
Supplementary Materials

Material A. Permutation Analyses

How can we be sure that our primary dependent measure (anticipatory
gaze switching) actually relates to turn transitions? Even if children were
gazing back and forth randomly during the experiment, we would have still
captured some false hits—switches that ended up in the turn-transition win-
dows by chance.

We estimated the baseline probability of making an anticipatory switch
by randomly permuting the placement of the transition windows within each
stimulus (Main paper; Figure 4). We then used the switch identification pro-
cedure from Experiments 1 and 2 to find out how often participants made
“anticipatory” switches within these randomly permuted windows. This pro-
cedure de-links participants’ gaze data from turn structure by randomly re-
assigning the onset time of each turn-transition in each permutation. We
created 5,000 of these permutations for each experiment to get an anticipa-
tory switch baselines over all possible starting points.

Importantly, the randomized windows were not allowed to overlap with
each other, keeping true to the original stimuli. We also made sure that the
properties of each turn transition stayed constant across permutations. So,
while “transition window A” might start 2 seconds into Random Permuta-
tion 1 and 17 seconds into Random Permutation 2, it maintained the same
prior speaker identity, transition type, gap duration, language condition, etc.,
across both permutations.

We then re-ran the statistical models from the original data on each of
the random permutations, e.g., using Experiment 1’s original model struc-
ture to analyze the anticipatory switches from each random permutation of
the Experiment 1 looking data. We could then calculate the proportion of
random data z -values exceeded by the original z -value for each predictor.
We used the absolute value of all z -values to conduct a two-tailed test. If
the original effect of a predictor exceeded 95% of the random model effects
for that same predictor, we deemed that predictor’s effect to be significantly
different from the random baseline (i.e., p<.05).
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For example, children’s “language condition” effect from Experiment 1
had a z -value of |3.65|, which is greater than 99.3% of all |z -value| estimates
from Experiment 1’s random permutation models (i.e., p=.007). It is there-
fore highly unlikely that the effect of language condition in the original model
came from random gaze shifting.

We used this procedure to derive the random-baseline comparison values
in the main text (above). However, we ran into two issues along the way:
first, we had to report z -values rather than beta estimates of each effect.
Second, we had to exclude a substantial portion of the models, especially in
Experiment 2 because of model non-convergence. We address each of these
issues below.

Material A.1. Beta, standard error, and z estimates

We reported z -values in the main text rather than beta estimates because
the standard errors in the randomly permuted data models were much higher
than for the original data. The distributions for each predictor’s beta esti-
mate, standard error, and z -value for adults and children in each experiment
are shown in the graphs below (Figures A.1a–A.6b). In each plot, the gray
dots represent the absolute value of the 5,000 randomly permuted model es-
timates for the estimate type plotted (beta, standard error, or z ), the white
circles represent the model estimates from the original data, and the black
triangles represent the 95th percentile for each random distribution.
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Material A.2. Non-convergent models

In comparing the real and randomly permuted datasets, we excluded the
output of random-permutation models that gave convergence warnings to
remove erratic model estimates from our analyses. Non-convergent models
made up 13–14% of the random permutation models in Experiment 1 and
46–49% of the random permutation models in Experiment 2. The z -values for
each predictor in the converging and non-converging models from Experiment
1 are shown in Table A.1.

Although many of the non-converging models show estimates within range
of the converging models (e.g., with a mean difference of only 0.096 in median
z -value across predictors), they also show many radically outlying estimates
(e.g., showing a mean difference of 146.7 in mean z -value across predictors).
Similar patterns were obtained in the non-converging models for Experiment
2 and persisted across multiple attempts with different optimizers.

We suspect that the issue derives from data sparsity in some of the ran-
dom permutations. This problem is known to occur when there are limited
numbers of binary observations in each of a design matrix’s bins (Allison,
2004). We could instead use zero-inflated poisson or negative binomial re-
gression models to allow for overdispersion in our data (Allison, 2012). How-
ever, these would give us baselines for the normal, convergent model, which
is not the aim of this analysis.
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Material B. Pairwise developmental tests

Experiments 1 and 2 both showed effects of age in interaction with lin-
guistic condition and transition type. To explore these effects in more depth,
in each permutation we recorded the average difference score for each par-
ticipant, for each predictor that interacted with age (e.g., English minus
non-English anticipatory switches for each participant). We then used these
values to compute an average difference score over the participants in each
age group (e.g., age 3, 4, and 5) within each random permutation. This
averaging process produces 5,000 baseline-derived difference scores for each
age group.

We then made pairwise age comparisons of the difference scores (e.g.,
the linguistic condition effect in 3-year-olds vs. 4-year-olds), computing the
percent of random-permutation difference scores exceeded by the real-data
difference score. If the real-data difference score exceeded 95% of the random-
data age difference scores, we deemed it to be an age effect significantly
different from chance, e.g., a significant difference between ages three and
four in the effect of linguistic condition. This procedure is essentially a two-
tailed t-test, adapted for use with the randomly permuted baseline data.

In each of the plots below, the black dot represents the real data value for
the effect being shown (the difference score). The effect sizes from the 5,000
randomly permuted data sets are shown as a distribution. The percentage
displayed is the percentage of random permutation difference scores exceeded
by the original data differences score (taking the absolute value of all data
points for a two-tailed test). Comparisons marked with 95% or higher are
significant at the p<0.05 level.
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Material C. Boredom-driven anticipatory looking

One alternative hypothesis for children’s anticipatory gazes is that they
look at the current speaker at the start of each turn, but then grow bored
and start looking away at a constant rate. Even though this alternative
hypothesis does not predict the primary effects in our data (e.g., the difference
between questions and non-questions), we cannot rule out the possibility that
a portion of participants’ saccades come from boredom.

The data plotted here show a hypothetical group of boredom-driven par-
ticipants (gray dots) and participants from the actual data in Experiment 2
(black dots). The hypothetical boredom-driven participants look away from
the current speaker at a linear rate, beginning one second after the start of
a turn.

Figure C.1: Proportion of participants (hypothetical boredom-driven=gray; actual Ex-
periment 2=black) looking at the current speaker, split by turn duration. Vertical bars
indicate standard error in the experimental data.

If children’s switches away from the current speaker were purely driven
by boredom, they would switch away equally quickly on long and short turns.
Therefore, their crossover point—the point in time at which 50% of the chil-
dren have switched away from the current speaker—would be the same for
all turns, no matter the length of the turn. This pattern is demonstrated
in the hypothetical boredom-driven crossover points, which always occur 2.5
seconds after the start of speech (gray vertical lines; Figure C.1).

In children’s actual looking data we see that crossover points increase with
turn duration: 2.0, 2.9, and 3.6 seconds after the start of speech for turns
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with durations of 1–2, 2–3, and 3–4 seconds, respectively (black vertical lines;
Figure C.1). This pattern suggests that, though children do look away as
the turn is unfolding, their looks away are not simply driven by boredom.

Are the looks away in Figure C.1 still too early to count as “turn-transition”
anticipation? It is true that children start looking away after one second
has passed, but then only gradually. Some of these early looks away may be
boredom-driven, but it is equally plausible that some of them are turn-driven.
Early predictive behavior is common in turn-taking studies with adults, in
both constrained turn-taking tasks (De Ruiter et al., 2006; Gı́sladóttir et al.,
2015; Bögels & Torreira, 2015) and in spontaneous conversation (Holler &
Kendrick, 2015; Bögels et al., 2015). Although this same pattern has yet to
be established for children’s turn predictions, the looking behavior here is
at least consistent with adult response patterns in previous work. Addition-
ally, because our analysis windows in the main study only overlapped with
the pre-gap utterance by 300 msec (Main paper; Figure 2), our primary re-
sults are unlikely to capture any of these very early or early boredom-driven
gaze switches, which makes them unproblematic either way in the current
analysis.

We therefore conclude that the boredom-driven effects in our data are
unlikely to change our primary results, though we acknowledge that charac-
terizing different gaze switching strategies in this kind of data is an important
avenue for future work.
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Material D. Puppet pair and linguistic condition

The design for Experiment 2 does not fully cross puppet pair (e.g., robots,
blue puppets) with linguistic condition (e.g., words only and no speech). Even
though each puppet pair is associated with different conversation clips across
children (e.g., robots talking about kitties, birthday parties, and pancakes),
the robot puppets themselves were exclusively associated with the words only
condition. Similarly, merpeople were exclusively associated with prosody only
speech, and the puppets wearing dressy clothes were exclusively associated
with the no speech condition. We designed the experiment this way to in-
crease its pragmatic felicity for older children (i.e., robots make robot sounds,
merpeople’s voices are muffled under the water, the party-going puppets are
in a ‘party’ room with many other voices). There is therefore a confound
between linguistic condition and puppet pair; for example, children could
have made fewer anticipatory switches in the prosody only condition because
the puppets were less interesting. To test whether puppet pair drove the
condition-based differences found in Experiment 2, we ran a follow-up study.

Methods

We recruited 30 children between ages 3;0 and 5;11 from the Children’s Dis-
covery Museum of San Jose, California to participate in our experiment. All
participants were native English speakers. Children were randomly assigned
to one of six videos (five children per video).

Materials. We created 6 short videos from the stimulus recordings made for
Experiment 2. Each video featured a puppet pair (red/blue/yellow/robot/
merpeople/party-goer; Main paper; Figure 5). Puppets in all six videos per-
formed the exact same conversation recording (‘birthday party’; Experiment
2) with normal, unmanipulated speech. This experiment therefore holds all
things constant across stimuli except for the appearance of the puppets.

Procedure. We used the same experimental apparatus and procedure as in
Experiments 1 and 2. Each participant was randomly assigned to watch only
one of the six puppet videos. Five children watched each video. As in Exper-
iment 2, the experimenter immediately began each session with calibration
and then stimulus presentation because no special instructions were required.
The entire experiment took less than three minutes.

Data preparation. We identified anticipatory gaze switches to the upcoming
speaker using the same method as in Experiments 1 and 2.
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Results and discussion

We modeled children’s anticipatory switches (yes or no at each transition)
with mixed effects logistic regression, including puppet pair (robots/mer-
people/party-goers/other-3) as a fixed effect and participant and turn tran-
sition as random effects. We grouped the red, blue, and yellow puppets
together because they collectively represented the puppets used in the nor-
mal speech condition—this follow-up experiment is meant to test whether
the condition-based differences from Experiment 2 arose from the puppets
used in each condition.

Figure D.1: Proportion gaze switches across puppet pairs when linguistic condition and
conversation are held constant.
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Estimate Std. Error z value Pr(>|z |)
Reference level: normal-condition puppets

(Intercept) -0.148 0.328 -0.451 0.652
Puppets=mermaid -0.076 0.655 -0.116 0.908
Puppets=robot -0.071 0.653 -0.109 0.913
Puppets=party -0.782 0.687 -1.138 0.255
Reference level: mer-puppets

(Intercept) -0.224 0.568 -0.394 0.694
Puppets=robot 0.0048 0.801 0.006 0.995
Puppets=party -0.706 0.827 -0.854 0.393
Reference level: robot puppets

(Intercept) -0.219 0.566 -0.387 0.699
Puppets=party -0.711 0.827 -0.860 0.390
Reference level: party-goer puppets

(Intercept) -0.93 0.607 -1.533 0.125

Table D.2: Model output for children’s anticipatory gaze switches with reference levels
varied to show all possible pairwise differences between puppet pairs.

In four versions of this model, we systematically varied the reference level
of the puppet pair to check for any cross-condition differences. We found no
significant effects of puppet pair on switching rate (all p>0.25; Table D.2).

We take this finding as evidence that our decision to not fully cross puppet
pairs and linguistic conditions in Experiment 2 was unlikely to have affected
children’s anticipatory gaze rates above and beyond the intended effects of
linguistic condition.
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