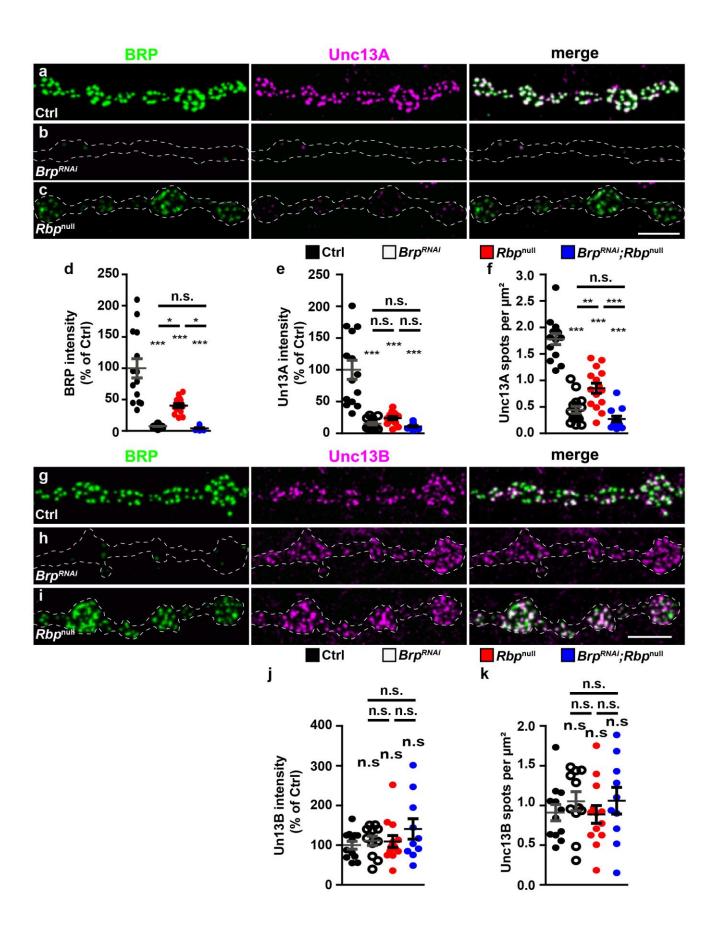


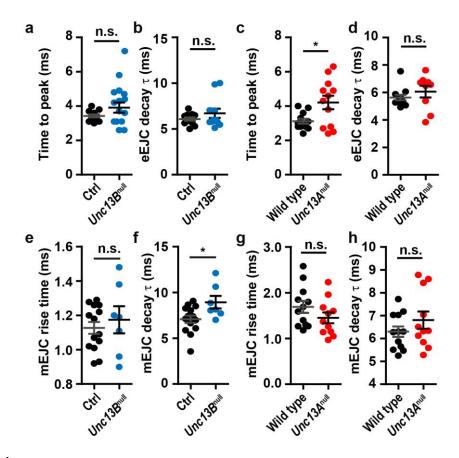
Supplementary Figure 1

Liprin-a/Syd-1 scaffold complexes organize the AZ localization of Unc13B

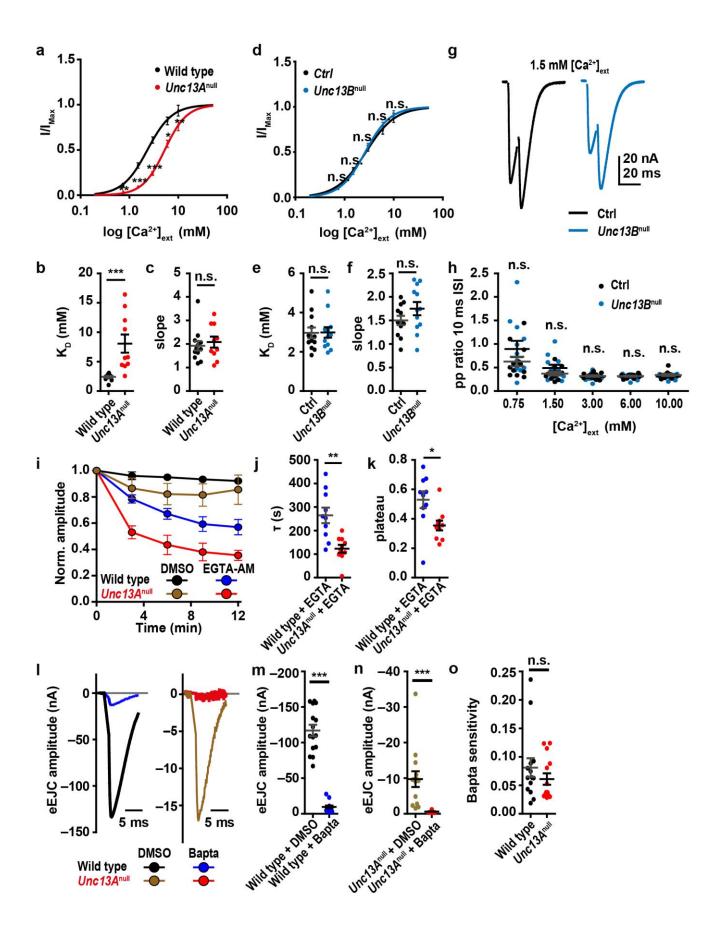

(a,b) Muscle 4 NMJs of segments A2-A4 from 3rd instar larvae of the displayed genotypes labelled with the antibodies (ABs) indicated. (c) Mean BRP intensity measured over the whole NMJ was unchanged in $Syd-1^{\text{null}}$ and $Liprin-\alpha^{\text{null}}$ in comparison to the Wild type (Wild type (n=13 NMJs from 4 larvae) vs. $Syd-1^{\text{null}}$ (n=11 NMJs from 4 larvae) vs. $Liprin-\alpha^{\text{null}}$ (n=12 NMJs from 4 larvae): p >0.05 for Wild type vs. $Syd-1^{\text{null}}$; p >0.05 for $Syd-1^{\text{null}}$ vs. $Liprin-\alpha^{\text{null}}$; p=0.2883 (F(2,33)=1.29)). (d) BRP spots per μ^{null} NMJ were slightly reduced in $Syd-1^{\text{null}}$ and significantly reduced in $Liprin-\alpha^{\text{null}}$ in comparison to the Wild type (Wild type (n=13 NMJs from 4 larvae) vs. $Syd-1^{\text{null}}$ (n=11 NMJs from 4 larvae) vs. $Liprin-\alpha^{\text{null}}$ (n=12 NMJs from 4 larvae): p >0.05 for Wild type vs $Syd-1^{\text{null}}$; p >0.05 for $Syd-1^{\text{null}}$ vs. $Liprin-\alpha^{\text{null}}$; p=0.0108 (F(2,33)=5.207)). (e) Mean Unc13A intensity measured

over the whole NMJ was unchanged in $Syd-1^{\text{null}}$ and $Liprin-a^{\text{null}}$ in comparison to the Wild type (Wild type (n=13 NMJs from 4 larvae) vs. $Syd-1^{\text{null}}$ (n=11 NMJs from 4 larvae) vs. $Liprin-a^{\text{null}}$ (n=12 NMJs from 4 larvae): p >0.05 for Wild type vs $Syd-1^{\text{null}}$; p >0.05 for $Syd-1^{\text{null}}$ vs. $Liprin-a^{\text{null}}$; p=0.2105 (F(2,33)=1.63)). (f) Unc13A spots per μ m² NMJ were slightly reduced in $Syd-1^{\text{null}}$ and $Liprin-a^{\text{null}}$ in comparison to the Wild type (Wild type (n=13 NMJs from 4 larvae) vs. $Syd-1^{\text{null}}$ (n=11 NMJs from 4 larvae): p $Syd-1^{\text{null}}$ vs. $Syd-1^{\text{null}}$ (n=12 NMJs from 4 larvae): p $Syd-1^{\text{null}}$ vs. $Syd-1^{\text{null}}$ in comparison to the Wild type (Wild type (n=13 NMJs from 3 rd instar larvae of the displayed genotypes labelled with the ABs indicated. (i) Mean Unc13B intensity measured over the whole NMJ was slightly reduced in $Syd-1^{\text{null}}$ but severely reduced in $Syd-1^{\text{null}}$ in comparison to the Wild type (Wild type (n=13 NMJs from 5 larvae) vs. $Syd-1^{\text{null}}$ (n=11 NMJs from 5 larvae) vs. $Syd-1^{\text{null}}$ (n=15 NMJs from 5 larvae): p $Syd-1^{\text{null}}$ vs. $Syd-1^{\text{null}}$ vs.

Unc13B interacts with Syd-1/Liprin-α; Unc13A interacts with BRP/RBP

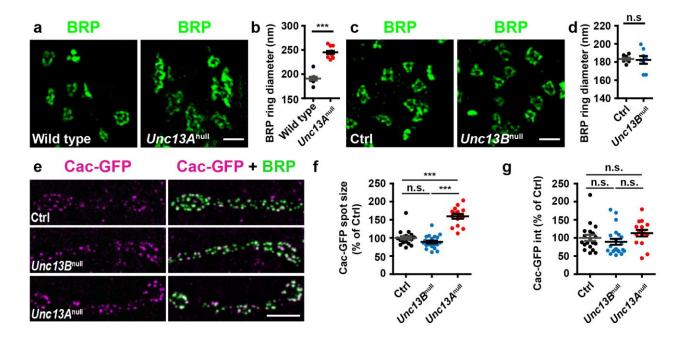

(a) Schematic representation of Unc13B N-terminus including three fragments (1-3) that were used in the Y2H screen; Liprin- α domain structure containing three C-terminal SAM domains (I-III from the N terminus); Syd-1 domain structure containing an N-terminal PDZ domain, a C_2 and a Rho-GAP domain. The corresponding fragments of each protein used in the Y2H screen are indicated. A central N-terminal fragment of Unc13B interacted with an N-terminal part of Liprin- α . Both very N-terminal fragments of Unc13B interacted with a central stretch of Syd-1 located in-between PDZ- and C_2 -domain. (b) Schematic representation of Unc13A N-terminus including three fragments (1-3) that were used in the Y2H screen. The RBP-binding PxxP motif is indicated; RBP domain structure containing three SH3 domains (I-III from the N terminus) and three Fibronectin 3 (FN3) domains; BRP domain structure containing several coiled-coil (CC) domains. The corresponding fragments of each protein used in the Y2H screen are indicated. The most N-terminal fragment of Unc13A (including the RBP binding PxxP motif) interacted with both C-terminal fragments of RBP including the SH3-domains II and III, and with an N-terminal part of BRP.

BRP/RBP scaffold complexes organize the AZ-localization of Unc13A

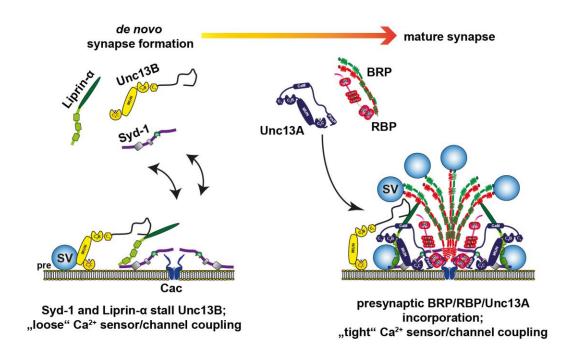

(a-c) Muscle 4 NMJs of segments A2-A4 from 3rd instar larvae of the displayed genotypes labelled with the ABs indicated. BRP as well as Unc13A were severely decreased upon motoneuronal downregulation of BRP or in Rbp^{null} mutants. (d,e) BRP as well as Unc13A intensity were severely decreased upon motoneuronal downregulation of BRP or in Rbp^{null} mutants with the strongest downregulation upon Brp knockdown in Rbp^{null} (BRP intensity: Ctrl (n=14 NMJs from 5 larvae) vs. Brp^{RNAi} (n=15 NMJs from 5 larvae) vs. Bpp^{null} (p=15 NMJs from 5 larvae) vs. Bpp^{null} (p=13 NMJs from 5 larvae) vs. Brp^{RNAi} (n=15 NMJs from 5 larvae) vs. Bpp^{null} (p=20.001 for Ctrl vs. Rpp^{null} p=20.001 for $Rpp^{\text{null$

Nature Neuroscience: doi:10.1038/nn.4364

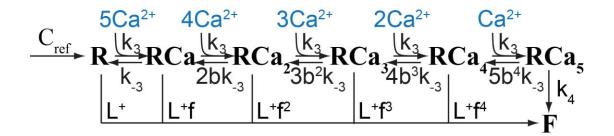
TEVC analysis of Unc13A and Unc13B mutant terminals


(a,b) The time-to-peak (time difference between stimulation pulse to the afferent nerve and the eEJC minimum) and eEJC decay, which is the time constant τ resulting from a single exponential fit in the range from 60% of the eEJC amplitude back to baseline, both are similar in Ctrl (black) and $Unc13B^{null}$ (blue) (time to peak: Ctrl (n=12 NMJs from 12 larvae) vs $Unc13B^{null}$ (n=12 NMJs from 12 larvae), p=0.1333 (t(22)=1.559); eEJC decay: Ctrl (n=12 NMJs from 12 larvae) vs $Unc13B^{null}$ (n=11 NMJs from 11 larvae), p=0.2413 (t(21)=1.206)). (c) The time to peak is significantly prolonged in $Unc13A^{null}$ mutant synapses (Wild type (n=12 NMJs from 12 larvae) vs $Unc13A^{null}$ (n=12 NMJs from 12 larvae), p=0.0162 (t(22)=2.605)). (d) The eEJC decay is similar in Wild type and $Unc13A^{null}$ (Wild type (n=12 NMJs from 12 larvae) vs $Unc13A^{null}$ (n=9 NMJs from 9 larvae), p=0.2136 (U=36)). (e) The mEJC rise time is unaltered in $Unc13B^{null}$ mutant synapses compared to Ctrl (Ctrl (n=14 NMJs from 10 larvae) vs $Unc13B^{null}$ (n=7 NMJs from 5 larvae), p=0.7652 (U=44.5)). (f) In $Unc13B^{null}$ the mEJC decay is significantly increased compared to Ctrl (Ctrl (n=14 NMJs from 10 larvae) vs $Unc13B^{null}$ (n=12 NMJs from 6 larvae), p=0.0480 (U=22.00)). (g,h) mEJC kinetics do not differ between Wild type and $Unc13A^{null}$ (mEJC rise time: Wild type (n=12 NMJs from 6 larvae) vs $Unc13A^{null}$ (n=11 NMJs from 6 larvae), p=0.2546 (t(21)=1.171)). All recordings were performed in the presence of 1.5 mM extracellular Ca²⁺. Number and p values are listed in Supplementary Table 1. Statistics: Student's t-test besides panels d,e,f where a Mann Whitney U-test was performed. All panels show mean \pm SEM; *, p \leq 0.05; **, p \leq 0.01; ***, p \leq 0.001; ns, not significant, p >0.05.

Ca2+ sensitivity and release probability is altered upon loss of Unc13A but not -B


(a-f) Plot of eEJC amplitude as a function of extracellular Ca²⁺ concentrations [Ca²⁺]_{ext} fitted with Hill equations to determine the values for slope and K_D. A clear shift can be observed in (a) *Unc13A*^{null} mutant synapses (red) compared to Wild type (black), whereas in (d) there is no change upon loss of Unc13B^{null} (blue) compared to Ctrl (black) (a: Wild type (n=12 NMJs from 12 larvae per Ca²⁴ concentration) vs $Unc13A^{\text{null}}$ (n=10 NMJs from 10 larvae per Ca²⁺ concentration): 0.75 mM [Ca²⁺]_{ext}: p=0.0092 (U=20); 1.5 mM [Ca²⁺]_{ext}: p=0.0001 (U=0); 3 mM [Ca²⁺]_{ext}: p=0.0005 (U=7); 6 mM [Ca²⁺]_{ext}: p=0.0272 (U=26); 10 mM [Ca²⁺]_{ext}: p=0.0062 (U=18)); d: Ctrl (n=12 NMJs from 12 larvae per Ca²⁺ concentration) vs $Unc13B^{\text{null}}$ (n=12 NMJs from 12 larvae per Ca²⁺ concentration): 0.75 mM [Ca²⁺]_{ext}: p=0.1971 (t(22)=1.330); 1.5 mM [Ca²⁺]_{ext}: p=0.2652 (t(22)=1.143); 3 mM [Ca²⁺]_{ext}: p=0.9269 (t(22)=0.09278); 6 mM [Ca²⁺]_{ext}: p=0.5181 (t(22)=0.6569); 10 mM [Ca²⁺]_{ext}: p=0.6284 (t(22)=0.4908)). The values for U_{max} can be found in Supplementary Table 1. (b) Ca²⁺ (to calculate the substitute of the substit dependence of release analysis revealed an increased Ca^{2+} requirement (K_D , obtained from fitting with the Hill function) in $Unc13A^{null}$ mutant synapses (Wild type (n=12 NMJs from 12 larvae) vs $Unc13A^{null}$ (n=10 NMJs from 10 larvae), p=0.0004 (U=6)). (c) The apparent Ca²⁺ cooperativity of release (slope, obtained from fitting with the Hill function) is not different in *Unc13A*^{null} relative to Wild type (Wild type (n=12 NMJs from 12 larvae) vs Unc13A^{null} (n=10 NMJs from 10 larvae), p=0.6682 (U=53)). (e,f) The Ca²⁺-dependence and Ca²⁺type (n=12 NMJs from 12 larvae) vs *Unc13A*^{null} (n=10 NMJs from 10 larvae), p=0.6682 (U=53)). (**e,t**) The Ca⁻⁻-dependence and Ca⁻⁻-cooperativity of release are both unaltered upon loss of Unc13B (K_D: Ctrl (n=12 NMJs from 12 larvae) vs *Unc13B*^{null} (n=12 NMJs from 12 larvae), p=0.9566 (t(22)=0.05502); slope: Ctrl (n=12 NMJs from 12 larvae) vs *Unc13B*^{null} (n=12 NMJs from 12 larvae), p=0.1574 (t(22)=1.464)). (**g**) Sample traces of paired pulse stimulation for Ctrl (black) and *Unc13B*^{null} (blue) at 10 ms ISI show no differences between genotypes. (**h**) The paired pulse ratios were not significantly changed in *Unc13B*^{null} at 10 ms ISI, in all Ca²⁺ concentrations (Ctrl (n=12 NMJs from 12 larvae per Ca²⁺ concentration) vs *Unc13B*^{null} (n=12 NMJs from 12 larvae per Ca²⁺ concentration): 0.75 mM [Ca²⁺]_{ext}: p=0.1971 (t(22)=1.33); 1.5 mM [Ca²⁺]_{ext}: p=0.1678 (t(22)=1.426); 3 mM [Ca²⁺]_{ext}: p=0.474 (t(22)=0.7284); 6 mM [Ca²⁺]_{ext}: p=0.3726 (t(23)=0.4103); 1.0 mM [Ca²⁺]_{ext}: p=0.3603 (t(23)=1.156)). Values can be found in Supplementary Table 1. (i) Uno 134 [ca²⁺]_{ext}: p=0.3726 (t(23)=0.4103); 1.0 mM [Ca²⁺]_{ext}: p=0.3603 (t(23)=1.156)). Values can be found in Supplementary Table 1. (i) Uno 134 [ca²⁺]_{ext}: p=0.3603 (t(23)=1.156)). Values can be found in Supplementary Table 1. (ii) Uno 134 [ca²⁺]_{ext}: p=0.3603 (t(23)=1.156)). Values can be found in Supplementary Table 1. (ii) Uno 134 [ca²⁺]_{ext}: p=0.3603 (t(23)=1.156)). Values can be found in Supplementary Table 1. (ii) Uno 134 [ca²⁺]_{ext}: p=0.3603 (t(23)=1.156)). Values can be found in Supplementary Table 1. (ii) Uno 134 [ca²⁺]_{ext}: p=0.3603 (t(23)=1.156)). Values can be found in Supplementary Table 1. (ii) Uno 134 [ca²⁺]_{ext}: p=0.3603 (t(23)=1.156)). Values can be found in Supplementary Table 1. (ii) Uno 134 [ca²⁺]_{ext}: p=0.3603 (t(23)=1.156)). Values can be found in Supplementary Table 1. (iii) Uno 134 [ca²⁺]_{ext}: p=0.3603 (t(23)=1.156)). Values can be found in Supplementary Table 1. (iiii) Uno 134 [ca p=0.3726 (t(22)=0.9102); 10 mM [Ca²⁺]_{ext}: p=0.2602 (t(22)=1.156)). Values can be found in Supplementary Table 1. (i) *Unc13A*^{null} (gold: control with DMSO, red: with EGTA-AM/DMSO) shows faster and stronger inhibition of eEJC amplitudes after addition of 200 µM EGTA-AM to the extra-cellular solution compared to Wild type (black: control with DMSO, blue: with EGTA-AM/DMSO). Amplitudes are normalized to average eEJC amplitudes obtained during 1 min of baseline recording prior to the addition of EGTA-AM/DMSO or DMSO, each with Pluronic F-127. Synaptic transmission was stimulated by single action potentials every 10 s. Experiments were performed in the presence of 2.5 mM extracellular Ca2+. Values can be found in Supplementary Table 1. (j) The time constant of the inhibition caused by EGTA-AM application was determined by fitting a single exponential decay function to 100 peak amplitude values after addition of EGTA-AM in individual cells. This revealed a significantly faster inhibition in *Unc13A*^{null} compared to Wild type animals (Wild type + EGTA (n=10 NMJs from 10 larvae) vs Unc13A^{null} + EGTA (n=10 NMJs from 10 larvae), p=0.0012 (t(18)=3.835)). (k) The asymptotic inhibition is captured in the exponential fit as the plateau value which was significantly decreased in *Unc13A*^{null} in comparison to Wild type (Wild type + EGTA (n=10 NMJs from 10 larvae) vs *Unc13A*^{null} + EGTA (n=10 NMJs from 10 larvae), p=0.016 (t(18)=2.6508)). (I) 30 min incubation with the fast Ca²⁺-buffer Bapta-AM reduced eEJC amplitudes in both genotypes to a similar extent. Sample traces for Wild type (black with DMSO, blue with Bapta-AM/DMSO) and *Unc13A*^{null} (gold with DMSO, red with Bapta-AM/DMSO) exhibit similar Bapta-sensitivity for both genotypes. For clarity, the stimulation artefact was removed and replaced by a straight line. (m,n) The significant reduction of the eEJC amplitude after 30 min Bapta-AM incubation is similar in Wild type (m) and Unc13A^{null} (n) compared to DMSO incubated cells (m: Wild type + DMSO (n=15 NMJs from 9 larvae) vs Wild type + Bapta (n=14 NMJs from 9 larvae), p <0.0001 (t(27)=12.59); n: Unc13A^{null} + DMSO (n=14 NMJs from 10 larvae) vs Unc13A^{null} + Bapta (n=14 NMJs from 8 larvae), p=0.0004 (t(26)=4.095)). Values can be found in Supplementary Table 1. (o) The Bapta sensitivity is calculated as the ratio of eEJC amplitude size in the presence of Bapta-AM/DMSO to the eEJC amplitude size in the presence of DMSO. The Bapta-sensitivity does not differ between Wild type and Unc13Anull (Bapta sensitivity: Wild type (n=14 NMJs from 9 larvae) vs Unc13Anull (n=14 NMJs from 8 larvae), p=0.304 (t(26)=1.049)). Values can be found in Supplementary Table 1. Statistics: Student's t-test except for panels (ac) where a Mann-Whitney U-test was performed. All panels show mean ± SEM; *, p ≤0.05; **, p ≤0.01; ***, p ≤0.001; ns, not significant, p > 0.05.

Nature Neuroscience: doi:10.1038/nn.4364


Increased Ca²⁺ channel abundance at *Unc13A*^{null} mutant AZs

(a) Two-color STED images of multiple AZs from 3^{rd} instar larvae of the displayed genotypes labelled with the indicated ABs. BRP rings were larger in $Unc13A^{\text{null}}$ (b) BRP ring diameters were increased in $Unc13A^{\text{null}}$ in comparison to the Wild type (Wild type (n=9 NMJs from 3 larvae) vs $Unc13A^{\text{null}}$ (n=12 NMJs from 3 larvae), p=0.0001 (U=0)). (c) Two-color STED images of multiple AZs from 3^{rd} instar larvae of the displayed genotypes labelled with the indicated ABs. BRP ring structure appeared normal in $Unc13B^{\text{null}}$ (d) BRP ring diameters were unchanged in $Unc13B^{\text{null}}$ in comparison to Ctrl (Ctrl (n=8 NMJs from 3 larvae) vs $Unc13B^{\text{null}}$ (n=8 NMJs from 3 larvae), p=0.9591 (U=31)). (e) Muscle 4 NMJs of segments A2-A4 from 3^{rd} instar larvae of the displayed genotypes labelled with the ABs indicated. (f) Cac-GFP spot sizes were increased in $Unc13A^{\text{null}}$ but not $Unc13B^{\text{null}}$ in comparison to Ctrl (Ctrl (n=19 NMJs from 5 larvae) vs. $Unc13A^{\text{null}}$ (n=15 NMJs from 5 larvae) vs. $Unc13B^{\text{null}}$ (n=21 NMJs from 5 larvae): p >0.05 for Ctrl vs $Unc13B^{\text{null}}$; p <0.001 for $Unc13B^{\text{null}}$ and Ctrl (Ctrl (n=19 NMJs from 5 larvae) vs. $Unc13A^{\text{null}}$ (n=21 NMJs from 5 larvae) vs. $Unc13B^{\text{null}}$ (n=21 NMJs from 5 larvae): p >0.05 for Ctrl vs. $Unc13B^{\text{null}}$ (n=21 NMJs from 5 larvae): p >0.05 for Ctrl vs. $Unc13B^{\text{null}}$ (n=21 NMJs from 5 larvae): p >0.05 for Ctrl vs. $Unc13B^{\text{null}}$ (n=21 NMJs from 5 larvae): p >0.05 for Ctrl vs. $Unc13B^{\text{null}}$ (n=21 NMJs from 5 larvae): p >0.05 for Ctrl vs. $Unc13B^{\text{null}}$ (n=21 NMJs from 5 larvae): p >0.05 for Ctrl vs. $Unc13B^{\text{null}}$ (n=21 NMJs from 5 larvae): p >0.05 for Ctrl vs. $Unc13B^{\text{null}}$ (n=21 NMJs from 5 larvae): p >0.05 for Ctrl vs. $Unc13B^{\text{null}}$ (n=21 NMJs from 5 larvae): p >0.05 for Ctrl vs. $Unc13B^{\text{null}}$ (n=21 NMJs from 5 larvae): p >0.05 for Ctrl vs. $Unc13B^{\text{null}}$ (n=21 NMJs from 5 larvae): p >0.05 for Ctrl vs. $Unc13B^{\text{null}}$ (n=21 NMJs from 5 larvae):

Sketch of de novo synapse formation

During the process of AZ assembly, clusters of Syd-1 and Liprin-α undergo rounds of assembly and disassembly at the presynaptic membrane. Unc13B localizes to sites of *de novo* synapse formation via the Syd-1/Liprin-α scaffold. At nascent synapses, this induces a loose SV-Ca²⁺ channel coupling. Later during the AZ maturation process, Unc13A localizes to more mature synapses via a second, central RBP/BRP scaffold that concentrates Unc13A at the center of the AZ. Unc13A facilitates a close localization of SVs to the presynaptic Ca²⁺ channels and therefore maintains a tight stimulus/secretion coupling.

Allosteric five-site binding model of Ca²⁺-driven exocytosis

Reaction scheme (derived from the 'allosteric model'; Lou et al., 2005. Nature. 435:497-501) depicts the sequential binding of up to five Ca^{2+} ions to a single vesicle (RCa_{0-5}).

Supplementary Table 1

Summary of all obtained parameters in this study

<u>Light microscopy: CLSM</u> (Fig. 1, 3;	riy. 31, 32, 33)	mean ± SEM			
Parameter (Figure)	Description	control (n)	mutant (n)	Р	(test)
AZ density	BRP spots/µm	2			
(Fig. 1) <i>Unc13A</i> ^{null} (Fig.1o)		1.658 ± 0.079 (19)	1.207 ± 0.063 (23)	≤0.001***	(Mann-Whitney U-test)
<i>Unc13B</i> ^{null} (Fig.1p)		1.559 ± 0.070 (28)	1.354 ± 0.055 (35)	≤0.05*	(Mann-Whitney U-test)
mean BRP intensity (Fig. S1c; S3d)	measured ove	r the whole NMJ (% of Wi	ld type)		
in <i>Syd-1</i> ^{null} (Fig. S1c)		100.0 ± 9.269 (13)	80.62 ± 10.390 (11)	n.s.	(ANOVA test, followed by a
in <i>Liprin-a^{null}</i> (Fig. S1c)			82.13 ± 9.353 (12)	n.s.	Turkey's multiple comparison test)
in <i>Brp^{RNAi}</i> (Fig. S3d)		100.0 ± 15.41 (14)	$7.639 \pm 0.498 (15)$	≤0.001***	(ANOVA test, followed by a
in <i>Rbp</i> ^{null} (Fig. S3d)			40.29 ± 3.292 (15)	≤0.001***	Turkey's multiple comparison test)
in <i>Brp^{RNAi};Rbp</i> ^{null} (Fig. S3d)			4.135 ± 0.843 (13)	≤0.001***	
AZ density (Fig. S1d)	BRP spots/µm	2			
in <i>Syd-1</i> ^{null} (Fig. S1d)		1.352 ± 0.058 (13)	1.057 ± 0.124 (11)	n.s.	(ANOVA test, followed by a
in <i>Liprin-a</i> ^{null} (Fig. S1d)			0.878 ± 0.132 (12)	≤0.01**	Turkey's multiple comparison test)
mean Unc13A intensity (Fig. 3c, g; S1e; S3e)	measured ove	r the whole NMJ (% of Wi	ld type)		
in <i>Syd-1</i> ^{null} (Fig. S1e)		100.0 ± 8.084 (13)	99.04 ± 11.50 (11)	n.s.	(ANOVA test, followed by a
in <i>Liprin-α</i> ^{null} (Fig. 3c, S1e)			79.36 ± 7.923 (12)	n.s.	Turkey's multiple comparison test)
in <i>Brp^{RNAI}</i> (Fig. S3e)		100.0 ± 15.060 (14)	15.24 ± 1.916 (15)	≤0.001***	(ANOVA test, followed by a
in <i>Rbp</i> ^{null} (Fig. S3e)			23.88 ± 2.478 (15)	≤0.001***	Turkey's multiple comparison test)
in <i>Brp^{RNAi};Rbp</i> ^{null} (Fig. 3g, Fig. S3e)			10.88 ± 1.117 (13)	≤0.001***	
Unc13A density (Fig. S1f; S3f)	Unc13A spots	/µm²			
in Syd-1 ^{null} (Fig. S1f)		1.679 ± 0.088 (13)	$1.322 \pm 0.098 (11)$	≤0.05*	(ANOVA test, followed by a

1.361 ± 0.110 (12)

n.s.

(ANOVA test, followed by a Turkey's multiple comparison test)

in *Liprin-* α^{null} (Fig. S1f)

in <i>Brp^{RNAi}</i> (Fig. S3f) in <i>Rbp</i> ^{null} (Fig. S3f) in <i>Brp^{RNAi};Rbp</i> ^{null} (Fig. S3f)		1.781 ± 0.106 (14)	$0.442 \pm 0.065 (15)$ $0.851 \pm 0.094 (15)$ $0.271 \pm 0.052 (13)$	≤0.001*** ≤0.001*** ≤0.001***	(ANOVA test, followed by a Turkey's multiple comparison test)
mean Unc13B intensity (Fig. 3d, h; S1i; S3j)	measured over	the whole NMJ (% of Wild	type)		
in <i>Syd-1</i> ^{null} (Fig. S1i)		100.0 ± 14.770 (11)	75.58 ± 7.521 (13)	n.s.	(ANOVA test, followed by a
in <i>Liprin-α</i> ^{null} (Fig. 3d, Fig. S1i)			29.52 ± 5.936 (15)	≤0.001***	Turkey's multiple comparison test)
in <i>Brp^{RNAi}</i> (Fig. S3j)		100.0 ± 10.07 (12)	111.20 ± 11.60 (11)	n.s.	(ANOVA test, followed by a
in <i>Rbp</i> ^{null} (Fig. S3j)			109.20 ± 14.80 (13)	n.s.	Turkey's multiple comparison test)
in <i>Brp^{RNAi};Rbp</i> ^{null} (Fig. 3h, S3j)			140.7 ± 25.88 (10)	n.s.	
Unc13B density (Fig. S1j; S3k)	Unc13B spots/µ	m²			
in <i>Syd-1</i> ^{ñull} (Fig. S1j)		1.592 ± 0.072 (11)	1.145 ± 0.069 (13)	≤0.01**	(ANOVA test, followed by a
in <i>Liprin-α</i> ^{null} (Fig. S1j)			0.382 ± 0.115 (15)	≤0.001***	Turkey's multiple comparison test)
in <i>Brp^{RNAI}</i> (Fig. S3k)		0.910 ± 0.102 (12)	1.053 ± 0.119 (11)	n.s.	(ANOVA test, followed by a
in <i>Rbp^{null}</i> (Fig. S3k)			0.886 ± 0.112 (13)	n.s.	Turkey's multiple comparison test)
in <i>Brp^{RNAi};Rbp</i> ^{null} (Fig. S3k)			1.060 ± 0.168 (10)	n.s.	
BRP ring diameter (Fig. S6b,d)	measured with S	STED microscopy (nm)			
in <i>Unc13A</i> ^{null} (Fig. S6b)		191.0 ± 3.721 (9)	244.9 ± 3.045 (12)	≤0.001***	(Mann-Whitney U-test)
in <i>Unc13B</i> ^{null} (Fig. S6d)		183.4.0 ± 1.421 (8)	182.3 ± 4.262 (8)	n.s.	(Mann-Whitney U-test)
mean Cac spot size (Fig. S6f)	% of control				
in <i>Unc13A</i> ^{null}		100.0 ± 4.70 (19)	159.5 ± 6.65 (15)	≤0.001***	(Mann-Whitney U-test)
in <i>Unc13B^{Null}</i>			88.84 ± 3.819 (21)	n.s.	(Mann-Whitney U-test)
mean Cac intensity (Fig. S6g)	% of control	100 0 0 5 10 (10)	440.4 0.000.(45)		44 14 14 15 16 17 18 18 18 18 18 18 18 18
in <i>Unc13A</i> ^{null}		100.0 ± 8.543 (19)	113.1 ± 9.082 (15)	n.s.	(Mann-Whitney U-test)
in <i>Unc13B</i> ^{null}			89.17 ± 8.146 (21)	n.s.	(Mann-Whitney U-test)

TEVC recordings (Fig. 4, 7; Fig. S4, S5)

mean ± SEM

TEVO recordings (rig. 4, 7, rig. 54, c	<u> </u>	illean ± c							
Parameter (Figure)	Description	control ((n)		mutant ((n)		Р	(test)
eEJC amplitude [nA] in <i>Unc13A</i> ^{null}	measured (n)								
(Fig. 4j; 7a, b)	(simulated with		itical r	• • • • • • • • • • • • • • • • • • • •					
$[Ca^{2+}]_{ex} = 0.75 \text{ mM}$		-26.10	±	4.89 (12)	-1.82	±	0.17 (12)	≤0.001***	(t- test)
[Co ²⁺] 4.5 mM		(-18.34)		C OF (40)	(-1.589)	_	0.77 (40)	<0.001***	(t toot)
$[Ca^{2+}]_{ex} = 1.5 \text{ mM}$		-77.46 (-63.58)	±	6.95 (12)	-4.88 (-6.471)	±	0.77 (12)	≤0.001***	(t- test)
$[Ca^{2+}]_{ex} = 3 \text{ mM}$		-143.90	±	8.07 (12)	-13.07	±	1.13 (12)	≤0.001***	(t- test)
		(-130.8)		,	(-17.35)				,
$[Ca^{2+}]_{ex} = 6 \text{ mM}$		-193.96	±	10.04 (12)	-30.86	±	2.12 (12)	≤0.001***	(t- test)
70 ² †1 40 M		(-187.6)		10.01.415	(-30.20)		0.00 (15)	10.001	// / · · · · · · · ·
[Ca ²⁺] _{ex} =10 mM		-220.72	±	13.94 (12)	-41.78	±	3.09 (12)	≤0.001***	(t- test)
eEJC amplitude [nA] in <i>Unc13B</i> ^{null}		(-215.3)			(-37.99)				
(Fig. 4c)									
$[Ca^{2+}]_{ex} = 0.75 \text{ mM}$		-30.64 ±	3.643	3 (12)	-20.17 ±	3.176	(12)	≤0.05*	(t- test)
[Ca ²⁺] _{ex} =1.5 mM		-77.33 ±	6.383	3 (12)	-57.93 ±	5.026	(12)	≤0.05*	(t- test)
[Ca ²⁺] _{ex} =3 mM		-138.3 ±	8.208	3 (12)	-117.3 ±	7.375	(12)	n.s.	(t- test)
[Ca ²⁺] _{ex} =6 mM		-189.4 ±	11.54	l (12)	-164.8 ±	8.270	(12)	n.s.	(t- test)
[Ca ²⁺] _{ex} =10 mM		-224.1 ±	13.14	1 (12)	-190.9 ±	8.751	(12)	≤0.05*	(t- test)
time to peak [ms] in <i>Unc13A</i> ^{null}									
(Fig. S4c)									
$[Ca^{2+}]_{ex} = 0.75 \text{ mM}$		3.892 ± 0	0.309	(12)	4.900 ± 0	0.760 ((12)	n.s.	(t- test)
$[Ca^{2+}]_{ex} = 1.5 \text{ mM}$		3.117 ± 0).142	(12)	4.208 ± 0	0.394 ((12)	≤0.05*	(t- test)
[Ca ²⁺] _{ex} =3 mM		2.350 ± 0	0.120	(12)	3.017 ± 0	0.263 ((12)	≤0.05*	(t- test)
$[Ca^{2+}]_{ex} = 6 \text{ mM}$		1.925 ± 0	0.091	3 (12)	2.600 ± 0	0.140 ((12)	≤0.001***	(t- test)
$[Ca^{2+}]_{ex} = 10 \text{ mM}$		1.883 ± 0	0.0694	4 (12)	2.275 ± 0	0.143 ((12)	≤0.05*	(t- test)
time to peak [ms] in <i>Unc13B</i> ^{null} (Fig. S4a)									
$[Ca^{2+}]_{ex} = 0.75 \text{ mM}$		4.225 ± 0	0.240	(12)	4.275 ± 0).332 ((12)	n.s.	(t- test)
$[Ca^{2+}]_{ex} = 1.5 \text{ mM}$		3.425 ± 0	0.0888	8 (12)	3.908 ± 0).297 ((12)	n.s.	(t- test)
$[Ca^{2+}]_{ex} = 3 \text{ mM}$		2.542 ± 0	0.0528	8 (12)	2.592 ± 0	0.119 ((12)	n.s.	(t- test)

$[Ca^{2+}]_{ex} = 6 \text{ mM}$		2.175 ± 0.0664 (12)	2.108 ± 0.114 (12)	n.s.	(t- test)
$[Ca^{2+}]_{ex} = 10 \text{ mM}$		2.042 ± 0.106 (12)	1.950 ± 0.116 (12)	n.s.	(t- test)
mEJC analysis in <i>Unc13A</i> ^{null}					
(Fig. 4m, n; S4g,h) Amplitude (nA)		-0.614 ± 0.02 (12)	-0.751 ± 0.02 (11)	≤0.001***	(t- test)
, , ,		, ,	` '		
Frequency (Hz)		1.06 ± 0.12 (12)	1.41 ± 0.11 (11)	≤0.05*	(t- test)
Rise time (ms)		1.690 ± 0.129 (12)	1.451 ± 0.119 (11)	n.s.	(t- test)
Decay (ms)		6.299 ± 0.228 (12)	6.805 ± 0.376 (11)	n.s.	(t- test)
mEJC analysis [nA] in <i>Unc13B</i> ^{null} (Fig. 4f, g; S4e,f)					
Amplitude (nA)		-0.859 ± 0.03 (14)	-0.837 ± 0.03 (7)	n.s.	(t- test)
Frequency (Hz)		2.08 ± 0.15 (14)	1.70 ± 0.23 (7)	n.s.	(t- test)
Rise time (ms)		1.127 ± 0.034 (14)	1.174 ± 0.078 (7)	n.s.	(Mann-Whitney U-test)
Decay (ms)		7.075 ± 0.398 (14)	8.931 ± 0.683 (7)	≤0.05*	(Mann-Whitney U-test)
eEJC analysis in <i>Unc13A</i> ^{null} (Fig. 4k; S4d)					
Rise time (ms)		0.966 ± 0.052 (12)	2.0 ± 0.383 (9)	≤0.01**	(Mann-Whitney U-test)
Decay (ms)		5.627 ± 0.196 (12)	6.058 ± 0.425 (9)	n.s.	(Mann-Whitney U-test)
eEJC analysis [nA] in <i>Unc13B</i> ^{null}					
(Fig. 4d; S4b) Rise time (ms)		1.125 ± 0.044 (12)	1.158 ± 0.101 (11)	n.s.	(t- test)
Decay (ms)		6.074 ± 0.181 (12)	6.706 ± 0.511 (11)	n.s.	(t- test)
paired pulse ratio in <i>Unc13A</i> ^{null}	measured (n)				<u> </u>
(Fig. 7e)		n mathematical modeling)			
$[Ca^{2+}]_{ex} = 0.75 \text{ mM}$	•	1.683 ± 0.308 (12) (1.273)			
$[Ca^{2+}]_{ex} = 1.5 \text{ mM}$		0.904 ± 0.065 (12) (0.973)	3.796 ± 0.748 (10) (3.297)	≤0.001***	(t- test)
$[Ca^{2+}]_{ex} = 3 \text{ mM}$		$0.633 \pm 0.021 (12) (0.635)$	1.846 ± 0.264 (10) (2.128)	≤0.001***	(t- test)
$[Ca^{2+}]_{ex} = 6 \text{ mM}$		0.631 ± 0.023 (12) (0.402)	1.309 ± 0.116 (10) (1.324)	≤0.001***	(t- test)
$[Ca^{2+}]_{ex} = 10 \text{ mM}$		0.674 ± 0.035 (12) (0.304)	1.192 ± 0.111 (10) (0.986)	≤0.001***	(t- test)
paired pulse ratio in <i>Unc13B</i> ^{null}					
(Fig. S5h)		4.055 - 0.004 (40)	4 707 - 0 045 (40)		(t toot)
$[Ca^{2+}]_{ex} = 0.75 \text{ mM}$		1.255 ± 0.201 (12)	1.787 ± 0.245 (12)	n.s.	(t- test)

$[Ca^{2+}]_{ex} = 1.5 \text{ mM}$		0.741 ± 0.079 (12)	0.974 ± 0.143 (12)	n.s.	(t- test)
$[Ca^{2+}]_{ex} = 3 \text{ mM}$		0.637 ± 0.034 (12)	0.596 ± 0.044 (12)	n.s.	(t- test)
$[Ca^{2+}]_{ex} = 6 \text{ mM}$		0.503 ± 0.117 (12)	0.614 ± 0.0316 (12)	n.s.	(t- test)
$[Ca^{2+}]_{ex} = 10 \text{ mM}$		0.680 ± 0.043 (12)	0.619 ± 0.029 (12)	n.s.	(t- test)
I/I _{Max} in <i>Unc13A</i> ^{null}	measured (n)				
(Fig. 7c; S5a)	(simulated wit	n mathematical modeling)			
$[Ca^{2+}]_{ex} = 0.75 \text{ mM}$		$0.110 \pm 0.020 (12) (0.079)$	$0.033 \pm 0.003 (10) (0.036)$	≤0.01**	(t- test)
$[Ca^{2+}]_{ex} = 1.5 \text{ mM}$		0.327 ± 0.029 (12) (0.274)	$0.089 \pm 0.014 (10) (0.146)$	≤0.001***	(t- test)
$[Ca^{2+}]_{ex} = 3 \text{ mM}$		0.608 ± 0.034 (12) (0.563)	$0.240 \pm 0.020 (10) (0.390)$	≤0.001***	(t- test)
$[Ca^{2+}]_{ex} = 6 \text{ mM}$		0.820 ± 0.042 (12) (0.808)	$0.560 \pm 0.039 (10) (0.679)$	≤0.05*	(t- test)
$[Ca^{2+}]_{ex} = 10 \text{ mM}$		0.934 ± 0.058 (12) (0.927)	0.768 ± 0.056 (10) (0.854)	≤0.01**	(t- test)
I/I _{Max} in <i>Unc13B</i> ^{null}					
(Fig. S5d) $[Ca^{2+}]_{ex} = 0.75 \text{ mM}$					(r
		0.096 ± 0.015 (12)	0.120 ± 0.014 (12)	n.s.	(t- test)
[Ca ²⁺] _{ex} =1.5 mM		0.277 ± 0.024 (12)	0.303 ± 0.025 (12)	n.s.	(t- test)
$[Ca^{2+}]_{ex} = 3 \text{ mM}$		0.562 ± 0 035 (12)	0.542 ± 0.032 (12)	n.s.	(t- test)
$[Ca^{2+}]_{ex} = 6 \text{ mM}$		0.790 ± 0.039 (12)	0.743 ± 0.045 (12)	n.s.	(t- test)
$[Ca^{2+}]_{ex} = 10 \text{ mM}$		0.915 ± 0.041 (12)	0.879 ± 0.053 (12)	n.s.	(t- test)
K _D and slope in <i>Unc13A</i> ^{null} (Fig. S5b,c)	values of fitted	I Hill coefficients			
K_D (mM)		2.048 ± 0.160 (12)	8.063 ± 1.537 (10)	≤0.001***	(Mann-Whitney U-test)
slope		1.922 ± 0.2003 (12)	2.079 ± 0.232 (10)	n.s.	(Mann-Whitney U-test)
K _D and slope in <i>Unc13B</i> ^{null}	values of fittee	I Hill coefficients			
(Fig. S5e, f)	values of filled				
K_D (mM)		2.966 ± 0.273 (12)	2.987 ± 0.265 (12)	n.s.	(Mann-Whitney U-test)
slope		1.501 ± 0.096 (12)	1.751 ± 0.140 (12)	n.s.	(Mann-Whitney U-test)
normalized residual amplitude		GTA-AM/DMSO in the extra	cellular solution; measured		
in <i>Unc13A</i> ^{null} (Fig. 7g; S5i)	(n) (simulated	with mathematical modeling)	0.500 - 0.040 (40)	<0.004***	(4 4aa4)
after 3 min		0.784 ± 0.031 (10) (0.821)	0.530 ± 0.048 (10) (0.512)	≤0.001***	(t- test)
after 6 min		$0.671 \pm 0.040 (10)$	$0.434 \pm 0.073 (10)$	≤0.05*	(t- test)
		(0.741)	(0.382)	3.00	,
			•		

after 9 min		0.592 ± 0.055 (10) (0.699)	0.379 ± 0.066 (10) (0.303)	≤0.05*	(t- test)
after 12 min		0.569 ± 0.058 (10) (0.677)	0.354 ± 0.038 (10) (0.300)	≤0.01**	(t- test)
normalized residual eEJC amplitude in <i>Unc13A</i> ^{null} (Fig. S5i)	with DMSO in	the extracellular solution (co	ontrol)		
after 3 min		0.960 ± 0.029 (10)	$0.8660 \pm 0.077 (10)$	n.s.	(t- test)
after 6 min		0.949 ± 0.015 (10)	0.8216 ± 0.081 (10)	n.s.	(t- test)
after 9 min		0.934 ± 0.012 (10)	0.8145 ± 0.085 (10)	n.s.	(t- test)
after 12 min		0.921 ± 0.014 (10)	0.8554 ± 0.111 (10)	n.s.	(t- test)
Decay and plateau in <i>Unc13A</i> ^{null} (Fig. S5j, k)		e exponential fit to amplitude EGTA-AM/DMSO applicati	` , ,		
tau (s)		264.5 ± 32.94 (10)	122.8 ± 16.73 (10)	≤0.01**	(t- test)
plateau		0.530 ± 0.057 (10)	0.354 ± 0.033 (10)	≤0.05*	(t- test)
total residual eEJC amplitude in <i>Unc13A</i> ^{null} (Fig. S5m, n, o)	upon incubation	on with 100µM Bapta-AM/D \$	SMO		
DMSO (Ctrl): amplitude (nA)	after 30 min	-116.9 ± 8.033 (15)	9.707 ± 2.224 (14)	≤0.001***	(t- test)
Bapta-AM: amplitude (nA)	after 30 min	-9.481 ± 1.921 (14)	-0.591±0.096 (14)	≤0.001***	(t- test)
Bapta sensitivity		0.081 ± 0.016 (14)	$0.060 \pm 0.009 (14)$	n.s.	(t- test)

	Supplementary Table 2: Model values (dual pathway model)						
Parameter name	Value	Unit	Description	Source			
dist_1	76.8	nm	Pathway 1: Distance from				
R0A	670	vesicles	Ca ²⁺ source and RRP size				
dist ₂	145	nm	Pathway 2: Distance from				
R0B	196	vesicles	Ca ²⁺ source and RRP size				
Q _{max} (Wild type)	2.57	fC	max Ca ²⁺ channel charge in Wild type AZs (see equation (2))				
Q _{max} (<i>Unc13A</i> ^{null})	4.41	fC	max Ca ²⁺ channel charge in <i>Unc13A</i> ^{null} AZs (see equation (2))	best fit			
K_{M}	1.74	mM	Michaelis-Menten constant to calculate dependence of synaptic Ca ²⁺ current on extracellular [Ca ²⁺] (see equation (2))				
[EGTA] _{max}	3925	μΜ	asymptotic value and time constant of exponential				
$ au_{ ext{EGTA}}$	5.12	min	[EGTA] _{int} increase (see equation (1))				
			Further Parameters				
Parameter name	Value	Unit	Description	Source			
L ⁺	3.5·10 ⁻⁴	s ⁻¹	basal fusion rate constant of [R]	Kochubey&Schneggenburger,			
\mathbf{k}_3	1.4·10 ⁸	$M^{-1} \cdot s^{-1}$	_	2011. Neuron. 69:736-748.			
k ₋₃	4000	s ⁻¹	rate constants of Ca ²⁺ binding/release	Wolfel et al., 2007. J. Neurosci. 27:3198-3210.			
k ₄	6000	s ⁻¹	fusion rate constant of [RCa ₅]	Lou et al., 2005. Nature. 435:497-501.			
b	0.5	-	cooperativity factor	Wolfel et al., 2007. J. Neurosci. 27:3198-3210.			