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Abstract Spatial navigation is a crucial ability for living.

Previous work has revealed multiple distributed brain

regions associated with human navigation. However, little

is known about how these regions work together as a

network (referred to as navigation network) to support

flexible navigation. In a novel protocol, we combined

neuroimaging meta-analysis, and functional connectivity

and behavioral data from the same subjects. Briefly, we

first constructed the navigation network for each partici-

pant, by combining a large-scale neuroimaging meta-

analysis (with the Neurosynth) and resting-state functional

magnetic resonance imaging. Then, we investigated mul-

tiple topological properties of the navigation networks,

including small-worldness, modularity, and highly con-

nected hubs. Finally, we explored the behavioral relevance

of these intrinsic properties in a large sample of healthy

young adults (N = 190). We found that navigation net-

works showed small-world and modular organization at

global level. More importantly, we found that increased

small-worldness and modularity of the navigation network

were associated with better navigation ability. Finally, we

found that the right retrosplenial complex (RSC) acted as

one of the hubs in the navigation network, and that higher

betweenness of this region correlated with better naviga-

tion ability, suggesting a critical role of the RSC in mod-

ulating the navigation network in human brain. Our study

takes one of the first steps toward understanding the

underlying organization of the navigation network. More-

over, these findings suggest the potential applications of the

novel approach to investigating functionally meaningful

networks in human brain and their relations to the behav-

ioral impairments in the aging and psychiatric patients.

Keywords Spatial navigation � Functional connectivity �
Individual differences � Connectomics

Introduction

Spatial navigation is a crucial ability for living, since way-

finding and environment exploration always happen in our

daily life. Previous neuroimaging studies have identified

multiple regions distributed across the brain, which have

been implicated to be associated with different functions

for navigation (see Wolbers and Hegarty 2010 for a

review). For example, the hippocampus has been proposed

to support a cognitive map (O’Keefe and Dostrovsky

1971), while the parahippocampal place area (PPA) (Ep-

stein et al. 1999) and the retrosplenial complex (RSC)

(Maguire 2001) have been shown responsible for visual

scene processing. In addition to scene processing, the RSC

has recently been implicated in anchoring our sense of

direction to local environment (Marchette et al. 2014).

Besides, the parietal and frontal regions have been shown
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to be necessary to generate spatial imagery and make ori-

entation decisions (Harvey et al. 2012; Mellet et al. 1995),

and maintain actively the goal destination in working

memory for use in navigation (Ciaramelli 2008), respec-

tively. Supplemental to the interest on the common func-

tionality shared by individuals, another fundamental

question is how navigation-related neural substrates

account for individual differences in the ability to navigate

the world.

Following the traditional functional localization, studies

on individual differences in navigation have mainly

focused on local variability in anatomical and functional

features of these regions. For example, regional gray matter

volumes in the hippocampus, parahippocampal cortex and

prefrontal regions have been showed associated with nav-

igation performance (e.g., Wegman et al. 2014; Brown

et al. 2014; Moffat et al. 2007). Similarly, functional

activity in the hippocampus and parahippocampal cortex

correlates with behavioral performance in navigation (e.g.,

Igloi et al. 2010; Cornwell et al. 2008; Kong et al. 2016a).

Given the complex nature, successful navigation likely

requires multiple brain regions to work together (Wolbers

and Hegarty 2010). A newly proposed model also suggests

that a non-aggregate network process involving multiple

interacting brain regions better characterizes the neural

basis of spatial navigation (Ekstrom et al. 2014). Therefore,

it is possible that the variability in human navigation may

be better reflected by the underlying functional organiza-

tion of the navigation network. A resting-state neu-

roimaging study has shown a positive correlation of

navigation ability with the learning-induced changes in the

functional connectivity between the parahippocampal cor-

tex and the hippocampus (Wegman and Janzen 2011).

Moreover, with spatial memory tasks, previous studies

have shown that the dynamic interplay between multiple

brain areas contributes to the behavioral outputs (Watrous

et al. 2013; Arnold et al. 2014; Schedlbauer et al. 2014).

More specifically, stronger global interaction during spatial

memory retrieval is linked to successful retrieval (Watrous

et al. 2013) and better performance (Schedlbauer et al.

2014). By combining resting-state fMRI with task fMRI,

Arnold and colleagues (2014) for the first time, have

revealed an association between global efficiency of the

resting-state network composed of several brain regions

engaged in orientation decision making and the behavioral

performance in that task, providing a novel insight into the

role of brain network variability in shaping one’s ability to

navigation the world (Arnold et al. 2014). However, this

study mainly focused on brain regions engaged in a specific

spatial task (i.e., the orientation decision task), and the

brain–behavior correlation was based on a relatively small

sample size (N = 13). Further research is required to better

understand how brain regions, which are commonly acti-

vated in different navigation tasks, intrinsically interact

with each other and how this intrinsic organization asso-

ciates with navigation ability. To fill in this gap, in the

present study, we aimed to construct a navigation network

based on a neuroimaging meta-analysis of spatial naviga-

tion studies, and to explore the topological properties of

navigation network and its behavioral correlates with a

relatively large sample of subjects (N = 190).

To do this, we first defined the nodes of the navigation

network (i.e., navigation-related cortical regions) with a

large-scale fMRI meta-analysis using the Neurosynth

(Yarkoni et al. 2011). Secondly, we constructed the navi-

gation network of these functionally meaningful regions

for each participant with the resting-state fMRI dataset in a

large cohort of healthy young adults (N = 190). Third, we

investigated three major topological properties of the

navigation network using graph theory, including small-

worldness, modularity, and hubs. Finally, we examined

whether these topological properties were related to indi-

vidual variability in navigation ability measured by the

Santa Barbara Sense of Direction scale (SBSOD). We

expected that the individual with more optimally organized

navigation network (e.g., greater small-worldness and

modularity) would possess better navigation ability.

Materials and methods

Participants

One hundred and ninety college students [117 females; mean

age = 20.3 years, standard deviation (SD) = 0.91 years]

from Beijing Normal University (BNU), Beijing, China,

participated in the study. The dataset was part of our ongoing

project on bridging the brain, behaviors and genetics (http://

www.brainactivityatlas.org). All participants had normal or

corrected-to-normal vision. The study was approved by the

Institutional Review Board of BNU. Written informed con-

sent was obtained from all participants before they took part

in the experiment.

All participants (N = 190) underwent the fMRI scanning.

No participant was excluded due to excessive head motion

(2 mm in translation or 2 degree in rotation from the first

volume in any axis) or visually detected registration errors

(Zhen et al. 2015; Kong et al. 2016b). Most of these partic-

ipants (N = 167; 104 females; mean age = 20.2 years,

SD = 0.90 years) completed three behavioral assessments,

including a standard questionnaire on spatial navigation

performance in daily life, a computer test on small-scale

spatial ability, and a Raven task for general ability (see

below).
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MRI scanning

Scanning was conducted at BNU Imaging Center for Brain

Research, Beijing, China, on a Siemens 3T scanner

(MAGENTOM Trio, a Tim system) with a 12-channel

phased-array head coil. The resting-state scan lasted 8 min

and consisted of 240 contiguous echo-planar-imaging (EPI)

volumes (TR = 2000 ms; TE = 30 ms; flip angle = 90�;
number of slices = 33; matrix = 64 9 64;

FOV = 200 9 200 mm2; acquisition voxel

size = 3.125 9 3.125 9 3.6 mm3). During the scan, par-

ticipants did not engage in any specific task and were

instructed to relax and remain still with their eyes closed.

High-resolution T1-weighted images also were acquired

with magnetization prepared gradient echo sequence

(MPRAGE: TR/TE/TI = 2530/3.39/1100 ms; flip

angle = 7�; matrix = 256 9 256) for spatial registration.

One hundred and twenty-eight contiguous sagittal slices were

obtained with 1 9 1 mm2 in-plane resolution and 1.33-mm

slice thickness.

Imaging data analysis

Data preprocessing For each participant, image prepro-

cessing was performed with FMRIB Software Library (FSL,

http://www.fmrib.ox.ac.uk/fsl/). Preprocessing included

head motion correction (by aligning each volume to the

middle volume of the image with MCFLIRT), spatial

smoothing (with a Gaussian kernel of 6-mm full-width half-

maximum), intensity normalization, and removal of linear

trend. Next, a temporal band-pass filter (0.01–0.1 Hz) was

applied with fslmaths to reduce low frequency drifts and

high-frequency noise. Please note that the outputs of head

motion correction were used to estimate individual’s head

motion during scanning with the averaged root-mean-square

deviation (e.g., Jenkinson et al. 2002; Kong et al. 2014).

Registration of each participant’s high-resolution

anatomical image to a common stereotaxic space [the

Montreal Neurological Institute (MNI) 152-brain template

with a resolution of 2 9 2 9 2 mm3, MNI152] was

accomplished using a two-step process (Andersson et al.

2007a). Firstly, a 12-degrees-of-freedom linear affine

transformation was carried out with FLIRT (Jenkinson

et al. 2002; Jenkinson and Smith 2001). Secondly, the

registration was further refined with FNIRT nonlinear

registration (Andersson et al. 2007b). Registration of each

participant’s functional images to the high-resolution

anatomical images was carried out with FLIRT to produce

a 6-degrees-of-freedom affine transformation matrix.

To eliminate physiological noise, such as fluctuations

caused by motion or cardiac and respiratory cycles, nui-

sance signals were regressed out using the methods

described in previous studies (Biswal et al. 2010; Fox

et al. 2005). Nuisance regressors included averaged

cerebrospinal fluid signal, averaged white matter signal,

global signal averaged across the whole brain, six head

realignment parameters obtained by rigid-body head

motion correction, and the derivatives of each of these

signals. The 4-D residual time series obtained after

removing the nuisance covariates were registered to

MNI152 standard space by applying the previously cal-

culated transformation matrix. Moreover, to further rule

out the possible influence of head motion during scanning

(Power et al. 2012; Van Dijk et al. 2012; Zeng et al.

2014; Kong et al. 2014), individual’s head motion was

estimated from the fMRI data by integrating outputs of

head motion correction.

Navigation network construction

A key issue in characterizing the human brain as a complex

network is the construction of the connection matrix

(Sporns et al. 2005). In this section, we applied a novel

approach to define the nodes and edges in describing the

navigation network.

Node definition To define nodes that are involved in spatial

navigation, we conducted a neuroimaging meta-analysis on

spatial navigation studies using the Neurosynth (neu-

rosynth.org) (Yarkoni et al. 2011). Neurosynth uses text-

mining techniques to detect frequently used terms (as proxies

for concepts of interest) in the neuroimaging literature:

Terms that occur at a high frequency in a given study are

associated with all activation coordinates in that publication,

allowing for automated term-based meta-analysis. Despite

the automaticity and the potentially high noise resulting from

the association between term frequency and coordinate

tables, this approach has been shown to be quite robust and

reliable (e.g., Yarkoni et al. 2011; Helfinstein et al. 2014;

Lebedev et al. 2014). The database was accessed on Nov 7,

2014, searching for the feature ‘‘navigation’’ (55 studies with

2765 activations) (Fig. 1). The resulting forward inference

map (i.e., the probability map that shows there would be

activation in some specific brain regions given the presence

of a particular term, e.g., ‘navigation’) was used in this study

to cover regions that are relevant to navigation tasks. To

control the false positive rate in the statistical map, a false

discovery rate (FDR) threshold of 0.01 on awhole brain basis

was used.

Then, the clusters were described by their corresponding

anatomical labels in the automated anatomical labeling

(AAL) atlas (Tzourio-Mazoyer et al. 2002) following the

labeling protocol reported by Lebedev et al. (2014). We

only included clusters larger than 100 voxels in this study

as the nodes, which were further used for each individual’s

navigation network construction.
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Edge definition After the preprocessing, a continuous time

course for each ROI was extracted by averaging the time

courses (from resting-state fMRI; 240 TRs; TR = 2000 ms)

of all voxels within that ROI. Thus, we obtained a time

course consisting of 236 data points (removed first 4 time

points) for each ROI and for each participant. Temporal

correlation coefficients between the extracted time course

from a given ROI and those from other ROIs were calculated

to determine the strength of the connections between each

pair of regions at rest. Correlation coefficients (r) were

transformed to Gaussian-distributed z scores via Fisher’s

transformation to improve normality (Fox et al. 2006),

resulting in a symmetric N 9 N Z value connection matrix

(i.e., functional connectivity) for the navigation network of

each participant (N represented the number of nodes). To

remove spurious correlations, we set the functional con-

nectivity with p values higher than a statistical threshold

(p[ 0.05, Bonferroni-corrected) to zero. Due to the

ambiguous biological explanation of negative correlations

(Fox et al. 2009; Murphy et al. 2009), we restricted our

analyses to positive correlations.

Network analysis

For each navigation network, we focused on three most

important principles of complex networks: small-world-

ness, modularity and hubs (Bullmore and Sporns 2009). In

brief, small-worldness measures the extent to which a

network allows highly efficient parallel information pro-

cessing for a low wiring cost (Bassett and Bullmore 2006);

modularity quantifies the decomposability of a network

into modules (Meunier et al. 2009); and hubs are regions

positioned to make big contributions to global network

function (van den Heuvel and Sporns 2013). In the current

study, all graph theoretical analyses were carried out on the

weighted navigation network for each participant using

GRETNA (Wang et al. 2015).

Small-worldness The small-world model is originally pro-

posed by Watts and Strogatz (1998). Small-worldness was

quantified using characteristic path length (Lp), and the

clustering coefficient (Cp). Lp is defined as the average of

the shortest path lengths between all pairs of nodes.

Fig. 1 General workflow for the automated identification of naviga-

tion-associated ROIs. The neuroimaging meta-analysis was conducted

using the Neurosynth (http://neurosynth.org) with the term ‘‘naviga-

tion’’. The profile included temporal, occipital, parietal and prefrontal

regions (p\ 0.01, FDR corrected). After removing clusters with

relatively small sizes (i.e., less than 100 voxels), we obtained 24 ROIs

for further network analyses. Node labels defined in Table 1
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Smaller Lp indicates higher level of communication effi-

ciency between nodes. Cp is defined as the fraction of the

node’s neighbors that are neighbors of each other, and

reflects the prevalence of clustered connectivity around

individual nodes. We normalized the Lp and Cp by dividing

by the value for the same variable calculated from corre-

sponding random networks. We generated these random

networks (n = 1000) using Maslov’s random rewiring

algorithm (Maslov and Sneppen 2002), which preserves the

same number of nodes, number of edges, and degree dis-

tribution as the real network. Small-worldness (d) was

computed as the ratio of the normalized Cp (c) to the

normalized Lp (k) (Humphries and Gurney 2008). Thus,

larger d indicates relatively higher efficient parallel infor-

mation processing at lower wiring cost. A small-world

network is defined as a network with a summary small-

worldness metric d larger than 1 (Bullmore and Sporns

2009; Humphries and Gurney 2008).

Modularity Modularity is defined as the extent to which a

network can be decomposed into sub-network (a.k.a. mod-

ules or communities) that are more connected within mod-

ules than between modules (Newman 2004). Modularity

captures an important organizational principle critical to

biological systems: integration within sub-systems allows

efficient local processing, while sparse connections between

sub-systems reduce the propagation of noise (Simon 1962).

Thus, greater modularity characterizes more optimal system

organization. In the present study, the modular architecture

andmodularity of navigation networks were estimated using

a greedy optimization algorithm (Chen et al. 2008; Danon

et al. 2006) as implemented in the GRETNA. This algorithm

is to find a specific partition which yields the largest modu-

larity. In practice, the value of the modularity of a network

with a strong modular structure typically ranges from 0.3 to

0.7 (Newman and Girvan 2004). To estimate the robustness

of the modular partition, we evaluated the significance of

modularity of the navigation networks by comparing with

that of 1000 node- and degree-matched random networks

(He et al. 2009; Chen et al. 2008).

Hubs in the navigation network Important brain regions

(i.e., hubs) often interact with many other regions in the

complex network. In this study, we applied betweenness

(Freeman 1977) to assess the importance of individual

nodes. The betweenness of a node is defined as the number

of shortest paths between pairs of other nodes that pass

through the node (Freeman 1977), thus it captures the

influence of a node over information flow between other

nodes in the network. Navigation hubs were defined as

Table 1 Spatial localization in

MNI space coordinates and

average z scores for the sites in

this meta-analysis

Anatomical lable Hemi. Abbr. Coordinates (MNI) Avg. Z score

Precental gyrus L PreCG.L -47, 6, 33 4.84

Middle frontal gyrus R MFG.R 29, 5, 57 4.81

Supplementary motor area L SMA.L -4, 12, 51 5.17

R SMA.R 6, 12, 52 4.79

Insula L INS.L -33, 23, -2 4.89

R INS.R 35, 24, -3 5.14

Hippocampus L HIP.L -23, -14, -18 4.58

R HIP.R 25, -27, -8 4.27

Parahippocampal gyrus L PHG.L -25, -36, -13 5.18

R PHG.R 26, -34, -13 5.64

Retrosplenial cortex L RSC.L -13, -57, 6 5.23

R RSC.R 17, -57, 11 4.79

Lingual gyrus L LING.L -19, -83, -12 4.80

R LING.R 18, -48, -3 4.60

Middle occipital gyrus L MOG.L -32, -81, 30 4.38

R MOG.R 37, -76, 27 4.35

Fusiform gyrus L FFG.L -27, -41, -17 4.55

R FFG.R 32, -43, -16 5.66

Superior parietal gyrus L SPG.L -18, -64, 57 4.67

Inferior parietal gyri L IPL.L -33, -56, 46 4.38

R IPL.R 42, -47, 47 4.45

Angular gyrus R ANG.R 34, -56, 48 4.29

Precuneus L PCUN.L -6, -64, 52 4.64

R PCUN.R 8, -61, 55 4.54
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nodes with a betweenness value higher than one SD above

the corresponding average value in the navigation network.

The results were visualized using BrainNet Viewer (Xia

et al. 2013).

To investigate the specificity of the navigation network,

we also constructed each individual’s language networks

using the same approach as above. For node definition, the

feature ‘‘language comprehension’’ was used in the neu-

roimaging analysis, which included 76 studies with 2765

activations. Note that the sample sizes of both studies and

activations were comparable to those for navigation

network.

Behavioral assessments

Santa Barbara Sense of Direction scale (SBSOD) Naviga-

tion ability was measured using the SBSOD scale (Hegarty

et al. 2002), which is a standard questionnaire on sense of

direction in a large-scale environment, and is increasingly

used as a reliable proxy for actual navigation ability (Janzen

et al. 2008; Wegman and Janzen 2011). SBSOD consists of

15 items. Example items are ‘‘I very easily get lost in a new

city’’ and ‘‘I can usually remember a new route after I have

traveled it only once’’. Participants were instructed to

indicate the extent to which they agreed or disagreed with

each statement in a 5-point Likert-type scale. The total

score was used to index one’s navigation ability, with

higher scores indicating better performance in daily

navigation.

Previous studies have shown that people are aware of

their own navigational ability (Kozlowski and Bryant

1977; Sholl 1988; Wolbers and Hegarty 2010), and the

self-report measure from SBSOD was found to correlate

with many objective measures on spatial navigation such as

pointing errors in updating one’s location in space while

moving in the environment and pointing errors to unseen

landmarks (Hegarty et al. 2002). Moreover, this scale has

been increasingly used as a reliable proxy for real-world

navigation performance in recent structural and functional

neuroimaging literature (Janzen et al. 2008; Wegman and

Janzen 2011; Wegman et al. 2014; Auger et al. 2012;

Epstein et al. 2005). Therefore, SBSOD score, although

based on participants’ subjective experiences, is a valid

index of the participants’ real-world spatial navigation

ability (see below for more discussion).

Mental rotation task (MRT) To measure individual’s small-

scale spatial ability, participants were administered the

MRT (Shepard and Metzler 1971), consisting of 40 trials.

Each trial started with a blank screen for 0.5 s, followed by

the first cube stimulus presented at the center of the screen.

The three-dimensional asymmetrical assemblages of cube

image were presented for 0.7 s. After an inter stimulus

interval (ISI) of 0.5 s, the second stimulus appeared for the

same duration as the first one, with the viewpoint being

changed. Subjects were instructed to indicate whether the

second stimulus was the first one rotated or a different

stimulus as quickly as possible. Participants were given

3 min to finish all 40 trials, including 20 trials of ‘rotated’

condition and 20 of ‘another’ condition. The accuracy

indexed each individual’s mental rotation ability.

Raven’s advanced progressive matrices (RAPM). To elimi-

nate the possible influence of the general ability on the

relationship between navigation ability and the organization

of the navigation network, individual’s general intelligence

was measured using the standard RAPM (Raven 1995). The

number of correct responses to the test items of RAPM was

used to index intelligence for this study.

Statistical analysis

In addition to investigating the underlying organization

properties (i.e., small-worldness, modularity, and hubs) of

the navigation network, we explored the behavioral sig-

nificance of these properties. Specifically, we related each

of these measures to the variability in navigation ability

with partial correlation analysis, controlling age and sex.

Since multiple comparisons were performed in the analysis

with nodal betweenness (number of ROIs = 24), a signif-

icant threshold of FDR-corrected q value of 0.05 was

applied.

Results

Construction of the navigation network

We first constructed individual’s navigation networks to

investigate the underlying organization. Unlike previous

network studies using an existing anatomical atlas or extra

task fMRI for nodes definition, which is either functionally

nonspecific or rather task dependent and time-consuming,

we identified nodes involved in human spatial navigation

from a neuroimaging meta-analysis on fMRI studies of

navigation using the Neurosynth (Fig. 1; see ‘‘Materials

and methods’’). As expected, the resulting map consisted of

medial and posterior temporal, parietal, and frontal regions,

which have been commonly revealed by navigation studies

(e.g., Ohnishi et al. 2006). Furthermore, 24 nodes were

identified for navigation network construction, including

the bilateral hippocampus (HIP.L/R), parahippocampal

gyrus (PHG.L/R), retrosplenial complex (RSC.L/R; ante-

rior part of the ‘‘calcarine fissure and surrounding cortex’’

in AAL), lingual gyrus (LING.L/R), middle occipital gyrus

(MOG.L/G), fusiform gyrus (FFG.L/R), inferior parietal
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gyri (IPL.L/R), insula (INS.L/R), precuneus (PCUN.L/R)

and supplementary motor area (SMA.L/R), the left pre-

central gyrus (PreCG.L) and superior parietal gyrus

(SPG.L), and the right middle frontal gyrus (MFG.R) and

angular gyrus (ANG.R) (Table 1).

With these nodes, individual navigation network was

constructed by calculating the functional connectivitymatrix

from the resting-state fMRI (see ‘‘Materials and methods’’).

Figure 2a shows the navigation networks from 3 randomly

selected participants. In addition, a representative navigation

network was obtained by averaging individual navigation

networks across all the participants (Fig. 2b, c).

Next, we examined multiple topological parameters,

including small-worldness and modularity of the naviga-

tion network, and nodal betweenness (for hub identifica-

tion), as well as the behavioral correlates.

Topological properties of the navigation networks

and the behavioral relevance

The small-worldness of the navigation network was esti-

mated for each participant using graph theory (see

‘‘Materials and methods’’). Results showed that on average,

the small-worldness of individual navigation networks was

significantly larger than 1 (Mean = 1.36, SD = 0.25;

t (189) = 73.58, p\ 0.001), suggesting a small-world

organization of the navigation network. That is, in the

healthy young adults, the intrinsic navigation networks are

economical, tending to minimize wiring costs while sup-

porting complex spatial navigation.

Next we used SBSOD to measure individuals’ naviga-

tion ability. The results showed considerable individual

differences in navigation ability (Table 2). Moreover, the

Shapiro–Wilk normality test showed that the SBSOD

scores were normally distributed (W = 0.99, p = 0.223).

Next, we examined whether the small-worldness of indi-

vidual navigation network was related to individual dif-

ferences in navigation ability. We found a significant

correlation between navigation ability and small-worldness

of the navigation network (Fig. 3; r = 0.18, p = 0.021;

partial r = 0.18, p = 0.022), indicating that better navi-

gation performance was associated with increased small-

worldness of the navigation network. This association fits

nicely with a general principle of brain organization that

Fig. 2 a The navigation networks of 3 randomly selected participants. b The average of the navigation networks across the population. c The

averaged navigation network visualized in 3D brain. Line thickness indicates strength of connection. Node labels defined in Table 1
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the degree to which the brain networks is optimized relates

to the effective cognitive functioning (e.g., spatial navi-

gation) of the individual (Stevens et al. 2012).

Based on previous studies, a small-world network is

organized into modules of densely interconnected nodes,

but among modules only sparsely interconnected (Rubinov

and Sporns 2010; Newman 2006). Next we investigated the

intrinsic modular architecture of the navigation network,

and explored the relationship between modularity of indi-

vidual’s network and individual differences in navigation

ability.

To reliably reveal the modular structure of navigation

network, we first conducted the modularity analysis on the

representative navigation network which was obtained by

averaging across all participants (Fig. 2b, c). Results

showed that the navigation network was separated into

three modules (Fig. 4a): a medial temporal module

including the bilateral HIP, RSC, PHG, LING, and FFG; a

posterior-dorsal module including the bilateral MOG, IPL,

PCUN, and right MFG, ANG, and left PreCG, and SPL;

and an anterior module including the bilateral SMA and

INS. Based on previous studies, the medial temporal

module might serve as a core network which was primarily

responsible for visual spatial processing to generate the

spatial representation of the environment (Epstein and

Kanwisher 1998; Marchette et al. 2014; O’Keefe and

Dostrovsky 1971); the posterior-dorsal and anterior mod-

ules, as two components of an extended network, might

involve spatial imagery and orientation decision making

(Mellet et al. 1995; Arnold et al. 2014; Harvey et al. 2012),

and somatosensory information processing (Mesulam and

Mufson 1982; Ghaem et al. 1997; Jahn et al. 2004) during

navigation, respectively (see below for discussion). More-

over, the statistically significant modularity (Q = 0.38,

Z score = 14.36) of the navigation network implies that the

underlying modular architecture arises from the specific

interplay among distributed regions.

Finally, we calculated modularity for each individual’s

navigation network, and then related it to individual’s

navigation ability. Similar to the averaged navigation net-

work, individual’s network also showed a modular struc-

ture (Mean = 0.39, SD = 0.06; Z score = [2.83, 18.90]).

More importantly, we found the network modularity was

significantly correlated with individual’s navigation ability

(Fig. 4b; r = 0.24, p = 0.002; partial r = 0.23,

p = 0.003). Specifically, individuals who possess stronger

modularity (i.e., stronger intra-modular connections and

weaker inter-modular connections) showed better naviga-

tion ability, suggesting that increased modularity of the

navigation network might facilitate one’s navigation per-

formance in daily life. This might be related to the modular

structure of the navigation network that allows more effi-

cient local processing within a module and reduces the

propagation of noise between modules (Simon 1962).

Having highly connected hubs is another feature of

complex brain networks. Next, we explored the hubs within

the navigation network, and investigated their behavioral

relevance. In the present study, betweenness was used to

index the importance of the node in the navigation

network.

To reliably identify hubs in the navigation network, we

first assessed betweenness for each node based on the

representative navigation network (Fig. 2b, c). The spatial

distribution of nodes is shown in Fig. 5a, with larger

spheres representing higher betweenness values, and the

top 10 nodes are mainly located in the core network for

spatial navigation and the parietal extended network

(Fig. 5b). Furthermore, according to the criteria for

Table 2 Descriptive statistics of behavioral measures

Variables Mean SD

Age 20.25 0.91

SBSOD 48.72 9.55

RAPM 25.54 4.20

MRT 0.66 0.09

Head motion 0.08 0.03

Head motion was estimated from the resting-state fMRI data

SD standard deviation, SBSOD Santa Barbara Sense of Direction

scale, RAPM Raven’s advanced progressive matrices, MRT mental

rotation task

Fig. 3 Scatterplot represents the linear association between small-

worldness of the navigation network and navigation performance.

Shaded regions depict 95 % confidence intervals
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identifying hubs (see ‘‘Materials and methods’’), 4 hubs of

this network were identified, including the right RSC,

MOG, and ANG, and left SPG.

Next, we calculated betweenness for each node based on

individual’s navigation network, and examined whether the

individual differences in nodal betweenness would predict

variability in navigation ability. We found that, after cor-

rection of multiple comparisons, the betweenness of the

right RSC showed a positive correlation with individual’s

navigation ability (Fig. 5c; r = 0.30, p\ 0.001; partial

r = 0.29, p\ 0.001; corrected p\ 0.05). Given the non-

normality of the betweenness (W = 0.79, p\ 0.001),

Spearman’s correlation was used to verify the correlation.

Results showed that the observed correlation remained

significant (q = 0.23, p = 0.003). These results suggest a

critical role of the right RSC, as one of the hubs in the

Fig. 4 a Modularity structure of the navigation network. Node color

represents affiliation of each region as defined by graph analytic

modularity analysis (yellow, red, and green). b Scatterplot represents

the linear association between modularity of the navigation network

and navigation performance. Shaded regions depict 95 % confidence

intervals

Fig. 5 a The spatial distribution of nodal betweenness for the

navigation network, with larger spheres representing a higher

betweenness values. Four hubs were identified including the RSC.R,

MOG.R, ANG.R, and SPG.L. b The top 10 nodes of betweenness in

the navigation network. Nodes are ordered from the largest between-

ness (left) to the smaller (right). Node color represents different

modules, and H indicates hubs identified in the present study.

c Scatter plot represents the significant correlation between the

betweenness of the right RSC and navigation performance (p\ 0.05,

FDR corrected). Shaded regions depict 95 % confidence intervals.

Node labels defined in Table 1
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navigation network, in determining human navigation

ability.

Navigation-specific nature of the findings

Given that the nodes used in this work have been impli-

cated in navigation, we hypothesized that the associations

between the navigation network and behavioral perfor-

mance would possess a navigation-specific nature. To test

this hypothesis, we conducted the following analyses.

First, to rule out the possibility that general ability con-

tributed to the observed associations, we measured individ-

ual’s general intelligence using the standard RAPM (Raven

1995) and found that neither the navigation ability nor the

graph-theoretic measures of navigation networks showed

significant association with general ability (i.e., intelligence)

(navigation ability: r = 0.07, p = 0.366; small-worldness:

r = 0.12, p = 0.126; modularity: r\ 0.01, p = 0.978;

betweenness of the right RSC: r = -0.10, p = 0.897). In

addition, when the general intelligence was controlled, the

observed associations between graph-theoretic measures of

the navigation networks and individual variability in navi-

gation ability remained significant (small-worldness:

r = 0.18, p = 0.023; modularity: r = 0.21, p = 0.009;

betweenness of the right RSC: r = 0.28, p\ 0.001).

Second, we further investigated the specificity of the

observed associations by measuring individual’s small-

scale spatial ability with MRT. As expected, we found no

significant association between small-scale spatial ability

and the graphic metrics of navigation networks (small-

worldness: r = 0.07, p = 0.330; modularity: r = 0.04,

p = 0.574; betweenness of the right RSC: r = 0.10,

p = 0.173), suggesting that the associations were specific

to large-scale spatial ability (i.e., navigation ability).

Third, we ran another control analysis to examine

whether the observed navigation-related correlations were

specific to the navigation network. With the same approach

as for the navigation networks, we identified 15 nodes,

including the left inferior frontal gyrus, precentral gyrus

and superior and middle temporal gyrus, which have been

commonly implicated in language comprehension (e.g.,

Tyler and Marslen-Wilson 2008; Fonteneau et al. 2015).

After obtaining the measures for topological properties of

the language networks, we related them to individual dif-

ferences in navigation ability. As expected, we found no

significant correlation with any of these topological mea-

sures of the language networks (ps[ 0.05, uncorrected).

These results suggested the observed correlations were

unique to navigation network, which further supported the

navigation-specific nature of our main findings.

Finally, the neuroimaging community has become

increasingly concerned about the confounding effect of in-

scanner head motion on fMRI data (e.g., Power et al. 2012;

Van Dijk et al. 2012). Further, head motion has also been

shown reflecting reliable traits (e.g., Kong et al. 2014; Zeng

et al. 2014). To rule out the possible influence of head

motion on the observed associations, we estimated partic-

ipants’ head motion from the fMRI data and we found that

after controlling for head motion, the brain–behavior

associations remained significant (small-worldness:

r = 0.18, p = 0.018; modularity: r = 0.22, p = 0.005;

betweenness of the right RSC: r = 0.29, p\ 0.001).

Taken together, the navigation network showed robust

associations with individual’s perceived navigation ability

in daily life, suggesting a navigation-specific nature of the

observed brain–behavior associations.

Discussion

In this study, we first constructed individual’s navigation

network by combining a neuroimaging meta-analysis and

the resting-state fMRI. Then, multiple topological proper-

ties, including small-worldness, modularity and nodal

betweenness, were investigated with graphical theory.

Finally, these graph-theoretic properties were related to

each individual’s navigation ability. The main findings of

our study are: (1) navigation networks showed small-world

and modular organization; (2) better navigation perfor-

mance was associated with increased small-worldness and

modularity; (3) the right RSC was revealed to be one of the

hubs in the network; and (4) betweenness of the right RSC

showed positive association with individual’s navigation

ability.

Human navigation is a complex process, and requires

collaboration of multiple brain regions. Therefore, efficient

information transfer and minimal wiring costs among these

regions would be important for behaviors (i.e., spatial

navigation), while insufficient communication would lead

to poor performance (Stevens et al. 2012; Stam and Rei-

jneveld 2007). Our findings that better navigation ability

was associated with both small-worldness and modularity

of the navigation network nicely fit these predictions,

suggesting that efficient neural processing underlying

flexible navigation may involve distributing cognitive load

across different brain regions, rather than placing too much

burden on any single network element (e.g., hippocampus).

This is in line with a newly proposed model that a non-

aggregate network process involving multiple interacting

brain regions, including hippocampus and extra-hip-

pocampal regions, better characters the neural basis for

spatial navigation (Ekstrom et al. 2014). Moreover, the

present study was based on a novel protocol to define nodes

consistently involved in various navigation tasks (see

below for more discussion), which would facilitate the

construction of a more comprehensive model of the
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navigation network. By combining resting-state fMRI in a

large cohort of young adults, the present study extended

previous findings of the network-level dynamics based on

specific spatial tasks and its contribution to behavioral

performance (Watrous et al. 2013; Arnold et al. 2014;

Schedlbauer et al. 2014). Taken together, our findings

provide one of the first evidence that multiple distributed

brain regions intrinsically work together as a network

underlying the individual differences in navigation ability.

Intriguingly, in the present study, we found three rela-

tively independent modules in the navigation network

through synchronized neural fluctuations under a resting

state: one as the core network for spatial navigation con-

sisting of the medial temporal areas, and two as parts of the

extended network for spatial navigation mainly located in

the parietal and frontal regions, respectively. Specifically,

the core network included regions like the PHG, RSC, and

HIP, which are primarily responsible for three key com-

ponents for successful navigation: visual scene processing

(Epstein and Kanwisher 1998), spatial orientation

(Marchette et al. 2014; Kim et al. 2015), cognitive map

(O’Keefe and Dostrovsky 1971; Ekstrom et al. 2003),

respectively. Both neuroimaging and neuropsychological

studies have suggested the critical behavioral importance

of the core network. For example, variations in structural

and/or functional measures of these regions have been

found to correlate with individual differences in navigation

performance (Maguire et al. 2000; Epstein et al. 2005).

Lesions in these regions (i.e., PHG and RSC) indeed impair

patients’ navigation abilities (Epstein et al. 2001; Mendez

and Cherrier 2003; Takahashi et al. 1997). Unlike the core

network, little is known about the precise functions of the

extended network in spatial navigation, though consider-

able activation has been shown to be related to spatial

navigation. According to previous studies, the parietal

module may be related to spatial imagery and orientation

decision making (Mellet et al. 1995; Arnold et al. 2014;

Harvey et al. 2012), while the frontal module (i.e., SMA

and INS) may be related to somatosensory information

processing during navigation (Mesulam and Mufson 1982;

Ghaem et al. 1997; Jahn et al. 2004). Note that the

abovementioned behavioral significance is speculative, in

particular for the extended network, and largely based on

reverse inference of fMRI data (Poldrack 2011), and future

studies on the specific functions of these relatively inde-

pendent modules are needed. Another intriguing finding is

that we found that a more modular topology of the navi-

gation network was related to better navigation perfor-

mance in daily life. While the higher modularized

architecture could reflect various aspects of intrinsically

organization of the navigation network including the bal-

ance of functional segregation and integration (He et al.

2009), our finding are not in contradiction with previous

findings with network dynamics that global connectivity

positively correlates with individual’s behavioral perfor-

mance (e.g., Schedlbauer et al. 2014). This difference

might be due to the different approach for navigation net-

work construction in the present study. For example, unlike

Schedlbauer et al. (2014) and Arnold et al. (2014), we

defined the nodes based on a large-scale neuroimaging

meta-analysis; in addition, we estimated the connections

based on resting-state fMRI, rather than task fMRI used in

Schedlbauer et al. (2014). Further studies with fMRI when

performing navigation tasks would provide more insights

into the modular organization of navigation network and its

dynamics.

In addition to modularity, having highly connected hubs

is another topological feature of small-world networks. We

found that the right RSC acted as one of the hubs in the

navigation network, and that the betweenness of the RSC

showed significant correlation with better navigation abil-

ity, suggesting a critical role of this region in modulating

the dynamic information processing within the whole

navigation network. In previous work, the RSC has been

highlighted as an important area for navigation and route

learning (Maguire et al. 1998; Maguire 2001; Cain et al.

2006; Cooper and Mizumori 2001; O’Craven and Kan-

wisher 2000). For instance, recent studies suggests that the

RSC anchors our sense of direction to local environment

(Marchette et al. 2014), and that an alteration of the RSC’s

functional properties may serve as the neural basis for

developmental topographic disorientation (DTD) (Kim

et al. 2015). Previous neuropsychological findings also

showed that patients with damage in the RSC are unable to

describe the relationship between locations and exhibited

spatial navigation impairment (Takahashi et al. 1997;

Aguirre and D’Esposito 1999; Valenstein et al. 1987; Vann

et al. 2009). Furthermore, neuroimaging studies have sug-

gested that the RSC involves in integration of spatial

information for navigation (Epstein 2008; Mullally and

Maguire 2011; Park and Chun 2009). The integration role

may be contributed by the reciprocal connections of this

region with multiple regions across the brain, such as the

prefrontal and medial temporal regions (Vann et al. 2009).

Thus, previous computational models of spatial memory

(Byrne et al. 2007; Burgess et al. 2001; Vann et al. 2009)

also consider the RSC as a key member of a core network

of brain regions that underpins spatial memory and navi-

gation. Specifically, the spatial information of location and

environmental layout extracted by the hippocampus and

parahippocampal cortex is hypothesized in the models to

be used by the RSC, which translates allocentric informa-

tion and egocentric information (Spiers and Maguire 2006).

The output of this integrative processing in the RSC is then

fed forward to regions in the precentral gyrus, which has

been suggested to translate spatial representation into
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motor intentions in navigation (Ikkai and Curtis 2011).

Taken together, our findings confirmed previous reports,

were in line with previous computational models, and

provided the first evidence of the critical role of the RSC in

navigation from a holistic perspective of complex

networks.

Moreover, in the brain–behavior correlation analyses,

our results suggested that the degree to which the naviga-

tion network was optimally organized (e.g., greater small-

worldness and modularity) was predictive of individual’s

navigation performance. Given the fact that the navigation

networks were constructed with resting-state signal, how

does intrinsic functional organization translate to behav-

ioral variability? Small-worldness measures the parallel

information processing efficiency, while modularity mea-

sures the level of integration and segregation across sub-

networks. Previous resting-state studies have shown that

both of them are related to the effective cognitive func-

tioning, including working memory (Stevens et al. 2012)

and normal aging (Onoda and Yamaguchi 2013). Our

results suggested that the intrinsic functional organization

of the navigation network modulated the degree to which

an individual was able to intrinsically coordinate and

synchronize the neural activity while navigating the world

in daily life, which ultimately related to their navigation

performance and perceived navigation ability. More

importantly, we found that multiple topological properties,

including small-worldness and modularity, of the naviga-

tion networks were only predictive of navigation ability,

but not of small-scale spatial ability or general intelligence.

Moreover, we did not find any significant correlation

between a network not involved in navigation (i.e., lan-

guage network) and navigation ability. All these results

suggested that the observed brain–behavior correlations

based on the resting-state network that was composed of

navigation-relevant regions were specific to spatial

navigation.

It is noteworthy that, in this study, we employed a novel

protocol to define nodes for investigating the behavioral

relevance of large-scale brain networks. Identification of

reliable, reproducible, and functionally meaningful ROIs is

critically important for successful mapping of brain net-

works for specific functions. Therefore, a fundamental

question was raised when attempting to investigate the

behavioral significance of specific brain networks: how to

define the appropriate ROIs? The majority of previous

brain network studies for individual differences (e.g., Li

et al. 2009; Sala-Llonch et al. 2014; Breckel et al. 2013)

have been based on predefined ROIs in a template brain or

manual labeling by experts based on a priori knowledge.

However, these approaches have limitations. For example,

manual labeling is vulnerable to inter-expert and intra-ex-

pert variation and its reproducibility may be low (Sobel

et al. 1993). More importantly, both approaches are usually

based on anatomical information alone and segmentations

of regions are functionally nonspecific. Task fMRI pro-

vides a benchmark approach for identifying functionally

specific ROIs (e.g., scene-specific regions), but for inves-

tigating individual differences in complex behaviors (e.g.,

spatial navigation), this approach would be largely task

dependent and time-consuming. Thus, instead of using

anatomical segmentations or extra task fMRI for nodes

definition, we defined the nodes relevant to spatial navi-

gation using a large-scale neuroimaging meta-analysis with

the Neurosynth. This tool has been suggested to be quite

robust and reliable to define functionally meaningful nodes

(FMNs) (e.g., Yarkoni et al. 2011; Helfinstein et al. 2014;

Lebedev et al. 2014). On the one hand, given that the

FMNs used in this study were not task-specific, these

results advance previous research focusing on specific

navigation task (Arnold et al. 2014) and allow a better

understanding of the individual differences in navigation

ability. On the other hand, the Neurosynth provides an

automated synthesis method for large-scale neuroimaging

studies (Yarkoni et al. 2011), allowing us to objectively

identify FMNs for specific psychological features (e.g.,

navigation, executive control, and emotion). This method is

publicly available and easy to use. Since the nodes iden-

tified with this method have widely been implicated in the

specific cognition of interest, it would be expected to

enhance the statistical power for the following brain–be-

havior correlation analysis. Thus, with these functionally

meaningful regions and the large neuroimaging and

behavioral dataset, the new framework used in this study

would provide new opportunities for better understanding

the brain–behavior associations from a complex network

perspective.

The present study has some limitations. Most notably,

the participants’ navigational ability was assessed with a

self-reported questionnaire (i.e., SBSOD), and the effect

sizes of SBSOD in relation to behavioral performance in

virtual and real-world environments appears to be rela-

tively small (Arnold et al. 2013; Wolbers and Hegarty

2010). For example, the effect sizes for correlations with

SBSOD scores were 0.18 for both the formation and use of

cognitive maps (Arnold et al. 2013), similar to those

observed in the present study, especially for small-world-

ness (i.e., 0.18). Thus, it is unclear whether these findings

of behavioral relevance could translate to behavioral per-

formance in different navigation tasks. But in the aspect of

behavioral relevance, the present work extended the

existing literature to show that self-perceived navigation

ability correlated with the intrinsic topological properties

of navigation networks. Nevertheless, future studies with

different objective tasks for spatial navigation will provide

more insights into the behavioral relevance of navigation
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networks. Another intriguing issue is that we found that

quite a few nodes (e.g., HIP, PCUN, MFG, and SPG) in the

navigation network are also part of a whole-brain ‘rich-

club’ network (van den Heuvel and Sporns 2011); thus the

findings of behavioral relevance might reflect a relationship

with general network properties across the entire brain.

However, this would not be the case. First, the overlap is

only partial, with several navigation network regions (e.g.,

PHG, RSC, PreCG, and MOG) not found among whole-

brain rich-club region (van den Heuvel and Sporns 2011).

Moreover, we did not find significant association between

navigation network properties and general ability (which is

reflected by the whole-brain general properties Li et al.

2009; van den Heuvel et al. 2009), and the observed

associations between navigation network properties and

navigation ability remained when the general ability was

controlled. Finally, more importantly perhaps, we found

that the navigation ability showed significant correlations

with navigation network, but not with a network not

involved in navigation (e.g., language network), which

provided further evidence for the unique contribution of

navigation network to navigation behaviors. Taken toge-

ther, these findings suggested the navigation-specific nature

of the observed brain–behavior associations.

In sum, we investigated the large-scale intrinsic orga-

nization of the navigation network in human brain and

linked multiple optimal organizational properties of the

networks to better navigation ability. These findings toge-

ther provide a new insight into the neural basis of indi-

vidual differences in navigation, and provide direct leads to

addressing the precise relationship between brain organi-

zation and navigation. For example, further research is

needed to understand how genetic and environmental fac-

tors contribute to the development of the navigation net-

work. A further topic of interest concerns the dynamics of

the navigation network: it is possible that the organization

of the functional navigation networks could be modified

during different navigation tasks. Although the brain’s

functional network architecture during performing tasks is

shaped primarily by intrinsic network architecture, tasks

also modify the network architecture (e.g., Cole et al.

2014). For example, we found that the RSC, a hub iden-

tified in the navigation network using resting-state fMRI,

has not been reported acting as a hub for functional inter-

actions during specific spatial tasks (Schedlbauer et al.

2014; Watrous et al. 2013), which might be due to different

task demands (and different approaches for node defini-

tions). Thus, our study invites further research into how

spatial tasks modulate the functional configuration of

navigation networks. Last, future investigations from the

network perspective would help us understand how the

navigation network relates to the behavioral impairment in

the aging and psychiatric patients, such as mild cognitive

impairment (MCI) and Alzheimer’s disease (AD), and

further understand the underlying neural mechanisms.
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