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Abstract: The role of the bootstrap and polarization currents for the stability of neo-
classical tearing modes is investigated employing both a drift kinetic and a gyrokinetic
approach. The adiabatic response of the ions around the island separatrix implies, for
island widths below or around the ion thermal banana width, density flattening for is-
lands rotating at the ion diamagnetic frequency, while for islands rotating at the electron
diamagnetic frequency the density is unperturbed and the only contribution to the neo-
classical drive arises from electron temperature flattening. As for the polarization current,
the full inclusion of finite orbit width effects in the calculation of the potential developing
in a rotating island leads to a smoothing of the discontinuous derivatives exhibited by the
analytic potential on which the polarization term used in the modelling is based. This
leads to a reduction of the polarization-current contribution with respect to the analytic
estimate, in line with other studies. Other contributions to the perpendicular ion current,
related to the response of the particles around the island separatrix, are found to compete
or even dominate the polarization-current term for realistic island rotation frequencies.

1 Introduction

There is a wide literature devoted to the tearing instability [1], and in particular to its
nonlinear evolution [2] (see Ref. [3] and references therein for a recent overview; only a few
relevant references are quoted below). This huge effort reflects on one hand the complexity
of the underlying physics and on the other hand the experimental relevance of this subject.
Although the first investigations were performed in the frame of a single-fluid MHD model,
the importance of two-fluid [4, 5, 6], kinetic [7, 8] and finite-Larmor-radius [9, 10, 11] effects
was recognized soon. In addition, several new features are introduced when toroidicity is
included in the analysis. The most known examples are the effect of the favourable average
curvature [12, 13], the neoclassical enhancement of the polarization current [14, 15] and the
bootstrap drive [16, 17]. These three contributions to the dynamics of magnetic islands,
together with the contribution of the equilibrium current profile (∆′ term as in Ref. [2]),
implemented in a so-called generalized Rutherford equation, are routinely exploited for
the interpretation of experimental data (including active stabilization) [18, 19, 20, 21] and
in the extrapolations to reactor-scale plasmas [22, 23, 24].

The goal of this paper is mainly to review the work on kinetic and toroidal effects on the
stability of neoclassical tearing modes (NTMs) performed by the authors employing both
a drift kinetic and a gyrokinetic approach in fully toroidal tokamak geometry. However,
some new results concerning the polarization current are also included, and presented
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in Sec. 5. The ansatz employed here relies on the scale separation between transport
time scales and island growth rate, so that both the width and the rotation frequency
of the magnetic island are imposed and kept fixed, and the response of the plasma to
the corresponding magnetic perturbation is determined. In this scheme, the feedback of
this response on the island itself, which is accessible to reduced models based on a fluid
and/or cylindrical or slab description, is therefore excluded. In the studies reported in
this paper, on the other hand, toroidicity and kinetic effects are retained. Moreover, the
specific focus is on the neoclassical contributions (bootstrap and neoclassical polarization
currents), so that the role of turbulent fluctuations is disregarded. Some considerations
on this issue can be found in Sec. 6. The inclusion of a toroidal kinetic description of the
plasma, not bound to the ordering assumptions necessary to develop a tractable analytic
theory, requires as a rule a numeric treatment. This has revealed a rich physics, which
is often not included in the modelling of experimental observations. In some cases, like
for the behaviour of the bootstrap current in small rotating islands, the numerical results
can be explained in terms of known physical mechanisms. In other cases, in particular for
the currents related to the motion of a magnetic island with respect to the surrounding
plasma, like the polarization current, a complete understanding has not been achieved yet
(although some aspects of the numerical modelling have been explained analytically) and
requires further theoretical work. This appears particularly important, as the numerical
results show a clear deviation from the behaviour expected on the basis of the available
theoretical framework.

As stated above, the emphasis is here on the bootstrap and polarization contributions
to the nonlinear tearing-mode evolution. Kinetic effects (finite-orbit-width effects and
impact of the different response of passing and trapped particles) are shown to modify the
island drive, related to the part of the parallel current flowing in phase with the island,
see Sec. 2. The influence of kinetic effects on the island rotation (out-of-phase currents),
which is more subtle [10, 15, 25], is not considered at this level. A particularly important
issue is the electrostatic potential associated with the presence of a magnetic island, in
particular to its rotation. In numerical drift kinetic simulations, the electrostatic potential
is not determined self-consistently and has to be prescribed according to analytic theory.
On the other hand, in a gyrokinetic code this potential emerges self-consistently from
the quasi-neutrality condition. This allows a check of the assumptions made in analytic
theory. The basic physics underlying the determination of the electrostatic potential in
the presence of an island is summarized in Sec. 2. The current analytic understanding of
magnetic islands in toroidal plasmas employing a kinetic approach is largely based on the
work of Wilson et al. [15], which is reviewed in Sec. 3. The approximations entailed in the
theory are discussed. The results concerning the bootstrap current in small islands1 are
presented in Sec. 4. It is shown, in particular, that the bootstrap drive of a NTM depends,
in the phase where finite-orbit-width effects are important, on the rotation frequency of
the island, being large if the island is rotating in the ion diamagnetic direction, and small if
the rotation is in the electron diamagnetic direction. Sec. 5 is devoted to the investigation
of the perpendicular current that vanish when flux-surface averaged, but contributes to
the island dynamics since the related return current is in phase with the island. This
contribution is usually called the polarization current. Here, this perpendicular current
is shown to exhibit a complex behaviour, which is related also to the toroidal drift of
trapped particles and alters the expected polarization-current behaviour for island rotation
frequencies in an experimentally relevant range. The main results are summarized and
conclusions are drawn in Sec. 6. The appendix offers a compact review of the numerical
schemes (drift kinetic and gyrokinetic) employed in the simulations reported in the paper.

1In this paper, the words “small” or “large” applied to the magnetic-island size always refer
to its width with respect to the typical ion-orbit width (gyroradius in slab geometry and banana
width in toroidal geometry).
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2 The electrostatic potential associated with the rota-

tion of a magnetic island

The evolution of a magnetic island is usually described by introducing a magnetic-flux
perturbation of the form ψ = ψ̃ cos ξ, where ξ is a helical coordinate along the island, and
integrating Ampère’s law across the tearing layer (where ψ̃ is taken nearly constant), pro-
jecting out the in-phase and out-of-phase components of the parallel current [26]. Matching
the results to the outer linear region [2] one obtains

c

4
ψ̃∆′ =

∮

dξ

∫

dxJ‖ cos ξ (1)

0 =

∮

dξ

∫

dxJ‖ sin ξ. (2)

The stability parameter ∆′ is determined by the analysis of the outer region. The studies
presented in this paper refer to the inner region, related to the right-hand side of the
previous equations. In particular, we will concentrate on the contributions to the growth
or damping of the magnetic island, as determined by Eq. (1). The rotation frequency of
the island, which is determined by the out-of-phase currents flowing around the rational
surface, Eq. (2), is treated in the following as a parameter.

A crucial quantity for our investigations is the electrostatic potential ϕ connected
with the rotation of a magnetic island with respect to the surrounding plasma. The basic
behaviour of ϕ, in particular its scaling with island width and rotation frequency, can be
understood in terms of the fluid picture explained in Ref. [27] (slab geometry, isothermal
electrons, parallel ion dynamics neglected), which is summarized here for convenience.
The fundamental equations are then

dn

dt
=

1

e
∇‖J‖ (3)

E‖ = − Te
en0

∇‖n (4)

representing the electron continuity and parallel momentum balance (Ohm’s law), respec-
tively. In the presence of a magnetic island, the parallel gradient takes the form

∇‖ = b · ∇ = k‖
∂

∂ξ

∣

∣

∣

∣

Ω

, (5)

where Ω is a flux label for the perturbed magnetic surfaces and

k‖ = −kθx
Ls

, (6)

(x is the distance from the rational surface, kθ the poloidal wavenumber of the island
and Ls the shear length). The fundamental relation between density perturbation and
electrostatic potential is postulated in the two opposite limits of an island width W which
is much larger or much smaller than the typical ion-orbit size ρ. Specifically, for W ≪ ρ
an adiabatic ion response

δn = −eϕ
Ti
n0 (7)

is assumed, while in the opposite limit W ≫ ρ the polarization equation

c2

4πev2A

(

1− ω∗i

ω

) d

dt
∇2

⊥ϕ =
1

e
∇‖J‖ (8)

is introduced. In this equation, ω∗i is the ion diamagnetic frequency with inclusion of
the temperature-gradient contribution. It should be noted that Eqs.(7,8) can be obtained
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taking the appropriate limits of a general expression for δn (valid for arbitrary ρ/W ) which
can be derived from the gyrokinetic equation [10].

In the small-island limit, i.e. inserting Eq.(7), Eq.(4) becomes (in the whole derivation
reported below, it is assumed that ω ≫ d lnW/dt)

(−ω + ω∗e)
∂ψ

∂ξ

∣

∣

∣

∣

x

−
(

1 +
1

τ

)

c∇‖ϕ = 0.

Here, ψ = −A‖ and τ = Ti/Te. This equation can be immediately integrated exploiting
∇‖x = −(kθ/B)∂ψ/∂ξ|x to give

ϕ =
τ

1 + τ

B

cky
(ω − ω∗e) (x− h(Ω)) , (9)

The function h(Ω) arises as an integration “constant”, cf. Eq. (5), chosen in such a way
that the electric field vanishes at infinity (i.e. at distances from the island much larger
than the island width) and is assumed to be flat (dh/dΩ = 0) inside the island, see
discussion below. The important feature of Eq. (9) for the investigations presented later
is the dependence of the potential on the island rotation frequency in the form ω − ω∗e.
Eq. (7) implies the following form for the density profile

n = n0(x) + δn = n′0x− 1

1 + τ

(

1− ω

ω∗e

)

n′0 (x− h(Ω)) . (10)

For (small) islands rotating at the electron diamagnetic frequency, the perturbed density
and the electrostatic potential are both zero, i.e. the density profile retains its unperturbed
shape. For (small) islands rotating at the ion diamagnetic frequency, on the other hand,
the first term in the density perturbation exactly (for τ = 1) cancels the background
gradient and the density n = n′0h(Ω) is flat inside the island. It is noted that substituting
Eq.(10) into Eq.(3) leads to a closed expression for the parallel current which can be used
to infer the stability of the island, cf. Eq. (1).

A similar calculation can be performed in the large-island limit (see again Ref. [27] for
details). In this case, the electrostatic potential becomes (to the lowest order in ρ/W )

ϕ =
ωB

cky
(x− h(Ω)) . (11)

The function h(Ω) has the same asymptotic behaviour as before. The density profile takes
the form n = n′0h(Ω) independently of the rotation frequency. In the absence of sources
and neglecting the transport across the island separatrix, the density can be assumed to
flatten across the whole island, leading to the assumption dh/dΩ = 0 mentioned before.
The neglect of cross-field transport is justified if the island width exceeds a critical width
proportional to (D⊥/D‖)

1/4 [28]. Similar considerations apply for the temperature pro-
file. This choice for h(Ω), which is justified under the assumptions discussed above, is
maintained also in the small-island limit. It is noted that the density in the large-island
limit satisfies ∇‖n = 0 independently of the island rotation frequency and Ohm’s law
reduces to the MHD constraint E‖ = 0. The electrostatic potential arising in response to
the inductive field associated with the island rotation leads to an E × B velocity which
ensures that the plasma moves together with the magnetic island.

Two comments are in order here. First, the potential given by Eq. (11) has discon-
tinuous derivatives at the island separatrix. This fact has significant consequences for the
evaluation of the polarization-current term in the modelling of magnetic islands and is
discussed later in Sec. 5. Second, the level of density flattening inside a rotating magnetic
island is independent of the rotation frequency only if the island is significantly wider
than the typical ion-orbit width. This condition is not satisfied in the early phase of de-
velopment of a magnetic island [29]. The discussion above suggests that the neoclassical
(bootstrap) drive could depend on the rotation frequency in that phase, if the results found
in slab geometry turned out to hold also in toroidal geometry. This issue is discussed in
Sec. 4
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3 Neoclassical theory in the presence of a magnetic

island

The effort devoted to development of a toroidal kinetic theory of the tearing mode is
very limited as compared to the body of publications in two-dimensional geometry. The
reason for this is undoubtedly the difficulty of the analytic treatment, which is feasible only
under particular assumptions. Here we follow Ref. [15], where a double small-parameter
expansion of the distribution function is introduced in order to obtain a perturbative
solution of the drift kinetic equation:

fα =

(

1− qαϕ

Tα

)

fMα + gα gα =
∑

δiα∆
jg(i,j)α , (12)

where ∆ =W/r, while δe = ρpe/W and δi =
√
ǫρpi/W are defined in analogy to standard

neoclassical theory (ρp is the thermal poloidal gyroradius and
√
ǫρp the thermal banana

width; note however that for the ions W ∼ ρpi is assumed). Since δe,i ≪ 1, the theory
is valid only in the “large island” limit. The electrostatic potential is determined from
the assumption of density flattening inside the island and E‖ = 0 and is thus given by,
cf. Eq. (11),

ϕ =
ωq

mc
(χ− h(Ω)) , (13)

where m is the poloidal mode number, q is the safety factor and χ is the poloidal flux.
The lowest-order solution for g is

g(0,0)α =
qαfMα

Tα

q

mc
(ω − ω∗α) (χ− h(Ω)) =

qαϕ

Tα
fMα − ∂fMα

∂χ
(χ− h(Ω)) , (14)

where the second form is a consequence of Eq.(13) and contains a term which cancels the
adiabatic splitting in the ansatz of Eq.(12) and the second expresses the profile modification
in the presence of a magnetic island (with corresponding flattening inside it). The next-
order term is related to the neoclassical fluxes and can be written

g(1,0)α = −Iv‖
Ωα

(

∂g
(0,0)
α

∂χ
+

dn/dχ

n
fM,α

)

+ hα, (15)

where I = RBt is a flux function and hα is an integration “constant” (independent of the
poloidal angle θ). This term is not only important in the determination of the bootstrap
drive, but also enters directly the expression for the neoclassical polarization current, whose
contribution to the island dynamics is derived from the part of the current perturbation
which flux-averages to zero: Following again Ref. [15], the quasi-neutrality equation ∇·J =
0 reads (angular brackets denote flux-surface average)

∇‖J‖ = −
〈
∫

d3v vd · ∇g
〉

≃ RB

Ωi
Ze

∫

d3v v‖
∂

∂χ

〈

v‖

Rq

∂g

∂θ

〉

, (16)

where only the ions contribute to the right-hand side and the lowest-order non-vanishing
term in expansion of g is given by

〈

v‖

Rq

∂g(1,1)

∂θ

〉

= −
〈

d

dt
g
(1,0)
i

〉

−
〈

v‖∇‖g
(1,0)

〉

+ . . . (17)

The dots denote terms which do not contribute to Eq.(16) and g(1,0) is given by Eq.(15). In
the present framework, the two contributions on the right-hand side are of the same order,
since the underlying ordering assumption for the time scale associated with the island
rotation is ω ∼ ω∗. Correspondingly, ω∗/(vth,i/Rq) ∼ ρpi/Ln, while k‖vth,i/(vth,i/Rq) ∼
W/Lq, which are of same order if Ln ∼ Lq, and W ∼ ρpi as stated before. To isolate
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the polarization current contribution, the limit ω > k‖vth,i is invoked in Ref. [15] (thus
neglecting the parallel ion dynamics as in the previous section), corresponding toW < ρpi.
For this reason, the theory is strictly speaking valid only for

√
ǫρpi < W < ρpi. Under

these assumptions, a direct manipulation of Eq. (16) yields

∇‖J‖ = −RB
Ωi

Ze

∫

d3v v‖
∂

∂χ

〈

d

dt
g
(1,0)
i

〉

≈ −∇⊥
Ze

Ωpi

∫

d3v
v2‖

v2
th,i

fMi
dωE
dt

(18)

(Ωpi is the ion cyclotron frequency calculated with the poloidal field and ωE = cEr/Bp).
The last step in Eq. (18) is achieved by substituting Eq. (15) and neglecting density and
temperature gradients. It is recalled that in a fluid picture the neoclassical polarization
current is enhanced by a factor q2/ǫ2 with respect to its classical counterpart [14] and
has the form jncpol = (en/Ωpi)dωE/dt, which has the same structure as the right-hand side

of Eq. (18) above. It is noted in passing that this expression makes immediately clear
why the polarization current is expected to be a quadratic function of the island rotation
frequency: ωE is proportional to ω, as it involves the gradient of the electrostatic potential,
and its time variation scales again with ω. In the presence of background gradients, the
polarization current is proportional to ω(ω − ω∗i) [27].

The above estimate (18) is valid only in the so-called collisional regime for the island
polarization current, in which also the passing ions contribute to the perpendicular cur-
rent. If only the trapped particles are involved, the neoclassical enhancement is q2/

√
ǫ. In

the derivation above, this is described by the function hα in Eq. (15), which cancels the
contribution of the passing particles to the integral in Eq. (18). The transition between
low and high collisionality regimes is briefly discussed at the end of Sec. 5. It is noted
for later reference that the function hi as derived in Eq. (58) of Ref. [15] contains a reso-
nant denominator, the resonance corresponding to an island rotation frequency matching
the parallel streaming of the passing ions. Neglecting the parallel streaming against the
island rotation, as done by assuming ω > k‖vth,i, implies that this resonant behaviour is
discarded. The point is briefly addressed in Sec. 5.1.

4 Bootstrap current

The flattening of the pressure profile inside a magnetic island of sufficient width leads to
a loss of bootstrap current. This perturbation is destabilizing for standard positive-shear
scenarios and leads to the well-know neoclassical drive, which is believed to be the usual
cause of tearing mode destabilization in reactor-grade tokamak plasmas. The bootstrap
drive in the generalized Rutherford equation is found to depend inversely on the island
width W [16, 17]. Regularizations of the related divergence for vanishing W , due to
finite perpendicular transport [28] (see above) or finite ion-orbit width [29, 30], have been
proposed and included in the modelling [31]. Since the bootstrap current contribution to
the generalized Rutherford equation has been derived in the large-island limit, it does not
entail any dependence on the rotation frequency. In this section, finite-orbit effects are
reviewed and the role of the rotation frequency is discussed in light of the results of Sec. 2.

The first investigations of the impact of the overlap between trapped-ion orbits and
a magnetic island on the neoclassical nonlinear drive of the tearing mode were limited
to the ion contribution to the bootstrap current and were performed solving numerically
the drift kinetic equation for the ions in the presence of a prescribed, static magnetic
island [29, 30], cf. App. A. The assumption of large island width (much larger than the
thermal ion banana width,

√
ǫρpi/W ≪ 1) employed in the analytic theory presented

in Sec. 3 becomes unnecessary in the case of a numerical approach. This early work
shows that, for island widths comparable to the ion banana width, the (ion) bootstrap
perturbation is reduced, and vanishes for W <

∼
√
ǫρpi, implying a corresponding reduction

of the neoclassical drive. A further result is that a threshold of the bootstrap drive
related to finite-ion-orbit-width effects naturally leads to a scaling of βp at the onset of the
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tearing mode with the normalized poloidal gyroradius ρ∗pi, in agreement with experimental
observations [32]. This study was later extended to (imposed) rotating magnetic islands
and to the calculation of total bootstrap current [33]. The electron contribution to the
bootstrap current is included through a two-step scheme. The drift kinetic equation for the
ions is solved first, assuming that their collisions with electrons can be neglected. In this
way the parallel ion flow profile ui,‖ is obtained. In a second step, the drift kinetic equation
is solved for the electrons, including ui,‖ as a shift in the background electron distribution
function f0e; the deviation δfe from the background is computed including both electron-
electron and electron-ion collisions. Since fe0 produces a parallel electron current that
exactly cancels the ion current, the total bootstrap current can be calculated directly as
v‖-moment of δfe. A difficulty arises from the fact that, in the case of small islands, the ions
are found to respond adiabatically to the potential, as described in Sec. 2. The electrostatic
potential is imposed in the drift kinetic simulations according to analytic theory. In the
case of a small island, prescribing ϕ according to its large-island form, Eq.(11), can lead to
a violation of quasi-neutrality. The reason is that finite-orbit-width effects are negligible
for electrons, so that the electron density and temperature profiles tend to be flat also
inside small islands (apart from the contribution of trapped particles, see below; cross-
field transport is not considered at this stage), independently of the rotation frequency.
The degree of flattening of the ions depends instead on the potential and thus on the
island rotation frequency. In particular, the electrostatic potential is such that nearly
unperturbed density profiles are expected for islands rotating at the electron diamagnetic
frequency, as explained in Sec. 2. A form of the electrostatic potential consistent with
quasi-neutrality for small island widths can be derived analytically in the frame of the
drift kinetic analysis of Sec. 3, recalling the fact that the expansion of the distribution
function as in Eq. (12) still holds for electrons. Imposing an adiabatic response for the
ions, ni = n0(1 − eϕ/Ti), and equating the ion density to the electron density resulting
from fe leads to lowest order to [33]

ϕsmall =
τ

1 + τ

ω − ω∗e

ω
ϕ (19)

where ϕ on the right-hand side is given by Eq. (13). This result is equivalent to the slab-
geometry expression of the electrostatic potential in small islands (9). When substituted
into Eqs. (12,14), Eq. (19) leads to electron density profiles that follow the ion ones, being
nearly unperturbed for ω = ω∗e and flat inside the island for ω = ω∗i. The implementation
of Eq.(19) in numerical drift kinetic simulations employing the two-step scheme described
above enables the determination of the total bootstrap current in small rotating islands.
The results are shown in Fig. 1.

7



 

-2 -1 0 1 2
ω / ω*e

0.0

0.2

0.4

0.6

0.8

1.0

j b
s 

/ j
0

w = 0.5

Fig. 1. Bootstrap current inside a small island (half the thermal ion banana width), normalized

to its unperturbed value, as a function of the island rotation frequency. The electrostatic potential

in these drift kinetic simulations has been specified according to Eq. (19). The neoclassical drive

(proportional to the bootstrap-current perturbation) decreases as the rotation frequency is moved

from the ion direction to the electron direction [Reprinted with permission from A. Bergmann, E.

Poli, A. G. Peeters, Phys. Plasmas 16, 092507. Copyright 2009, American Institute of Physics.].

It can be clearly seen that the bootstrap current perturbation inside an island whose
width is half the thermal ion banana width clearly depends on the island rotation fre-
quency. For values of ω of the order of the ion diamagnetic frequency, the density profile
is substantially flat and the residual bootstrap current found inside the island is due a
finite ion temperature gradient. In the other limit ω ≃ ω∗e, the bootstrap current is
close to its unperturbed value, the residual perturbation being related to a flat electron
temperature.

The previous results clearly show that for small islands the bootstrap drive depends on
the rotation frequency, being strong when the islands rotate in the ion direction and weak
when they rotate in the electron direction. These conclusions are based on a potential
given by Eq. (19), which is calculated analytically assuming an adiabatic ion density per-
turbation and imposing quasi-neutrality. In the drift kinetic simulations discussed above,
this potential is an input for the simulations and is not computed self-consistently. To
test the validity of this model, gyrokinetic simulations have been performed [34]. In this
gyrokinetic setup, the magnetic perturbation generating the island (width and rotation
frequency) is imposed, like in the drift kinetic simulations, but the potential is calcu-
lated self-consistently solving numerically the gyrokinetic Poisson equation. While the fine
structure of ϕ around the separatrix is found to be different from the non-differentiable
behaviour of the analytic solution, as discussed in the next Section, the picture presented
above is fully reproduced (Fig. 2), thus confirming the conclusions derived on the basis
of drift kinetic calculations. In particular, the electrostatic potential inside a small mag-
netic island is found to be flat (causing no electric field) around the electron diamagnetic
frequency, whose value is ω∗e ≃ 0.06 in these simulations (frequencies are normalized to
vth,i/qR). As the island becomes larger, the island rotation frequency corresponding to
flat potential moves towards ω = 0. In these simulations, the thermal ion banana width
is about 3ρi. A further discussion is reported in Ref. [35].
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Fig. 2. Radial profile of the electrostatic potential across the O-point from gyrokinetic simulations

of a rotating island for two different island widths, W/ρ = 3 (left) and W/ρ = 8 (right). The

equilibrium diamagnetic frequency is in normalized units ω∗e = 0.06.

The next question to be addressed is whether the same findings should be expected
in the presence of turbulent transport. Very recently, gyrokinetic simulations of magnetic
islands in the presence of ion-temperature-gradient-driven turbulence [36] have shown that,
if the island is not too big for the pressure to be flattened by the usual parallel streaming
along the perturbed field lines, the dependence of the density gradient inside the island
on the rotation frequency discussed above is reproduced. Further investigations are still
necessary to confirm this behaviour in the presence of different kinds of turbulence (e.g.
due to trapped-electron modes) and clarify possible modifications of the underlying physics
with respect to the picture outlined in this Section.

It should be finally noted that turbulence simulations in the presence of a static island,
supported by a simpler kinetic model, have also revealed that, if the trapped-particle
population inside the island is replenished by the perpendicular transport on a time scale
comparable to or exceeding the detrapping time, a finite pressure gradient and a finite
bootstrap current are maintained [37]. This process leads to a critical magnetic island
size below which the bootstrap drive becomes ineffective, which can be expressed as wc =
√

2ǫD⊥/νei, where νei is the electron-ion collision frequency (for typical parameters of
ASDEX Upgrade, for instance, this corresponds to a critical width of the order of 1 cm,
thus comparable to other threshold mechanisms discussed in the literature). This effect is
included in the simulations of Ref. [36] mentioned above, which were performed at realistic
collisionality. It is remarked that the impact of the island rotation was not considered in
Ref. [37].

5 Polarization current and beyond

The effect of the bootstrap current perturbation on the island stability results from a flux-
surface-averaged parallel current. However, also currents that vanish on average along
a flux surface can contribute to the growth or the damping of an island, if their phase
matches that of the island. A contribution associated to the rotation of the island with
respect to the surrounding plasma is the polarization current [38]. If stabilizing, it would
represent a further threshold mechanism at small island widths. Due to its dependence
on W (∼ 1/W 3), which leads to a sharp threshold in the modelling, and the predicted
dependence of the critical β at the mode onset with ρ∗, this term has been invoked to
explain experimental data [39, 40]. The sign of this contribution, however, is a quadratic
function of ω, see Sec. 3. For this reason, an assessment of its role is tightly linked to
the problem of determining the rotation frequency of the island, which is very subtle, see
the illuminating discussion by Mikhailovskii [41], and is still far from being solved under
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realistic tokamak conditions. Moreover, the magnitude of the contribution is related to the
derivatives of h(Ω), which are discontinuous around the separatrix in the model described
in Secs. 2,3. Finally, a toroidal kinetic modelling reveals a richer physics, mostly related
to the presence of trapped particles.

The derivation of the polarization-current contribution to the island dynamics in the
frame of neoclassical theory has been sketched in Sec 3. Before turning to further analytic
and numerical results obtained in toroidal geometry, we recall that the polarization current
contains also a “classical” contribution, due to the varying electric field experienced by the
ions along a gyro-orbit. As discussed in Sec. 3, the neoclassical contribution, due to the
varying electric field along the ion banana orbit, is larger by a factor between q2/

√
ǫ and

q2/ǫ2, depending on collisionality (see Refs. [15, 42] for a detailed physical picture). Strictly
speaking, the polarization current is a perpendicular current mainly carried by the ions,
since it is an inertial effect. The parallel current contributing to the nonlinear evolution of
the tearing mode arises to preserve quasi-neutrality and is carried by the electrons, which
are much more mobile. In numerical simulations, the detection of the perpendicular ion
flow is easier than that of the parallel closure current, as the parallel flow is dominated
by the neoclassical cEr/Bp component. Moreover, in drift kinetic simulations [43, 42] the
electrons are not traced. In order to isolate the role of the electric field associated with the
island rotation, flat density and temperature profiles are imposed in the results presented
below (for this reason “ion diamagnetic” and “electron diamagnetic” direction refer in the
following to the direction of the diamagnetic flow “if there were” a corresponding gradient).
In the absence of pressure gradients, the polarization current is expected to scale with the
island rotation frequency simply as Jpol ∝ ω2.

5.1 Drift kinetic results

In drift kinetic simulations performed imposing the electrostatic potential according to
Eq. (13), the perpendicular ion flow turns out to deviate from a simple quadratic depen-
dence, even if the island width is much larger than the thermal ion banana width, so that
the ordering (12) adopted in the analytic theory discussed in Sec. 3 is valid. Instead of
two degenerate zeros at ω = 0, Jneoclpol is found to cross the x-axis at four distinct points,

see Fig. 3. A first possible explanation for this behaviour could be a contribution from
the parallel streaming of the passing ion, which is of the same order as that leading to
the polarization current, but has been neglected invoking the limit W < ρpi as discussed
above. However, no contribution from v‖∇‖g

(1,0) can be expected around ω = 0, since
the integrand is odd in v‖, cf. Eqs. (15-17). When the parallel streaming is retained, a
resonant denominator appears in the corresponding distribution function, as mentioned
in Sec. 3. The right-hand side of Eq. (17), however, provides a numerator in the expres-
sion of the perpendicular current, which to leading order cancels the resonance [44]. As
a consequence, no qualitative deviation from the polarization-current picture term arises
from the parallel-streaming contribution. Numerical simulations confirm this behaviour
for both the distribution function and of the perpendicular current. For this reason, the
ion parallel streaming was ruled out in Ref. [44] as a possible cause for the deviation of the
perpendicular ion flow from the expected quadratic behaviour. However, a more rigorous
treatment of the resonant denominator would be needed to ascertain its overall role in the
island dynamics, in particular in relation to the out-of-phase currents leading to the island
rotation.
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Fig. 3. Perpendicular current (averaged over a helical half-period of a magnetic island), as a

function of the island rotation frequency. Results of drift kinetic simulations for a large island,

about 10 times larger than the thermal ion banana width [Reprinted with permission from E. Poli,

A. Bergmann, A. G. Peeters, L. Appel, S. D. Pinches, Nucl. Fusion 45 , 384 (2005).].

A second resonance, related to the matching between the toroidal precession frequency
of trapped particles ωtp and the toroidal rotation of the island, plays an important role
in this respect [43, 42]. This physics is not captured by the ordering employed in Sec. 3,
since the island is ordered there ω ∼ ω∗ ∼ ∆. To describe the resonance with the toroidal
precession of trapped ions, a different ordering, ω ∼ δ∆ has been introduced in Ref. [44]
as an ansatz for a perturbative treatment of the drift kinetic equation along the line of

what discussed in Sec. 3. In this case, the function h
(1,0)
i is found to vanish in the passing

domain and takes the form

h
(1,0)
i = −m

q

ωtp
ω + m

q (ωE + ωtp)

qiϕ

Ti
FM (20)

in the trapped domain. For ω around zero, this leads to a current scaling linearly with ω,
since ϕ ∝ ω, with a more complex pattern around the resonance, where slower particles
cross the perturbed flux surfaces in one direction and faster particles in the opposite di-
rection. A finite perpendicular current arises, which is due to the action of the toroidal
electric field associated to the island motion on the equilibrium magnetic precession. For
this reason, this contribution was dubbed “precessional current” in Ref. [44]. It is interest-
ing to note that the toroidal precession frequency is (at least for thermal particles) usually
comparable to or lower than the collision frequency, so that collisions effectively resolve
the resonance. The parallel closure current associated to the precessional current can be
calculated and a corresponding contribution to the generalized Rutherford equation can be
explicitly derived. The dependence of the perpendicular ion current found in drift kinetic
simulations on ω displayed in Fig. 3 can be explained in terms of a competition between
polarization and precessional contributions, where the positive, nearly quadratic behaviour
at higher frequencies can be ascribed to the polarization current while the precessional
current has an opposite sign for islands rotating in the electron direction (negative in
Fig. 3) or for islands rotating in the ion direction at a frequency larger than the toroidal
precession frequency of the bulk (the exact point at which the precessional current reverses
its sign for ω > 0 depends on the collision frequency, since collisions tend to act stronger on
slower particles). Around ω = 0, the linear scaling mentioned above is found. The parallel
current ensuring quasi-neutrality can be calculated. Stabilizing contributions correspond
to negative values of J⊥ in Fig. 3. It is stressed that the modification with respect to a
pure polarization scaling extends to frequencies of the order of the ion parallel streaming
k‖vth,i. According to the discussion in Sec. 3, for an island size of the order of the poloidal
ion gyroradius, the diamagnetic frequency would be of the order of k‖vth,i for Ln ≃ Lq,
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so that k‖vth,i can be taken as a proxy for the diamagnetic frequency, which is zero in the
simulations. The deviation from the quadratic scaling discussed above, therefore, covers
a range of frequencies which is experimentally relevant (see e.g. the discussion in Ref. [3]
for a discussion of the expected island rotation frequency).

It is of particular interest (also for comparison with the gyrokinetic simulations pre-
sented in Sec. 5.2) to examine the radial profiles of the perpendicular ion current, as
obtained from the drift kinetic simulations presented here, for frequencies at which the
polarization current start to be detectable as a quadratic signal. In these profiles, obtained
as an average value over a helical half-period of the island, two different behaviours can
be discerned.
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Fig. 4. Radial profile of the perpendicular ion flow (averaged over a helical half-period of a mag-

netic island) for two different island rotation frequencies, corresponding to ω/k‖vth,i = 1.3 (black

diamonds) and ω/k‖vth,i = 2.6 (blue stars). Left: Rotation in the ion diamagnetic direction (neg-

ative x-axis in Fig. 3). Right: Rotation in the electron diamagnetic direction (positive x-axis in

Fig. 3). Two peaks, one scaling linearly and one scaling quadratically with ω can be identified just

inside resp. outside the island separatrix (dashed black vertical lines).

This is particularly evident for islands rotating in the ion diamagnetic direction, left
panel of Fig. 4. Just inside the island separatrix, a peak scaling linearly with ω can be
identified, while the peak outside the island scales quadratically. The peaks have opposite
sign. Consistently, for islands of similar frequency (in absolute value) rotating in the
electron direction, the inner peak proportional to ω has an opposite sign than for islands
rotating in the ion direction, while the outer peak proportional to ω2 has the same sign. A
velocity-space analysis reveals that, while the outer (“polarization”) peak is dominated by
the contribution of the trapped particles, the inner linear peak is determined also by the
radial excursion of the passing ions. This two-peak behaviour is recovered in gyrokinetic
simulations, see below, where the electrostatic potential is computed self-consistently with
the particle response. This complex current pattern, which still has to be fully understood,
is expected to modify the sign of the return parallel current around the island separatrix
and hence the stability of the tearing instability.

Before turning to gyrokinetic simulations, it should be mentioned here that the tran-
sition between low and high collisionality regimes [15, 45] for the polarization current has
been also addressed by means of drift kinetic simulations [43, 46]. In particular, the sim-
ulation results are seen to agree with the curves obtained by Mikhailovskii et al. [47].
In these simulations, access to high-collisionality regime (high values of ν/ω) could not
be achieved simply by reducing ω, since the perpendicular current is then dominated by
the precessional contribution described above. On the other hand, increasing the collision
frequency for values of ω corresponding to dominant polarization current often leads to a
crossing of the banana/plateau regime, so that the full polarization current enhancement
expected in the high-collisionality regime (proportional to q2/ǫ2, as mentioned above) was
usually not achieved in our simulations. See Ref. [46] for a detailed account.
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5.2 Gyrokinetic results

In gyrokinetic simulations, the electrostatic potential linked to the rotation of the island
with respect to the surrounding plasma is calculated self-consistently from the gyrokinetic
Poisson equation, cf. also App. A. This smooths out the non-differentiable behaviour of ϕ
across the island separatrix. The adiabatic ion response across the island separatrix is seen
to contribute to the profile of ϕ [34] (a similar effect had been investigated in relation to
trapped fast-ion response [48]). On the other hand, an option has been added in the code
GKW to allow the replacement of the self-consistent potential with an analytically imposed
one [34], taken to be of the form given by Eq.(13). This enables a direct comparison of the
importance of the electric-field discontinuity. A larger degree of smoothness is expected
to lead to a smaller polarization current. This topic has been addressed also in previous
work, e.g. through numerical integration of the equation for ϕ [49], through a smoothing
of h(Ω) [50], or a finite cross-field diffusion [51]. As a result, a substantial reduction of the
ion polarization current is found.
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Fig. 5. Left: Gyrocentre density perturbation for ion and electrons across the island O-point

(island width W = 10ρi). The difference represents the polarization density and is concentrated

in the peak region just around the island separatrix. Right: The difference between electron and

ion gyrocentre density as a function of the frequency, exhibiting the expected linear scaling.

We address the classical polarization current first. Fig. 5 shows a typical profile across
the island O-point of the gyrocentre-density perturbation for an island of width W = 10ρi
rotating in the electron diamagnetic direction. The difference between the gyrocentre
densities is the so-called polarization density δnpol, which exhibits the same linear depen-
dence on ω as the electrostatic potential, as expected. The classical polarization current
is computed as

Jclpol =

∫

〈vE〉 · ∇Ωf̃i(R)d3v −
∫

〈vE〉 · ∇Ωf̃e(R)d3v (21)

with f̃i,e(R) denoting the (perturbed) gyrocentre distribution functions of ions and elec-

trons, respectively, and the angular brackets the gyroaverage. A surface plot of Jclpol is

shown in Fig. 6 (left) and reproduces the behaviour expected from the theory, cf. Fig. 1
of Ref. [42]: the (perpendicular) polarization current is concentrated in a narrow layer
around the separatrix and has a sin ξ parity along the island, being zero in the regions at
the level of the O and X-point.
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flows, representing the two contributions to Eq. (21).

The E×B flow of the gyrocentres for electrons and ions is displayed in Fig. 6 (right),
where a radial cut half-way between O and X-point has been taken. A difference is seen
to arise in the region around the island separatrix, where a finite polarization density is
present. A scan in ω confirms that these flows scale quadratically, as expected.
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Fig. 7 Perpendicular classical ion flow, i.e. the first term on the right-hand side of Eq. (21), from

gyrokinetic simulations with a potential imposed according to Eq. (13) (green circles and magenta

triangles) or with self-consistent potential (red crosses and blue stars), for two different values of

the island rotation frequency and W = 3ρi.

Fig. 7 shows a comparison between the classical gyrocentre fluxes with self-consistent
and imposed electrostatic potential for a simulation withW = 3ρi, i.e. for an island width
approximately equal to the thermal ion banana-orbit width. The frequencies have been
shown in order to be of the order of the diamagnetic frequency if realistic gradient lengths
were taken. The quadratic dependence on ω is evident also here. More importantly, the
perpendicular gyrocentre flow originating from the imposed analytic potential produces
a significantly higher flow than in the presence of a self-consistent potential. Note that,
although an analytic potential obtained in the large-island limit (13) is not justified in the
limit of islands of the same size as the ion orbit width, the polarization-current contribution
to the generalized Rutherford equation as usually employed in the modelling is based on
Eq. (13). More detailed analytic and numerical work is needed to quantify the entity of
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this effect in comparison to analytic theory.
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Fig. 8 Neoclassical ion flow profile through the island O-point from gyrokinetic simulations for

and island rotating in the ion direction (left) and in the electron direction (right). Island width

W = 10ρi

The neoclassical polarization current (or better the neoclassical perpendicular ion
flow) originating from the island is calculated as Jneocl

i,pol =
∫

vDif̃i(R)d3v, where vD is the

magnetic drift velocity.
In Fig. 8, the radial neoclassical ion flow corresponding again to a cut half-way between

O- and X-point is shown for different island rotation frequencies. For the parameters
employed in these simulations, the ion parallel streaming (normalized to vth,i/qR) is in
the range k‖vth,i ≃ 0.04, where the parallel wavevector (6) is evaluated at a distance
x = W from the rational surface. The island width is W = 10ρi. For islands rotating
in the ion diamagnetic direction (negative frequencies in these gyrokinetic simulations), a
clear peak around the island separatrix can be observed, accompanied at low frequencies
by a weaker peak of opposite sign inside the island. The peak at the island separatrix
scales nearly linearly with the island frequency ω. Outside the island, a peak of opposite
sign, almost invisible at frequencies of the order of k‖vth,i, develops for ω

>
∼ 0.1. For islands

rotating in the electron diamagnetic direction, the peak at the separatrix and the external
peak are in the same direction and exhibit an intermediate scaling (between linear and
quadratic) with ω at frequencies of the order of k‖vth,i.

Some similarities with the picture emerging from the drift kinetic simulations presented
in Sec. 5.1 can be observed. In particular, at frequencies of the order of k‖vth,i, there is
no clearly visible polarization-current signal (exhibiting a quadratic scaling with ω for
flat pressure) in the perpendicular ion flow. Such a signal becomes instead dominant
at higher frequencies. It is recalled that the polarization current is predicted to have a
stabilizing effect on the island evolution for frequencies in the range between 0 and the ion
diamagnetic frequency [52, 49]. Moreover, the two-peak structure described in Sec. 5.1 is
clearly confirmed also by gyrokinetic simulations.

On the other hand, the gyrokinetic simulations presented here leave still some impor-
tant questions open. One is connected to the precessional current described in Sec. 5.1.The
frequency range around the toroidal precession frequency of trapped particles has not been
considered in these simulations. Preliminary investigations show the expected resonance
in velocity space, but the overall effect (including also the electrons, which have not been
considered in the drift kinetic simulations) should be still investigated in detail. A sec-
ond point to be addressed in detail is the specific impact of a potential satisfying quasi-
neutrality also around the separatrix (where the assumption E‖ = 0 of analytic theory
fails).
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6 Conclusions

The dynamics of the tearing mode in tokamak plasmas involves an interplay of processes
occurring on several disparate time and space scales. This makes the problem extremely
complex both theoretically and computationally. For this reason, in the approach to a
full theoretical understanding of the underlying physics, the main line of research is based
on self-consistent models with reduced physical scope (fluid equations and/or simplified
geometry). The results presented in this paper follow a complementary philosophy. Kinetic
and geometrical (toroidal) effects are fully retained and the response of the system to
a given magnetic perturbation is computed, but the feedback of this response on the
evolution of the mode is discarded. The width and the rotation frequency of the island
are treated as parameters. These studies are based mainly on a numerical approach, that
makes the assumptions needed in analytic treatments [17, 15] unnecessary. Still, analytic
works represent the starting point for any attempt at a more complete description based
on more general physics assumptions.

In this paper, the neoclassical contributions to the evolution of a magnetic island
due to bootstrap and polarization currents have been investigated employing both a drift
kinetic and a gyrokinetic approach. A particularly important role is played by finite-
orbit-width effects around the island separatrix, where the ions respond adiabatically,
i.e. the perturbed ion density follows the electrostatic potential. Since the potential has a
different slope inside the island depending on the island rotation frequency, also the degree
of density flattening is a function of ω. This, in turn, determines the level of neoclassical
(bootstrap) drive to be expected in a small rotating island, which turns out to be large
for islands rotating in the ion direction and vanishing for islands rotating at the electron
diamagnetic frequency. The perpendicular flows in the presence of a rotating island have
been also investigated, choosing a flat background pressure to isolate the effect of the
island electric field. The classical polarization current, as determined from gyrokinetic
simulations, shows a reduction with respect to simulations with an electrostatic potential
imposed according to analytic theory. This is ascribable to the smoothing of the electric-
field discontinuity around the island separatrix found in the simulations. Deviations from
the quadratic scaling of the perpendicular neoclassical ion flows with ω expected from the
polarization-current theory are found at rotation frequencies of the order of the parallel
ion streaming along the island, which is of the same order as the diamagnetic frequency for
islands as wide as the poloidal ion gyroradius. These deviations are found in drift kinetic
calculations (analytic and numeric) to be related to the interaction of the trapped-particle
precession with the island motion. These drift kinetic results still need to be confirmed in
gyrokinetic simulations with a self-consistent electrostatic potential. Moreover, at these
frequencies a further contribution to the ion flow, scaling linearly with ω and appearing in
the region just inside the island separatrix, is detected in both drift kinetic and gyrokinetic
simulations. The origin and the role of this contribution still has to be determined, together
with an eventual contribution of the electrons.

As stated above, the evolution of the tearing mode is fundamentally a multi-scale
problem, in which in particular the interaction with turbulence is being explored more
and more thoroughly both analytically (see e.g. Refs. [53, 54]) and numerically (see e.g.
Refs. [55, 56, 57, 58, 59] and references therein) with respect to both the seeding process
and the influence on the torque acting on the island and determining its rotation speed.
Toroidal gyrokinetic simulations of turbulence in the presence of an imposed magnetic
island have been carried out and the interested reader is referred to Refs. [60, 61, 62, 36]
for details. It should be mentioned that self-consistent simulations of magnetic islands
in the presence of electromagnetic gyrokinetic turbulence in toroidal geometry are also
becoming viable now [63, 64], although they still represent a tremendous computational
effort. Also in this respect, simulations based on a reduced physical model, as those quoted
above, allow a larger degree of flexibility in the variation of the relevant parameters and a
more direct grasp on the underlying physics.
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The results presented in this paper aim to illustrate the importance of sometimes
subtle effects, that can escape fluid or slab-geometry treatments, and possibly to encourage
further work on the way to an overall picture which combines basic understanding with
the consideration of all the necessary physical details.
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A Numerical solution of the drift kinetic and gyroki-

netic equations in the presence of a magnetic island

The numerical results discussed in this paper are based on the solution of the drift kinetic
equation as obtained from the code HAGIS [65], augmented by a pitch-angle scattering
operator including a correction to ensure momentum conservation [66] and by an magnetic-
island structure [30], and on the solution of the gyrokinetic equation with the code GKW
[67], where a magnetic island perturbation has been implemented for both periodic [62]
and non-periodic radial boundary conditions [35]. A brief account of the numerical scheme
is given here. The interested reader is referred to the original publications for more details.

In drift kinetic simulations, the equation

df

dt
=
∂f

∂t
+
(

v‖b̂+ vd + vE

)

· ∂f
∂r

− e

m

vd · ∇Φ

v

∂f

∂v
= C(f) (22)

is solved in a toroidal geometry, including the presence of the island in the magnetic
configuration, with f the particle distribution function, vd and vE the magnetic and
electric drift velocities, e andm the charge and the mass of the particles and C is the pitch-
angle collision operator. The parallel electric field E‖ is set to zero since it is assumed to
be immediately short-circuited by the electrons (cf. Ref. [15]). Eq.(22) is solved employing
the δf method, i.e. the distribution function is written as the sum of a time-independent
analytically-known bulk term f0 and a deviation δf , to be evaluated numerically. The
equation for δf reads

d(δf)

dt
= C(δf)− vd · ∇fM − efM

T
vd · ∇Φ, (23)

so that the right-hand side of Eq.(23) can be thought as the “source” causing a deviation
from f0, supposed here to be a Maxwellian fM . No assumption is made here about the
magnitude of δf as compared to f0, so that Eq. (23) is equivalent to Eq. (22), but the
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δf approach is obviously computationally advantageous if |δf | ≪ |f0|, since δf is to be
represented numerically by an ensemble of “markers”, evolving according to the equations
of motion written in Boozer coordinates (these contain also the terms corresponding to
the electromagnetic perturbation due to the presence of a magnetic island). The magnetic
equilibrium is specified analytically for the sake of saving computational time. The unper-
turbed magnetic surfaces are circular and concentric. The magnetic perturbation of given
helicity is assigned by choosing the mode amplitude ψ̃ and the mode rotation frequency ω
(appearing in the helical angle ξ = mθ−nϕ−ωt). Neither ψ̃ nor ω evolve during the run.
Flux-surface averages are obtained by integrating in space between neighbouring surfaces
according to

〈A〉 = lim
δΨ→0

∫

Ad3r
∫

d3r
⇒ 1

n

〈
∫

Aδf d3v

〉

≃
∫ Ω+δΩ

Ω−δΩ
Aδf dΓ

∫ Ω+δΩ

Ω−δΩ
f0 dΓ

. (24)

In order to determine currents that flux-surface average to zero, a further refinement in the
spatial integration is obtained by introducing smaller cells in the ξ-direction [42, 33]. As
stated in the body of the text, when a two-step approach is adopted for the determination
of the bootstrap current (including the contribution of both electrons and ions), Eq. (22)
is solved first for the ions, disregarding the role of ion-electron collisions, and then for the
electrons, including the mean parallel ion flow as a shift in f0e, so that this term exactly
cancels the ion contribution and the total bootstrap current is completely determined by
δfe (see Ref. [33] for details).

The gyrokinetic results presented in the paper has been performed employing the
Vlasov code GKW. Ampère’s equation is switched off in our simulations, but a magnetic
perturbation corresponding to an island of desired helicity is introduced through the spec-
ification of an appropriate parallel vector potential, see below. Fully kinetic electrons are
necessary to have the correct dynamics including the motion along the perturbed mag-
netic field lines. The island widths considered in our simulations does never exceed several
ion Larmor radii, so that the δf approximation adopted in the code is justified. The
gyrokinetic equation is solved in the form

∂g

∂t
+ (v‖b+ vD) · ∇f + vχ · ∇g − µB

m

B · ∇B
B2

∂f

∂v‖
= S, (25)

where g = f + (Ze/T )v‖〈A‖〉FM , the source term on the right-hand side is

S = − (vχ + vD) ·
[∇n
n

+

(

v2‖

v2th
+
µB

T
− 3

2

)∇T
T

]

FM

− Ze

T
[v‖b+ vD] · ∇〈φ〉FM . (26)

and the motion due to the perturbed electromagnetic field is expressed by the velocity

vχ =
b×∇χ
B

,

which is the combination of the E×B velocity and the parallel motion along the perturbed
field lines.

In the Hamada coordinates used in GKW, a magnetic perturbation of given helicity
has the form (omitting for simplicity the harmonic time dependence −iωt)

A‖ = Ã‖ exp[2πin(ζ − sq′ψ)],

where s is the parallel coordinate, ζ the generalized toroidal angle and ψ the distance from
the rational surface. If a Fourier representation is adopted in the radial direction,

A‖ = eikζζ
∑

p

A(p)(s)eipkψψ
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(with kζ = 2πn and kψ = kζq
′) the corresponding amplitudes are given by

A(p)(s) = Ã‖
sin[π(p+ s)]

π(p+ s)
.

In the numerical implementation, an extra smoothing factor at higher radial mode numbers
of the form exp[−(p+s)2/L2] is introduced in order to satisfy the periodic radial boundary
conditions of the sheared flux tube domain. The results are unaffected provided the scale
length L is chosen to be large enough. Details on the numerical implementation are
provided in Ref. [62].

The possibility of imposing a magnetic island has been recently included also in the
non-spectral version of GKW [35]. In this case, the implementation of the island pertur-
bation is straightforward, a radial envelope being added to the basic helical dependence
in order not to affect the boundaries of the simulation box.
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