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Abstract
Providing the neurobiological basis of information processing in higher animals, spiking

neural networks must be able to learn a variety of complicated computations, including the

generation of appropriate, possibly delayed reactions to inputs and the self-sustained gen-

eration of complex activity patterns, e.g. for locomotion. Many such computations require

previous building of intrinsic world models. Here we show how spiking neural networks may

solve these different tasks. Firstly, we derive constraints under which classes of spiking

neural networks lend themselves to substrates of powerful general purpose computing. The

networks contain dendritic or synaptic nonlinearities and have a constrained connectivity.

We then combine such networks with learning rules for outputs or recurrent connections.

We show that this allows to learn even difficult benchmark tasks such as the self-sustained

generation of desired low-dimensional chaotic dynamics or memory-dependent computa-

tions. Furthermore, we show how spiking networks can build models of external world sys-

tems and use the acquired knowledge to control them.

Author Summary

Animals and humans can learn versatile computations such as the generation of compli-
cated activity patterns to steer movements or the generation of appropriate outputs in
response to inputs. Such learning must be accomplished by networks of nerve cells in the
brain, which communicate with short electrical impulses, so-called spikes. Here we show
how such networks may perform the learning. We track their ability back to experimen-
tally found nonlinearities in the couplings between nerve cells and to a network connectiv-
ity that complies with constraints. We show that the spiking networks are able to learn
difficult tasks such as the generation of desired chaotic activity and the prediction of the
impact of actions on the environment. The latter allows to compute optimal actions by
mental exploration.
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Introduction
The understanding of neural network dynamics on the mesoscopic level of hundreds and thou-
sands of neurons and their ability to learn highly complicated computations is a fundamental
open challenge in neuroscience. For biological systems, such an understanding will allow to
connect the microscopic level of single neurons and the macroscopic level of cognition and
behavior. In artificial computing, it may allow to propose new, possibly more efficient comput-
ing schemes.

Randomly connected mesoscopic networks can be a suitable substrate for computations [1–
5], as they reflect the input in a complicated, nonlinear way and at the same time maintain, like
a computational “reservoir”, fading memory of past inputs as well as of transformations and
combinations of them. This includes the results of computations on current and past inputs.
Simple readout neurons may then learn to extract the desired result; the computations are exe-
cuted in real time, i.e. without the need to wait for convergence to an attractor (“reservoir com-
puting”) [1, 2]. Non-random and adaptive network connectivity can change performance [6–8].

Networks with higher computational power, in particular with the additional ability to learn
self-sustained patterns of activity and persistent memory, require an output feedback or equiv-
alent learning of their recurrent connections [2, 3]. However, network modeling approaches
achieving such universal (i.e. general purpose) computational capabilities so far concentrated
on networks of continuous rate units [2, 4], which do not take into account the characteristics
that neurons in biological neural networks communicate via spikes. Indeed, the dynamics of
spiking neural networks are discontinuous, usually highly chaotic, variable, and noisy. Read-
outs of such spiking networks show low signal-to-noise ratios. This hinders computations fol-
lowing the described principle in particular in presence of feedback or equivalent plastic
recurrent connections, and has questioned it as model for computations in biological neural
systems [9–11].

Here we first introduce a class of recurrent spiking neural networks that are suited as a sub-
strate to learn universal computations. They are based on standard, established neuron models,
take into account synaptic or dendritic nonlinearities and are required to respect some struc-
tural constraints regarding the connectivity of the network. To derive them we employ a pre-
cise spike coding scheme similar to ref. [12], which was introduced to approximate linear
continuous dynamics.

Thereafter we endow the introduced spiking networks with learning rules for either the out-
put or the recurrent connection weights and show that this enables them to learn equally com-
plicated, memory dependent computations as non-spiking continuous rate networks. The
spiking networks we are using have only medium sizes, between tens and a few thousands of
neurons, like networks of rate neurons employed for similar tasks. We demonstrate the capa-
bilities of our networks by applying them to challenging learning problems which are of impor-
tance in biological contexts. In particular, we show how spiking neural networks can learn the
self-sustained generation of complicated dynamical patterns, and how they can build world
models, which allow to compute optimal actions to appropriately influence an environment.

Results

Continuous signal coding spiking neural networks (CSNs)
Network architecture. For our study, we use leaky integrate-and-fire neurons. These

incorporate crucial features of biological neurons, such as operation in continuous time, spike
generation and reset, while also maintaining some degree of analytical tractability. A network
consists of N neurons. The state of a neuron n is given by its membrane potential Vn(t). The
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membrane potential performs a leaky integration of the input and a spike is generated when
Vn(t) reaches a threshold, resulting in a spiketrain

snðtÞ ¼
X
tn

dðt � tnÞ ð1Þ

with spike times tn and the Dirac delta-distribution δ. After a spike, the neuron is reset to the
reset potential, which lies θ below the threshold. The spike train generates a train of exponen-
tially decaying normalized synaptic currents

rnðtÞ ¼
X
tn

e�lsðt�tnÞYðt � tnÞ , _rnðtÞ ¼ �lsrnðtÞ þ snðtÞ; ð2Þ

where ts ¼ l�1

s is the time constant of the synaptic decay and Θ(.) is the Heaviside theta-
function.

Throughout the article we consider two closely related types of neurons, neurons with satu-
rating synapses and neurons with nonlinear dendrites (cf. Fig 1). In the model with saturating
synapses (Fig 1a), the membrane potential Vn(t) of neuron n obeys

_VnðtÞ ¼ �lVVnðtÞ þ
XN

m¼1

AnmtanhðgrmðtÞÞ þ VrlsrnðtÞ

�ysnðtÞ þ Ie;nðtÞ;
ð3Þ

with membrane time constant tm ¼ l�1

V .
The saturation of synapses, e.g. due to receptor saturation or finite reversal potentials, acts

as a nonlinear transfer function [13, 14], which we model as a tanh-nonlinearity (since
rm(t)� 0 only the positive part of the tanh becomes effective). We note that this may also be
interpreted as a simple implementation of synaptic depression: A spike generated by neuronm
at tm leads to an increase of rm(tm) by 1. As long as the synapse connecting neuronm to neuron
n is far from saturation (linear part of the tanh-function) this leads to the consumption of a
fraction γ of the synaptic “resources” and the effect of the spike on the neuron is approximately

the effect of a current Anm ge�lsðt�tmÞ Θ(t − tm). When a larger number of such spikes arrive in
short time such that the consumed resources accumulate to 1 and beyond, the synapse satu-
rates at its maximum strength Anm and the effect of individual inputs is much smaller than
before. The recovery from depression is here comparably fast, it takes place on a timescale of

l�1

s (compare, e.g., [15]).
The reset of the neuron is incorporated by the term −θsn(t). The voltage lost due to this

reset is partially recovered by a slow recovery current (afterdepolarization) Vr λs rn(t); its tem-
porally integrated size is given by the parameter Vr. This is a feature of many neurons e.g. in
the neocortex, in the hippocampus and in the cerebellum [16], and may be caused by different
types of somatic or dendritic currents, such as persistent and resurgent sodium and calcium
currents, or by excitatory autapses [17, 18]. It provides a simple mechanism to sustain (fast)
spiking and generate bursts, e.g. in response to pulses. Ie,n(t) is an external input, its constant
part may be interpreted as sampling slow inputs specifying the resting potential that the neu-
ron asymptotically assumes for long times without any recurrent network input. We assume
that the resting potential is halfway between the reset potential Vres and the threshold Vres + θ.
We set it to zero such that the neuron spikes when the membrane potential reaches θ/2 and
resets to −θ/2. To test the robustness of the dynamics we sometimes add a white noise input
ηn(t) satisfying hZnðtÞZmðt0Þi ¼ s2

Zdnmdðt � t0Þ with the Kronecker delta δnm.
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For simplicity, we take the parameters λV, θ, Vr and γ, λs identical for all neurons and synap-
ses, respectively. We take the membrane potential Vn and the parameters Vr and θ dimension-
less, they can be fit to the voltage scale of biological neurons by rescaling with an additive and a
multiplicative dimensionful constant. Time is measured in seconds.

We find that networks of the form Eq (3) generate dynamics suitable for universal computa-

tion similar to continuous rate networks [2, 4], if 0< λx � λs, where lx ¼ ls 1� Vr
y

� �
, Anm

Fig 1. Coding of continuous signals in neurons with saturating synapses (a,b) and nonlinear dendrites (c,d). (a,b): A neuron with
saturating synapses (a) that directly codes for a continuous signal (b). Panel (a) displays the neuron with an axon (red) and dendrites (dark blue)
that receive inputs from the axons of other neurons (axons at the bottom) via saturating synapses (symbolized by sigmoids at the synaptic
contacts). The currents entering the soma are weighted sums of input spike trains that are synaptically filtered (generating scaled normalized
synaptic currents γrn(t), synaptic time scale τs) and thereafter subject to a saturating synaptic nonlinearity. External inputs (axons at the top) are
received without saturation. The continuous signal x(t) (panel b left hand side, green) is the sum of the neuron’s membrane potential V(t) (red) and
its scaled normalized synaptic current θr(t) (dark blue). r(t) is a low-pass filtered version of the neuron’s spike train s(t) (light blue in red box). If
x(t) > 0, the time scale of x(t) should be large against the synaptic time scale τs and x(t) should predominantly be large against the neuron’s
threshold, θ/2 (panel b right hand side, assumptions 1,2 in the main text). x(t) is then already well approximated by θr(t), while V(t) is oscillating
between ±θ/2. If x(t)� 0, we have V(t)� 0, no spikes are generated and r(t) quickly decays to zero, such that we predominantly have r(t)� 0 and
x(t) is well approximated by V(t) (cf. Eq (9)). (c,d): Two neurons with nonlinear dendrites (c) from a larger network that distributedly codes for a
continuous signal (d). (c): Each neuron has an axon (red) and different types of dendrites (cyan, light blue and dark blue) that receive inputs from
the axons of other neurons (axons at the bottom) via fast or slow conventional synapses (highlighted by circles and squares). Linear dendrites with
slow synapses (cyan with circle contacts) generate somatic currents that are weighted linear sums of low-pass filtered presynaptic spike trains
(weighted sums of the rn(t)). Linear dendrites with fast synapses (light blue with square contacts) generate somatic currents with negligible filtering
(weighted sums of the spike trains sn(t)). Spikes arriving at a nonlinear dendrite (dark blue) are also filtered (circular contact). The resulting rn(t) are
weighted, summed up linearly in the dendrite and subjected to a saturating dendritic nonlinearity (symbolized by sigmoids at dendrites), before
entering the soma. We assume that the neurons have nonlinear dendrites that are located in similar tissue areas, such that they connect to the
same sets of axons and receive similar inputs. (d): All neurons in the network together encode J continuous signals x(t) (one displayed in green)
by a weighted sum of their membrane potentials V(t) (two traces of different neurons displayed in red) and their normalized PSCs r(t) (two traces
displayed in cyan). The Γr(t) alone already approximate x(t) well. The neurons’ output spike trains s(t) (light blue in red box) generate slow and
fast inputs to other neurons. (Note that spikes can be generated due to suprathreshold excitation by fast inputs. Since we plot V(t) after fast inputs
and possible resets, the corresponding threshold crossings do not appear.)

doi:10.1371/journal.pcbi.1004895.g001
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sufficiently large and γ small. The conditions result from requiring the network to approximate
a nonlinear continuous dynamical system (see next section).

An alternative interpretation of the introduced nonlinearity is that the neurons have nonlin-
ear dendrites, where each nonlinear compartment is small such that it receives at most one
(conventional, nonsaturating) synapse. Anm is then the strength of the coupling from a den-
dritic compartment to the soma. This interpretation suggests an extension of the neuron
model allowing for several dendrites per neuron, where the inputs are linearly summed up and
then subjected to a saturating dendritic nonlinearity [19–21]. Like the previous model, we find
that such a model has to satisfy additional constraints to be suitable for universal computation:

Neurons with nonlinear dendrites need additional slow and fast synaptic contacts which
arrive near the soma and are summed linearly there (Fig 1c). Such structuring has been found
in biological neural networks [22]. We gather the different components into a dynamical equa-
tion for Vn as

_VnðtÞ ¼ �lVVnðtÞ þ
XJ

j¼1

Dnjtanh
XN

m¼1

WnjmrmðtÞ
0
@

1
A

þ
XN

m¼1

~UnmrmðtÞ �
XN

m¼1

UnmsmðtÞ

þ
XJ

j¼1

GjnIe;jðtÞ:

ð4Þ

Dnj is the coupling from the jth dendrite of neuron n to its soma. The total number of dendrites
and neurons is referred to as J and N respectively.Wnjm is the coupling strength from neuron
m to the jth nonlinear dendrite of neuron n. The slow, significantly temporally filtered inputs

from neuronm to the soma of neuron n, ~UnmrmðtÞ, have connection strengths ~Unm. The fast
ones, Unm sm(t), have negligible synaptic filtering (i.e. negligible synaptic rise and decay times)
as well as negligible conduction delays. The resets and recoveries are incorporated as diagonal

elements of the matrices Unm and ~Unm. To test the robustness of the dynamics, also here we
sometimes add a white noise input ηn(t). To increase the richness of the recurrent dynamics
and the computational power of the network (cf. [23] for disconnected units without output
feedback) we added inhomogeneity, e.g. through the external input current in some tasks. In
the control/mental exploration task, we added a constant bias term bj as argument of the tanh
to introduce inhomogeneity.

We find that the network couplingsD,W, U and ~U Eq (4) (we use bold letters for vectors
and matrices) should satisfy certain interrelations. As motivated in the subsequent section and
derived in the supporting material, their components may be expressed in terms of the compo-

nents of a J × Nmatrix Γ, and a J × Jmatrix A as Dnj ¼
PJ

i¼1 GinAij,Wnjm = Γjm,

~Unm ¼ a
PJ

j¼1 GjnGjm þ mlsdnm, Unm ¼PJ
j¼1 GjnGjm þ mdnm, where a = λs − λx and μ� 0 is

small (see also Table 1 for an overview). The thresholds are chosen identical, θn = θ, see
Methods.

Again, the conditions result from requiring the network to approximate a nonlinear contin-
uous dynamical system. This system, Eq (11), is characterized by the J × J coupling matrix A
and a J-dimensional input c(t) whose components are identical to the J independent compo-
nents of the external input current Ie in Eq (4); the matrix Γ is a decoding matrix that fixes the
relation between spiking and continuous dynamics (see next section). We note that the matri-
ces Γ and A are largely unconstrained, such that the coupling strengths maintain a large degree
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of arbitrariness. Ideally,Wnjm is independent of n, therefore neurons have dendrites that are
similar in their input characteristics to dendrites in some other neurons (note thatDmay have
zero entries, so dendrites can be absent). We interpret these as dendrites that are located in a
similar tissue area and therefore connect to the same axons and receive similar inputs (cf. Fig
1c for an illustration). The interrelations between the coupling matrices might be realized by
spike-timing dependent synaptic or structural plasticity. Indeed, for a simpler model and task,
appropriate biologically plausible learning rules have been recently highlighted [24, 25]. We
tested robustness of our schemes against structural perturbations (see Figs C and D in S1 Text),
in particular for deviations from the n-independence ofWnjm (Fig C in S1 Text).

The networks Eq (3) with saturating synapses have a largely unconstrained topology, in par-
ticular they can satisfy the rule that neurons usually act only excitatorily or inhibitorily. For the
networks Eq (4) with nonlinear dendrites, it is less obvious how to reconcile the rule with the
constraints on the network connectivity. Solutions for this have been suggested in simpler sys-
tems and are subject to current research [12].

The key property of the introduced neural architecture is that the spike trains generated by
the neurons encode with high signal-to-noise ratio a continuous signal that can be understood
in terms of ordinary differential equations. In the following section we show how this signal is
decoded from the spike trains. Thereafter, we may conclude that the spiking dynamics are suf-
ficiently “tamed” such that standard learning rules can be applied to learn complicated
computations.

Direct encoding of continuous dynamics. The dynamics of a neural network with N inte-
grate-and-fire neurons consist of two components, the sub-threshold dynamics V(t) = (V1(t),
. . ., VN(t))

T of the membrane potentials and the spike trains s(t) = (s1(t), . . ., sN(t))
T (Eq (1)),

which are temporal sequences of δ-distributions. In the model with saturating synapses, all syn-
aptic interactions are assumed to be significantly temporally filtered, such that the Vn(t) are
continuous except at reset times after spiking (Eq (3)). We posit that the V(t) and the s(t)
should together form some N-dimensional continuous dynamics x(t) = (x1(t), . . ., xN(t))

T. The
simplest approach is to setup x(t) as a linear combination of the two components V(t) and s(t).
To avoid infinities in xn(t), we need to eliminate the occurring δ-distributions by employing a
smoothed version of sn(t). This should have a finite discontinuity at spike times such that the
discontinuity in Vn(t) can be balanced. A straightforward choice is to use θrn(t) (Eq (2)) and to
set

VnðtÞ þ yrnðtÞ ¼ xnðtÞ ð5Þ

(cf. Fig 1b). When the abovementioned conditions on λx, λs, A and γ are satisfied (cf. end of the
section introducing networks with saturating synapses), the continuous signal x(t) follows a

Table 1. Parameters of a network of neurons with nonlinear dendrites (cf. Eq (4)) and their optimal
values.

explanation optimal value

Dnj coupling from the jth dendrite of neuron nto its soma Dnj ¼
PJ

i¼1 GinAij

Wnjm coupling strength from neuron m to the jth nonlinear dendrite of
neuron n

Wnjm = Γjm

~Unm
slow coupling from neuron m to neuron n; diagonal elements

incorporate a recovery current
~Unm ¼ a

PJ
j¼1 GjnGjm þ mlsdnm

a = λs − λx

Unm fast coupling from neuron m to neuron n; diagonal elements
incorporate the reset

Unm ¼PJ
j¼1 GjnGjm þ mdnm

θn threshold of neuron n yn ¼ Unn
2

doi:10.1371/journal.pcbi.1004895.t001

Learning Universal Computations with Spikes

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004895 June 16, 2016 6 / 29



system of first order nonlinear ordinary differential equations similar to those describing stan-
dard non-spiking continuous rate networks used for computations (cf. [2, 4, 26] and Eq (11)
below),

_xnðtÞ ¼ �lV xnðtÞ½ �� � lx xnðtÞ½ �þ þ
XN
m¼1

Anm tanh
g
y
xmðtÞ½ �þ

� �
þ Ie;nðtÞ; ð6Þ

with the rectifications [xn(t)]+ = max(xn(t), 0), [xn(t)]− = min(xn(t), 0). We call spiking net-
works where this is the case continuous signal coding spiking neural networks (CSNs).

Except for the rectifications, Eq (6) has a standard form for non-spiking continuous rate
networks, used for computations [2, 4, 26]. A salient choice for λx is λx = λV, i.e.

Vr ¼ 1� lV
ls

� �
y, such that the rectifications outside the tanh-nonlinearity vanish. Eq (6) gener-

ates dynamics that are different from the standard ones in the respect that the trajectories of
individual neurons are, e.g. for random Gaussian matrices A, not centered at zero. However,
they can satisfy the conditions for universal computation (enslaveability/echo state property
and high dimensional nonlinear dynamics) and generate longer-term fading memory for
appropriate scaling of A. Also the corresponding spiking networks are then suitable for fading
memory-dependent computations. Like for the standard networks [27, 28], we can derive suffi-
cient conditions to guarantee that the dynamics Eq (6) are enslaveable by external signals (echo
state property). kAk<min(λV, λx), where kAk is the largest singular value of the matrix A,
provides such a condition (see Supplementary material for the proof). The condition is rather
strict, our applications indicate that the CSNs are also suited as computational reservoirs when
it is violated. This is similar to the situation in standard rate network models [27]. We note that
if the system is enslaved by an external signal, the time scale of xn(t) is largely determined by
this signal and not anymore by the intrinsic scales of the dynamical system.

We will now show that spiking neural networks Eq (3) can encode continuous dynamics Eq
(6). For this we derive the dynamical equation of the membrane potential Eq (3) from the
dynamics of x(t) using the coding rule Eq (5), the dynamical Eq (2) for rn(t) and the rule that a
spike is generated whenever Vn(t) reaches threshold θ/2: We first differentiate Eq (5) to elimi-

nate _xnðtÞ from Eq (6) and employ Eq (2) to eliminate _rnðtÞ. The resulting expression for _VnðtÞ
reads

_VnðtÞ ¼ �lV xnðtÞ½ �� � lx xnðtÞ½ �þ þ
XN
m¼1

Anm tanh
g
y
xmðtÞ½ �þ

� �
� ysnðtÞ þ lsyrnðtÞ þ Ie;nðtÞ: ð7Þ

It already incorporates the resets of size θ (cf. the term −θsn(t)), they arise since xn(t) = Vn(t) +
θrn(t) is continuous and rn(t) increases by one at spike times (thus V must decrease by θ). We
now eliminate the occurrences of [xn(t)]+ and [xn(t)]−.

For this, we make two assumptions (cf. Fig 1b) on the xn(t) if they are positive:

1. The dynamics of xn(t) are slow against the synaptic timescale τs,

2. the xn(t) assume predominantly values xn(t)�θ/2.

First we consider the case xn(t)>0. Since Vn(t) is reset when it reaches its threshold value
θ/2, Vn(t) is always smaller than θ/2. Thus, given Vn(t)>0 assumption 2 implies that we can
approximate xn(t)� θrn(t), as the contribution of Vn(t) is negligible because Vn(t)�θ/2. This
still holds if Vn(t) is negative and its absolute value is not large against θ/2. Furthermore,
assumption 1 implies that smaller negative Vn(t) cannot co-occur with positive xn(t): rn(t) is
positive and in the absence of spikes it decays to zero on the synaptic time scale τs (Eq (2)).
When Vn(t)< 0, neuron n is not spiking anymore. Thus when Vn(t) is shrinking towards small
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negative values and rn(t) is decaying on a timescale of τs, xn(t) is also decaying on a time-scale
τs. This contradicts assumption 1. Thus when xn(t)> 0, the absolute magnitude of Vn(t) is on
the order of θ/2. With assumption 2 we can thus set xn(t)� θrn(t), whenever xn(t)> 0, neglect-
ing contributions of size θ/2.

Now we consider xn(t)� 0. This implies Vn(t)� 0 (since always rn(t)� 0) as well as a quick
decay of rn(t) to zero. When xn(t) assumes values significantly below zero, assumption 1
implies that we have xn(t)� Vn(t) and rn(t)� 0, otherwise xn(t) must have changed from larger
positive (assumption 2) to larger negative values on a timescale of τs.

The approximate expressions may be gathered in the replacements [xn(t)]+ = θrn(t) and

[xn(t)]− = [Vn(t)]−. Using these in Eq (7) yields together with lx ¼ ls 1� Vr
y

� �
_VnðtÞ ¼ �lV VnðtÞ½ �� þ

XN
m¼1

Anm tanh grmðtÞð Þ þ VrlsrnðtÞ � ysnðtÞ þ Ie;nðtÞ: ð8Þ

Note that our replacements allowed to eliminate the biologically implausibleV-dependencies
in the interaction term.

To simplify the remaining Vn(t)-dependence, we additionally assume that 2’ xn(t) assumes
predominantly values xn(t)� λV θ/(2λx), if xn(t) is positive. This can be stricter than assump-
tion 2 depending on the values of λx and λV. For positive xn(t), where λV[xn(t)]− in Eq (7) is
zero, λV Vn(t) has an absolute magnitude on the order of λV θ/2 (see the arguments above).
Assumption 2’ implies that this is negligible against −λx[xn(t)]+. For negative xn(t), we still have
xn(t)� Vn(t). This means that we may replace −λV[xn(t)]− by λV Vn(t) in Eq (7). Taken
together, under the assumptions 1,2,2’ we may use the replacements

xnðtÞ½ �þ � yrnðtÞ
xnðtÞ½ �� � VnðtÞ

ð9Þ

in Eq (7), which directly yield Eq (3). Note that this also implies rn(t)� θ/2 if the neuron is
spiking, so during active periods inter-spike-intervals need to be considerably smaller than the
synaptic time scale.

Eq (6) implies that the assumptions are justified for suitable parameters: For fixed parame-

ters ts ¼ l�1

s and θ of the r-dynamics, we can choose sufficiently small λx, large Anm and small
γ to ensure assumptions 1,2,2’ (cf. the conditions highlighted in the section “Network architec-
ture”). On the other hand, for given dynamics Eq (6), we can always find a spiking system
which generates the dynamics via Eqs (3), (2) and (5), and satisfies the assumptions: We only
need to choose τs sufficiently small such that assumption 1 is satisfied and the spike threshold
sufficiently small such that assumption 2,2’ are satisfied. For the latter, γ needs to be scaled like
θ to maintain the dynamics of xn and Vr needs to be computed from the expression for λx.
Interestingly, we find that also outside the range where the assumptions are satisfied, our
approaches can still generate good results.

The recovery current in our model has the same time constant as the slow synaptic current.
Indeed, experiments indicate that they possess the same characteristic timescales: Timescales
for NMDA [29] and slow GABAA[30, 31] receptor mediated currents are several tens of milli-
seconds. Afterdepolarizations have timescales of several tens of milliseconds as well [16, 32–
35]. Another prominent class of slow inhibitory currents is mediated by GABAB receptors and
has time scales of one hundred to a few hundreds of milliseconds [36]. We remark that in our
model the time constants of the afterdepolarization and the synaptic input currents may also
be different without changing the dynamics: Assume that the synaptic time constant is differ-
ent from that of the recovery current, but still satisfies the conditions that it is large against the
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inter-spike-intervals when the neuron is spiking and small against the timescale of [xn(t)]+.
The synaptic current generated by the spike train of neuron n will then be approximately con-
tinuous and the filtering does not seriously affect its overall shape beyond smoothing out the
spikes. As a consequence, the synaptic and the recovery currents are approximately propor-
tional up to a constant factor that results from the different integrated contribution of individ-
ual spikes to them. Rescaling γ by this factor thus yields dynamics equivalent to the one with
identical time constants.

Distributed encoding of continuous dynamics. In the above-described simple CSNs
(CSNs with saturating synapses), each spiking neuron gives rise to one nonlinear continuous
variable. The resulting condition that the inter-spike-intervals are small against the synaptic
time constants if the neuron is spiking may in biological neural networks be satisfied for burst-
ing or fast spiking neurons with slow synaptic currents. It will be invalid for different neurons
and synaptic currents. The condition becomes unnecessary when the spiking neurons encode
continuous variables collectively, i.e. if we partially replace the temporal averaging in rn(t) by
an ensemble averaging. This can be realized by an extension of the above model, where only a
lower, say J−, dimensional combination x(t) of the N − dimensional vectors V(t) and r(t) is
continuous,

xðtÞ ¼ LVðtÞ þ ~ΓrðtÞ; ð10Þ

where L and ~G are J × Nmatrices (note that Eq (5) is a special case with N = J and diagonal

matrices L and ~G). We find that spiking networks with nonlinear dendrites Eq (4) can encode
such a lower dimensional variable x(t). The x(t) satisfy J-dimensional standard equations
describing non-spiking continuous rate networks used for reservoir computing [2, 4, 26],

_xðtÞ ¼ �lxxðtÞ þA tanh xðtÞð Þ þ cðtÞ: ð11Þ

We denote the resulting spiking networks as CSNs with nonlinear dendrites.
The derivation (see Supplementary material for details) generalizes the ideas introduced in

refs. [12, 24, 37] to the approximation of nonlinear dynamical systems: We assume an approxi-
mate decoding equation (cf. also Eq (9)),

xðtÞ � ΓrðtÞ; ð12Þ

where Γ is a J × N decoding matrix and employ an optimization scheme that minimizes the
decoding error resulting from Eq (12) at each time point. This yields the condition that a spike
should be generated when a linear combination of x(t) and r(t) exceeds some constant value.
We interpret this linear combination as membrane potential V(t). Solving for x(t) gives L and
~G in terms of Γ in Eq (10). Taking the temporal derivative yields _VðtÞ, first in terms of _xðtÞ
and _rðtÞ and after replacing them via Eqs (2) and (11), in terms of x(t), r(t) and s(t). We then
eliminate x(t) using Eq (12) and add a membrane potential leak term for biological realism and
increased stability of numerical simulations. This yields Eq (4) together with the optimal values
of the parameters given in Table 1. We note that the difference to the derivation in ref. [12] is
the use of a nonlinear equation when replacing _xðtÞ. We further note that the spiking approxi-
mation of the continuous dynamics becomes exact, if in the last step x(t) is eliminated using Eq
(10) and the leak term is omitted as it does not arise from the formalism in contrast to the case
of CSNs with saturating synapses. Like in CSNs with saturating synapses, using the approxi-
mated decoding Eq (12) eliminates the biologically implausible V-dependencies in the interac-
tion terms. For an illustration of this coding see Fig 1d.
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Learning universal computations
Recurrent continuous rate networks are a powerful means for learning of various kinds of com-
putations, like steering of movements and processing of sequences [2, 4]. For this, an input
and/or an output feedback signal needs to be able to “enslave” the network’s high-dimensional
dynamics [27, 28]. This means that at any point in time the network’s state is a deterministic
function of the recent history of input and feedback signals. The function needs to be high
dimensional, nonlinear, and possess fading memory. A standard model generating suitable
dynamics are continuous rate networks of the form Eq (11). Due to the typically assumed ran-
dom recurrent connectivity, each neuron acts as a randomly chosen, nonlinear function with
fading memory. Linearly combining them like basis functions by a linear readout can approxi-
mate arbitrary, nonlinear functions with fading memory (time-scales are limited by the mem-
ory of the network), and in this sense universal computations on the input and the feedback.
The feedback can prolong the fading memory and allow to generate self-contained dynamical
systems and output sequences [2–4, 38]. The feedback can be incorporated into the network by
directly training the recurrent synaptic weights [4, 38].

Our understanding of the complex spiking dynamics of CSNs in terms of nonlinear first
order differential equations enables us to apply the above theory to spiking neural networks: In
the first step, we were able to conclude that our CSNs can generate enslaveable and thus com-
putationally useful dynamics as they can be decoded to continuous dynamics that possess this
property. In the second step, we have to ask which and how output signals should be learned to
match a desired signal: In a biological setting, the appropriate signals are the sums of synaptic
or dendritic input currents that spike trains generate, since these affect the somata of postsyn-
aptic neurons as well as effectors such as muscles [39]. To perform, e.g., a desired continuous
movement, they have to prescribe the appropriate muscle contraction strengths. For both
CSNs with saturating synapses and with nonlinear dendrites, we choose the outputs to have
the same form as the recurrent inputs that a soma of a neuron within the CSN receives.
Accordingly, in our CSNs with saturating synapses, we interpret sums of the postsynaptic cur-
rents

zkðtÞ ¼
XN
m¼1

wo
km tanh grmðtÞð Þ ¼:

XN
m¼1

wo
km~rmðtÞ ð13Þ

as output signals, where the index k distinguishes Kout different outputs, and wo
km are the learn-

able synaptic output weights. For networks with nonlinear dendrites the outputs are a linear
combination of inputs preprocessed by nonlinear dendrites

zkðtÞ ¼
XJ

j¼1

wo
kj tanh

XN
m¼1

GjmrmðtÞ
 !

¼:
XJ

j¼1

wo
kj~r jðtÞ; ð14Þ

where the strengths wo
kj of the dendro-somatic coupling are learned [40]. The networks can

now learn the output weights such that zk(t) imitates a target signal Fk(t), using standard learn-
ing rules for linear readouts (see Fig 2a for an illustration). We employ the recursive least
squares method [41].

To increase the computational and learning abilities, the output signals should be fed back
to the network as an (additional) input (Fig 2b)

Ife;bðtÞ ¼
XKout
k¼1

wf
bkzkðtÞ ¼

XKout
k¼1

wf
bk

X
r

wo
kr~rrðtÞ; ð15Þ
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where each neuron receives a linear combination of the output signals zk(t) with static feedback

connection strengths wf
bk. Here and in the following Greek letter indices such as β, ρ range over

all saturating synapses (β, ρ = 1, . . ., N; ~rbðtÞ ¼ tanh ðgrbðtÞÞ) in CSNs with saturating synap-

ses, or over all nonlinear dendrites (β, ρ = 1, . . ., J; ~rbðtÞ ¼ tanh ðPN
m¼1 GbmrmðtÞÞ) in CSNs

with nonlinear dendrites.
It often seems biologically more plausible not to assume a strong feedback loop that enslaves

the recurrent network, but rather to train recurrent weights. Our CSNs allow for this (Fig 2c):
We can transform the learning of output weights in networks with feedback into mathemati-
cally equivalent learning of recurrent connection strengths, between synapses (CSNs with satu-
rating synapses) or dendrites (CSNs with nonlinear dendrites) and the soma [40] (we learn
Anm, see Methods for details of the implementation). We note that approximating different
dynamical systems, e.g. ones equivalent to Eq (11) but with the coupling matrix inside the non-
linearity [42], may also in CSNs with nonlinear dendrites allow to learn synaptic weights in
similar manner. We call CSNs with learning of outputs in presence of feedback, or with learn-
ing of recurrent connections plastic continuous signal coding spiking neural networks (PCSNs).

To learn feedback and recurrent connections, we use the FORCE imitation learning rule,
which has recently been suggested for networks of continuous rate neurons [4, 38]: We use fast
online learning based on the recursive least squares rule of the output weights in order to
ensure that the output of the network is similar to the desired output at all times. Since during
training the output is ensured to be close to the desired one, it can be used as feedback to the
network at all times. The remaining deviations from the desired output are expected to be par-
ticularly suited as training noise as they reflect the system’s inherent noise. As mentioned
before, the feedback loop may be incorporated in the recurrent network connectivity. During
training, the reservoir connections are then learned in a similar manner as the readout.

In the following, we show that our approach allows spiking neural networks to perform a
broad variety of tasks. In particular, we show learning of desired self-sustained dynamics at a
degree of difficulty that has, to our knowledge, previously only been accessible with continuous
rate networks.

Applications
Self-sustained pattern generation. Animals including humans can learn a great variety of

movements, from periodic patterns like gait or swimming, to much more complex ones like
producing speech, generating chaotic locomotion [43, 44] or playing the piano. Moreover

Fig 2. Setups used to learn versatile nonlinear computations with spiking neural networks. (a) A static continuous signal
coding spiking neural network (CSN, gray shaded) serves as a spiking computational reservoir with high signal-to-noise ratio. The
results of computations on current and past external inputs Ie can be extracted by simple neuron-like readouts. These linearly
combine somatic inputs generated by saturating synapses or nonlinear dendrites, ~r (red), to output signals z (Eqs (13 and 14)). The
output weightswo are learned such that z approximates the desired continuous target signals. (b) Plastic continuous signal coding
spiking neural networks (PCSNs) possess a loop that feeds the outputs z back via static connections as an additional input Ife (blue, Eq
(15)). Such networks have increased computational capabilities allowing them to, e.g., generate desired self-sustained activity. (c)
The feedback loop can be incorporated into the recurrent network via plastic recurrent connections (red in gray shaded area).

doi:10.1371/journal.pcbi.1004895.g002
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when an animal learns to use an object (Fig 3a), it has to learn the dynamical properties of the
object as well as how its body behaves when interacting with it. Especially for complex, non-
periodic dynamics, a dynamical system has to be learned with high precision.

How are spiking neural networks able to learn dynamical systems, store them and replay
their activity? We find that PCSNs may solve the problem. They are able to learn periodic pat-
terns of different degree of complexity as well as chaotic dynamical systems by imitation learn-
ing. Fig 3 illustrates this for PCSNs with nonlinear synapses (Fig 3d and 3e) and with nonlinear
dendrites (Fig 3b, 3e and 3f).

The figure displays the recall of three periodic movements after learning: a sine wave, a
more complicated non-differentiable saw tooth pattern and a “camel’s hump” superposition of
sine and cosine. Also for long simulation times, we find no deviation from the displayed
dynamics except for an inevitable phase shift (Fig Ga in S1 Text). It results from accumulation
of small differences between the learned and desired periods. Apart from this, the error
between the recalled and the desired signals is approximately constant over time (Fig Gb in S1
Text). This indicates that the network has learned a stable periodic orbit to generate the desired
dynamics, the orbit is sufficiently stable to withstand the intrinsic noise of the system. Fig 3

Fig 3. Learning dynamics with spiking neural networks. (a): Schematic hunting scene, illustrating the
need for complicated dynamical systems learning and control. The hominid has to predict the motion of its
prey, and to predict and control the movements of its body and the projectile. (b-h): Learning of self-sustained
dynamical patterns by spiking neural networks. (b): A sine wave generated by summed, synaptically and
dendritically filtered output spike trains of a PCSN with nonlinear dendrites. (c): A sample of the network’s
spike trains generating the sine in (b). (d): A saw tooth pattern generated by a PCSNwith saturating
synapses. (e): A more complicated smooth pattern generated by both architectures (blue: nonlinear
dendrites, red: saturating synapses). (f-h): Learning of chaotic dynamics (Lorenz system), with a PCSN with
nonlinear dendrites. (f): The spiking network imitates an example trajectory of the Lorenz system during
training (blue); it continues generating the dynamics during testing (red). (g): Detailed view of (f) highlighting
how the example trajectory (yellow) is imitated during training and continued during testing. (h): The spiking
network approximates not explicitly trained quantitative dynamical features, like the tent map between
subsequent maxima of the z-coordinate. The ideal tent map (yellow) is closely approximated by the tent map
generated by the PCSN (red). The spiking network sporadically generates errors, cf. the larger loop in (f) and
the outlier points in (h). Panel (h) shows a ten times longer time series than (f), with three errors.

doi:10.1371/journal.pcbi.1004895.g003
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furthermore illustrates learning of a chaotic dynamical system. Here, the network learns to gen-
erate the time varying dynamics of all three components of the Lorenz system and produces
the characteristic attractor pattern after learning (Fig 3f). Due to the encoding of the dynamics
in spike trains, the signal maintains a small deterministic error which emerges from the encod-
ing of a continuous signal by discrete spikes (Fig 3g). The individual training and recall trajec-
tories quickly depart from each other after the end of learning since they are chaotic. However,
also for long simulation times, we observe qualitatively the same dynamics, indicating that the
correct dynamical system was learned (Fig Gc in S1 Text). Occasionally, errors occur, cf. the
larger loop in Fig 3f. This is to be expected due to the relatively short training period, during
which only a part of the phase space covered by the attractor is visited. Importantly, we observe
that after errors the dynamics return to the desired ones indicating that the general stability
property of the attractor is captured by the learned system. To further test these observations,
we considered a not explicitly trained long-term feature of the Lorenz-dynamics, namely the
tent-map which relates the height zn − 1 of the (n − 1)th local maximum in the z − coordinate,
to the height zn of the subsequent local maximum. The spiking network indeed generates the
map (Fig 3h), with two outlier points corresponding to each error.

In networks with saturating synapses, the spike trains are characterized by possibly inter-
mittent periods of rather high-frequency spiking. In networks with nonlinear dendrites, the
spike trains can have low frequencies and they are highly irregular (Fig 3c, Fig F in S1 Text). In
agreement with experimental observations (e.g. [45]), the neurons can have preferred parts of
the encoded signal in which they spike with increased rates.

The dynamics of the PCSNs and the generation of the desired signal are robust against
dynamic and structural perturbations. They sustain noise inputs which would accumulate to
several ten percent of the level of the threshold within the membrane time constant, for a neu-
ron without further input (Fig B in S1 Text). For larger deviations ofWnjm from their optimal
values, PCSNs with nonlinear dendrites can keep their learning capabilities, if μ is tuned to a
specific range. Outside this range, the capabilities break down at small deviations (Fig C in S1
Text). However, a slightly modified version of the models, where the reset is always to −θ (even
if there was fast excitation that drove the neuron to spike by a suprathreshold input), has a
high degree of robustness against such structural perturbations. We also checked that the fast
connections are important, albeit substantial weakening can be tolerated (Fig D in S1 Text).

The deterministic spike code of our PCSNs encodes the output signal much more precisely
than neurons generating a simple Poisson code, which facilitates learning. We have quantified
this using a comparison between PCSNs with saturating synapses and networks of Poisson
neurons of equal size, both learning the saw tooth pattern in the same manner. Since both
codes become more precise with increasing spike rate of individual neurons, we compared the
testing error between networks with equal spike rates. Due to their higher signal-to-noise ratio,
firing rates required by the PCSNs to achieve the same pattern generation quality are more
than one order of magnitude lower (Fig A in S1 Text).

Delayed reaction/time interval estimation. For many tasks, e.g. computations focusing
on recent external input and generation of self-sustained patterns, it is essential that the mem-
ory of the involved recurrent networks is fading: If past states cannot be forgotten, they lead to
different states in response to similar recent inputs. A readout that learns to extract computa-
tions on recent input will then quickly reach its capacity limit. In neural networks, fading mem-
ory originates on the one hand from the dynamics of single neurons, e.g. due to their finite
synaptic and membrane time constants; on the other hand it is a consequence of the neurons’
connection to a network [46–48]. In standard spiking neural network models, the overall fad-
ing memory is short, of the order of hundreds of milliseconds [9–11, 49]. It is a matter of
current debate how this can be extended by suitable single neuron properties and topology
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[1, 12, 50, 51]. Many biological computations, e.g. the simple understanding of a sentence,
require longer memory, on the order of seconds.

We find that CSNs without learning of recurrent connectivity or feedback access such time
scales. We illustrate this by means of a delayed reaction/time estimation task: In the beginning
of a trial, the network receives a short input pulse. By imitation learning, the network output
learns to generate a desired delayed reaction. For this, it needs to specifically amplify the input’s
dynamical trace in the recurrent spiking activity, at a certain time interval. The desired
response is a Gaussian curve, representative for any type of delayed reaction. The reaction can
be generated several seconds after the input (Fig 4a–4c).

The quality of the reaction pattern depends on the connection strengths within the network,
specified by the spectral radius g of the coupling matrix divided by the leak of a single corre-
sponding continuous unit λx. Memory is kept best in an intermediate regime (Fig 4b), where
the CSN stays active over long periods of time without overwriting information. This has also
been observed for continuous rate networks [52]. For too weak connections (Fig 4a), the CSN
returns to the inactive state after short time, rendering it impossible to retrieve input informa-
tion later. If the connections are too strong, (Fig 4c), the CSN generates self-sustained, either
irregular asynchronous or oscillating activity, partly overwriting information and hindering its
retrieval. We observe that already the memory in disconnected CSNs with synaptic saturation
can last for times beyond hundreds of milliseconds (cf. Fig E in S1 Text). This is a consequence
of the recovery current: If a neuron has spiked several times in succession, the accumulated
recovery current leads to further spiking (and further recovery current), and thus dampens the
decay of a strong activation of the neuron [53].

Experiments show that during time estimation tasks, neurons are particularly active at two
times: When the stimulus is received and when the estimated time has passed [54, 55]. Often
the neuron populations that show activity at these points are disjoint. Our model reproduces
this behavior for networks with good memory performance. In particular, at the time of the ini-
tial input the recurrently connected neurons become highly active (gray traces in Fig 4b, upper
sub-panel) while at the estimated reaction time, readout neurons would show increased activity
(red trace).

Persistent memory and context dependent switching. Tasks often also require to store
memories persistently, e.g. to remember instructions [56]. Such memories may be maintained
in learned attractor states (e.g. [57–60]). In the framework of our computing scheme, this
requires the presence of output feedback [3]. Here, we illustrate the ability of PCSNs to learn
and maintain persistent memories as attractor states as well as the ability to change behavior
according to them. For this, we use a task that requires memorizing computational instructions
(Fig 4d) [3]. The network has two types of inputs: After pulses in the instruction channels, it
needs to switch persistently between different rules for computation on the current values of
operand channels. To store persistent memory, the recurrent connections are trained such that
an appropriate output can indicate the instruction channel that has sent the last pulse: The net-
work learns to largely ignore the signal when a pulse arrives from the already remembered
instruction channel, and to switch states otherwise. Due to the high signal-to-noise ratio of our
deterministic spike code, the PCSNs are able to keep a very accurate representation of the cur-
rently valid instruction in their recurrent dynamics. Fig 4d, middle sub-panel, shows this by
displaying the output of the linear readout trained to extract this instruction from the network
dynamics. A similarly high precision can be observed for the output of the computational task,
cf. Fig 4d, lower sub-panel.

Building of world models, and control. In order to control its environment, an animal
has to learn the laws that govern the environment’s dynamics, and to develop a control strat-
egy. Since environments are partly unpredictable and strategies are subject to evolutionary
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Fig 4. Learning of longer-termmemory dependent computations with spiking neural networks. (a-c): Delayed reaction and time interval
estimation: The synaptic output of a CSN learns to generate a generic reaction several seconds after a short input. Upper panels show typical examples
of input, desired and actual reactions (green, yellow and red traces). In the three panels, the desired reaction delay is the same (9sec), the networks
(CSNs with saturating synapses) have different levels of recurrent connection strengths ((a), (b), (c): low, intermediate, high level). The generation of the
reaction is best for the network with intermediate level of connection strength. The CSNs with lower or higher levels have not maintained sufficient
memory due to their extinguished or noisy and likely chaotic dynamics (gray background lines: spike rates of individual neurons). The median errors of
responses measured for different delays in ensembles of networks (levels of connection strength as in the upper panels), are given in the lower panels.
The shaded regions represent the area between the first and third quartile of the response errors. Dashed lines highlight delay and error size of the
examples in the upper panels. (d): Persistent retaining of instructions and switching between computations: The network receives (i) two random
continuous operand inputs (upper sub-panel, yellow and purple traces), and (ii) two pulsed instruction inputs (middle sub-panel, blue and green;
memory of last instruction pulse: red). The network has learned to perform different computations on the operand inputs, depending on the last
instruction (lower subpanel): if it was +1 (triggered by instruction channel 1), the network performs a nonlinear computation, it outputs the absolute value
of the difference of the operands (red trace (network output) agrees with blue); if it was -1 (triggered by channel 2), the values of the operands are added
(red trace agrees with green trace).

doi:10.1371/journal.pcbi.1004895.g004
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pressure, we expect that they may be described by stochastic optimal control theory. A particu-
larly promising candidate framework is path integral control, since it computes the optimal
control by simulating possible future scenarios under different random exploratory controls,
and the optimal control is a simple weighted average of them [61]. For this, an animal needs an
internal model of the system or tool it wants to act on. It can then mentally simulate different
ways to deal with the system and compute an optimal one. Recent experiments indicate that
animals indeed conduct thought experiments exploring and evaluating possible future actions
and movement trajectories before performing one [62, 63].

Here we show that by imitation learning, spiking neural networks, more precisely PCSNs
with a feedback loop, can acquire an internal model of a dynamical system and that this can be
used to compute optimal controls and actions. As a specific, representative task, we choose to
learn and control a stochastic pendulum (Fig 5a and 5b). The pendulum’s dynamics are given
by

€�ðtÞ þ co0
_�ðtÞ þ o2

0 sin ð�ðtÞÞ ¼ xðtÞ þ uðtÞ; ð16Þ

with the angular displacement ϕ relative to the direction of gravitational acceleration, the
undamped angular frequency for small amplitudes ω0, the damping ratio c, a random (white
noise) angular force ξ(t) and the deterministic control angular force u(t), both applied to the
pivot axis. The PCSN needs to learn the pendulum’s dynamics under largely arbitrary external
control forces; this goes beyond the tasks of the previous sections. It is achieved during an ini-
tial learning phase characterized by motor babbling as observed in infants [64] and similarly in

Fig 5. Model building andmental exploration to compute optimal control. (a): Learning of an internal
world model with spiking neural networks. During model building, random exploratory control drives the
dynamical system (here: a swinging pendulum). The spiking neural network is provided with the same control
as input and learns to mimic the behavior of the pendulum as its output. (b): After learning, the spiking
network can simulate the system’s response to control signals. The panel displays the height of the real
pendulum in the past (solid black line) and future heights under different exploratory controls (dashed lines).
For the same controls, the spiking neural network predicts very similar future positions (colored lines) as the
imitated system. It can therefore be used for mental exploration and computation of optimal control to reach
an aim, here: to invert the pendulum. (c): During mental exploration, the network simulates in regular time
intervals a set of possible future trajectories for different controls, starting from the actual state of the
pendulum. From this, the optimal control until the next exploration can be computed and applied to the
pendulum. The control reaches its aim: The pendulum is swung up and held in inverted position, despite a
high level of noise added during testing (uncontrolled dynamics as in panel (a)).

doi:10.1371/journal.pcbi.1004895.g005

Learning Universal Computations with Spikes

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004895 June 16, 2016 16 / 29



bird song learning [65]: During this phase, there is no deterministic control, u = 0, and the pen-
dulum is driven by a random exploratory force ξ only. Also the PCSN receives ξ as input and
learns to imitate the resulting pendulum’s dynamics with its output.

During the subsequent control phase starting at t = 0, the aim is to swing the pendulum up
and hold it in the inverted position (Fig 5c). For this, the PCSN simulates at time t a set ofM
future trajectories of the pendulum, for different random exploratory forces ξi (“mental explo-
ration” with u = 0, cf. Fig 5a and 5b), starting with the current state of the pendulum. In a bio-
logical system, the initialization may be achieved through sensory input taking advantage of
the fact that an appropriately initialized output enslaves the network through the feedback.
Experiments indicate that explored trajectories are evaluated, by brain regions separate from
the ones storing the world model [66–68]. We thus assign to the simulated trajectories a reward
Rimeasuring the agreement of the predicted states with the desired ones. The optimal control
u(t + s) (cf. Eq (16)) for a subsequent, not too large time interval s 2 [0, δ] is then approxi-
mately given by a temporal average over the initial phase of the assumed random forces,
weighted by the exponentiated total expected reward,

uðt þ sÞ ¼
XM
i¼1

elcRiðtÞXM

j¼1
elcRjðtÞ

�xiðtÞ; ð17Þ

where �x iðtÞ ¼ 1
d

R tþd

t xið~tÞd~t and λc is a weighting factor. We have chosen RiðtÞ ¼
R tþTr

t yið~tÞd~t ,
i.e. the expected reward increases linearly with the heights yið~tÞ ¼ � cos ð�ið~tÞÞ predicted for
the pendulum for input trajectory ξi; it becomes maximal for a trajectory at the inversion point.
Tr is the duration of a simulated trajectory. The optimal control is applied to the pendulum
until t + Δ, with Δ< δ. Then, at t + Δ, the PCSN simulates a new set of trajectories starting with
the pendulum’s updated state and a new optimal control is computed. This is valid and applied
to the pendulum between t + Δ and t + 2Δ, and so on. We find that controlling the pendulum
by this principle leads to the desired upswing and stabilization in the inversion point, even
though we assume that the perturbing noise force ξ (Eq (16)) acting on the pendulum in addi-
tion to the deterministic control u, remains as strong as it was during the exploration/learning
phase (cf. Fig 5a and 5b).

We find that for controlling the pendulum, the learned internal model of the system has to
be very accurate. This implies that particular realizations of the PCSN can be unsuited to learn
the model (we observed this for about half of the realizations), a phenomenon that has also
been reported for small continuous rate networks before. However, we checked that continu-
ous rate networks as encoded by our spiking ones reliably learn the task. Since the encoding
quality increases with the number of spiking neurons, we expect that sufficiently large PCSNs
reliably learn the task as well.

Discussion
The characteristic means of communication between neurons in the nervous system are spikes.
It is widely accepted that sequences of spikes form the basis of neural computations in higher
animals. How computations are performed and learned is, however, largely unclear. Here we
have derived continuous signal coding spiking neural networks (CSNs), a class of mesoscopic
spiking neural networks that are a suitable substrate for computation. Together with plasticity
rules for their output or recurrent connections, they are able to learn general, complicated com-
putations by imitation learning (plastic CSNs, PCSNs). Learning can be highly reliable and
accurate already for comparably small networks of hundreds of neurons. The underlying prin-
ciple is that the networks reflect the input in a complicated nonlinear way, generate nonlinear
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transformations of it and use fading memory such that the inputs and their pasts interfere with
each other. This requires an overall nonlinear relaxation dynamics suitable for computations
[2]. Such dynamics are different from standard spiking neural network dynamics, which are
characterized by a high level of noise and short intrinsic memory [9–11, 69].

To find spiking networks that generate appropriate dynamics, we use a linear decoding
scheme for continuous signals encoded in the network dynamics as combinations of mem-
brane potentials and synaptic currents. A specific coding scheme like this was introduced in
refs. [12, 37] to derive spiking networks encoding linear dynamics in an optimal way. We intro-
duce spiking networks where the encoded signals have dynamics desirable for computation, i.e.
a nonlinear, high-dimensional, low-noise, relaxational character as well as significant fading
memory. We conclude that, since we use simple linear decoding, already the dynamics of the
spiking networks must possess these properties.

Using this approach, we study two types of CSNs: Networks with saturating synapses and
networks with nonlinear dendrites. The CSNs with saturating synapses use a direct signal
encoding; each neuron codes for one continuous variable. It requires spiking dynamics charac-
terized by possibly intermittent phases of high rate spiking, or bursting, with inter-spike-inter-
vals smaller than the synaptic time constants, which leads to a temporal averaging over spikes.
Dynamics that appear externally similar to such dynamics were recently highlighted as a ‘sec-
ond type of balanced state’ in networks of pulse-coupled, intrinsically oscillating model neu-
rons [51]. Very recently [70, 71] showed that networks whose spiking dynamics are temporally
averaged due to slow synapses possess a phase transition from a fixed point to chaotic dynam-
ics in the firing rates, like the corresponding rate models that they directly encode. In the ana-
lytical computations the spike coding was not specified [70] or assumed to be Poissonian [71].
Numerical simulations of leaky integrate-and-fire neurons in the chaotic rate regime can gen-
erate intermittent phases of rather regular high-rate spiking [70]. The networks might provide
a suitable substrate for learning computations as well. However, since the chaotic rate dynam-
ics have correlations on the time scale of the slow synapses its applicability is limited to learning
tasks where only a short fading memory of the reservoir is needed. For example delayed reac-
tion tasks as illustrated in Fig 4a–4c would not be possible. Interestingly, in our scheme a stan-
dard leaky integrate-and-fire neuron with saturating synapses appears as a special case with
recovery current of amplitude zero. According to our analysis it can act as a leaky integrator
with a leak of the same time constant as the synapses, λx = λs. In contrast, in presence of a
recovery current, our networks with saturating synapses can encode slower dynamics on the
order of seconds. After training the network, the time scales can be further extended.

In the CSNs with nonlinear dendrites the entire neural population codes for a usually
smaller number of continuous variables, avoiding high firing rates in sufficiently large net-
works. The networks generate irregular, low frequency spiking and simultaneously a noise-
reduced encoding of nonlinear dynamics, the temporal averaging over spikes in the direct cod-
ing case is partially replaced by a spatial averaging over spike trains from many neurons. The
population coding scheme and our derivations of CSNs with nonlinear dendrites generalize the
predictive coding proposed in ref. [12] to nonlinear dynamics. The roles of our slow and fast
connections are similar to those used there: In particular, redundancies in the spiking are elimi-
nated by fast recurrent connections without synaptic filtering. We expect that these couplings
can be replaced by fast connections that have small finite synaptic time constants, as shown for
the networks of ref. [12] in ref. [72]. In contrast to previous work, in the CSNs with nonlinear
dendrites we have linear and nonlinear slow couplings. The former contribute to coding preci-
sion and implement linear parts of the encoded dynamics, the latter implement the nonlineari-
ties in the encoded dynamics. Further, in contrast to previous work, the spike coding networks
provide only the substrate for learning of general dynamical systems by adapting their
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recurrent connections. Importantly, this implies (i) that the neurons do not have to adapt their
nonlinearities to each nonlinear dynamical system that is to be learned (which would not seem
biologically plausible) and (ii) that the CSNs do not have to provide a faithful approximation of
the nonlinear dynamics Eqs (6) and (11), since a rough dynamical character (i.e. slow dynamics
and the echo state property) is sufficient for serving as substrates. We note that refs. [73, 74]
suggested to use the differential equations that characterize dynamical systems to engineer
spiking neural networks that encode the dynamics. The approach suggests an alternative deri-
vation of spiking networks that may be suitable as substrate for learning computations. Their
rate coding scheme, however, allows for redundancy and thus higher noise levels, and it gener-
ates high frequency spiking. In a future publication, B. DePasquale, M. Churchland, and L.F.
Abbott will present an approach to train rate coding spiking neural networks, with continuous
rate networks providing the target signals [75]. We will discuss the relation between our and
this approach in a joint review [76].

A characteristic feature of our neuron models is that they take into account nonlinearities
in the synapses or in the dendrites. On the one hand this is biologically plausible [13, 19–21],
on the other hand it is important for generating nonlinear computations. Our nonlinearities
are such that the decoded continuous dynamics match those for typical networks of continu-
ous rate neurons and provide a simple model for dendritic and synaptic saturation. However,
the precise form of the neuron model and its nonlinearity is not important for our
approaches: As long as the encoded dynamical system is suitable as a computational reser-
voir, the spiking system is a CSN and our learning schemes will work. As an example, a den-
dritic tree with multiple interacting compartments may be directly implemented in both the
networks with saturating synapses and in the networks with nonlinear dendrites. A future
task is to explore the computational capabilities of CSNs incorporating different and biologi-
cally more detailed features that lead to nonlinearities, e.g. neural refractory periods, den-
dritic trees with calcium and NMDA voltage dependent channels and/or standard types of
short term synaptic plasticity.

Inspired by animals’ needs to generate and predict continuous dynamics such as their own
body and external world movements, we let our networks learn to approximate desired contin-
uous dynamics. Since effector organs such as muscles and post-synaptic neurons react to
weighted, possibly dendritically processed sums of post-synaptic currents, we interpret these
sums as the relevant, continuous signal-approximating outputs of the network [39]. Impor-
tantly, this is not the same as Poissonian rate coding of a continuous signal: As a simple exam-
ple, consider a single spiking neuron. In our scheme it will spike with constant inter-spike-
intervals to encode a constant output. In Poissonian rate coding, the inter-spike-intervals will
be random, exponentially distributed and many more spikes need to be sampled to decode the
constant output (cf. Fig A in S1 Text).

The outputs and recurrent connections of CSNs can be learned by standard learning rules
[4, 41]. The weight changes depend on the product of the error and the synaptic or dendritic
currents and may be interpreted as delta-rules with synapse- and time-dependent learning
rates. PCSNs, with learning of recurrent weights or output feedback, show how spiking neural
networks may learn internal models of complicated, self-sustained environmental dynamics.
In our applications, we demonstrate that they can learn to generate and predict the dynamics
in different depths, ranging from the learning of single stable patterns over the learning of cha-
otic dynamics to the learning of dynamics incorporating their reactions to external influences.

The spiking networks we use have medium size, like networks with continuous neurons
used in the literature [2, 4]. CSNs with saturating synapses have, by construction, the same size
as their non-spiking counterparts. In CSNs with nonlinear dendrites the spike load necessary
to encode the continuous signals is distributed over the entire network. This leads to a trade-off

Learning Universal Computations with Spikes

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004895 June 16, 2016 19 / 29



between lower spiking frequency per neuron and larger network size (cf. Fig F in S1 Text): The
faster the neurons can spike the smaller the network may be to solve a given task.

Previous work using spiking neurons as a reservoir to generate a high dimensional, nonlin-
ear projection of a signal for computation, concentrated on networks without output feedback
or equivalent task-specific learning of recurrent connectivity [1, 50, 77]. Such networks are
commonly called “liquid state machines” [78]. By construction, they are unable to solve tasks
like the generation of self-sustained activity and persistent memorizing of instructions; these
require an effective output feedback, since the current output determines the desired future
one: To compute the latter, the former must be made available to the network as an input. The
implementation of spiking reservoir computers with feedback was hindered by the high level of
noise in the relevant signals: The computations depend on the spike rate, the spike trains pro-
vide a too noisy approximation of this average signal and the noise is amplified in the feedback
loop. While analytically considering feedback in networks of continuous rate neurons, ref. [3]
showed examples of input-output tasks solved by spiking networks with a feedback circuit, the
output signals are affected by a high level of noise. This concerns even output signals just keep-
ing a constant value. We implemented similar tasks (Fig 4d), and find that our networks solve
them very accurately due to their more efficient coding and the resulting comparably high sig-
nal-to-noise ratio. In contrast to previous work, our derivations systematically delineate spik-
ing networks which are suitable for the computational principle with feedback or recurrent
learning; the networks can accurately learn universal, complicated memory dependent compu-
tations as well as dynamical systems approximation, in particular the generation of self-sus-
tained dynamics.

In the control task, we show how a spiking neural network can learn an internal model of a
dynamical system, which subsequently allows to control the system. We use a path integral
approach, which has already previously been suggested as a theory for motor control in biologi-
cal systems [79, 80]. We apply it to learned world models, and to neural networks. Path integral
control assumes that noise and control act in a similar way on the system [61]. This assumption
is comparably weak and the path integral control method has been successfully applied in
many robotics applications [81–83], where it was found to be superior to reinforcement learn-
ing and adaptive control methods.

Continuous rate networks using recurrence, readouts, and feedback or equivalent recurrent
learning, are versatile, powerful devices for nonlinear computations. This has inspired their use
in manifold applications in science and engineering, such as control, forecasting and pattern
recognition [26]. Our study has demonstrated that it is possible to obtain similar performance
using spiking neural networks. Therewith, our study makes spiking neural networks available
for similarly diverse, complex computations and supports the feasibility of the considered
computational principle as a principle for information processing in the brain.

Methods

Network simulation
We use a time grid based simulation scheme (step size dt). If not mentioned otherwise, between
time points, we compute the membrane potentials using a Runge-Kutta integration scheme for
dynamics without noise and an Euler-Maruyama integration scheme for dynamics with noise.
Since CSNs with nonlinear dendrites have fast connections without conduction delays and syn-
aptic filtering, we process spikings at a time point as follows: We test whether the neuron with
the highest membrane potential is above threshold. If the outcome is positive, the neuron is
reset and the impact of the spike on postsynaptic neurons is evaluated. Thereafter, we compute
the neuron with the highest, possibly updated, membrane potential and repeat the procedure.
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If all neurons have subthreshold membrane potential, we proceed to the next time point. The
described consecutive updating of neurons in a single time step increases in networks with
nonlinear dendrites the robustness of the simulations against larger time steps, as the neurons
maintain an order of spiking and responding like in a simulation with smaller time steps and a
small but finite conduction delay and/or slight filtering of fast inputs. As an example, the
scheme avoids that neurons that code for similar features and thus possess fast mutual inhibi-
tion, spike together within one step and generate an overshoot in the readout, as it would be
the case in a parallel membrane potential updating scheme. The different tasks use either net-
works with saturating synapses or networks with nonlinear dendrites. In both cases, A is a
sparse matrix with a fraction p of non-zero values. These are drawn independently from a

Gaussian distribution with zero mean and variance g2

pN
(CSNs with saturating synapses) or g2

pJ

(CSNs with nonlinear dendrites), which sets the spectral radius of A approximately to g. For
networks with nonlinear dendrites, the elements of Γ are drawn from a standard normal distri-
bution. To keep the approach simple, we allow for positive and negative dendro-somatic cou-
plings. In order to achieve a uniform distribution of spiking over the neurons in the network,
we normalize the columns of Γ to have the same norm, which we control with the parameter
γs. This implies that the thresholds are identical.

Training phase
The networks are trained for a period of length Tt such that the readouts zk imitate target sig-
nals Fk(t), i.e. such that the time average of the square of the errors ek(t) = zk(t) − Fk(t) is mini-
mized. At Tt, training stops and the weights are not updated anymore in the subsequent
testing. If present, the external input to the neurons is a weighted sum of Kin continuous input

signals fk(t), Ie;bðtÞ ¼
PKin

k¼1 wbkfkðtÞ, where the index β runs from 1 to N (CSNs with saturating

synapses) or from 1 to J (CSNs with nonlinear dendrites). The weights wβk are fixed and drawn

from a uniform distribution in the range ½�~wi; ~wi�. If present, the feedback weights wf
bk (cf.

Eq (15)) are likewise chosen randomly from a uniform distribution in the range ½�~wf ; ~wf � with
a global feedback parameter ~wf .

For the delayed reaction/time estimation task (Fig 4a–4c, Fig E in S1 Text), we applied the
RLS (recursive least squares) algorithm [41] to learn the linear outputs. For the pattern genera-
tion, instruction switching and control tasks, we applied the FORCE (first-order reduced and
controlled error) algorithm [4] (Figs 3, 4d and 5; Figs A-D, F and G in S1 Text) to learn the
recurrent connections and linear outputs.

Learning rules
The output weights wo

km are trained using the standard recursive least squares method [41].
They are initialized with 0, we use weight update intervals of Δt. The weight update uses the
current training error ek(t) = zk(t) − Fk(t), where zk(t) is the output that should imitate the tar-
get signal Fk(t), it further uses an estimate Pβρ(t) of the inverse correlation matrix of the
unweighted neural synaptic or dendritic inputs ~rbðtÞ, as well as these inputs,

wo
kbðtÞ ¼ wo

kbðt � DtÞ � ekðtÞ
X
r

PbrðtÞ~rrðtÞ: ð18Þ

The indices β, ρ range over all saturating synapses (β, ρ = 1, . . ., N; ~rbðtÞ ¼ tanh ðgrbðtÞÞ) or
all non-linear dendrites (β, ρ = 1, . . ., J; ~rbðtÞ ¼ tanh ðPN

m¼1 GbmrmðtÞÞ) of the output neuron.
The square matrix P is a running filter estimate of the inverse correlation matrix of the activity
of the saturated synapses (CSNs with saturating synapses) or non-linear dendrites (CSNs with
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nonlinear dendrites). The matrix is updated via

PbgðtÞ ¼ Pbgðt � DtÞ �
P

r

P
sPbrðt � DtÞ~rrðtÞ~rsðtÞPsgðt � DtÞ

1þPr

P
s~rrðtÞPrsðt � DtÞ~rsðtÞ

; ð19Þ

where the indices β, γ, ρ, σ run from 1 to N (CSNs with saturating synapses) or from 1 to J (CSNs
with nonlinear dendrites). P is initialized as P(0) = α−1 1 with α−1 acting as a learning rate.

For the update of output weights in presence of feedback and of recurrent weights we adopt
the FORCE algorithm [4]. In presence of feedback, this means that recursive least squares
learning of output is fast against the temporal evolution of the network, and already during
training the output is fed back into the network. Thus, each neuron gets a feedback input

Ife;bðtÞ ¼
XKout
k¼1

wf
bkzkðtÞ ¼

XKout
k¼1

wf
bk

X
r

wo
kr~rrðtÞ: ð20Þ

The feedback weights wf
bk are static, the output weights are learned according to Eq (18).

Since the outputs are linear combinations of synaptic or dendritic currents, which also the
neurons within the network linearly combine, the feedback loop can be implemented by modi-

fying the recurrent connectivity, by adding a term
PKout

k¼1 w
f
rkw

o
kb to the matrix Aρβ. Learning

then affects the output weights as well as the recurrent connections, separate feedback connec-
tions are not present. This learning and learning of output weights with a feedback loop are
just two different interpretations of the same learning rule. For networks with saturating synap-
ses the update is

AnmðtÞ ¼ Anmðt � DtÞ �
XKout
k¼1

wf
nkekðtÞ

XN
l¼1

PmlðtÞ~r lðtÞ; ð21Þ

where the wf
nk are now acting as learning rates. For networks with nonlinear dendrites, the

update is

DnjðtÞ ¼ Dnjðt � DtÞ �
XJ

i¼1

Gin

XKout

k¼1

wf
ikekðtÞ

XJ

h¼1

PjhðtÞ~rhðtÞ: ð22Þ

Control task
The task is achieved in two phases, the learning and the control phase.

1. Learning: The PCSN learns a world model of the noisy pendulum, i.e. it learns the dynam-
ical system and how it reacts to input. The pendulum follows the differential Eq (16) with cω0

= 0.1s−1 and o2
0 ¼ 10s�2, ξ(t) is a white noise force with hξ(t)ξ(t0)i = s−3 δ(t − t0), x(t) = sin(ϕ(t))

and y(t) = −cos(ϕ(t)) are Cartesian coordinates of the point mass. The neural network has one
input and three outputs which are fed back into the network; it learns to output the x- and the
y-coordinate, as well as the angular velocity of the pendulum when it receives as input the
strength of the angular force (noise plus control) ξ(t) + u(t) applied to the pivot axis of the pen-
dulum. The learning is here interpreted as learning in a network with feedback, cf. Eq (20).

We created a training trajectory of length Tt = 1000s by simulating the pendulum with the
given parameters and by driving it with white noise ξ(t) as an exploratory control (u(t) = 0).
Through its input, the PCSN receives the same white noise realization ξ(t). During training the
PCSN learns to imitate the reaction of the pendulum to this control, more precisely its outputs
learn to approximate the trajectories of x, y and ω. As feedback to the reservoir during training we

Learning Universal Computations with Spikes

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004895 June 16, 2016 22 / 29



choose a convex combination of the reservoir output and the target
(feedback ¼ 0:9 	 outputþ 0:1 	 target). We find that such a combination improves perfor-
mance: If the output at the beginning of the training is very erroneous, those errors are accumu-
lated through the feedback-loop, which prevents the algorithm from working. On the other hand,
if one feeds back only the target signal, the algorithm does not learn how to correct for feedback
transmitted readout errors. In our task, the convex combination alleviates both problems.

2. Control: In the second phase, the learned world model of the pendulum is used to com-
pute stochastic optimal control that swings the pendulum up and keeps it in the inverted posi-
tion. The PCSN does not learn its weights in this phase anymore. It receives the different
realizations of exploratory (white noise) control and predicts the resulting motion (“mental
exploration”). From this, the optimal control may be computed using the path integral frame-
work [61]. In this framework a stochastic dynamical system (which is possibly multivariate)

_xðtÞ ¼ fðxðtÞÞ þ uðxðtÞ; tÞ þ ξðtÞ ð23Þ
with arbitrary nonlinearity f(x(t)) and white noise ξ(t), is controlled by the feedback controller
u(x(t), t) to optimize an integral C(t) over a state cost Uðxð~tÞÞ and a moving horizon quadratic

control cost, CðtÞ ¼ R tþTr
t

Uðxð~tÞÞ þ uð~tÞ2d~t . The reward is related to the cost by R = −C. Path

integral control theory shows that the control at time t can be computed by generating samples
from the dynamical system under the uncontrolled dynamics

_xðtÞ ¼ fðxðtÞÞ þ ξðtÞ: ð24Þ
The control is then given by the success weighted average of the noise realizations ξi

uðtÞ ¼ lim
d!0

lim
M!1

XM

i¼1

e�lcCiðtÞXM

j¼1
e�lcCjðtÞ

1

d

Ztþd

t

xið~tÞd~t ; ð25Þ

where CiðtÞ ¼
R tþTr
t Uðxið~tÞÞd~t is the cost observed in the ith realization of the uncontrolled

dynamics, which is driven by noise realization ξi and u = 0. Eq (17) is a discrete approximation
to Eq (25). In our task, Eq (24) becomes

_�ðtÞ ¼ oðtÞ
_oðtÞ ¼ �o2

0 sin ð�ðtÞÞ � co0oðtÞ þ xðtÞ þ uðtÞ

and U(x(t)) = −y(t) = cos(ϕ(t)).

Figure details
The parameters of the different simulations are given in Table 2 for simulations using saturat-
ing synapses and in Table 3 for simulations using nonlinear dendrites. Further parameters and
details about the figures and simulations are given in the following paragraphs.

If not mentioned otherwise, for all simulations we use g ¼ 1:5 1
s
, p = 0.1, ~wf ¼ 1 1

s
, ~wi ¼ 1 1

s
,

Δt = 0.01s, γ = θ and sZ ¼ 0 1ffiffi
s

p . We note that for simulations with saturating synapses, we model

Table 2. Parameters used in the different figures for simulations of networks with saturating synapses.

Sat. syn. N α dt Tt λ�1
s λ�1

V
Vr θ

Fig 3d 50 0.1 0.1ms 100s 100ms 100ms 0.9θ 0.03

Fig 3e 50 0.1 1ms 100s 100ms 100ms 0.9θ 0.03

Fig 4a–4c 200 0.1 1ms 800s 100ms 50ms 0.54θ 0.1

doi:10.1371/journal.pcbi.1004895.t002
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the slow synaptic currents to possess synaptic time constants of 100ms (cf., e.g., [50, 60]). We usu-
ally use the same value for the slow synapses in networks with nonlinear dendrites. Upon rescal-
ing time, these networks can be interpreted as networks with faster time constants, which learn
faster target dynamics. Since the spike rates scale likewise, we have to consider larger networks to
generate rates in the biologically plausible range (cf. Fig F in S1 Text).

Figure 3. Figure 3b, 3c: The PCSN has non-linear dendrites. The target signal is a sine
with period 4πs and amplitude 2 (normalized to one in the figure). During recall, the neurons
of the PCSN spike with mean rate 30.2Hz.

Figure 3d: The PCSN has saturating synapses. The target signal is a saw tooth pattern with
period 2s and amplitude 10 (normalized to one in the figure). We used an Euler scheme here.
The mean spike rate is 226Hz.

Figure 3e: The task is performed by a PCSN with non-linear dendrites and by a PCSN with

saturating synapses. The target signal is sin t 0:5
s

� �þ cos t 1
s

� �
. The mean spike rate is 77.8Hz

for saturating synapses and 21.3Hz for non-linear dendrites.
Figure 3f–3h: The PCSN has nonlinear dendrites. As teacher we use the standard Lorenz

system

_xðtÞ ¼ sðyðtÞ � xðtÞÞ
_yðtÞ ¼ xðtÞðr� zðtÞÞ � yðtÞ
_zðtÞ ¼ xðtÞyðtÞ � bzðtÞ

with parameters σ = 10, ρ = 28, β = 8/3; we set the dimensionless temporal unit to 0.2s and
scale the dynamical variables by a factor of 0.1. Panels (f,g) show a recall phase of 400s, panel
(h) shows points from a simulation of 4000s. Panel (f) only shows every 10th data point, panel
(g) shows every data point. The mean spike rate is 432Hz.

Figure 4. Figure 4a–4c: We quantified the memory capacity of a CSN with saturating syn-
apses. The network has a sparse connectivity matrix A without autapses. We applied white
noise with sZ ¼ 0:001 1ffiffi

s
p . The input is a Gaussian bell curve with σ = 0.2s and integral 10s

(height normalized to one in the figure). The target is a Gaussian bell curve with σ = 1s and
integral 1s (height normalized to one in the figure). The target is presented several seconds
after the input. Trials consisting of inputs and subsequent desired outputs are generated at ran-
dom times with exponential inter-trial-interval distribution with time constant 10s and a
refractory time of 100s. Training time is Tt = 800s, i.e. the network is trained with about 6 to 8
trials. Testing has the same duration with a similar number of trials. There is no feedback intro-
duced by initialization or by learning, so the memory effect is purely inherent to the random
network. We compute the quality of the desired output generation as the root mean squared
(RMS) error between the generated and the desired response, normalized by the number of test
trials. As reference, we set the error of the “extinguished” network, which does not generate

Table 3. Parameters used in the different figures for simulations of networks with nonlinear dendrites. The parameter a = λs − λx is given in terms of λs
and λx.

Nonlin. dendr. N J α γs dt Tt μ λ�1
s λ�1

V
a

Fig 3b and 3c 500 50 0.1 0.03 1ms 100s 0 100ms 100ms λs − 1s

Fig 3e 500 50 0.1 0.03 1ms 100s 0 100ms 100ms λs − 1s

Fig 3f–3h 1600 800 0.1 0.03 1ms 200s 0 100ms 100ms λs − 1s

Fig 4d 300 300 50 0.5 10ms 1000s 0 1s 0.5s λs − 0.02s

Fig 5 500 300 0.1 0.03 1ms 1000s 20/N2 100ms 50ms λs − 10s

doi:10.1371/journal.pcbi.1004895.t003
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any reaction to the input, to 1. Lower panels of Fig 4a–4c display medians and quartiles taken
over 50 task repetitions. The sweep was done for time-delays 2 − 20s in steps of 0.5 s.

Figure 4d: The PCSN has nonlinear dendrites. For this task a constant input of Iconste ¼ b is

added to the network with the elements of the vector b chosen uniformly from 0 1
s
; 250 1

s

� �
to

introduce inhomogeneity. Four different inputs are fed into the network, two continuous f c1=2
and two pulsed input channels f p1=2. The continuous inputs are created by convolving white

noise twice with an exponential kernel e�t1s (equivalent to convolving once with an alpha func-

tion) during training and e�t 1
10s during testing. The continuous input signals are normalized to

have mean 0 and standard deviation 0.5. The pulsed instruction input is created by the convo-

lution of a Poisson spike train with an exponential kernel e�t1s . The rate of the delta pulses dur-
ing training is 0:04 1

s
. During testing we choose a slower rate of 0:01 1

s
for a clearer presentation.

In the rare case when two pulses overlap such that the pulsed signal exceeds an absolute value
of 1.01 times the maximal pulse height of one, we shift the pulse by the minimal required
amount of time to achieve a sum of the pulses below or equal to 1.01. We use weights ~wi;p ¼
100 1

s
for the pulsed inputs, ~wi;c ¼ 250 1

s
for the continuous inputs and ~wf ¼ 250 1

s
for the feed-

back; g ¼ 75 1
s
. The recurrent weights of the network are trained with respect to the memory

target Fm(t). This target is +1 if the last instruction pulse came from f p1 and it is −1 if the last
pulse came from f p2 . During switching the target follows the integral of the input pulse. The cor-
responding readout is zm. The second readout zc is trained to output the absolute value of the
difference of the two continuous inputs, if the last instruction pulse came from f p1 , and to out-
put their sum, if the last instruction pulse came from f p2 . The specific analytical form of this tar-
get is FcðtÞ ¼ jf c1 ðtÞ � f c2 ðtÞjðFmðtÞ þ 1Þ=2� ðf c1 ðtÞ þ f c2 ðtÞÞðFmðtÞ � 1Þ=2. The mean spike rate
is 5.53Hz.

Figure 5. Since we have white noise as input we use the Euler-Maruyama scheme in all dif-
ferential equations. The PCSN has nonlinear dendrites. Non-plastic coupling strengths are
~wf ;y ¼ 100 1

s
for the feedback of the y-coordinate, ~wf ;x ¼ 100 1

s
for the feedback of the x-coordi-

nate, ~wf ;o ¼ 20 1
s
for the feedback of the angular velocity and ~wi ¼ 2

7
1
s
for the input. We intro-

duce an additional random constant bias term into the nonlinearity to increase inhomogeneity

between the neurons: The nonlinearity is tanh ðbj þ
PN

m¼1 WnjmrmðtÞÞ where bj is drawn from

a Gaussian distribution with standard deviation 0.01. The integration time δ is 0.1s. During the
control/testing phase, every Δ = 0.01s,M = 200 samples of length Tr = 1s are created, the cost
function is weighted with lc ¼ 0:01 1

s
. The mean spike rate is 146Hz.
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