitting the
superscript N ) is expanded in the CIS basis as

|�(t)〉 = α0(t)|�0〉 +
∑
i,a

αa
i (t)

∣∣�a
i

〉
, (3)

where the index i symbolizes an initially occupied orbital
and a denotes an unoccupied (virtual) orbital to which the
particle can be excited: |�a

i 〉 = 1√
2
(ĉ†a+ĉi+ + ĉ

†
a−ĉi−)|�0〉.

The operators ĉ
†
pσ and ĉpσ create and annihilate electrons,

respectively, in the spin orbitals |ϕpσ 〉. The total spin is not
altered in the considered processes (S = 0), so only spin
singlets occur. Therefore, for the sake of readability, we drop
the spin index and treat the spatial part of the orbitals |ϕp〉.
Inserting the wave-function expansion (3) into the Schrödinger
equation (1) and projecting onto the states |�0〉 and |�a

i 〉
yields the following equations of motion for the expansion
coefficients αa

i (t):

iα̇0(t) = �A(t) ·
∑
i,a

〈�0| �̂p ∣∣�a
i

〉
αa

i (t), (4a)

iα̇a
i (t) = (εa − εi)α

a
i (t) +

∑
j,b

〈
�a

i

∣∣Ĥ1

∣∣�b
j

〉
αb

j (t)

+ �A(t) ·
⎛
⎝〈�a

i | �̂p |�0〉α0(t) +
∑
j,b

〈�a
i | �̂p |�b

j 〉αb
j (t)

⎞
⎠,

(4b)

where εp denotes the energy of the orbital |ϕp〉 (Ĥ0|ϕp〉 =
εp|ϕp〉). As introduced in Ref. [67], for each ionization channel
all single excitations from the occupied orbital |ϕi〉 may be
collected in one channel wave function

|χi(t)〉 =
∑

a

αa
i (t)|ϕa〉. (5)

These channel wave functions may now be used to calculate
all quantities in a channel-resolved manner. In this way,
effectively one-particle wave functions are obtained, which
will be used in the following to derive the formulas for the pho-
toelectron spectra. A detailed description of the TDCIS method
can be found in Refs. [60,67]. The TDCIS method provides
the coefficients of the wave function in the CIS basis, which
are propagated in time. During the propagation, quantities that
are needed for the calculation of the photoelectron spectrum

1Unlike in previous work on the TDCIS method [60,67], we use the
velocity form at this point. Furthermore, the charge of the electron is
negative qe = −1, so |qe| = 1.
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are prepared using the channel-wave-function coefficients.
After the propagation, these quantities are then used in the
subsequent analysis step to determine the spectral components
of the channel wave functions. At the end, an incoherent
summation over all ionization channels is performed to obtain
the photoelectron spectrum. The two analysis methods are
described in the following.

B. Wave-function splitting method

We describe the concrete implementation of the splitting
method introduced by Tong et al. in Ref. [41] within our time-
dependent propagation scheme. A real radial splitting function
of the form

Ŝ = [
1 + e−(r̂−rc)/


]−1
(6)

is used to smoothly split the channel wave function (5). The
parameter rc denotes the radius where the splitting function is
centered and 
 is a smoothing parameter controlling the slope
of the function. At the first splitting time step t0 the channel
wave function is split into two parts (for each channel i):

|χi(t0)〉 = (1 − Ŝ)|χi(t0)〉 + Ŝ|χi(t0)〉
≡ |χi,in(t0)〉 + |χi,out(t0)〉. (7)

Here |χi,in(t)〉 is the wave function in the inner region 0 <

r � rc and |χi,out(t)〉 is the wave function in the outer region
rc � r � rmax. Then the following procedure is performed at
t0: The outer part of the wave function |χi,out(t0)〉 is analytically
propagated to a long time T after the laser pulse is over using
the Volkov Hamiltonian ĤV (τ ) with the time propagator

ÛV (t2,t1) = exp

(
− i

∫ t2

t1

ĤV (τ )dτ

)
,

(8)

ĤV (τ ) = 1

2
[ �̂p + �A(τ )]2,

under the assumption that far from the atom the electron
experiences only the laser field and not the Coulomb field
of the parent ion. It is also assumed that, at the splitting radius,
the electron is sufficiently far away to not return to the ion.

The inner part of the wave function |χi,in(t0)〉 is propagated
on a numerical grid using the full CIS Hamiltonian [see
Eqs. (4a) and (4b)]. For the splitting function the ratio
rc/
 � 1 must be chosen such that the ground state |�0〉
is not affected by the splitting: Ŝ|�0〉 = 0.

At the next splitting time t1 the inner part of the wave
function that was propagated from t0 to t1 is split again. Thus,
the following prescription is obtained:

|χi,in(tj )〉 → |χ̃i(tj+1)〉 = |χi,in(tj+1)〉 + |χi,out(tj+1)〉. (9)

This is now repeated for every splitting time tj until all
parts of the electron wave packet that are of interest have
reached the outer region. Each |χi,out(tj+1)〉 is again propagated
analytically to t = T .

Computationally, |χi,out(tj )〉 is initially expressed in the CIS
basis. For this purpose, we define new expansion coefficients
for the outer wave function

βa
i (tj ) = 〈ϕa|Ŝ|χ̃i(tj )〉 (10)

and express the wave function in the outer region as
|χi,out(tj )〉 = ∑

a βa
i (tj )|ϕa〉. During the propagation, at every

splitting time step tj , which can be—and for computational
efficiency should be—a multiple of the actual propagation
time step, the splitting function Ŝ is applied and the expansion
coefficients (10) are calculated and stored. Since the outer wave
function is split from the inner part and treated analytically,
the grid size needed for the description of the wave function is
automatically reduced. Later, when the spectrum is calculated,
the coefficients βa

i are inserted and used for the analysis.
The Volkov states |�V

�p 〉 ≡ | �p V 〉 are eigenstates of the
Volkov Hamiltonian and form a basis set in which the channel
wave packet at time T can be expanded:

|χi,out(T )〉 =
∫

d3p
∑
tj

Ci( �p,tj )| �p V 〉 ≡
∫

d3p C̃i( �p )| �p V 〉.

(11)

In the velocity form the Volkov states are nothing but plane
waves �V

�p (�r) = (2π )−3/2ei �p·�r . The photoelectron spectrum is
obtained by calculating the spectral components of the outer
wave function. For this purpose, the following coefficients are
evaluated:

Ci( �p,tj ) =
∫

d3p′〈 �p V |ÛV (T ,tj )| �p ′V 〉 〈 �p ′V |χi,out(tj )〉︸ ︷︷ ︸
ci ( �p ′,tj )

.

(12)

First, we calculate the ci( �p,tj ) for each splitting time tj ,

ci( �p,tj ) = (2π )−3/2
∑

a

βa
i (tj )

∫
d3r e−i �p·�rϕa(�r), (13)

where the orbital is now explicitly given in the spatial repre-
sentation by 〈�r |ĉ†a|0〉 = 〈�r |ϕa〉 = ϕa(�r ) = una ,la (r)

r
Yla,ma

(��r )
and thus possesses a radial and an angular part. We use the
multipole expansion for the exponential function

ei �p·�r = 4π

∞∑
l=0

iljl(pr)
l∑

m=−l

Y ∗
lm(� �p)Ylm(��r ), (14)

where jl(pr) denotes the spherical Bessel function of order l.
The orthonormality relations of the spherical harmonics reduce
the three-dimensional integrals in Eq. (13) to one-dimensional
radial integrals. Finally, propagating to a long time T after the
pulse, we obtain the coefficients

Ci( �p,tj ) = 〈 �p V |ÛV (T ,tj )|χi,out(tj )〉

=
√

2

π
exp

(
− i

2

∫ T

tj

dτ [ �p+ �A(τ )]2

)

×
∑

a

(−i)la βa
i (tj )Yla,ma

(� �p)
∫

dr r una,la(r)jla(pr).

(15)

These coefficients can be used to calculate the angle and
energy distribution of the ejected electron because at time
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T the canonical momentum equals the kinetic momentum.
One can choose now a homogeneous momentum grid and
calculate these coefficients for each splitting time step. In
order to obtain the full electron wave packet at time T

all contributions from splitting times tj must be summed
up coherently to obtain the coefficients C̃i( �p ) in Eq. (11)
for each ionization channel i. Then incoherent summation
over all possible ionization channels yields the photoelectron
spectrum:

d2P ( �p)

dEd�
= p

∑
i

∣∣C̃i( �p )
∣∣2

. (16)

The extra factor of p results from the conversion from the
momentum to the energy differential. As long as the time T

is chosen to be after the pulse the result is T independent. Of
course, one needs to choose a sufficiently large T such that the
parts of the electron wave function that one wants to record
have entered the outer region and can be analyzed.

C. Time-dependent surface flux method

The second method for the calculation of photoelectron
spectra is based on the approach presented by Tao and Scrinzi
in Ref. [58], where it was used to calculate strong-field infrared
photoionization spectra in combination with infinite-range
exterior complex scaling [68]. In this approach the electron
wave function is analyzed during its evolution when crossing
the surface of a sphere of a given radius rc. Again it is assumed
that the wave function can be split into two parts: One part is
bound to the atom and is a solution to the full Hamiltonian;
the other part can be viewed as free from the parent ion and is
a solution to the Volkov Hamiltonian. Therefore, the method
also relies conceptually on a splitting procedure. Nevertheless,
in contrast to the splitting method, the wave function is not
altered in this process. As above, the key idea is to obtain the
spectral components of the wave function by projecting onto
plane waves.

The surface radius rc is chosen such that the electron can be
considered to be free and a sufficiently large time T after the
pulse is over is picked by which the electron with the kinetic
energy of interest has passed this surface. (For very low-energy
electrons a correspondingly larger time has to be chosen.) At
this time, the channel wave function |χi〉 for each ionization
channel i can be split into a bound part (corresponding to
the inner wave function in the splitting method) and an
asymptotic part, which describes the ionized contribution:
|χi(T )〉 = |χi,in(T )〉 + |χi,out(T )〉. As in Sec. II B, the system
Hamiltonian for distances larger than rc is approximated by
the Volkov Hamiltonian. Using the Volkov states of Sec. II B
and |�V

�p (T )〉 = ÛV (T , − ∞)|�V
�p 〉, the outer wave function is

represented as follows:

|χi,out(T )〉 =
∫

d3p bi( �p)
∣∣�V

�p (T )
〉
, (17)

which vanishes for r � rc. Thus, the photoelectron spectrum
is the sum, over all channels, of the |bi( �p)|2, where

|bi( �p )|2 =
∣∣∣∣
∫

r>rc

d3r �V ∗
�p (�r,T )χi,out(�r,T )

∣∣∣∣2

=:
∣
∣
〈
�V

�p (T )
∣∣θ (r̂ − rc)|χi,out(T )〉∣∣2. (18)

Here the Heaviside step function θ enters (we adopted the
notation by Tao and Scrinzi [58]). In order to avoid the need
for a representation of χi,out(�r,T ) at large r (because T is
large, a fast electron moves far out during this time), this three-
dimensional integral is converted into a time integral involving
the wave function only at r = rc. For that, we must know the
time evolution of the asymptotic part of the wave function after
it has passed the surface. Inserting the Schrödinger equation
where necessary and using the Volkov solutions in the velocity
form outside the sphere with radius rc, we obtain [58]〈
�V

�p (T )
∣∣θ (r̂ − rc)|χi,out(T )〉

= i

∫ T

−∞
dt

〈
�V

�p (t)
∣∣[− 1

2

 − i �A(t) · �∇,θ (r̂ − rc)

]
|χi,out(t)〉.

(19)

The commutator, which vanishes everywhere except at r =
rc, is easily evaluated in polar coordinates (assuming linear
polarization) and we obtain[

− 1

2

 − i �A(t) · �∇,θ (r̂ − rc)

]

= − 1

2r2
∂rr

2δ(r − rc) − 1

2
δ(r − rc)∂r

+ iA(t) cos(θ )δ(r − rc). (20)

More details can be found in Ref. [58] as well as in Ref. [69].
We shuffle the derivative in the first operator term to the left,
via integration by parts, and obtain the operator

−1

r
δ(r − rc) + ←−

∂r

1

2
δ(r − rc)

−1

2
δ(r − rc)�∂r + iA(t) cos(θ )δ(r − rc), (21)

where
←−
∂ means that the derivative acts to the left on the Volkov

state and �∂ means that the derivative acts to the right on the
channel wave function. In order to implement this operator
acting on the channel wave functions we have to calculate
also the first derivative of the wave functions with respect to
r at the radius rc. After the propagation, during which the
coefficients of the channel wave functions χi(rc,t) as well as
of their first derivatives [∂rχi(r,t)|r=rc

] have been calculated,
the expression (19) can be computed. Since we introduce
the multipole expansion [see Eq. (14)] for the Volkov states
we have to calculate also derivatives of the spherical Bessel
functions at the radius rc. This calculation is performed during
the analysis step for each angular momentum l. In the last
term we express the cosine as a spherical harmonic and use
the identity for the integral over three spherical harmonics

∫
d�Y ∗

l3,m3
(�)Yl2,m2(�)Yl1,m1(�) =

√
(2l1+1)(2l2+1)

4π (2l3+1)
C

l3m3
l1m1,l2m2

C
l30
l10,l20,
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where the Clebsch-Gordan coefficients are given by C
l3m3
l1m1,l2m2

= 〈l1m1,l2m2|l3m3〉. Thus, we obtain the spectral components in
their final form:〈

�V
�p (T )

∣∣θ (r̂ − rc)|χi,out(T )〉 = i

√
2

π

∫ T

−∞
dt exp

(
− i

2

∫ t

−∞
dτ [ �p + �A(τ )]2

)

×
∑

a

{
(−i)la

[
− jla(prc) + prc

2
j ′
la

(prc) − 1

2
jla(prc)

]
Yla,ma

(�p)una,la(rc)αa
i (t)

− (−i)la

2
jla(prc)Yla,ma

(�p)u′
na,la

(rc)αa
i (t)

+ i

2
√

π
rcuna,la(rc)A(t)αa

i (t)
∞∑
l=0

(−i)ljl(prc)

√
2la+1

2l + 1
C

l,ma

la,ma ;1,0C
l,0
la ,0;1,0Yl,ma

(�p)

}
, (22)

where j ′
la

(prc) = ∂zjla(z)|z=prc
and u′

na,la
(rc) = ∂runa,la(r)|r=rc

.
Although this expression may seem fairly complicated, it
involves only quantities evaluated at one single radius r = rc.
The photoelectron spectrum is then obtained as

d2P ( �p)

dEd�
= p

∑
i

∣
∣
〈
�V

�p (T )
∣∣θ (r̂ − rc)

∣∣χi,out(T )
〉∣
∣2, (23)

where, as in the splitting method, the incoherent sum over all
ionization channels i is performed. In the present implemen-
tation, a complex absorbing potential (CAP) absorbs the wave
function near the end of the numerical grid [70–72]. We use a
CAP of the form W (r) = θ (r − rCAP)(r − rCAP)2, where θ is
again the Heaviside step function and rCAP is the radius where
the CAP starts absorbing. It is added to the Hamiltonian in
Eq. (2) in the form −iηŴ , where η is the CAP strength. As
will be discussed in Sec. III B, the absorption via a CAP has to
be optimized carefully because reflections from the end of the
numerical grid as well as from the CAP itself have to be min-
imized in order to obtain an accurate photoelectron spectrum.

III. APPLICATION: ARGON UNDER STRONG
XUV RADIATION

With two methods for the calculation of photoelectron
spectra implemented in TDCIS, we investigate one-photon
and above-threshold ionization processes of argon in the
XUV regime. Motivated by a recent experiment carried out
at the free-electron laser facility FLASH in Hamburg [73], we
assume a photon energy of 105 eV, which is far above the
threshold for the ionization out of the 3p and 3s subshells. In
the following we examine the functionality of the splitting and
the surface flux methods by means of the specific example of
ionization of argon in the XUV.

A. Wave-function splitting method

In the splitting method, three parameters have to be
adjusted: the splitting radius, the smoothness of the splitting
function, and the rate at which the absorption is applied. A first
criterion for verifying that the absorption through the masking
function is performed correctly is the comparison of the total
ground-state population obtained via splitting with the popula-
tion obtained with the CAP. We use a Gaussian pulse with 9 ×

1013 W cm−2 peak intensity and 1.2 fs duration [full width at
half maximum (FWHM)] at a photon energy of 105 eV. For this
pulse a converged result for the CAP strength η = 1 × 10−3,
rmax = 150 a.u., and rmax−rCAP = 30 a.u. gives an ionization
probability of 7.197 × 10−3 after the pulse. In the studied
parameter cases the agreement between the splitting results
and that CAP result is better than 3 × 10−3 relative difference
(choosing, e.g., rmax = 150 a.u., rc = 80 a.u., 
 = 10 a.u., and
varying the splitting time step between 0.2 and 10 a.u.). With
more frequent absorption the agreement gets slightly better.

Analyzing the splitting method, we find that the splitting
radius rc and the smoothing parameter 
 can be varied rather
freely without changing the (physical) spectrum. Although
the total radial grid size can be chosen as small as 100 a.u.
(see Fig. 1) we choose also a larger radial grid extension
with rmax = 250 a.u. and vary the splitting radius in the
wide range from 80 to 230 a.u. Exemplarily, results in the
direction θ = 0 (along the XUV polarization axis) when
the radial grid size and splitting radius are varied are shown
in Fig. 1(a). The spectrum shows the one-photon absorption
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FIG. 1. (Color online) Photoelectron spectrum of argon for a
pulse with 105 eV photon energy, 9 × 1013 W cm−2 intensity, and
1.2 fs duration for different radial grid sizes rmax and splitting radii rc.
The smoothing parameter is 
 = 10 a.u. and the splitting time step is
dtspl = 0.2 a.u. (a) One-photon absorption lines and (b) energetically
lowest ATI lines for different splitting radii. All radii are given in
atomic units. The spectrum does not change under variation of the
splitting radius as long as around 30 a.u. units are left for absorption.
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FIG. 2. (Color online) Argon photoelectron spectrum for differ-
ent smoothing parameters 
. The pulse parameters are the same as
for Fig. 1. The radial grid size is rmax = 150 a.u., the splitting radius is
80 a.u., and the splitting is applied every 10 a.u. of time. The 3p and
3s peaks are not affected by the change of the slope of the splitting
function, although the numerical noise resulting from reflections from
the splitting function changes.

peaks at the energy corresponding to the difference between
photon energy and binding energy of the corresponding orbital
(3s and 3p, respectively). The second part of the spectrum, in
Fig. 1(b), is separated from the first part by the photon energy
and is therefore attributed to above-threshold ionization. The
width of the peaks corresponds to the Fourier-limited energy
width according to τ
ω = 2.765 (all quantities in atomic
units), where τ is the duration of the pulse intensity envelope
(FWHM) and 
ω is the bandwidth of the power spectrum
(FWHM). The figure shows that the spectrum is independent
of the splitting radius as long as around 30 a.u. are left to
the end of the numerical grid for absorption. Reducing the
difference rmax − rc to 20 a.u. produces artificial peaks near
the physical peaks. To estimate how large the absorption range
must be let us consider an electron with 200 eV kinetic energy.
It covers a distance of roughly 4 a.u. per atomic unit of time.
The numerical results show that the range over which the wave
function is absorbed by the splitting function must be much
larger than this distance (almost 10 times larger) in order to
avoid reflections. This can be understood if one considers that
the slope of the splitting function at a smoothing parameter of

 = 10 a.u. extends over a range of around 30 a.u. beyond the
splitting radius to reach 95% absorption of the wave function.

Since the splitting radius is not very crucial for the spectrum
we proceed to the variation of the other parameters. Spectra
for various smoothing parameters 
 are shown in Fig. 2.
Here the radial grid size is kept fixed at rmax = 150 a.u.,
the splitting radius is 80 a.u., and absorption is performed
every 10 a.u. of time. The physical peaks are reproduced
correctly for all 
; the noise amplitude, however, is changing.
A value of 
 = 10 seems to be the optimum; for 
 = 15
the amplitude of unphysical peaks is higher, while the steeper
slope corresponding to 
 = 5 a.u. produces higher oscillations
near the physical peaks, which should be avoided. The method
is particularly sensitive to the splitting rate, i.e., how often the
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FIG. 3. (Color online) Argon photoelectron spectrum in the po-
larization direction. The variation of the splitting time step results
in significant changes in the (numerical) oscillations. The pulse
parameters are the same as for Figs. 1 and 2. At a fixed smoothing
parameter 
 = 10 a.u., rmax = 150 a.u., and rc = 80 a.u., the noise is
suppressed by several orders of magnitude for more frequent splitting.
The one-photon peaks and ATI peaks do not change significantly.

splitting is applied. The more frequently the splitting function
is applied the less noise is obtained. This is shown in Fig. 3,
where only the splitting time step is varied, while the radial
grid size is kept constant at 150 a.u., the splitting radius is set to
80 a.u., and the smoothing parameter is 10 a.u. We find that the
unphysical peaks or artifacts do not contribute to the physical
observables because they are orders of magnitude smaller. The
noisy oscillations result from numerical issues, e.g., the higher
the frequency of splitting, the more reflections are accumulated
from the slope of the splitting function. For this reason, the
choice of the slope of the splitting function is coupled to
the frequency of splitting. For more frequent absorption of
the wave function the steepness should be reduced. Since for
every splitting time step the new coefficients βa

i (tj ) have to be
calculated and stored during the propagation and the quantities
(15) have to be evaluated during the analysis step, it is not
convenient to perform the splitting at every propagation time
step as mentioned in Sec. II B. In the calculations shown the
propagation time step is 0.05 a.u.

From the derivation of the splitting method in Sec. II B
it can be seen that the electron spectrum is normalized
to the total ionization probability (because only normalized
wave functions are used). Therefore, the integrated spectrum
represents a good measure of the quality of the spectrum; the
fully integrated spectrum must agree with the total ionization
probability. This can be verified for different parameter
specifications. The relative difference to the CAP result is
found to be smaller than 2% in all studied parameter cases.

In the following we apply a strong XUV pulse centered at
105 eV with 0.7 eV bandwidth (FWHM), which corresponds
to a Fourier-transform limited pulse with 108 a.u. (2.6 fs)
duration. The peak intensity of the pulse is 1.0 × 1015 W cm−2.
In the upper left panel of Fig. 4 the full angle- and energy-
resolved photoelectron spectrum of argon after one-photon
absorption is shown. The angle denotes the direction with
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FIG. 4. (Color online) Energy- and angle-resolved argon photoelectron spectrum produced with the splitting method for an XUV pulse at
105 eV photon energy, 1.0 × 1015 W cm−2 intensity, and 2.6 fs pulse duration. The grid size is rmax = 100 a.u., rc = 20 a.u., 
 = 5 a.u., and
dtspl = 10 a.u. The angle denotes the direction with respect to the polarization axis of the pulse. The angular distribution reflects the change in
angular momentum by multiphoton absorption.

respect to the polarization axis. The peaks arise from ionization
out of the 3s and 3p shells, respectively. The lower left
panel shows the corresponding ATI spectrum. As expected, the
angular distributions feature the corresponding contributions
from the different channels, which can be seen on the right in
the four cuts along the fixed peak energies: The one-photon
peak from the 3s peak shows a p-wave character, the 3p peak
has both an s- and a d-wave contribution. Analogously, the
two-photon peak of 3s exhibits an s- and d-wave character
and the 3p peak a p- and f -wave character. In a nutshell,
the splitting method is a well-working tool for the calculation
of photoelectron spectra, although the requirement to optimize
three parameters (rc, 
, and dtspl) can render calculations time
consuming.

B. Time-dependent surface flux method

We turn now to the t-SURFF method. The method depends
on the radius rc where the surface measuring the flux is placed
and on the parameters of the absorption method. As already
mentioned in Sec. II C, in the present work the absorption is
performed with a CAP, which depends on two parameters:
the CAP strength η and the radius rCAP where the CAP
starts absorbing. For t-SURFF also the total propagation time
plays an important role. While the splitting method is not
affected by a variation of the propagation time (as long as it is
longer than the pulse and long enough for the electronic wave
packet of interest to enter the absorption region), t-SURFF
requires a long propagation. This is shown in Fig. 5. The noise
level decreases dramatically with longer time propagation.
On the other hand, the calculation of the spectrum itself can

be performed faster than with the splitting method because
no radial integrals are involved. Instead, all quantities are
evaluated at the radius r = rc.

The method relies on an optimized CAP for the energy
range of interest. However, the CAP cannot guarantee a
perfect absorption. Since the optimized CAP strength is energy
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FIG. 5. (Color online) Argon photoelectron spectrum calculated
via t-SURFF for different propagation times (in a.u.). The pulse
parameters are the same as in Figs. 1–3. The computational parameter
specifications are rmax = 250 a.u., rCAP = 230 a.u., η = 1 × 10−3, and
rc = 180 a.u. The oscillations decrease by orders of magnitude for
longer propagation.
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FIG. 6. (Color online) Argon photoelectron spectrum along the
polarization axis of the field, calculated with t-SURFF, for a pulse with
105 eV photon energy, 9 × 1013 W cm−2 intensity, and 1.2 fs duration
for different CAP strengths. The radial grid size is rmax = 150 a.u.,
the CAP radius is rCAP = 120 a.u., and rc = 100 a.u. The oscillations
are due to reflections from the end of the radial grid and/or the CAP.

dependent [70], the t-SURFF spectrum can be optimized only
for a limited energy range. In Fig. 6 the energy spectrum
for θ = 0 is shown for different CAP strengths η. It is clear
that reflections from the CAP as well as from the end of
the radial grid leave a trace in the spectrum. A weak CAP
cannot fully absorb a fast electron before the end of the
radial grid. On the other hand, a strong CAP will reflect the
electron. For the kinetic energies of the electrons considered
here the optimized CAP parameter lies at a value of about
10−3. Of course, the other parameter that must be optimized
is the CAP radius rCAP. We find that the optimum is an
absorption range of rmax−rCAP = 30 a.u. For t-SURFF also
the distance of rc to rCAP plays a role. In Fig. 7 the spectrum
is shown for different rCAP − rc values. For a distance of

10-8

10-7

10-6

 180  200

10-16

10-14

10-12

10-10

10-8

10-6

10-4

10-2

 60  80  100  120  140  160  180  200

Y
ie

ld

Energy (eV)

rCAP-rc=0
rCAP-rc=10 a.u.
rCAP-rc=20 a.u.

FIG. 7. (Color online) Argon photoelectron spectrum for the
same pulse as in Figs. 1–3, 5, and 6 along the polarization direction.
The numerical parameters are rmax = 250 a.u., η = 1 × 10−3, and
rCAP = 220 a.u. and the propagation time is 1000 a.u. The distance
rmax−rCAP is varied in the range from 0 to 20 a.u.
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FIG. 8. (Color online) Argon photoelectron spectra obtained
with the splitting and the t-SURFF methods for a pulse with 105 eV
photon energy, 9 × 1013 W cm−2 intensity, and 1.2 fs duration along
the polarization direction are compared. The radial grid size is
rmax = 250 a.u. for both methods.

rCAP − rc = 20 a.u. the spectrum becomes less oscillatory and
the noise level decreases significantly in comparison to shorter
ranges rCAP − rc.

A direct comparison of the spectrum in the direction
θ = 0 obtained by splitting and t-SURFF, respectively, is
shown in Fig. 8. The pulse characteristics are the same as
for Figs. 1–3 and 5–7. The radial grid size is rmax = 250
a.u. The splitting parameters are rc = 200 a.u., 
 = 10 a.u.,
and dtspl = 0.2 a.u. and the propagation time is 400 a.u. For
the surface flux method a CAP strength of 10−3, a CAP
radius of rCAP = 220 a.u., a sphere radius of rc = 200 a.u.
(according to the optimum found for rCAP − rc = 20 a.u.),
and a propagation time of 1000 a.u. are chosen. The spectra
agree quite nicely. The one-photon peaks exhibit nearly perfect
agreement. The slight deviation in the two-photon spectrum
calculated with t-SURFF indicates that the CAP could be
reoptimized for this energy range. However, for both methods
the spectrum has a very low noise level, up to ten orders
of magnitude smaller than the physical signal. Summarizing,
the t-SURFF method is in principle applicable with a CAP,
although it requires a good quality absorption over a broad
energy range. Qualitatively, the t-SURFF method reproduces
exactly the same results as obtained with the splitting
method.

IV. CONCLUSION

We have implemented two computational methods for
the calculation of photoelectron spectra within the TDCIS
scheme. Both methods can produce reasonable and quanti-
tative energy- and angle-resolved spectra within our model.
Subshell ionization can be quantified. We have applied and
compared these methods for the high-intensity XUV regime.
Advantages of the splitting method are the good absorption
characteristics through the splitting function and the short
propagation time that is needed. A disadvantage is the long
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evaluation time of the radial integrals. The t-SURFF method
needs a longer propagation time. However, the calculation
of the photoelectron spectrum in the analysis step is much
faster than with the splitting method due to the evaluation
at one point. The comparison of the two methods shows
that, in principle, the same spectra can be obtained after
the appropriate optimization of the computational parameters.
Although our application in the present work focuses on the
XUV range, it is of course possible to study also processes in
the strong-field regime in the infrared range by analyzing the

photoelectron spectrum. Interesting applications arise from the
fact that information about the coherence and the entanglement
of the ionic state and the photoelectron can be extracted from
the properties of the outgoing wave packet.
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