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Abstract The solution of linear systems of equations with
many right hand sides is mostly seen as a trivial extension
of solving a linear system and the algorithmic developments
mostly focus on the efficient computation of the LU decom-
position. This is, however, not regarding the case where
many right hand sides increase the runtime influence of
the forward/backward substitution. In this contribution we
present a GPU accelerated Gauss–Jordan-elimination based
all-at-once solution scheme which focuses on minimizing
the runtime and the energy consumption by switching the
forward/backward substitution in favor of a more suitable
operation. We obtain a multi-GPU aware algorithm which
is up to 2.5 times faster than the current state-of-the-art LU
decomposition based solution process ofMAGMAand saves
48 % required energy.
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1 Introduction

The solution of linear systems is still one of themost common
operations in scientific computing. The efficient solution of
these systems is a key ingredient for many higher level algo-
rithms. In our contribution we focus on the solution of

AX = B, (1)

where A ∈ R
m×m is a non-symmetric matrix, B ∈ R

m×n ,
and X ∈ R

m×n with n � 1 without any special structure.
Especially, the casem = n, which appears in the computation
of the generalized matrix sign function [5], is of higher inter-
est. The standard implementation for this problem is using
the LU decomposition with an additional forward/backward
substitution. Regarding current GPU accelerated implemen-
tations, where we consider theMAGMA [2,9,10] version the
state-of-the-art, only the LU decomposition works on more
than one accelerator device. This is a crucial point to reduce
the runtime and as a consequence also the energy consump-
tion.

A closer look to the LU decomposition based solution
process shows an additional problem: The three step scheme
factorizing the matrix PA = LU , followed by the forward
solve LY = PB, and the backward solve UX = Y , leads
to the matrix being transferred between the main memory
and the computational unit for three times. Since memory
accesses are a key player in the energy balance, this also
results in a notable additional power consumption.

In order to be able to not only factorize the matrix on mul-
tiple accelerators but also solve the linear system without the
communication intensive distributed forward–backward sub-
stitution we recall the Gauss–Jordan-elimination algorithm.
In contrast to the LU decomposition, the integration of the
right hand side in the computation scheme removes the data
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dependencies which appear in the forward/backward substi-
tution scheme. This enables us to derive an easy and efficient
multi-GPU implementation of the solution process.

Beside focusing on the classical objective of minimizing
the time-to-solution, we also take the energy-to-solution into
account. Regarding the hardware developments during the
recent years, an increasing number of the scientific comput-
ing hardware has been set up as heterogeneous architectures.
Most commonly the combination of general purpose CPUs
together with GPU-based accelerator devices is used. These
architectures allow to choose the computation device that is
best suited for a given task with respect to either the time-to-
solution, or in the green HPC context, combinations with the
energy-to-solution. The aforementioned differing properties
of the LU decomposition and theGauss–Jordan-elimination,
with respect to savingmemory transfers and the usage ofmul-
tiple accelerators for the overall process, define the objective
to look for obtaining the method that performs best with
respect to both the time and the energy metric when we want
to solve linear systems with many right hand sides.

In the following sections we recall the Gauss–Jordan-
elimination and reformulate it to work on heterogeneous
system with multiple accelerator devices. Furthermore, we
identify and avoid bottlenecks of the GPU based implemen-
tation, which slow down the computation on the one hand,
but are keeping the accelerator devices busy and consuming
energy on the other hand. Finally, the numerical experiments
compare ourGauss–Jordan based solverwith the LU decom-
position from MAGMA library [2,9,10], which can be seen
as the GPU accelerated implementation of LAPACK. These
experiments focus on the runtime as well as on the energy
consumption of both algorithms and the multi-accelerator
scalability of theGauss–Jordan approach and the LU decom-
position based solution process.

2 Gauss–Jordan-elimination

The Gauss–Jordan-elimination (GJE) process is mostly
known as an algorithm to invert matrices [1,7]. Obviously,
inverting the system matrix A first and multiplying the
right hand side B by A−1 afterwards is a quite expen-
sive way to solve a linear system. It requires more than
2m3 + 2m2n flops. However, the involved matrix-matrix
products can be easily performed in parallel on multiple
accelerator devices. On the other hand, the typical way of
calculation using the LU decomposition followed by a for-
ward/backward substitution only costs 2

3m
3 + 2m2n flops.

The data dependency caused by the L and the U factors
increase the communication necessary during the solution
phase. The Gauss–Jordan-elimination scheme derived in the
next paragraphs will reduce (when comparing the inversion
and the matrix multiplication) the number of flops to only

m3 + 2m2n, for the solution of one linear system, without
introducing data dependencies that break the easy use ofmul-
tiple accelerator devices.

2.1 Basic scheme

We consider the augmented matrix

D := [ A | B ] =
⎡
⎢⎣
a11 · · · a1m b11 · · · b1n
...

...
...

...
...

...

am1 · · · amm bm1 · · · bmn

⎤
⎥⎦ (2)

of sizem×(m+n), which concatenates the systemmatrix A
and the right hand side B. Now, the goal of the classic Gauss–
Jordan-elimination is to transform the first m columns of the
matrix D to the identity using elementary operations from the
left, while the last n columns, initially containing the right
hand side, are overwritten by the solution X , simultaneously.
We use the formulation with column pivoting. Therefore, for
column i ∈ {1, . . . ,m} of A, every elementary operation
consists of a row permutation Pi which exchanges the i-th
and the k-th row (k ≥ i such that aki has the largest absolute
value) and a Gauss transformation

Gi =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 − a1i
aii

. . .
...

1 − a(i−1)i
aii
1
aii

− a(i+1)i
aii

1
...

. . .

− ami
aii

1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (3)

creating a one at the new (i, i) position in A, or D. Thus, we
end up with

GnPn · · ·G2P2G1P1︸ ︷︷ ︸
A−1

D =
⎡
⎢⎣
1 x11 · · · x1n

. . .
...

...
...

1 xm1 · · · xmn

⎤
⎥⎦ , (4)

which gives us A−1 and X with a cost of 2m3 + 2m2n flops.

2.2 Block reformulation

Since it is well known that only BLAS level-3 enabled
algorithms are able to get near themaximum theoretic perfor-
mance of the computation device we reformulate the above
idea into a blocked algorithm. To this end, we first rewrite
the update (3) into a rank-1 update [7]:
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D := D − 1

aii

(
a1i , . . . , a(i−1)i , 0, a(i+1)i , . . . , ami

)T
Di,·

Di,· := 1

aii
Di,·.

Afterwards, we repartition the augmented matrix D into

D :=
⎡
⎣
A11 A12 A13 b1
A21 A22 A23 b2
A31 A32 A33 b3

⎤
⎦ , (5)

where A22 is of dimension NB × NB . In this way the rank-1
update is transformed into a rank-NB update by replacing
the scalar operations by their corresponding matrix valued
counterparts:

D :=

⎡
⎢⎢⎣
A11 0 A13 b1

0 0 0 0

A31 0 A33 b3

⎤
⎥⎥⎦ +

⎡
⎢⎢⎣

−A12A
−1
22

A−1
22

−A32A
−1
22

⎤
⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

AT
21

INB

AT
23

bT2

⎤
⎥⎥⎥⎥⎦

T

, (6)

In order to preserve numerical stability, we have to lift
the pivoting strategy to the block reformulation, as well [7].
This can be done either by implementing an unblocked
Gauss–Jordan-elimination as shown in (4) for the panel[
AT
12 AT

22 AT
32

]T
, or by computing the pivoted LU decom-

position of
[
AT
22 AT

32

]T
. The later leads to

P

[
A22

A32

]
=

[
L1

L2

]
U1. (7)

The obtained permutation is applied to the augmentedmatrix
D by

D :=
[
I11

P

]
D,

where I11 is the identity matrix of the same size as A11 in the
partitioning (5). By introduction of the panel matrix H

H =
⎡
⎣

−A12U
−1
1 L−1

1
U−1
1 L−1

1
−L2L

−1
1

⎤
⎦

the Update (6) transforms into

D :=
⎡
⎣
A11 0 A13 b1
0 0 0 0
A31 0 A33 b3

⎤
⎦ + H

[
A21 INB A23 b2

]
. (8)

This procedure will compute the solution of the Linear
System (1) as well as the inverse of A. Avoiding the left side
of the update corresponding to the block A21, we only com-

Algorithm 1 Solution of linear systems usingGauss–Jordan-
elimination
Input: A ∈ R

m×m nonsingular, B ∈ R
m×n

Output: X ∈ R
m×n solving AX = B overwriting B

1: Set D := [
A B

] ∈ R
m×m+n .

2: for J := 1, 1 + NB , 1 + 2NB , . . . , n do
3: JB := min (NB , n − J + 1)

4: Partition D :=
⎡
⎣

A11 A12 A13 B1

A21 A22 A23 B2

A31 A32 A33 B3

⎤
⎦ ,

where A11 ∈ R
J−1×J−1 and A22 ∈ R

JB×JB .

5: PT
i

[
L1

L2

]
U1 :=

[
A22

A32

]
, update P := Pi P . {GETRF}

6: Permute

[
A23 B2

A33 B3

]
:= Pi

[
A23 B2

A33 B3

]
. {LASWP}

7: Set H :=
⎡
⎣

−A12U
−1
1 L−1

1
U−1
1 L−1

1
−L2L

−1
1

⎤
⎦ . {TRSM}

8: and

⎡
⎣

A13 B1

A23 B2

A33 B3

⎤
⎦ :=

⎡
⎣

A13 B1

0 0
A33 B3

⎤
⎦ + H

[
A23 B2

]
. {GEMM}

9: end for

pute the solution of the linear system. The resulting overall
procedure using this second alternative, is shown in Algo-
rithm 1. By only computing the solution of the linear system,
we need m3 + 2m2n flops to solve a linear system. The neg-
ligible influence of the block size NB and its determination
is shown in [3]. As already pointed out in the introduction,
we observe that the Gauss–Jordan-elimination scheme only
needs to sweep over the matrix A once instead of three times
of the LU decomposition based solution.

2.3 Distributed algorithm

The previous section showed that beside calculating the cur-
rent panel matrix H , we only need the GEMM operation to
solve the linear system. This induces that inside a column
or a block column the only data dependency is the knowl-
edge of the current panel H . Once this is known all columns
can be updated independent from each other. This motivates
to distribute in a cyclic block-column way across all partic-
ipating computational devices. Algorithm 1 only needs to
distribute the augmented matrix D over all computational
devices and to broadcast the current panel matrix H in every
iteration. The GEMM calls for the permutation updating the
remaining part of the matrix and the right hand side can be
performed in parallel on all computational devices. At this
point we have to remark that the cyclic block-column distrib-
ution is only efficient if the number of computational device
is relatively small. Normally this should not affect our idea
because the maximum number of accelerator devices inside
one compute server is relatively small (≤8) by nature.
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2.4 Memory access analysis

In this subsection we count the number of memory accesses
required by the LU decomposition and the GJE under some
simplifications due to the complexity of modern hardware.
We assume that only scalar values stay inside the cache of
the CPU or GPU. By increasing the dimension of the prob-
lems matrices and vectors one can make them large enough
to no longer fit into caches. Finally, we assume both algo-
rithms, the LU decomposition and the GJE, use only rank-1
updates without pivoting, i.e., we regard their BLAS level-2
formulation.

Each step k in the LU decomposition consists of a vector
scaling and a rank-1 update. The vector scaling needs 1 + k
memory reads and k writes. Processing the rank-1 update
row-by-row, each row needs 2k + 1 reads and k writes. For
k = m − 1, . . . , 1 the overall LU decomposition needs

m∑
k=1

3k2 + 2k + 1 = m3 − 1

2
m2 + 1

2
m − 1

memory accesses. A forward (or backward) substitution for
one column of the right hand side needs

m∑
i=1

⎡
⎣3 +

i−1∑
j=1

4

⎤
⎦ = 2m2 + m

memory accesses. Together with the assumption from the
introduction (n = m) this yields

5m3 + 3

2
m2 + 1

2
m − 1 (9)

memory accesses to solve a linear system with m right hand
sides.

The whole Gauss–Jordan-elimination scheme consists
only of m − 1 vector scales of length m and m − 1 rank-
1 updates of size m × (k + n) where k = m − 1, . . . , 1.
Each update costs (3(k+n)+1)m memory accesses. Again,
together with the assumption n = m, this gives

m−1∑
k=1

m + (3(k + m) + 1)m = 9

2
m3 − 5

2
m2 − 2m (10)

memory accesses. Compared to the LU decomposition this
saves the transfer of 1

2m
3 elements.

3 GPU implementation

The GPU implementation splits into two parts. First, we
introduce a look-ahead scheme in order to introduce paral-

lelism between host CPU and the accelerator device. Second,
we discuss reasons for changing from the classical Fortran
columnmajor matrix storage to the rowmajor storage known
from C.

Beside the high computational power of the accelerator
devices, a work sharing between CPU and GPU is a key
ingredient for reducing the runtime. Therefore, we divide
the operation performed by Algorithm 1 into two classes,
those well suited for the GPU and those to be run on the
host CPU(s). The operations well suited for the GPU are the
GEMM operations, benefiting from the high computational
power of the GPU, and the row swap of the pivoting, because
of the high memory throughput of the GPU. The preparation
of the panel matrix H is better suited for the CPU, due to
the lower number of required operations in general and large

sequential parts. Copying the current panel
[
AT
12 AT

22 AT
23

]T
to the CPU, computing H moving it back to the GPU, results
in a simple GPU accelerated implementation of Algortihm 1.

3.1 Look-ahead and asynchronous operation

In the basic GPU accelerated algorithm only the CPU or the
GPU will work at a time. Since the GPUs are able to trans-
fer data between the host and their memorywhile performing
computation, we introduce a classic look-ahead strategywith
the aim to prepare the next panel H̃ on the CPU, while
the GPU still updates the remaining parts of the augmented
matrix D. Therefore, we split the third column of the block
partitioning (5) into

⎡
⎣
A13

A23

A33

⎤
⎦ :=

⎡
⎢⎣
Â13 Ā13

Â23 Ā23

Â33 Ā33

⎤
⎥⎦ ,

where Â13, Â23, and Â33 have NB columns. This small addi-
tional repartitioning allows us to update Â13, Â23, and Â33

first and copy them back to the host while the GPU performs
the remaining updates on Ā13, Ā23, and Ā33. This way, the
host prepares the next panel matrix H̃ , while the GPU still
works on the previous update. The new panel matrix H̃ is
potentially copied back to the device in the same asynchro-
nous while the updates are still ongoing. After the updates on
Ā13, Ā23, and Ā33 we synchronize the computations done on
the device to ensure that the updated H̃ has been tranferred
completely before it is used.

3.2 Data layout

Due to the fact that the BLAS libraries available for GPUs,
namely Nvidia® cuBLAS for CUDA enabled devices and
clBLAS forOpenCLbased devices, use the samematrix stor-
age scheme as the CPU based libraries BLAS and LAPACK

123



Energy-aware solution of linear systems. . . 219

Table 1 Portion of the row-swap operations at the solution time on a
single Nvidia® Tesla K20 and with a block size of NB = 1024 (double
precision)

Dimension Swap Swap + transpose

m n Column major (%) Row major (%)

5120 1 32.5 14.9

5120 37.5 8.6

10,240 1 24.8 7.2

10,240 24.4 5.0

15,360 1 21.7 4.6

15,360 20.0 3.7

we implement Algorithm 1 using column major storage.
Thereby, preliminary experiments showed that 20–37.5 %
of the computation time on the GPU (Nvidia® Tesla K20) is
spent in applying the permutation P to the remaining parts
of the matrix (Step 2.2 of Algorithm 1). Previous work on
the Gauss–Jordan-elimination based solvers [3] is affected
by this issue. From this implementation we obtained Table 1
showing the percentage of time used for applying the permu-
tation P .

A thorough analysis of the operation shows that permuting
rows, despite being an easy operation in terms of the column
major storage scheme, disturbs the coalescedmemory access
scheme of accelerator device. The reason is that for each row
swap at most two elements are used out of each cache line.
Assuming a cache line length of 128 bytes, which is typically
used on aNvidia® CUDAdevice, and double precision arith-
metic, we only use 8 or 16 bytes out of a cache line, which
means that 93.5 or 87.5 % of the data transferred from the
memory is not used, while its transfer is wasting time and
energy, and slows down the overall process. Regarding the
length of a cache line, it would be better if we could store
16 elements of a row in one cache line such that exchang-
ing 16 elements of two rows only requires a transfer of 256
bytes from the memory, instead of 4kB. The direct conse-
quence of this fact is that on the accelerator device the row
major storage scheme is better suited for row swaps. This
requires that at least the part of the algorithm working on
the device needs to be adjusted to row major storage. Beside
some copy operations this only affects the GEMM opera-
tion.

We assume that a call to GEMM(α, A, B, β, C) computes
C := αAB + βC , where A ∈ R

m×k , B ∈ R
k×n , and C ∈

R
m×n stored in (Fortran) column major order. Furthermore,

it is obvious that AT in column major storage is the same
as A in row major storage. It follows that the column major
oriented routine GEMM(α, B, A, β, C) then computes

CT := αBT AT + βCT ,

if the matrices are stored in row major, which gives our
original GEMM operation in column major storage. Further-
more, that means that we only have to switch the dimension
arguments and the roles of A and B for using the classical
GEMM operations with the row major scheme. The numer-
ical experiments show that this reduces the influence of row
swap operation. The transpose operation which is addition-
ally required is only performed after the initial transfer to the
device and before the final results are copied back to the host.
Therefore, they can be neglected in the performance analysis
as the numerical results show.

4 Experimental results

In the experimental results we will compare our Gauss–
Jordan-elimination based approach with the well established
GPU accelerated implementation of the LU decomposition
from the runtime as well as from the energy point of view.
Therefore, we choose randommatrices A ∈ R

m×m withm =
1024k, k ∈ N, and a predefined solution X ∈ R

m×n = 1.
From this we determine the right hand side as B = AX . We
set n equal tom in order to cover the case we explained in the
introduction. All experiments are done in double precision
arithmetic on a dual-socket 16 core Intel® Xeon® E5-2640v3
with 64GB RAM and two Nvidia® Tesla K20 accelerators.
The code is compiled using the Intel® C/Fortran compiler 15
with MKL 11.2 as host BLAS library. The device code uses
Nvidia® CUDA 7.5. The power consumption is measured
using a ZES Zimmer LMG450 power meter with a sampling
rate of 20 Hz.

Because of the fact, that reducing the power consumption
results in a slower execution, i.e. larger runtime, in many
cases, we consider the energy-delay-product (EDP) [4,6]
as a combined economical and ecological measure to com-
pare both solution techniques. The energy-delay-product is
defined as

EDP(w) = E · Tw, (11)

where E is the energy-to-solution, T is the time-to-solution
and w a weight factor to penalize the time. Usually, the
EDP(1), EDP(2), and EDP(3) values are used for the com-
parison of algorithms depending on the requirements of the
computing center.

Due to the fact that MAGMA [2,9,10] supports the LU
decompositiononmultiple devices, but the forward/backward
substitution on a single device only, we use a workaround
here. In the case of oneGPUweuse theMAGMALUdecom-
position and the corresponding forward/backward solve on
this device. In the case where we use both accelerator devices
we only use the multi-GPU LU decomposition and perform
the forward/backward substitution on the host CPU.
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Table 2 Optimal block size NB for minimizing time and energy-to-
solution on one GPU (time in [s], energy in [Ws])

m = n Energy optimal Time optimal

NB Energy Time NB Time Energy

2048 256 23.23 0.06 256 0.06 23.23

4096 512 123.49 0.32 640 0.31 124.33

6144 768 378.11 0.91 1024 0.90 379.56

8192 1024 854.20 2.00 1280 1.98 854.56

10,240 1152 1608.78 3.73 1536 3.68 1614.10

12,288 896 2614.01 6.34 1536 6.29 2680.57

14,336 1408 3896.29 9.73 2048 9.53 3936.05

16,384 1024 5568.58 14.36 1408a 14.17 5578.11

a Restricted to 1408 by device memory

Table 3 Energy-delay-product (w = 1) of the optimal block sizes using
one GPU

m = n 8192 10,240 12,288 14,336 16,384

Energy opt. 1708.4 6000.7 16,572.8 37,910.9 79,964.8

Time opt. 1692.0 5939.9 16,860.8 37,510.6 79,041.8

Before we compare the Gauss–Jordan-elimination
approach with the LU decomposition based solvers, we have
to determine the optimal block size NB with respect to the
solution time andwith respect to the energy, which are shown
in Table 2. For the decision which optimal value to choose
for the experiments, we consider the energy-delay-product
shown in Table 3. Except of one case the EDP(1) suggest to
chose the time optimal block size, which is therefore used
for all remaining experiments.

Figure 1 shows the time-to-solution for all methods in
the test. Obviously the usage of MAGMA with more than
one GPU and the additional triangular solves on the CPU
yield the worst result. Neither from the run-time nor energy
points of view can it gain any advantage. Restricting to the
one GPU case the Gauss–Jordan-elimination approach gains
a speed up against MAGMA although we need 12.5 % more
flops to solve. For small problems a speed up of more than
1.5, as shown in Table 4, is possible but even for the large
problems our approach is 8 % faster. Regarding the energy-
to-solution in Table 5 our approach saves between 8 and
60 % energy for the small and moderate size problems. In
the case of the large problems, we see in Fig. 2 that we need
approximately the same amount of energy to compute the
solution.Because ofminimizing the runtimewith keeping the
energy constant the energy-delay-product in Table 6 suggest
to choose theGauss–Jordan-elimination. Even increasing the
weight w will not change this picture due to the fact that the
runtime speed up gets more influence in the assessment.

Employing two GPUs we see in Table 4 that our distrib-
uted Gauss–Jordan-elimination implementation is the fastest
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·1 024
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Dimension m
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]
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GJE (1 GPU) GJE (2 GPU)

Fig. 1 Time-to-solution (n = m)

Table 4 Runtime (in [s]) of small and medium size problem, speed up
against single GPU MAGMA

m = n MAGMA GJE: 1 GPU GJE: 2 GPU

Time Time Speed up Time Speed up

1024 0.03 0.02 1.50 0.02 1.50

2048 0.11 0.06 1.83 0.06 1.83

3072 0.23 0.15 1.53 0.11 2.09

4096 0.47 0.31 1.52 0.19 2.47

5120 0.80 0.56 1.43 0.32 2.50

6144 1.17 0.90 1.30 0.51 2.29

7168 1.80 1.37 1.31 0.76 2.37

8192 2.35 1.98 1.19 1.09 2.15

approach for problems beginning at medium size (m =
n ≥ 3 072). The overall speed up with respect to one GPU
MAGMA solution is between 2.09 and 2.5. Furthermore,
comparing with our one GPU implementation, we see a
nearly perfect scaling. This nearly perfect scaling yield a
large runtime reduction which easily compensates the addi-
tional power necessary for the secondGPU. Even in the cases
where no difference in runtime exists between the one and the
twoGPU execution the twoGPUversion requires less energy
than MAGMA on one GPU. The direct comparison between
the one and the two GPU implementation shows that using a
second device accelerates the computation by a factor of up
to 2 and reduces the energy consumption by 22%. Regarding
the energy-delay-product again in Table 6 it suggests to use
the two GPU variant if two GPUs are available.

Reasons for the Gauss–Jordan-elimination scheme being
so much more efficient than the LU decomposition with for-
ward/backward substitution are the following:
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Table 5 Energy-to-solution (in
[Ws]) of small and medium size
problem, savings against single
GPU MAGMA

m = n MAGMA GJE: 1 GPU GJE: 2 GPU

Energy Energy Savings (%) Energy Savings (%)

1024 6.45 2.64 59.07 3.35 48.06

2048 37.75 23.23 38.46 20.72 45.11

3072 85.23 62.87 26.24 46.13 45.88

4096 171.60 124.33 27.55 85.20 50.35

5120 288.23 227.49 21.07 150.72 47.71

6144 415.02 379.56 8.55 253.48 38.92

7168 639.03 585.90 8.31 393.24 38.46

8192 845.31 854.56 −1.09 586.76 30.59

2 6 10 14 18 22
·1 024

0
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4
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Fig. 2 Energy-to-solution (n = m)

– Gauss–Jordan is an all-at-once approach where one algo-
rithm and one sweep over the augmented matrix D yield
the solution of the problem. In comparison to the LU
decomposition this reduces the memory transfers, since
no additional triangular solves are required.

– The GEMM operation is the only operation necessary on
the device. It does not involve data dependencies which
yield partly sequential computation schemes, in contrast
to the forward/backward substitution. Furthermore, the
GEMMoperation is known to be the best optimized oper-
ation on CPUs, as well as, on GPUs.

– In contrast to the LU decomposition, the GEMM oper-
ation inside the Gauss–Jordan-elimination scheme is
constant in the number of affected rows and by choosing
a proper block size the GEMM operation makes use of
the whole device.

– By removing the data dependencies introduced by the
forward/backward substitution scheme and only relying

Table 6 Energy-delay-product (w = 1)

m = n MAGMA MAGMA GJE GJE

1 GPU 2 GPU/CPU 1 GPU 2 GPU

2048 4.3 2.7 1.4 1.2

4096 80.0 88.5 38.8 15.8

6144 483.6 718.1 343.5 128.4

8192 1983.6 4184.7 1704.8 639.5

10,240 6990.3 13,678.1 6001.7 2262.0

12,288 18,123.5 40,545.6 16,578.6 6399.3

14,336 41,601.4 93,147.9 37,919.4 15,364.3

16,384 83,609.4 230,820.8 79,985.4 32,713.2

18,432 – 430,949.8 – 63,212.7

20,480 – 829,642.6 – 114,236.3

22,528 – 1,355,716.0 – 196,836.7

on the GEMM operation one can easily obtain and scal-
able distributed scheme to employ more than one GPU.

Finally, we compare two typical measures used for com-
parison of HPC systems, namely the flop rate and the energy
efficiency in terms of GFlops/s/W [8]. Regarding Fig. 3 we
observe that none of the MAGMA based approaches can
compete at least with our single GPU code. Even if we have
in mind that our approach needs 12.5 % more flops than
the LU decomposition we still achieve a higher peak per-
formance. Furthermore, it is easy to see that already small
problems lead to a good utilization of the GPU in terms of
the achieved flop rate. The two GPU implementations even
obtains a good performancewithmoderate size problems and
reaches a peak performance of 1.8 TFlops/s. Again one can
see that the missing distributed triangular solve in MAGMA
results in a stagnation of the performance. In contrast to the
case where we only have one right hand side, in the linear
system the forward/backward substitution needs more flops
than the LU decomposition. Therefore, only having a dis-
tributed factorization is not enough to obtain a fast, and in
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Fig. 4 Energy efficiency (n = m)

this way energy efficient, algorithm. Figure 4 shows that we
get a value of 3.3 GFlops/s/W for our dual GPU implementa-
tion. Compared to the HPC systems in the current Green500
list (November 2015, [8]) we can compete with the Top-30
systems. Using this metric the maximum gain between the
Gauss–Jordan-elimination method and the LU decomposi-
tion from MAGMA is between 1.5 and 2.5.

5 Conclusions

We showed that using the Gauss–Jordan-elimination scheme
one can implement a fast and energy efficient solver for

dense linear systems with many right hand sides. Further-
more, we showed that reducing memory transfers and data
dependencies results in a scalable low-energy algorithm. By
only requiring a high performance GEMM operation and
minimal data dependencies on the accelerator devices this
becomes a portable scheme for future architectures. Com-
paring the performance and the energy requirements to the
MAGMA solution, we see that our implementation needs
at most the same energy as the LU decomposition based
solution process, but reduces the time to solution. Further
optimizations like the influence of dynamic frequency scal-
ing on the GPU and on the CPU are part of future research.
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