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Abstract

Representing brain morphology as a network has the advantage that the regional morphol-
ogy of ‘isolated’ structures can be described statistically based on graph theory. However,
very few studies have investigated brain morphology from the holistic perspective of com-
plex networks, particularly in individual brains. We proposed a new network framework for
individual brain morphology. Technically, in the new network, nodes are defined as regions
based on a brain atlas, and edges are estimated using our newly-developed inter-regional
relation measure based on regional morphological distributions. This implementation allows
nodes in the brain network to be functionally/anatomically homogeneous but different with
respect to shape and size. We first demonstrated the new network framework in a healthy
sample. Thereafter, we studied the graph-theoretical properties of the networks obtained
and compared the results with previous morphological, anatomical, and functional net-
works. The robustness of the method was assessed via measurement of the reliability of
the network metrics using a test-retest dataset. Finally, to illustrate potential applications,
the networks were used to measure age-related changes in commonly used network met-
rics. Results suggest that the proposed method could provide a concise description of brain
organization at a network level and be used to investigate interindividual variability in brain
morphology from the perspective of complex networks. Furthermore, the method could
open a new window into modeling the complexly distributed brain and facilitate the emerg-
ing field of human connectomics.

Introduction

Most studies examining brain morphology have focused on local morphological features
with either voxel/vertex- or region-based methods [1]. As these local features are believed to
reflect clinical conditions and individual differences in various tasks [2], they have become
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particularly popular as a neuroscience research topic. However, the human brain is a complex
network that generates and integrates information from multiple sources [3]. In the past
decade, researchers revealed some of the underlying architecture of nontrivial entities based
on anatomical (e.g., through diffusion magnetic resonance imaging, dMRI) or functional net-
works (e.g., through functional MRI) [4]. Given these findings, it was expected that repre-
senting the brain morphology as a network would provide a holistic perspective on the
understanding of the morphology of ‘isolated’ brain structures. For instance, with the net-
work representation, researchers can obtain exclusive information reflecting an important
aspect of the associations and interactions between multiple regions, which is not evident in
local MRI information.

Thus far, several attempts have been made to construct morphological networks. Some
researchers have proposed an approach involving estimation of interregional relationships,
with covariance between averaged regional cortical thickness or gray matter (GM) volume
measures across participants [5, 6]. However, this method can only construct one network
with a large population and is incapable of constructing an individual morphological net-
work. This limits its application in the investigation of individual variability in brain struc-
ture, particularly in identifying structural brain abnormalities in single patients. Comparing
morphological features of different regions within individuals requires definition of corre-
spondence mapping between the voxels of these regions. More recently, as a solution, Tijms
et al. (2012) proposed an insightful strategy for constructing an individual morphological
network. In such an approach, the entire brain is parcellated into 3 x 3 x 3 cubes (i.e., 27
voxels), and the pattern correlation between two cubes is defined as a connection. Although
this approach was designed to capture the complex morphological structure of the brain, it
does not take the remarkable variability in the shapes and sizes of different regions. More
importantly, with such an approach, rigid extraction of the small cubes would not allow
optimal correspondence with functionally or anatomically homogeneous regions of the
brain [7].

To overcome the limitations mentioned above, we proposed a new network framework for
individual brain morphology based on regional morphological distribution information. Tech-
nically, in the new network, nodes are defined as regions based on a brain atlas, and edges are
estimated using our newly-developed interregional relation measure based on regional mor-
phological distributions [8]. The connection metric allows estimation of the relationship
between a pair of regions with different shapes and sizes and has been found to be informative
for investigating individual brain morphology with MRI scans [8]. A similar distribution-based
approach has been proposed to combine cortical surface and its connecting white-matter
geometry to successfully characterize individual differences in brain structure [9]. Considering
these strengths, we extended our initial investigation of single morphological connections and
introduced the connection metric to the research field of complex brain networks. One of the
competitive advantages of the new network framework is that it allows for the construction of
brain networks for a single participant, using his or her MRI scans. Thus, the method has the
potential to provide a new avenue for investigating intra- and interindividual differences in
brain morphology at the network level.

In this study, we initially demonstrated our method in a sample of 21 healthy participants.
Thereafter, we studied the graph-theoretical properties of the networks obtained and compared
the results with previous morphological, anatomical, and functional networks. The robustness
of the method was then assessed by measuring the reliability of the network metrics (N = 21,
scanned twice). Finally, to illustrate potential applications, the networks were used to measure
age-related changes in commonly used network metrics.
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Materials and Methods
Participants

We used the Kirby21 dataset [10], consisting of 21 healthy adult volunteers with no history of
neurological conditions (age range: 22-61 years, 10 females). Further details regarding the
dataset can be found below and in Landman et al. (2011). The dataset is publicly available from
Neuroimaging Informatics Tools and Resources Clearinghouse (https://www.nitrc.org/) and
this study was approved by the Institutional Review Board of Beijing Normal University.

Data acquisition

Structural MRI data were all acquired via the same 3.0T scanner (Achieva, Philips Medical sys-
tems) using a high-resolution 3D magnetization-prepared rapid acquisition of gradient echoes
(MPRAGE; [11]) sequence with the following parameters: resolution, 1.0 x 1.0 x 1.2 mm; TR:
6.7 ms, TE: 3.1 ms, TT: 842 ms; flip angle: 8% and SENSE factor: 2. High-resolution, high-con-
trast T1-weighted MRI data can be used for GM segmentation and quantification. Two struc-
tural MRI scans were performed for each participant (session 1 and session 2) on the same day,
using the same protocol. For the sake of simplicity, demonstration of the method only involved
the dataset from session 1, and the test-retest reliability estimation involved data from both
sessions.

Measure of regional GM volume

The MRI data were preprocessed via voxel-based morphometry (VBM) using Statistical
Parametric Mapping, version 8 (SPM8, http://www.fil.ion.ucl.ac.uk/spm/). VBM is an auto-
matic whole-brain neuroimaging analysis technique that allows the quantification of GM vol-
ume in individual MRI data. The analysis was conducted in a routine procedure. Specifically,
MRI data for each participant was first checked manually by two experienced experts to ensure
that there were no scanning artifacts. Second, GM images were obtained by segmenting indi-
vidual MRI data followed by resampling to 2-mm isotropic voxels. This segmentation com-
bines voxel intensity and prior probability maps for GM, white matter (WM), and
cerebrospinal fluid (CSF) to make an initial probability estimate of a tissue type that a voxel
most likely belongs to with a mixture model. The segmentation step also incorporates correc-
tion for intensity non-uniformity to account for non-uniformity artifacts [1, 12]. Third, the
GM images were nonlinearly coregistered using Diffeomorphic Anatomical Registration
Through Exponentiated Lie Algebra (DARTEL), which involved iterative calculation of a
study-specific template based on the GM images from all participants and warping all partici-
pants’ GM images into the generated template. The study-specific template is used to enhance
the estimation of local gray matter volume and reduce the registration error [13, 14]. Then, to
make GM images in the same space as the brain parcellation (see below for details), the result-
ing GM images were then normalized to standard Montreal Neurological Institute (MNI)
space. Thereafter, to preserve tissue volume following warping, voxel values in individual GM
images were modulated by multiplying the Jacobian determinants derived from the normaliza-
tion. Finally, all modulated GM images were smoothed individually with an 8-mm full-width
at half-maximum (FWHM) Gaussian kernel. The spatial smoothing was applied to improve
the signal to noise ratio, which helps improving the estimation of genuine GM volume. In sum,
this is the standard processing procedure for estimating regional GM volume in VBM. This
GM volume measure has been widely used to investigate the individual differences in local
brain structure (e.g., [2]) as well as the hierarchical organization of human cortical network
(e.g., [15]). The smoothed and modulated GM images consisting of the morphological
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information for each voxel, which was comparable across participants, were used in further
analyses.

Network construction from individual GM images

Construction of the connection matrix is a key issue in characterizing the human brain as a
complex network [16]. To address this issue, the nodes and their connections should be deter-
mined first.

Node definition. Herein, nodes represent brain regions. To illustrate our approach, we
used 90 (45 for each hemisphere) cortical and subcortical regions of interest (ROIs) from the
automated anatomical labeling (AAL) atlas [17] as nodes. White-matter voxels in the raw AAL
mask were removed if no gray-matter voxels existed within 2-mm cubic neighborhood based
on the refinement procedure from previous studies [18, 19]. The AAL atlas has been widely
used in previous brain network construction.

Edge definition. In the new network framework, we defined edges/connections (referred to
as morphological connections) between different regions as the statistical similarity between
their morphological measure distributions, using our newly-proposed method [8]. The connec-
tion was measured based on the symmetric Kullback-Leibler (KL) divergence measure as follows:

k1ip. 0= [ (pooghS + awog ) s

where p and q are two distributions.
KL divergence was converted to a similarity measure using the following expression:

KLS(p,q) = e *#?

The KL-based similarity (KLS) ranges from 0 to 1, where 1 is for two identical distributions.

To quantify the connection matrices for individual networks, we estimated probability den-
sity functions (PDFs) for each ROI using kernel density estimation (KDE) [20] from the GM
intensities of all voxels within the region (Step 2 in Fig 1). Specifically, the Gaussian_kde func-
tion implemented in the SciPy package (http://www.scipy.org/) was used. Kernel width was not
set manually but was adaptively estimated from the data using Scott’s rule [21]. We then calcu-
lated the KLS values between all possible pairs of brain regions, resulting in a 90 x 90 similarity
matrix for each subject (Steps 3 in Fig 1). Finally, individual similarity matrices were converted
into binarized matrices (i.e., adjacency matrices), A = [a;], according to a predefined threshold
(see below for the threshold selection), where the entry, a;;, was 0 unless the similarity value
between regions i and j was larger than the threshold, in which case it was 1 (Step 4 in Fig 1).

To provide a direct demonstration of the morphological network, an example brain network
was visualized in the bottom-middle panel of Fig 1 with BrainNet Viewer [22]. In addition, we
calculated the averaged network across the participants and the coefficient of variation (CV)
map to show the consistency of the connections in the network across participants. CV, as a
standardized measure of dispersion of quantity of interest, is defined as the ratio of the stan-
dard deviation to the mean.

Network analysis

Threshold selection. Although continuous weights contain more information between
nodes [23, 24], the present study assessed only the basic network topology, and therefore, the
networks were binarized. More importantly, the binarized network allowed direct comparison
with previous brain network studies (e.g., [7, 15, 18, 25]). To binarize the network, a sparsity
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Fig 1. General workflow for the construction of an individual morphological network using gray matter measurements from MRI. (1) The estimation
of gray matter volume as a morphological measure using a routine VBM procedure. (2) Brain parcellation with the AAL atlas and the estimation of
morphological distribution for each region. (3) Repeated quantification of the similarity between morphological distributions for pairs of regions and formation
of the similarity matrix by filling in corresponding similarity values. (4) Extract the binarized matrix at a specific sparsity threshold. (5) Represent individual
brain network as a graph. (6) Calculate the network metrics (e.g., v, A, and o). Note that, in this study steps 4—6 were repeated across a range of different
sparsity thresholds, from 10% to 40% with an interval of 1%. HIP: Hippocampus; FFG: Fusiform gyrus; L: left; R: right; KLS: Kullback-Leibler divergence-
based similarity; MRI: magnetic resonance imaging; VBM: voxel-based morphometry; AAL: automated anatomical labeling.

doi:10.1371/journal.pone.0141840.g001

threshold was used for all similarity matrices. Sparsity was defined as the ratio of the number
of existing edges divided by the maximum possible number of edges in a network. This
approach ensured that all similarity networks included the same number of nodes and edges by
applying a subject-specific threshold and was used in the estimation of morphological connec-
tivity [7, 26, 27]. Further, given the absence of a definitive method with which to select a single
threshold, we binarized each interregional similarity matrix repeatedly over a wide sparsity
range (from 10% to 40% with an interval of 1%) [28]. The main analyses were conducted using
each of the sparsity thresholds.

In addition, to investigate whether the present method produced networks with properties
that were comparable to previous studies, we highlighted the comparisons at a predefined spar-
sity threshold of 23%. The main reason for this was to perform a direct comparison with results
from a previous study [7], which also aimed to extract individual networks using MRI scans.
Moreover, such a moderate constraint could optimize interregional similarity strengths and be
biologically plausible [29].

Network metrics. We calculated both regional and global network metrics for brain net-
works at each sparsity threshold. The regional metric included the nodal centrality metric,
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betweenness centrality. Global metrics included 1) small-world parameters, including the clus-
tering coefficient (Cp), characteristic path length (Lp), and small-worldness (0) and 2) network
efficiency involving global efficiency (Eg) and local efficiency (Eloc). These network metrics
were calculated by using GRETNA toolbox [30].

Betweenness. Betweenness centrality (B;) for node i is defined as the numbers of shortest
paths between any two nodes that pass through those nodes [31]. We measured normalized
betweenness as b; = Bi/meanBet, where meanBet was the average betweenness of all nodes in the
network. The betweenness values reflect the importance of the nodes within the entire network.

Clustering Coefficient (Cp). The clustering coefficient (Cp;) of a node is equivalent to the
ratio of the node’s direct neighbors, which are also neighbors to each other [32]. The clustering
coefficient (Cp) for the network is the average clustering coefficient for all nodes. Therefore, on
average, Cp reflects the prevalence of clustered connectivity around individual nodes (i.e., func-
tional segregation).

Characteristic Path Length (Lp). The characteristic path length (Lp) of a network is defined
as the average shortest path length between all pairs of nodes [32] and the most commonly
used measure of functional integration.

Small-World Properties. The small-world model was originally proposed by Watts and
Strogatz (1998). Small-world networks have higher clustering coefficient relative to random
networks and display similar characteristic path lengths to those of a random graph [32].
Small-worldness (o) are defined as the division of the normalized clustering coefficient, Cp/
Cprana (i€, ¥), and the normalized characteristic path length, Lp/Lp,,,.4 (i.e., 1) [33]. Cp,anq and
Lp,ana are the network metrics for comparable random networks (averaged from 100 compara-
ble random networks for each network) [34]. We generated these random networks using
Maslov’s random rewiring algorithm [34], which preserves the same number of nodes, number
of edges, and degree distribution as the real network.

Small-world networks are defined by a clustering coefficient (Cp), which is larger than
Cprana> or a normalized value for y larger than 1 and characteristic path length (Lp) that is
approximately the same order as that of a comparable random graph or normalized value for A
close to 1 [4]. In addition, the syncretic metric (o) is higher than 1 in a small-world network.

Network Efficiency. Global efficiency (Eg) has been considered a superior measure of inte-
gration [35]. This network metric is defined as the average inverse shortest path length [35],
which is related to the classical characteristic path length (Lp).

Further, the clustering coefficient can be regarded as a measure of the local efficiency of
information delivery in the direct neighbors of each node. The local efficiency (Ej,,) of the net-
work is estimated by averaging local efficiencies for all nodes in the graph.

Spatial Distribution of Hubs within the Networks. Important brain regions (i.e., hubs) often
interact with many other regions. In this study, we applied normalized betweenness (b,) to
assess the importance of individual nodes, as it captures the node's influence on the informa-
tion flow between other nodes in the network. To quantify similarity and uniqueness between
individual networks, two metrics were defined based on the spatial distribution of nodal impor-
tance; for the participant m, similarity to other participants was defined as average similarity
with others, while uniqueness was defined as 1 minus maximal similarity with others. Specifi-
cally, these metrics were defined as follows:

ZnEN. n#mcorr(Bdn/H Bdn)
N-1

Similarity,, =

Uniqueness,, = 1 — max corr(Bd, , Bd)
neN,n#m
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where N is the total number of participants and Bd,,, is the betweenness of all nodes for partici-
pant m. The scores ranged from -1 to 1 and 0 to 2 for similarity and uniqueness, respectively.
These scores were subsequently rescaled to the range [0, 1].

Finally, we identified hubs in the proposed network. Specifically, we first calculated the aver-
age of the normalized betweenness centrality for each node across all participants and then
defined hubs as nodes with an averaged betweenness value higher than one SD above the corre-
sponding mean value across all nodes. To visualize the results, the BrainNet Viewer [22] was
used.

Test-retest reliability

The scan-rescan dataset allowed us to quantify the test-retest reliability of the morphological
networks for each participant. Intraclass correlation coefficients (ICCs) were calculated, as
shown below [36]:

2

0
_ between
1CC = ety —
between within

where the ICC is conceptualized as the ratio of between-subjects variance to total variance.

The ICC is a quantity between 0 and 1, where 1 indicates perfect reliability (that is, the with-

participant variance o, is nearly 0). An ICC value above 0.75 is considered excellent. An
ICC value ranging from 0.59 to 0.75 is considered good, and results between 0.40 and 0.58 are
considered fair [37, 38]. In this study, the “irr” package (http://cran.r-project.org/web/
packages/irr/index.html) was used to estimate ICC values for each network metric assessed

using individual networks over a wide range of sparsity thresholds.

Statistical analysis of individual differences in the morphological network

To demonstrate the usability of the morphological network proposed in this study, we illus-
trated our approach with an exploratory study involving age-related changes in the brain net-
work. In this analysis, we focused on the commonly used network metrics described above
including meanBet, Lp, Lp, A, ¥, 0, Eg, and Eloc. In the analysis with predefined sparsity (i.e.,
23%; see Threshold Selection) used for display purposes in the study, a significant threshold of
p < 0.05 (FDR corrected for multiple comparisons) was applied. In addition, to ensure that the
findings were robust to data non-normality and to avoid the influence of possible outliers,
Spearman’s rank-correlation coefficients were calculated for each correlation analysis. The
same analyses were repeated over the range of sparsity threshold values from 10% to 40%.
Given the exploratory nature of the analyses, uncorrected p values (p < 0.05) were used.

Results

For the first time, we proposed a new network framework of the individual brain morphology
to investigate the brain structure at the network level. The following analyses were conducted.
First, we described the spatial pattern of the proposed morphological networks. Second, we
examined the small-world properties of the networks. Then, the spatial distribution of hubs
was investigated. Next, the robustness of our method was estimated. Finally, we conducted a
correlation analysis to explore the age-related changes in the network metrics.

Description of the spatial pattern of the network

The morphological networks were first constructed from MRI for each of participants with the
proposed approach (see Materials and Methods; Fig 1). The individual network matrices were
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Fig 2. The averaged map of the connectivity matrices. Red and blue color indicates high and low similarity between regions, respectively. Main diagonal
(i.e., self-connection) is indicated in white and excluded from following analyses. L, Left; R, Right.

doi:10.1371/journal.pone.0141840.9002

then averaged to reveal the similarity pattern of morphological distributions across partici-
pants. Several interesting facts can be observed in Fig 2. First, nearby regions showed similar
connection pattern across the whole brain, such as STG, MTG, and ITG in the temporal
regions, which is generally comparable with previous brain network studies (e.g., [39, 40]). Sec-
ond, consistent with previous brain network studies (e.g., [39-42]), the homotopic regions
from the two hemispheres showed high inter-hemispheric connections. Third, some intra-
hemispheric regions located in different lobes also showed high similarity of morphological
distributions. For instance, the relative high similarity between the frontal (e.g., PreCG and
IFG regions) and partial (e.g., IPL and SMG) regions might reflect the white matter connection
among these regions (i.e., superior longitudinal fasciculus). In addition, connections with rela-
tive high similarity showed relative low CV (top 5% connections: CV = 0.18; top 10%:

CV =0.22; top 20%: CV = 0.28; top 30%: CV = 0.31; Fig 3), suggesting considerable consistency
across participants.

Small-World properties of the individual networks

Next, we assessed the small-world properties of individual morphological networks. Initially,
their clustering coefficient (Cp) and characteristic path length (Lp) were compared with those
from the comparable randomized networks. As expected, the clustering coefficients (Cp) for

PLOS ONE | DOI:10.1371/journal.pone.0141840 November 4, 2015 8/24



Mapping Individual Morphological Networks

| B |

A

|

Il 2B

H ETm |

|
HUE NN EE NN

Fig 3. Coefficient of variation (CV) map of the connectivity matrices. Red and blue color indicates high and low dispersion of that connection across
participants, respectively. Most of the connections possessed relative low CV and in particular the connections with relative high similarities showed low CV,
suggesting relative high consistency across subjects. Main diagonal (i.e., self-connection) is indicated in white and excluded from following analyses. L, Left;

R, Right.
doi:10.1371/journal.pone.0141840.9003

the extracted networks displayed significantly higher values, relative to those of the randomized
networks, over wide sparsity thresholds (Fig 4, upper left; paired t test, range of t values:

min = 44.706; max = 72.949; all ps < 8.502 x 107°°). Similarly, y (i.e., Cp/Cprand) was larger
than 1 (Fig 4, bottom left; range of average y values: min = 1.416; max = 3.561), which satisfied
the small-world network criterion. The characteristic path lengths (Lp) of the individual net-
works were also higher relative to those of the randomized networks (Fig 4, upper right; paired
t-test, range of t values: min = 30.489; max = 61.904; all ps < 8.502 x 10°°). However, as
shown in the bottom-left panel of Fig 4, the ratio of A (i.e., Lp/Lprand) was close to 1 (range of
average A values: min = 1.062; max = 1.406), which also satisfied the small-world network crite-
rion. Further, as expected, the small-worldness (o) of these networks also displayed values
larger than 1 (Fig 4, bottom right; range of the average o values: min = 1.333; max = 2.543),
supporting the small-world topology of the individual morphological networks extracted using
our proposed method.

Previous morphological, anatomical, and functional network studies that reported network
properties with similar network sizes within a predefined sparsity threshold (i.e., 23%, see
Materials and Methods) in healthy individuals are summarized in Table 1. Another study [43]
on individual morphological networks based on Tijms et al. (2012) shows similar global (Eg:
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Fig 4. Small-world properties of the morphometric networks as a function of network sparsity thresholds. The error bar indicates the standard
deviation.

doi:10.1371/journal.pone.0141840.9004

~0.53) and local efficiency (Eloc: ~0.77) as ours (Eg: 0.52; Eloc: 0.80) (Fig 4), though informa-
tion on small-world properties such as y and A is not available for comparison. The results indi-
cated that the small-world properties in this study were comparable to those of previous
studies.

Spatial distribution of hubs within the networks

In addition to the investigation of the small-world properties of the individual morphological
networks, we also examined the spatial distribution of hubs (nodes with a normalized
betweenness centrality higher than one SD above the mean for all nodes). Betweenness cen-
trality is an important nodal metric that can be used to determine the relative importance of
a node within the whole network and identify hubs in the complex networks, including the
brain network (e.g., [18, 28]). Fig 5A shows the individual spatial distributions for 3 ran-
domly selected participants, with larger spheres representing a higher betweenness value.
The results visually showed that each individual exhibited a unique (though similar) spatial
distribution. To give a quantitative description of the similarity and uniqueness of individual
networks, we introduced two metrics respectively. Briefly, for one participant, the similarity
to others is defined based on the average similarity with others, while the uniqueness is
defined based on the value of 1 minus the maximal similarity with others. Results showed
that individual networks possessed remarkable similarity (around 0.60; Fig 5B, left) as well as
considerable uniqueness (around 0.3; Fig 5B, right) across different sparsity thresholds. The
considerable uniqueness of individual networks may reflect the individual variability of brain
anatomy [50, 51], while the remarkable similarity may reflect the consistent organization of
human brain network (e.g., [16]).

Next, the hubs in the proposed network were identified (see Materials and Methods).
Results showed that 14 hubs, including 10 heteromodal or unimodal associative regions, 2
regions of the primary motor cortex, and 2 paralimbic regions, were identified (Fig 5C;
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Table 1. Small-world properties in the present study, and for comparison, values from previous morphometric, anatomical, and functional

studies.

Study

Morphological, Within Participant

Present study
Tijms et al. (2012) [7]

Morphological, Across Particiapnts

He et al. (2008) [28]
2008) [15]
2010) [44]
2010) [45]
2010) [46]

Basset et al.

Yao et al.

Zhu et al.
Sanabira-Diaz et al.

—~ BN - B

Anatomical
Gong et al. (2009) [18]
Functional
Zhang et al. (2011) [47]
Wang et al. (2009) [48]
Liu et al. (2008) [49]

N Cp Lp Y A o
90 0.66 1.92 1.74 1.15 1.50
6982 0.53 1.86 1.35 1.05 1.28
54 ~0.30 ~1.65 ~1.35 ~1.0 ~1.3
104 ~0.25 N/A N/A N/A ~1.25
90 ~0.49 ~1.89 ~1.65 ~1.10 ~1.47
90 ~0.26 N/A ~1.2 ~1.03 ~1.17
90 ~0.31 ~1.80 N/A N/A ~1.25
78 N/A N/A <3.0 ~1.10 N/A
90 ~0.33 ~1.65 ~1.30 ~1.0 ~1.4
90 ~0.52 ~1.75 ~1.70 ~1.05 N/A
90 ~0.31 ~1.77 ~1.15 ~1.01 ~1.16

Note that the small-world properties from previous studies are all from healthy individuals. N: number of nodes used; N/A: Not Available.

doi:10.1371/journal.pone.0141840.t001

Table 2). All of these regions have been reported as hubs at least once in previous study
(Table 2).

Moreover, we revealed that the spatial distributions of hubs showed considerably more sim-
ilarity (mean = 0.83, SD = 0.04) relative to its uniqueness (mean = 0.02, SD = 0.02) across dif-
ferent thresholds, suggesting that the observed spatial distribution of hubs is unlikely
accounted for by any specific threshold.

Test-retest reliability of the network metrics

To assess the robustness of our method, we estimated the ICC values for both the raw connec-
tions and each network metric with the test-retest MRI data (scanned twice). As shown in

Fig 6, the connection values showed excellent reliability (mean ICC = 0.933, SD = 0.075) at the
connection level; more than 97% of the edges possessed excellent reliability (i.e., ICC > 0.75),
suggesting the high reliability of the proposed network.

As expected, the network metrics also showed considerable reliability (Fig 7). Under the
predefined sparsity threshold value (23%), all commonly used network metrics displayed fair
to excellent reliability (Lp: ICC = 0.657, p = 0.00044; Cp: ICC = 0.746, p = 2.09 x 107>; A:

ICC = 0.428, p = 0.027; 7: ICC = 0.832, p = 7.24 x 107; 0: ICC = 0.871, p = 5.77 x 10~%; Eloc:
ICC = 0.781, p = 7.34 x 10~% Eg: ICC = 0.665, p = 0.00038; meanBet: ICC = 0.743,

p = 2.47 x 107°). Reliability analysis of these network metrics, assessed over a wide range of
sparsity threshold values, indicated that the clustering coefficient (Cp) was highly stable (mean
ICC = 0.740) for most of the sparsity values with which to threshold the morphological net-
work, as were characteristic path length (Lp, mean ICC = 0.716), ¥ (mean ICC = 0.812), ¢
(mean ICC = 0.848), and global efficiency (Eg, mean ICC = 0.744). In addition, A (mean

ICC = 0.637), local efficiency (Eloc, mean ICC = 0.683), and betweenness centrality (meanBet,
mean ICC = 0.717) were reproducible (see Table 3). Taken together, these results indicate the
robustness of the proposed method for constructing individual morphological networks from
gray matter MRI scans.
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Fig 5. Spatial distribution of hubs within the morphometric network. (A) Three examples of the spatial distributions for betweenness. (B) The similarity
(left) and uniqueness (right) of individual spatial distributions. (C) Hubs identified in this study. L: left; R: right. PreCG: precentral gyrus; IFGoper: inferior
frontal gyrus opercularis; IFGtri: inferior frontal gyrus triangularis; SMA: supplementary motor area; SMG: supramarginal gyrus; PCUN: precuneus; TPOsup:
superior temporal gyrus of temporal pole; MTG: middle temporal gyrus; ITG: inferior temporal gyrus.

doi:10.1371/journal.pone.0141840.9005

Applying the morphological network metrics to examine normal aging

To demonstrate the usability of our method, we calculated the correlation between participant
age and each of these network metrics assessed from individual networks. First, we conducted
the analysis with a predefined threshold (i.e., 23%). As shown in Fig 8, significant age-related
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Table 2. Cortical regions identified as hubs in the morphometric network and their properties.

Hub Regions

PreCG.L
PreCG.R
IFGoper.L
IFGoper.R
IFGri.L
SMA.R
SMG.R
PCUN.L
TPOsup.L
TPOsup.R
MTG.L
MTG.R
ITG.L
ITG.R

Class

Primary
Primary
Association
Association
Association
Association
Association
Association
Paralimbic
Paralimbic
Association
Association
Association
Association

Bet Deg Lp Cp Previous morphological network studies
1.98 27.45 1.76 0.64 m1, m2, m3, m6, al, a2, f1, f5
1.85 28.21 1.73 0.65 m1, m2, m3, m5, ai, f1

1.70 31.88 1.63 0.64 m2, {3, f4

1.65 30.24 1.64 0.65 m2, 3, 5

2.42 34.48 1.57 0.61 m2, m4, f1, f4

1.64 27.48 1.76 0.66 m4, mé6, f1, {5

1.58 30.38 1.66 0.67 m3, m6, f2, {5

1.62 31.48 1.62 0.67 M4, m5, m6, al, a3, a4, f1, {2, f5
2.15 32.64 1.60 0.65 M5, f2

1.78 30.40 1.64 0.67 f2

1.75 29.31 1.68 0.61 m2, m4, a3, f1, 2, {5

212 29.67 1.68 0.61 m1, m2, m4, m5, a3, f1, 2, f5
1.99 24.86 1.78 0.62 m1, m2, a4, f1, 12, {5

2.77 27.79 1.74 0.58 m1, a4, f1, {2, {5

We compared the results with previous morphological network studies: m1 = [15], m2 = [52], m3 = [7], m4 = [27], m5 = [44] and m6 = [45]; anatomical
network studies: a1 = [18], a2 =[19], a8 = [563], and a4 = [25]; and functional network studies: f1 = [54], f2 = [50], f38 = [55], f4 = [56], and {5 = [57].

doi:10.1371/journal.pone.0141840.t002

changes (p < 0.05, FDR corrected for multiple comparisons) were observed in the clustering
coefficient (Cp, r = -0.50, p = 0.021; Spearman rho = -0.50, p = 0.021) and local efficiency (Eloc,
r =-0.61, p = 0.0036; Spearman rho = -0.61, p = 0.0032). In addition, the effects of age on char-
acteristic path length (Lp, r = 0.51, p = 0.019) and global efficiency (Eg, r = -0.50, p = 0.020) dis-
played notable trends but failed to reach statistical significance using Spearman’s rank-
correlation (Lp: Spearman rho = 0.35, p = 0.12; Eg: Spearman rho = -0.35, p = 0.12). No signifi-
cant age-related changes were observed in y (r = -0.40, p = 0.072; Spearman rho = -0.34,
p=0.13), 0 (r = -0.408, p = 0.067; Spearman rho = -0.30, p = 0.19), betweenness centrality
(meanBet, r = -0.30, p = 0.18; Spearman rho = -0.22, p = 0.32), or A (r = 0.14, p = 0.54; Spear-
man rho = 0.10, p = 0.64). Even with the most conservative correction approach for multiple
comparisons (i.e., Bonferroni correction), the effects of age on the local efficient (Eloc)
remained (p = 0.0036 < 0.05/8). The significant change in Eloc of individual morphological
network indicates the age-related defect in local information delivery in the complex brain net-
works, which is in line with previous findings on white matter networks [19].

Results of analysis with a sparsity threshold value range of 10% to 40% are shown in Fig 9. Sig-
nificant age-related changes (p < 0.05, uncorrected) in clustering coefficient (Cp) and local effi-
ciency (Eloc) were observed for most of the sparsity values. In addition, the age-related changes in
o and y were significant at higher sparsity values (S > 33%). Characteristic path length (Lp),
global efficiency (Eg), and normalized betweenness centrality (meanBet) also displayed significant
age-related associations with some of the sparsity threshold values (Lp: 20% < S < 24%; Eg: 20%
<'S < 24%; meanBet: 11% < S < 20%). No significant associations were found observed with A
for any of the sparsity threshold values (max correlation value: r = 0.42, p = 0.057 with S = 33%).

In summary, our findings indicate the potential of the new approach to study the morpho-
logical networks of individual participants.

Discussion

We proposed a novel network framework for individual brain morphology. The method was
built on our recent work estimating interregional relation based on morphological
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Fig 6. The Intraclass Correlation Coefficient (ICC) map of the connectivity matrices. More than 97% of the edges showed excellent reliability (i.e.,

ICC >0.75).

doi:10.1371/journal.pone.0141840.g006

distributions, by extending it into the research field of complex brain networks. The proposed
method was able to construct and investigate brain networks for each participant, using MRI
scans. With the use of graph-theoretical approaches, we found that all networks possessed
small-world properties (i.e., they had a higher clustering coefficient relative to random net-
works and a similar minimum path length to that of comparable randomized networks). The
values of the clustering and small-world coefficients were compatible with previous structural
and functional network results (see Table 1). The morphological network also displayed hubs,
all of which have been reported in previous network studies (see Table 2). In addition, the net-
work metrics were reproducible, supporting the robustness of the method (see Table 3). Finally,
the correlation analysis indicated that most of the network metrics reflected normal aging.
Taken together, these results suggest that the new network could provide a concise description
of the organization of an individual brain. Further, our approach provides a novel perspective
on understanding of brain morphology and would further facilitate the emerging field of
human connectomics.

Inter-regional similarity of morphological distribution

It is noteworthy that, in this study, the inter-regional connection was quantified with similarity
in distributions of local brain morphology. The inter-regional similarity metric has just been
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@’PLOS ‘ ONE

Mapping Individual Morphological Networks

1.0 1.0
0.6 0.6
9] |9
[s; s
0.4 0.4
0.2 Cp 0.2} Lp
0.0 0.0
01 015 02 025 03 035 0.4 01 015 0.2 025 0.3 0.35 0.4
1.0 1.0 1.0
0.8} /\f\/\/—\/’\—\/-/ o0l 0sl \/\/\/\/\,v
0.6 0.6 0.6
S o o
s s 3]
0.4 0.4} 0.4
0.2 g 0.2 A 0.2 o
0.0 0.0 0.0
01 015 0.2 025 0.3 035 04 0.1 015 0.2 025 0.3 035 0.4 0.1 015 0.2 025 0.3 0.35 0.4
1.0 1.0 1.0
0.8 0.8 \/\\\/\, 0.8
0.6 0.6 0.6
Q Q Q
s; [s; 9]
0.4 0.4} 0.4}
0.2 Eloc 0.2 Eg 0.2 meanBet
0.0

0.1 015 0.2 025 03 035 04

Sparsity

0.1 015 0.2 025 03 035 04
Sparsity

0.1 015 0.2 025 0.3 035 04
Sparsity
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doi:10.1371/journal.pone.0141840.9007

proposed recently and suggested to be informative for the study of brain morphology [8] How-
ever, it is almost entirely unknown whether this metric would provide benefits for mapping
human whole-brain networks. The present study is, to our knowledge, the first to construct
brain networks with regional morphological distribution information. In previous morphologi-
cal network studies, networks have usually been constructed using correlations between aver-
age cortical areas, with respect to thickness or volume, across participants [15, 52, 58]. Another
approach for mapping vertex-wise anatomical correlations has also been proposed [59].

Table 3. A summary of test-retest reliability with intraclass correlation coefficient (ICC) for each of the
network metrics.

Network Metric ICC
Mean Min Max
Cp 0.74 0.605 (**) 0.887 (***)
Lp 0.716 0.518 (*) 0.859 (***)
Y 0.812 0.636 (**) 0.897 (***)
A 0.637 0.391 (*) 0.859 (***)
o 0.848 0.611 (**) 0.930 (***)
Eloc 0.683 0.377 (*) 0.853 (***)
Eg 0.744 0.611 (**) 0.892 (***)
meanBet 0.717 0.485 (*) 0.927 (***)
*:p <0.05;
**: p < 0.005;
**%:p < 0.0001.
doi:10.1371/journal.pone.0141840.t003
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However, such correlation-based approaches could only construct one network per group and
required the analysis of networks at a large-group level.

In contrast, our method allows construction of individual brain networks using MRI images.
More importantly, given that MRI images are widely available and convenient to collect, the pro-
posed method could provide a novel perspective on the understanding of individual variability
and clinical conditions. For example, this method could provide a more comprehensive means of
automatically identifying brain abnormalities in a single participant’s brain. To construct indi-
vidual networks based on MRI images, interesting methods have been used in particular con-
texts, which were based on average measures for different regions [60, 61] or even data from
other participants [61]. Recently, Tijms et al. (2012) proposed an alternative method with which
to extract individual networks using MRI scans of GM. Briefly, the method begins by defining
approximately 6,982 nodes that correspond to 3 x 3 x 3 voxel cubes. The similarity between the
nodes in the network is determined using correlation coefficients between two separate sets of 27
voxels from two cubes. This approach provides a new perspective on the examination of individ-
ual MRI data. However, in this approach, the rigid extraction of the small cubes may not allow
optimal correspondence to functionally and anatomically homogeneous regions or convolutions
of the brain [7], and under this framework, one has no choice but to define nodes as completely
regular small regions with the same shape and size. Moreover, this approach can result in the
problem of different network sizes for individual networks. This problem can be solved with a
follow-up normalization strategy [43]. However, the cube size and rotation operation used in
both studies are somehow arbitrary and does not take the remarkable variability in the shapes
and sizes of regions into account. The present study proposed a new network framework based
on regional morphological distribution information, which would provide a novel perspective
for understanding individual differences and even clinical abnormality.

In addition, an interregional relationship was defined based on local brain morphology. The
physiological meaning underlying the new measure is complex and not completely understood
[8]. One possible source of the morphological connections proposed here is the axon tension the-
ory [62], which predicts that connected areas are pulled by a mechanical force, becoming either
thinner or thicker. This is similar to the population-based morphological relationship found in
previous studies [15, 52]. An alternative possibility is that regions with similar morphological dis-
tributions could have reflected developmental coordination or synchronized maturation between
areas, which may be related to axonal connections forming and reforming over the course of
early development [59, 63]. Similarly, inter-regional relevance may also reflect common experi-
ence-related plasticity [64, 65]. Taken collectively, one could therefore speculate that individual
morphological interregional relationships provide approximate reflection of true anatomical
connections between neuronal elements. In addition, morphologically related regions may also
share similar distributions of major cell classes (such as neurons, oligodendrocytes, and astro-
cytes) and gene expression [66]. Note that the abovementioned biological underpinnings are
speculative, and future studies on cell morphology or molecular genetics are needed. Neverthe-
less, the novel method provides a reliable and meaningful description of the structure of individ-
ual brains. In addition, since different morphological metrics, such as GM volume, thickness,
and area, measure different aspects of GM structure and thus can provide complementary infor-
mation about local GM, future work is needed to extend our framework to accommodate multi-
ple morphological features to measure the morphological similarity between regions.

Spatial distribution of hubs

Previous studies have indicated that most of the hub regions, located in the association cortex
[7, 18,28, 59], play a central role in receiving convergent inputs from multiple brain regions
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[67]. With the present method, we found consistent spatial distribution. As expected, the hubs
identified (Fig 3C; Table 2) in the morphological network were also predominately involved in
the recently evolved heteromodal (e.g., the PCUN [precuneus], MTG [middle temporal gyrus],
and IFGtri [inferior frontal gyrus triangularis]) or unimodal (e.g., the SMA [supplementary
motor area] and ITG [inferior temporal gyrus]) association cortex [67]. As shown in Table 2,
all hubs involved in this study have been reported as hub regions in several previous human
brain network studies. For example, the PCUN and MTG have also consistently been identified
as hubs in previous morphological (e.g., [27, 44]), anatomical (e.g., [53]), and functional (e.g.,
[54, 68]) network studies.

Of note, although there was overlap between the sets of hubs reported in these studies,
which indicates a degree of topological isomorphism between different modal networks, no
two studies have reported identical sets of hub regions. This discrepancy may have been caused
by methodological differences, such as brain imaging parameters, connection and node defini-
tion, and the populations involved. Further systematic studies exploring hubs in brain net-
works from different modalities, with the same criteria of network analysis and in a similar
population, would provide a deeper understanding of hubs in the human brain.

In addition, at an individual level, we found that participants showed unique (though simi-
lar) spatial distribution of betweenness values (Fig 3A and 3B). The considerable uniqueness
observed may reflect the individual variability of brain anatomy [50, 51]. However, thus far,
few studies have examined variability in hub distribution with anatomical, morphological, or
functional brain networks. In response to this issue, we introduced two metrics to quantify the
uniqueness and similarity of individual networks. We hope that further investigations into the
source and outcome of this variability will benefit from these metrics.

Furthermore, as hubs have been identified as core regions with multimodal or integrative
functions, their damage can affect the stability and efficiency of the network significantly [54,
69]. Studies conducted to determine whether patients with neurological diseases, particularly
those with abnormality or deficit in the association cortex, have altered network attributes (e.g.,
small-world properties and modularity) in individual morphological networks are urgently
required.

Age effect on the network metrics

Age-related neuroanatomical changes are well recognized and believed to account for cognitive
decline in normal aging [70]. Little is known about age-related changes in the organizational
patterns of the whole-brain network. Here, network metrics estimated from each individual
network were used to reveal the effects of age. Interestingly, significant reductions were found
in local efficiency (Eloc) and the clustering coefficient (Cp), and an associative trend was found
for global efficiency (Eg). Our results are highly compatible with previous findings. For
instance, the significant change in Eloc in individual morphological networks is in line with
previous findings on white matter networks, such as results of a study involving diffusion MRI
that reported a significant effect of age on local efficiency, which was more pronounced than
that on global efficiency [18]. There have also been inconsistent findings. For example, in a
morphological network study across participants [27], although local efficiency was consis-
tently found to be significantly larger in a young group (18-40 years) compared to middle-
aged (41-60 years) and old (61-80 years) groups, the global efficiency of the young group was
significantly lower relative to those of the middle-aged and old groups. Methodological differ-
ences (mainly the connection definition) may have been responsible for this discrepancy. In
addition, the study population may also play a role, as in the present analysis, most of the par-
ticipants were young (18/21 were aged 20-40 years) according to the criteria established by Wu
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et al. (2012). Further, considering the relatively small sample size and complicated (and non-
linear) fashion in which network properties were computed, further systematic studies with
larger cohorts and more flexible statistical models are required. Nonetheless, the present find-
ings demonstrated potential for use in revealing presumed whole-brain network individual dif-
ferences in healthy populations and abnormalities in participants with neurological and
psychiatric disorders, as have been found in anatomical [71-73], functional [74-76], and popu-
lation-based morphological networks [15, 26, 44].

Methodological issues and future research

The present study was subject to some methodological issues that should be addressed.

First, we defined connections in the networks based on morphological distributions. There-
fore, accurately estimation of such distributions is of critical importance. On one hand, there
should be a sufficiently large sample from such a distribution. In the present study, the AAL
atlas was used to obtain macroscopic parcellation of the brain, as in previous studies (e.g.,
[18]). For each region, there were sufficiently large observations (larger than 120), which
ensured accurate estimation of regional morphological distributions. In addition, with increas-
ing resolution, morphological networks could also be based on finer parcellation of the brain.
On the other hand, in the present study, Gaussian KDE [20] was used to estimate morphologi-
cal distributions. Although the present method was initially validated [8] and appears to pro-
duce good approximations, it would be interesting to examine how different estimation
methods influence individual morphological networks.

Second, in the present study, we binarized each network repeatedly over a wide range of
sparsity thresholds, as in previous morphological network studies [7, 26, 27]. This was per-
formed in consideration of the absence of a definitive method for selecting a single threshold.
Given continuous weights contain more information [23, 24], it is also possible to characterize
the brain as weighted networks. However, the weighted models may lead to complicated statis-
tical descriptions in the graph theoretical analyses [52, 75, 77], so we confined our analyses to a
simple binary network analysis. It is worthy of applying graph theoretical methods to the
weighted networks to investigate the topological properties of the individual morphological
networks in future studies.

Third, the network analysis in the present study was based on the AAL template. As previ-
ous network studies with either resting-state fMRI or diffusion MRI have suggested that the
measure of similarities likely depended on the choice of brain templates to some extent [48,
78], which is an inevitable limitation of any method on large-scale brain network. Future stud-
ies are needed to quantify whether and how different templates (e.g., the Harvard-Oxford
atlas) affects network properties (e.g., small-world properties) of individual morphological net-
work. In addition, it is a potential topic to construct and investigate the individual morphologi-
cal networks with features, such as thickness, area and curvature, and brain parcellation
derived in the native space.

Fourth, the test-retest reliability was performed based on the datasets collected in the same
day to ruling out unwanted effects of training or experience. However, this was short-term reli-
ability, and further studies are needed to examine long-term reliability for this method [79].

Finally, although the local GM volume was used to construct individual brain networks in
the present study, other morphological (e.g., cortical thickness and area from Freesurfer, tissue
density, and cell type) and non-morphological features (e.g., statistical parametric mapping in
task fMRI) may also be appropriate. For example, our method could allow the construction
and study of functional networks using statistical parameter maps [80], rather than original
fMRI time series, which have been proven to be more vulnerable to confounding factors, such
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as in-scanner head motion [81-83]. In this case, researchers could explore the different net-
work properties during the performance of different tasks. Similarly, these networks may also
reflect individual differences in task performance. As another example, in constructing a brain
network using the only ultrahigh-resolution brain model, BigBrain [84], the similarity of
regional distribution in microscopic data may result in a concise and meaningful measure of
connections at an almost cellular level. In all, it would be interesting to explore more detailed
patterns using these local features from the perspective of complex networks.

Conclusions

Complex network analysis has emerged as an important tool in the characterization of anatom-
ical, functional, and morphological brain connectivity. We proposed a new framework for con-
structing individual morphological networks using MRI data with our newly-developed
interregional relation metric based on regional morphological distributions. Results showed
that the morphological networks possessed prominent small-world properties and spatial dis-
tribution of pivotal regions, mainly the association cortex regions. In addition, the network
metrics displayed excellent reliability, which supports the robustness of the method. Our find-
ings are largely compatible with previous human brain network studies. In summary, our
method may provide a novel insight into the cerebral organization that underlie interindividual
variability in behavioral and cognitive performance and clinical conditions. We hope that the
brain mapping community will benefit from and contribute to this novel method.
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