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Axions play a central role in inflationary model building and other cos-
mological applications. This is mainly due to their flat potential, which is
protected by a global shift symmetry. However, quantum gravity is known
to break global symmetries, the crucial effect in the present context being
gravitational instantons or Giddings-Strominger wormholes. We attempt to
quantify, as model-independently as possible, how large a scalar potential is
induced by this general quantum gravity effect. We pay particular attention
to the crucial issue which solutions can or cannot be trusted in the presence
of a moduli-stabilisation and a Kaluza-Klein scale. An important conclusion
is that, due to specific numerical prefactors, the effect is surprisingly small
even in UV-completions with the highest possible scale offered by string
theory.
As we go along, we discuss in detail Euclidean wormholes, cored and

extremal instantons, and how the latter arise from 5d Reissner-Nordström
black holes. We attempt to dispel possible doubts that wormholes contribute
to the scalar potential by an explicit calculation. We analyse the role of
stabilised dilaton-like moduli. Finally, we argue that Euclidean wormholes
may be the objects satisfying the Weak Gravity Conjecture extended to
instantons.
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1. Introduction and Summary of Results
Slow-roll inflation relies on flat scalar potentials, making axion-like fields ideal inflaton
candidates. This is especially true in the context of large-field inflation. The latter is
of particular interest since, on the one hand, it is arguable the most natural form of
inflation and, on the other hand, it will be discovered or experimentally ruled out in
the foreseeable future.
The flatness of axion potentials (we denote the axion henceforth by θ) is protected by

a shift symmetry which is only broken non-perturbatively, i.e. by instantons. However,
possible problems with consistently embedding axionic models of inflation in quantum
gravity are an issue of continuing concern [1–27]. In particular, the focus has recently
been on the Weak Gravity Conjecture [3]. In the context of axions, it states that with
growing axion decay constant fax the action S of the ‘lightest’ instanton decreases, such
that the flatness of the potential is spoiled by corrections ∼ exp(−S).
However, the Weak Gravity Conjecture has not been firmly established. In particular,

its validity remains unclear outside the domain of UV completions of quantum grav-
ity provided by the presently understood string compactifications. This is even more
true for the extension to axions. Moreover, the prefactors of the exp(−S) corrections
mentioned above may be parametrically small, especially if SUSY or the opening up of
extra dimensions come to rescue just above the inflationary Hubble scale.
Thus, it is useful to pursue the related but complementary approach of constraining

axionic potentials on the basis of gravitational instantons. Indeed, the very fundamen-
tal statement that quantum gravity forbids global symmetries is, in the context of shift
symmetries, explicitly realised by instantonic saddle points of the path integral of Eu-
clidean quantum gravity. These are also known as Giddings-Strominger wormholes [28].
If, as proposed in [9], gravitational instantons yield significant contributions to the ax-
ion potential, some models of natural inflation would be under pressure (at least those
with one or only few axions like alignment scenarios), while axion-monodromy inflation
models seem to be unaffected.1 It is our goal to study the effect of Euclidean wormholes
and that of related instantonic solutions in detail. In particular, in the spirit of what
was said above, we want to be as model-independent and general as possible, ideally
relying only on Einstein gravity and the additional axion. The goal is to constrain large
classes of string models or even any model with a consistent UV completion. As we go
along, we will however be forced to consider certain model-dependent features and take
inspiration from the known part of the string theory landscape.
The aim of this paper is thus to determine the strongest constraints on axion inflation

due to gravitational instantons. One important aspect of our analysis is that – to be as
model-independent as possible – calculations are performed in an effective 4-dimensional
Einstein-axion(-dilaton) theory. However, this theory is only valid up to an energy-scale
Λ and, for consistency, we have to make sure that our analysis only includes gravitational
instanton solutions within the range of validity of our effective theory.
This leads to the following challenge pointed out in [12] (see also [1]) and which we

will repeat here. Given an energy cutoff Λ, gravitational instantons within the range of

1Natural inflation [29] with one axion requires a transplanckian axion field space. Ideas for realising
natural inflation in a subplanckian field space of multiple axions were proposed in [30–33]. For
models implementing these ideas see e.g. [12; 34–53]. Axion monodromy inflation was introduced
in [54; 55] (for a field theory implementation see [56; 57]). A realisation of this idea with enhanced
theoretical control is F -term axion monodromy [58–60]. For further work in this context see [61–74].
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Figure 1: Hierarchy of scales in a string model of inflation.

theoretical control contribute at most as δV ∼ e−S ∼ e−M
2
p/Λ2 to the axion potential.

Then, gravitational instantons are dangerous for inflation if their contribution to the
potential is comparable to the energy density in the inflationary sector, i.e. δV ∼ H2. If
the cutoff Λ is not much aboveH gravitational instantons are clearly harmless. However,
if Λ is close to Mp gravitational instantons can easily disrupt inflation. As a result, the
importance of gravitational instantons for inflation hinges on a good understanding of
the scale Λ where the 4-dimensional Einstein-axion(-dilaton) theory breaks down.
To arrive at a quantitative expression for Λ requires some knowledge about the UV

completion of our theory. Here, we take string theory as our model of a theory of
quantum gravity, i.e. we assume that the effective Einstein-axion(-dilaton) theory is
derived from string theory upon compactification. String compactifications give rise to
a hierarchy of scales as shown in Figure 1. Inflation is assumed to take place below the
moduli scale mmod where only gravity and one or more axions are dynamical. Above
mmod further scalars in the form of moduli become dynamical. As a result, if we want
to work with a Einstein-axion theory the cutoff Λ is the moduli scale.
Here, we want to do better. An analysis using 4-dimensional gravitational instantons

can in principle be valid up to the Kaluza-Klein (KK) scalemKK , at which a description
in terms of a 4-dimensional theory breaks down. However, to be able to go beyondmmod
we have to allow for dynamical moduli. Hence, for this purpose Einstein-axion theories
are insufficient and we have to study gravitational instantons in Einstein-axion-moduli
theories instead.
These considerations give rise to the following structure of our paper. We start

by recalling the Giddings-Strominger or Euclidean wormhole solution [28] in Section 2.
This is a classical solution of the axion-gravity system which gives space-time a ‘handle’
with cross-section S3. In fact, this solution can be interpreted as a real saddle point
of the path integral only in the dual 2-form theory. We take some care to describe
the relevant subtleties of the dualisation procedure in Section 2.1. Subsequently, we
generalise to the case with an additional dilatonic scalar in Section 2.2. Now extremal
as well cored instanton solutions [17; 75] also exist. The situation with a dilaton is
important for us as a model of the realistic string-phenomenology case with light moduli.
Section 2.3 focusses on the way in which cored and extremal gravitational instantons
may arise from a Euclidean black 0-brane in an underlying 5d theory. In this way we
obtain a UV-completion of cored and extremal gravitational instantons, which can then
be understood by parameters of the 5d theory.
Section 3 is devoted to the crucial issue whether a scalar potential is induced by

Euclidean wormholes. We will provide an explicit computation of the contributions to
the axion potential from Euclidean wormholes. Thereby, we describe how to circumvent
a recent counter-argument given in [17], suggesting that Euclidean wormholes could not
break the axionic shift-symmetry. Thus, we stress that Euclidean wormholes are by no
means less important than cored or extremal gravitational instantons.
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In Section 4 we calculate the instanton actions for Euclidean wormholes as well as for
cored and extremal gravitational instantons. We also give a quantitative answer to the
question which gravitational instantons can be trusted within our effective theory with
cutoff Λ. The result is as follows. As in the case of gauge instantons one can associate
gravitational instantons with an instanton number n. Given an energy cutoff Λ one
can then only trust gravitational instantons with a sufficiently high instanton number
n� faxMp/Λ2, where fax is the axion decay constant.2
In Section 5 we take first steps towards studying gravitational instantons in the

presence of dynamical moduli. We argue that the case with one light modulus coupled
to the Einstein-axion theory can be modelled by an Einstein-axion-dilaton theory with
massless dilaton. For one, in Section 5.1 we show that for our purposes the modulus
potential can be neglected if there is a sufficient hierarchy between the modulus mass
and the cutoff Λ. The reason is that deep inside the ‘throat’ of a gravitational instanton
the modulus mass only gives a subleading contribution to the stress-energy tensor,
while curvature and gradient terms dominate. As this region is also the source of
the dominant part of the instanton action, we conclude that the action obtained for
a massless modulus will remain a good approximation even in the massive case. We
then motivate our restriction to moduli with dilatonic couplings. This implies that
the modulus ϕ is coupled to the axion θ through the kinetic term for the axion as
eαϕ(∂θ)2. In Section 5.2 we review that dilatonic couplings arise frequently in string
compactification.
In Section 6 we analyse possible constraints for inflation due to gravitational instan-

tons. To this end we identify the instantons with the largest contributions to the axion
potential in Section 6.1. We arrive at the strongest constraint if the cutoff Λ is as high
as possible. In Section 6.2 we identify the highest possible cutoff Λmax for an effective
4-dimensional theory arising from a string compactification. This is given by the KK
scale of a compactification with smallest possible compactification volume, which we
take as the self-dual volume under T-duality. Unfortunately, there is an ambiguity in
this definition of Λmax up to factors of π, which can be crucial. We then determine the
maximal contribution δV to the axion potential due to gravitational instantons and
compare this to the scale of inflation in models of large-field axion inflation. Our main
result is as follows. We find that gravitational instantons do not give rise to strong
model-independent constraints on axion inflation. Extremal gravitational instantons
may be important for inflation, but this is model-dependent, as the size of their contri-
bution depends on the value of the dilaton coupling α.
Last, in Section 7 we record some observations regarding the Weak Gravity Conjec-

ture (WGC) [3] in the context of gravitational instantons. We pick up the idea from
[17] that extremal instantons play the role extremal charged black holes for the WGC.
We then find that the WGC appears to be satisfied due to the existence of Euclidean
wormholes. This either hints at a realisation of the WGC in the context of gravitational
instantons, or implies a different definition of the WGC in the presence of wormholes.
We summarise our findings in Section 8 and point out directions for future work.

Various appendices contain detailed computations on which some of our results are
based, or clarify subtleties which are not absolutely essential for the understanding of
the main body of the paper.

2Note that this implies that we neglect potentially more severe, but incalculable contributions due to
instantons with low instanton numbers.
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Overall, our analysis leaves us with the following: a semi-classical approach to quan-
tum gravity via gravitational instantons does not give rise to strong constraints for
large-field inflation. Thus, if quantum gravity has anything to say about large field
inflation, the quantum part will have to speak.

2. Gravitational Instanton Solutions
A model of axion inflation will necessarily involve an axionic field coupled to gravity.
One feature of such a system is that it may allow for gravitational instantons, i.e. finite-
action solutions to the equations of motion of the Euclidean axion-gravity theory.
Our starting point is the Euclidean action for an axionic field θ coupled to gravity,

which takes the form (Mp = 1)

S =
∫
d4x
√
g
[
−1

2R + 1
2Kg

µν∂µθ∂νθ
]
. (2.1)

The prefactor K can in principle depend on further fields. In this section we ignore the
Gibbons-Hawking-York boundary terms, because we will be focussing on the dynamics
of the system. Instead of working with the axionic field θ, one can write the action in
terms of the dual 2-form B and its field strength H = dB:

S =
∫
d4x
√
g
[
−1

2R + 1
2FHµνρH

µνρ
]
, (2.2)

where F = 1/(3!K). The field strength H is related to dθ via

H = K ? dθ . (2.3)

The dualisation from (2.1) to (2.2) must be done under the path integral using Lagrange
multipliers. We will explain this in the following subsection.
In Euclidean space the theory of the 3-form H coupled to gravity (2.2) then has

non-trivial solutions. In particular, gravitational instantons are rotationally symmetric
solutions with metric

ds2 =
(

1 + C

r4

)−1
dr2 + r2dΩ2

3, (2.4)

where the parameter C arises as a boundary condition or integration constant (see
Appendix A). For C < 0 this is known as a Giddings-Strominger or Euclidean wormhole
[28]: for large r it approaches flat space, while for decreasing r the geometry exhibits
a throat with cross-section S3. At r = |C|1/4 one encounters a coordinate singularity,
where another solution of this type can be attached (see e.g. Figure 2 and 3(a) for two
possibilities). Gravitational instanton solutions for C = 0 and C > 0 can also be found
if a dilaton-type field is included [17; 75].
Before we extend our system to dilaton-type couplings, we review and discuss several

subtleties involved in the aforementioned dualisation between θ and B in Euclidean
space.
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1−cycle

3−cycle

Figure 2: This picture illustrates a Euclidean wormhole, whose two ends are connected
to the same asymptotically flat space. Then there is a non-trivial 1-cycle
(dotted line) passing through the wormhole. The cycle orthogonal to this
1-cycle is a S3 (symbolised by the dashed line around the right-hand throat).

2.1. Dualisation
For the sake of clarity, in this subsection we index the field variables by their rank,
i.e. we write θ0 and B2. Those fields are sourced by an instanton and a microscopic
string, respectively. We start from the two Euclidean actions in 4d:3

S[θ0] =
∫
M

1
2g2

θ

F1 ∧ ?F1 + iQθ

∫
I
θ0, F1 = dθ0, (2.5)

S[B2] =
∫
M

1
2g2

B

H3 ∧ ?H3 + iQB

∫
σ
B2, H3 = dB2, (2.6)

where M denotes our 4-manifold, I the set of points where the instantons are located,
and σ is the surface swept out by the string. One can identify the kinetic terms of (2.5)
and (2.6) by imposing

H3 = g2
B ? F1 (2.7)

and g2
B = 1/g2

θ . This now becomes a single theory with both strings and instantons
allowed and either θ0 or B2 to be used locally as the appropriate field variable.
Note that the H3-flux is quantised by∫

S3
H = n ∈ Z, (2.8)

as we review in Appendix B in the context of the existence of fundamental strings and
instantons.
We now couple the 1-form/3-form theory to gravity. It is well-known that choosing

either θ0 or B2 as the fundamental field leads to Einstein equations differing by an
overall sign [28]. Indeed, the action of (2.5) gives the energy-momentum tensor

T (θ)
µν = 1

g2
θ

(
−1

2gµν(∂θ0)2 + ∂µθ0∂νθ0

)
, (2.9)

3The appearance of the i-factor in front of the coupling terms can be understood by writing these
terms as

∫
M
fp ∧ j4−p with p-form field fp and source current j4−p. One of the relevant tensor

components of either fp or j4−p then always carries a zero-index and hence acquires an i-factor by
Wick rotation.
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while (2.6) leads to

T (B)
µν = 1

g2
B

(
− 1

2 · 3!gµνH
2
3 + 1

2HµρσH
ρσ
ν

)
= (2.10)

= − 1
g2
θ

(
−1

2gµν(∂θ0)2 + ∂µθ0∂νθ0

)
= −T (θ)

µν .

In the second line we used (2.7) together with g2
B = 1/g2

θ .
The above sign difference implies that Euclidean wormholes exist in the B2 but not

in the θ0 formulation. Technically, this is due to the Hodge star being introduced before
or after the variation w.r.t. the metric. Also at the intuitive level the difference is clear:
The H3-flux on the transverse S3, which is fixed due to the Bianchi identity, supports
the finite-radius throat. By contrast, the dual quantity θ′ ≡ ∂rθ, i.e. the variation of θ
along the throat, is not fixed by the dual Bianchi identity and the solution is lost.
We note that the Minkowski-space Einstein equations remain the same on both sides

of the duality. However, we are interested in the path integral in the Euclidean theory
with gravity, so this observation does not help.
Thus, one may wonder whether Giddings-Strominger wormholes do contribute to

the action or whether the dual descriptions are really fully equivalent. This problem
has been intensively investigated in the past, see e.g. [1; 28; 76–89] and our present
understanding mainly derives from [86–88].
Indeed, it should be possible to resolve the problem by dualising under the Euclidean

path integral and following the fate of the instanton solution. We review the dualisation
following [80; 86; 87]. To be specific, let M be a cylinder, M = S3× I, with an interval
I ⊂ R. This is the simplest relevant topology since the S3 can carry H3-flux, supporting
a narrow throat somewhere within I.
Starting on the B2-side, the partition function reads

Z ∼
∫
b.c.

d[B2] exp
(
−
∫
M

1
2g2

B

dB2 ∧ ?dB2

)
, (2.11)

where “b.c.” denotes the boundary conditions B2(S3
I ) ≡ B

(I)
2 and B2(S3

F ) ≡ B
(F )
2 at the

initial and final boundaries S3
I and S3

F . The possibility of a non-trivial flux,
∫
S3 H3 6= 0,

can as usual be implemented by defining B2 in patches over the transverse S3 and
choosing appropriate transition functions.
One can also express Z as a path integral over H3, imposing dH3 = 0 with the help

of a Lagrange-multiplier θ0:

Z ∼
∫
b.c.

d[H3]d[θ0] exp
{
−
∫
M

1
2g2

B

(
H3 ∧ ?H3 + 2ig2

Bθ0dH3
)}

. (2.12)

The previous B2-boundary conditions now translate into boundary conditions on the
pullback4 ofH3 to the initial and final boundary, i.e.H3(S3

I ) ≡ H
(I)
3 andH3(S3

F ) ≡ H
(F )
3 .

In this language, the information about a possible H3-flux is simply part of the H3
boundary conditions. The θ0-integral is unconstrained. The i in front of the Lagrange-
multiplier is needed to get a delta-functional δ(dH3) in the path integral after integrating
out θ0.

4 This is not the same as H3 at the position of the boundaries, which contains time-derivatives of B2
and should not be constrained.
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Equation (2.12) can be rewritten by integrating the second term by parts and com-
pleting the square:

Z ∼
∫
b.c.
d[H3]d[θ0] exp

{
−i
∫
∂M

θ0H3

}
(2.13)

exp
{
−
∫
M

1
2g2

B

[(
H3 − ig2

B ? dθ0
)
∧ ?

(
H3 − ig2

B ? dθ0
)

+ g4
Bdθ0 ∧ ?dθ0

]}
.

According to [80; 86; 87] one can now shift the variable H3 → H̃3 ≡ H3− ig2
B ? dθ0 and

trivially perform the Gaussian integral. One may however also be concerned about this
step since, for any fixed θ0, the boundary conditions, e.g. H̃3(S3

I ) = H3(S3
I )− ig2

B ? dθ0,
clash with the saddle point value H̃3 = 0 of the Gaussian integral in the interior of M .
To make this issue more explicit, let us write H3 = 〈H3〉+δH3, where 〈H3〉 is constant

along the S3 but time dependent. Its boundary values are determined by the H3-flux.
Furthermore, decompose δH3 into spherical harmonics on S3. If the cylinderM were flat
and gravity non-dynamical, we would now simply have a quantum mechanical system of
infinitely many, independent oscillators. The dualisation process sketched above would
correspond, as is well known from T -duality for a scalar field on the cylinder S1×R, to
a canonical transformation (p ↔ q) for each oscillator. In our case, the dual variables
are coefficients of the spherical harmonic decomposition of θ0.
Let us focus on the most interesting subsystem (see also the discussion in [88]) with

the variable 〈H3〉 ∼ p and the dual variable 〈θ0〉 ∼ q. Thus, we first restrict our
attention to the question whether it is correct to naively integrate out q in

Z ∼
∫

b.c.
d[p]

∫
d[q] exp

{
−1

2

∫ tf

ti
dt
[
(p− iq̇)2 + q̇2

]}
. (2.14)

Based on an explicit, discretised calculation in Appendix C, we claim this is indeed the
case. One can now argue that, also for the full system (2.13) including all oscillators and
gravity, this formal manipulation with path integrals is correct. It will then also remain
correct if, as argued in Appendix B, 〈H3〉 is initially quantised, i.e.

∫
S3〈H3〉 = n ∈ Z.

Indeed, this quantisation is ‘neutralised’ once the Lagrange multiplier is introduced and
the now continuous variable 〈H3〉 is integrated out as above.
As a result of all this the partition function can eventually be given as

Z ∼
∫
d[θ0] exp

(
−
∫
M

1
2g2

θ

dθ0 ∧ ?dθ0 − i
∫
∂M

θ0H3

)
, (2.15)

where g2
θ = 1/g2

B. We emphasise that the sign of the kinetic term is the one required for
a well-defined Euclidean path integral. This sign will become important below. We also
note that this procedure can be straightforwardly generalised to any p-form in arbitrary
dimensions d > p. Moreover, we observe that despite the shift H3 → H3 − ig2

B ? dθ0,
the field θ0 can be kept real (see also [87]).5
Varying the action in (2.15),

δS =
∫
M

1
g2
θ

δθ0d ? dθ0 −
∫
∂M

1
g2
θ

δθ0 ? dθ0 − i
∫
∂M

δθ0H3
!= 0 , (2.16)

5In other references, e.g. [85; 89], the axion field was taken to be imaginary. Then, however, we do
not see how to ensure dH3 = 0 using (2.12).
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we find the equation of motion d ? dθ0 = 0 in the bulk and

H3(∂M) = i

g2
θ

? dθ0(∂M) (2.17)

at the boundary. Thus, the θ0 path integral has only complex saddle points [86; 87].6
Indeed, the possibility of taking θ0 imaginary at stationary points was discussed before,
see e.g. [80; 81].
To summarise, dualisation leads to a Euclidean path integral in which θ0 is a priori

real and the kinetic term has the standard sign. However, a semi-classical evaluation
is only possible on the basis of complex saddles. Crucially, the relevant field-theory
solutions then also solve Einstein equations because imaginary θ0 flips the sign of T (θ)

µν

(cf. (2.10)). Thus, one can expect gravitational instantons to contribute consistently
both in the B2 and the θ0 formulation. Nevertheless, it is natural to use the B2 path
integral to keep the saddle points real [86; 87], and we will do so in what follows.

2.2. Gravitational Instantons in the Presence of a Massless Scalar
Field

One goal of this paper is to study the effect gravitational instantons can have on ge-
ometric moduli of string compactifications. In the 4-dimensional theory these moduli
appear as scalar fields. Consequently, we will study systems of an axion θ and a scalar
ϕ coupled to gravity.7 The relevant Euclidean action then takes the form

S =
∫
d4x
√
g
[
−1

2R + 1
2K(ϕ)gµν∂µθ∂νθ + 1

2g
µν∂µϕ∂νϕ

]
. (2.18)

Here we already canonically normalised the field ϕ. At 2-derivative level, the axion θ
can only enter the action through a term ∂µθ∂

µθ due to its shift symmetry. There is
no such symmetry for ϕ and hence the kinetic term for θ can in general depend on
ϕ. This situation is typically encountered in string compactifications, see Section 5.2
for examples. In this subsection we consider a massless scalar field ϕ and apply the
subsequent results to the case of a massive scalar in Section 5.
As we are interested in gravitational instantons, we should consider the dual formu-

lation of the above theory. The relevant Euclidean action is then

S =
∫
d4x
√
g
[
−1

2R + 1
2F(ϕ)H2 + 1

2g
µν∂µϕ∂νϕ

]
, (2.19)

where F = 1/(3!K) = 1/(3!f 2
ax). Here fax is the ϕ-dependent analogue of the familiar

axion decay constant.
In the following we will review explicit solutions of this system corresponding to

gravitational instantons. Following [17] we will construct solutions to the equations of
motion for the metric, the 3-form H and the scalar ϕ.

6 For a treatment of path integrals with complex phase space or complex saddles, see e.g. [90] and
[91], respectively.

7A string compactification will typically give rise to many axionic fields and many geometric moduli.
We focus here on one, potentially super-Planckian, light axion which may be identified with the
inflaton. Similarly, the scalar can be identified with the lightest modulus. Note that the analysis
in this subsection neglects any mass term for the modulus ϕ, which will be included only later in
Section 5.
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General solution

For completeness, let us recall the metric given in (2.4):

ds2 =
(

1 + C

r4

)−1
dr2 + r2dΩ2

3.

The derivation of the functional form of grr can be found in Appendix A. There we
show that the equation of motion for grr decouples from the equations of motion of the
massless fields ϕ and B. In particular, the form of the metric (2.4) is independent of
the functional form of the kinetic terms of these fields. The constant C can a priori
be negative, positive or zero. Depending on the sign of this parameter C, this solution
has the following interpretations. Using the terminology of [17; 75] we can distinguish
between three types of gravitational instantons (see Figure 3 for an illustration).

• Euclidean wormholes (C < 0):
The case C < 0 leads to a geometry with a throat and we call this solution a
Euclidean wormhole. The divergence of grr at r = r0 ≡ |C|1/4 is only a coordinate
singularity. The Ricci scalar R is

R = 6C
r6 (2.20)

and thus it is finite for all r ≥ r0. The locus r = r0 can then be interpreted as the
end of one wormhole throat. We can then attach another solution of this type at
r = r0 which can either be attached to our universe (see Figure 2) or a different
universe (see Figure 3). In this paper we will only consider wormholes which close
again in our universe, i.e. we are dealing with pairs of holes each connected by a
“handle”.

• Extremal instantons (C = 0):
The solution for C = 0 is called an extremal gravitational instanton [17; 75]. Even
though space is flat in that case, the fields ϕ and θ still exhibit a nontrivial profile.
This is possible due to a complete cancellation of terms in the energy-momentum
tensor [92].

• Cored gravitational instantons (C > 0):
The case C > 0 gives rise to a geometry with a curvature singularity at r = 0.
Such solutions are called cored gravitational instantons [17].

Having reviewed the solution for the metric, we will now solve the equation of motion
for H without specifying F(ϕ). From (2.19) we obtain the equation of motion:

d ? H = −F
′(ϕ)
F(ϕ) dϕ ∧ ?H. (2.21)

We expect that solutions for ϕ and H should exist that respect the spherical symmetry
of the background. We thus propose that ϕ = ϕ(r). Similarly, following [28], we make
the ansatz

H = h(r)ε (2.22)

10



(a) Wormhole connected to an-
other universe

(b) Extremal gravitational in-
stanton

(c) Cored gravitational instan-
ton

Figure 3: The three types of gravitational instantons are depicted. (a) Euclidean worm-
hole connecting two asymptotically flat spaces. It is also possible to connect
both ends to the same space as shown in Figure 2. (b) Extremal gravitational
instanton: in this case space is flat everywhere. The cross in the middle indi-
cates the locus r = 0. (c) Cored gravitational instanton: there is a curvature
singularity at r = 0.

with ε the volume form on S3 such that∫
S3
ε = 2π2r3 . (2.23)

From (2.22) it follows that ?H ∼ h(r)dr and the LHS of (2.21) vanishes. As we have
chosen ϕ = ϕ(r) the RHS of (2.21) equally vanishes and the equation of motion for H
is satisfied.
In addition, H also has to satisfy the Bianchi identity dH = 0. This enforces

h(r) = n

Ar3 , (2.24)

with A ≡ A(S3) = 2π2 the area of the unit sphere. Charge quantisation (2.8) implies
that n ∈ Z.
In order to find the solution for ϕ it is sufficient to consider the rr-component of the

Einstein equations, Grr = Trr, which can be shown to be equivalent to the Klein-Gordon
equation for ϕ. It reads

1
2

(
1 + C

r4

)
(ϕ′)2 − 3F(ϕ)n2/A2 + 3C

r6 = 0 , (2.25)

where we already used the solution for H. We also defined ϕ′ ≡ ∂ϕ/∂r. The solution
for ϕ can then be found by integrating this differential equation.

Model-dependent solutions

From (2.25) it is clear that explicit solutions for ϕ will depend on the functional form
of the term F(ϕ). In this subsection we will restrict our attention to functions of the
form F(ϕ) ∼ exp(−αϕ), where we choose without loss of generality α > 0, as this func-
tional form arises frequently in string compactifications. For example, this behaviour

11



is observed when ϕ is identified with the dilaton. Similarly, the same functional form
appears if ϕ corresponds to the volume modulus in setups with large compactification
volume (e.g. [93]) or if ϕ is a complex structure modulus at large complex structure.
We will study such examples in Section 5.2.
To be specific, we take

F(ϕ) = 1
3!f 2

ax
exp(−αϕ) , (2.26)

where fax is from now on a constant. The value of the parameter α will depend on the
type of geometric modulus. We can assume limr→∞ ϕ(r) = 0 without loss of generality.
Then fax will correspond to the asymptotic value of the axion decay constant.
In the following, we will summarise the explicit solutions for ϕ for the Euclidean

wormhole, the extremal instanton and for the cored instanton. Further details can be
found in Appendix D.

• Euclidean Wormhole (C < 0):
The analytical solution to (2.25) in this case is [28; 75]

eαϕ(r) = 1
cos2(K−) cos2

K− + α

2

√
3
2 arcsin


√
|C|
r2

 . (2.27)

Here, we already implemented the boundary condition limr→∞ ϕ(r) = 0, which
also implies that

C = − n2

3!f 2
axA

2 cos2(K−). (2.28)

The integration constant K− is not a free parameter. This can be seen as follows.
When the field reaches the wormhole throat at r = r0 ≡ |C|1/4, the factor (1 +
C/r4) in (2.25) vanishes, hence

3F(ϕ(r0))n2/A2 + 3C = 0 . (2.29)

Using (2.28), this translates to

cos2

K− + απ

4

√
3
2

 = 1, (2.30)

and thus

K− = −απ4

√
3
2 . (2.31)

Inserting this back into the solution yields

eαϕ(r) = 1
cos2(

√
3/2απ/4)

cos2

α
2

√
3
2 arccos


√
|C|
r2

 . (2.32)

To see that one can take two wormhole solutions and glue them together, let us
now change coordinates by writing r = a(t) such that the metric becomes

ds2 = dt2 + a2(t)dΩ2
3 . (2.33)
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One can show that a(t) and ϕ(t) are symmetric under t → −t. This implies the
existence of a “handle” as shown in Figure 2, assuming also that the two throats
are very distant in R4.
Interestingly, not all values for α will lead to physically acceptable solutions. Note
that ϕ(r) is regular everywhere on r ∈ [|C|1/4,+∞) only for dilaton couplings in
the range 0 ≤ α < 2

√
2/3. For α > 2

√
2/3 there is always a value of r > |C|1/4,

where eαϕ(r) = 0, i.e. ϕ(r) → −∞. This is consistent with [1; 28; 75]. In our
case the field ϕ corresponds to the string coupling or a geometric modulus of the
string compactification. A runaway behaviour ϕ(r)→ −∞ is then pathological as
it would correspond to a limit of decompactification or vanishing string coupling.
In all these cases new light states will appear resulting in a loss of control over
the effective theory. This pathology is avoided for α = 2

√
2/3. However, in this

case we obtain C = 0 which will be discussed next. Overall, we find that only the
range 0 ≤ α < 2

√
2/3 is physically allowed for Euclidean wormholes.

Last, note that the limit α → 0 can be identified with the Giddings-Strominger
wormhole [28] which exhibits a constant dilaton profile.

• Extremal Instanton (C = 0):
For the case of an extremal instanton we find

eαϕ(r) =
(

1 + αn

4Afax
1
r2

)2

, (2.34)

which is valid for all α > 0. (For α = 2
√

2/3 this solution agrees with (2.32). A
plot of the dilaton profile in this case can be found in Figure 4.). The result can
be obtained most easily by solving (2.25) for C = 0. Notice that (2.34) with a
minus sign in the bracket would in principle also be a solution (see Appendix D),
but then there would again be a value of r > 0 so that eαϕ = 0, leading to the
same problems as described above. We hence exclude this possibility.

• Cored gravitational instantons (C > 0):
Finally, for the case of cored gravitational instantons C > 0 one finds [17; 75]

eαϕ(r) = 1
sinh2(K+)

sinh2

K+ + α

2

√
3
2arcsinh

(√
C

r2

) , (2.35)

where we again ensured limr→∞ ϕ(r) = 0 by demanding

C = n2

3!f 2
axA

2 sinh2(K+) . (2.36)

In Figure 5 two plots of the dilaton profile are presented. The integration constant
K+ should be positive in order to again avoid a divergence of ϕ for some r >
0, but is otherwise unconstrained. This is different compared to wormholes or
extremal instantons, which do not exhibit a free parameter. From this 4d effective
theory one is lead to believe that there exists a whole family of cored instanton
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Figure 4: Illustration of dilaton profiles. The values of r and ϕ are in Planck units.
(a) Euclidean wormhole (C < 0):
Here we choose n/fax such that C = − cos2

(
απ
√

3/2/4
)
and plot for α = 1.

(b) Extremal instanton (C = 0) with α = 2
√

2/3.

0.0 0.5 1.0 1.5 2.0 2.5 3.0
r

2

4

6

8

10

φ

Figure 5: This plot shows dilaton profiles for the cored gravitational instanton with
α = 15 (solid line) and α = 0.1 (dashed line). Again, r and ϕ are given in
Planck units. For the purpose of illustration we have chosen K+ = 0.5 and
n/fax such that C/ sinh2K+ = 1.
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solutions parametrised by K+. However, by considering the microscopic origin of
gravitational instanton solutions, one finds evidence that only certain values of
K+ are allowed, as we will now discuss.

2.3. Interpretation of the Integration Constant K+

The integration constant K+, or equivalently C, seems to be a free and continuous
parameter giving rise to a family of solutions. We want to argue that this is not the case.
Note that the cored gravitational instanton solutions are UV-sensitive and therefore a
naive 4d field theory treatment is not sufficient. Instead, it is crucial to understand
those solutions in a UV-complete theory, such as string theory. In this context the role
of the integration constant K+ becomes clear. Specifically, it was pointed out in [75]
that the parameter C is determined by the mass M and charge Q of a dilatonic black
brane wrapping internal cycles in a higher-dimensional theory, whose dimensionally
reduced action coincides with (2.19). This holds true at least for some values of α.
Consequently, we conjecture that C and K+ generically take discrete and well-defined
values determined by the underlying microscopic theory. Further, if the Weak Gravity
Conjecture holds in 5d, cored gravitational instantons may not be stable.
We support this conjecture by providing a specific toy-example borrowed from [75].

Following their results, we can consider a five-dimensional model with Euclidean action
in 5d Planck units

S =
∫
d5x

√
ĝ
[
−1

2R̂ + 1
2(∂φ̂)2 + 1

4e
aφ̂F̂ 2

]
, (2.37)

where F̂ = dÂ is a 2-form field strength tensor. For the dimensional reduction to a 4d
theory we choose8

dŝ2
(5) = e2β1ψdτ 2 + e2β2ψds2

(4) (2.38)

together with Â = θdτ and φ̂ = φ, i.e. the fields θ and φ̂ do not depend on the extra-
dimensional coordinate τ . In Einstein-frame with canonically normalised kinetic terms
dimensional reduction fixes the constants β1 and β2 to

β1 = −2β2, β2 = 1√
6
. (2.39)

After redefining the fields φ and ψ via a rotation in the (φ, ψ)-plane we get

S =
∫
d4x
√
g
[
−1

2R + 1
2(∂φ̃)2 + 1

2(∂ψ̃)2 + 1
2e

αφ̃(∂θ)2
]
, (2.40)

where g denotes the metric corresponding to the 4d-line-element. Setting ψ̃ = 0 in
this action one obtains the model considered in (2.18) with dilatonic dependence in the
kinetic term of θ. The 4d dilaton coupling α is related to the 5d dilaton coupling a via9

α2 = a2 + 8
3 . (2.41)

8Since we started already with the description in Euclidean gravity, we reduce the action along the
imaginary time τ . For simplicity we choose the periodicity τ ∼ τ + 1. Later in this subsection
we allow the circumference of the S1 to have length ` > 0. This will then have to be taken into
account in order to determine the axion-decay constant.

9Notice that our normalisation of φ is such that the prefactors of the Ricci scalar R and the kinetic
term (∂φ)2 are equal, while in [75] the prefactor of the dilaton has a factor 1/2 relative to R. This
is why our dilaton-coupling α differs by a factor of

√
2.
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Therefore, the interpretation of the 4d theory in terms of a 5d theory is only possible
if α ≥ 2

√
2/3.

Let us now explicitly relate the integration constant C to microscopic properties of a
higher-dimensional theory. In [75] it was shown that for α = 2

√
2/3 the solutions of the

4d model (2.40) can be uplifted to a five-dimensional Reissner-Nordström (RN) black
hole solution

ds2
(5) = g+(ρ)g−(ρ)dτ 2 + dρ2

g+(ρ)g−(ρ) + ρ2dΩ2
3, F̂τρ =

√
6Q
ρ3 (2.42)

where
g±(ρ) = 1− ρ2

±
ρ2 (2.43)

with
ρ2
± = M ±

√
M2 −Q2. (2.44)

We take this as a simple toy-model to argue that C is generically fixed by properties
of a black brane wrapping internal cycles. The RN black hole can be interpreted as N
particles or 0-branes (or just one 0-brane wrapping the cycle N times) of total mass M
and total charge Q. Note however that the ADM-mass MADM is related to the mass
parameter M by MADM = 6π2M . Nevertheless, we henceforth call M the mass of the
RN-black hole. The charge Q is defined such that M = Q sets the extremality bound.
That is, Q = Nq̂

√
6/(6π2), where the charge q̂ is defined by Nq̂ = 1/2

∫
S3 ?5F̂ .10

Upon toroidal dimensional reduction along the coordinate τ with the identification
τ ∼ τ + ` and the circumference ` > 0 of the compactified dimension, the 5d solution
(2.42) turns into an instanton solution (2.4). Note that the coordinate singularity at
ρ = ρ+ of the 5d solution becomes a curvature singularity (at r = 0) in the 4d solution
(2.4). In the subsequent computation we show that our integration constant C is simply
given by C = `2(M2 −Q2) in 4d Planck units.
Denote by g(5)

MN the RN-metric (2.42), where M,N run over the coordinates of the
4d space and the extra-dimensional coordinate τ . Now, rescale the metric as follows:
g̃

(5)
MN = g

(5)
MN/(g+g−). From the canonical Einstein-Hilbert term we then get:∫

d5x
√
g(5)R[g(5)

MN ] =
∫
d5x(g+g−)3/2

√
g̃(5)R[g̃(5)

MN ] + ... =

=
∫
d4x`(g+g−)3/2

√
g̃(4)R[g̃(4)

µν ] + ... (2.45)

The last term occurs in the compactified 4d theory using the identification τ ∼ τ + `.
We want to point out that for generic ` > 0 there is a conical singularity at the outer
horizon ρ = ρ+. In principle, one could avoid such a conical singularity by choosing
the periodicity of τ appropriately (it would be the inverse of the Hawking-temperature
[96]), but this would mean to fix the compactification radius. Instead, we accept the
conical singularity as a necessary feature of Euclidean branes wrapped on cycles of
the compact space. We go to the Einstein frame (with 4d Planck mass Mp = 1) by
rewriting the Einstein-Hilbert term using the rescaled metric g(4)

µν = `(g+g−)3/2g̃(4)
µν . The

compactified 4d line-element then reads

ds2
(4) = `

dρ2
√
g+g−

+ `
√
g+g−ρ

2dΩ2
3. (2.46)

10For the normalisation we found it useful to translate the conventions in [94; 95] to our situation.
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For the comparison with the metric (2.4), the obvious coordinate transformation to be
made is simply r2 = ρ2`

√
g+g−. Using the definitions of g± it follows

rdr = `2ρ(ρ2 −M)
r2 dρ. (2.47)

Together with (ρ2 −M)2 = r4/`2 + (M2 −Q2), this implies:

`
dρ2
√
g+g−

= dr2

1 + `2(M2 −Q2)/r4 . (2.48)

Hence, we find the simple relationship

C = `2(M2 −Q2) (2.49)

in 4d Planck units. Upon dimensional reduction of (2.37) and using the periodicity of
the Wilson line Âτ ∼= Âτ + π/(q̂`) one can easily check that the axion decay constant
reads fax = 1/(2q̂`) for an axion θ with 2π-periodicity. It follows that

C = N2

24π4f 2
ax

(M
Q

)2

− 1
 . (2.50)

We can compare this result to our previous expression (2.36). First, we can identify
the wrapping number/number of 0-branes N with the flux number n. We then find
that the integration constant K+ in (2.36) is completely determined by the parameters
M and Q describing black holes/branes in the 5d theory. An immediate result is that
K+ and hence C are not free parameters. The possible range of values is determined
by the spectrum of black branes in the higher-dimensional theory. Furthermore, as M
and Q are discrete quantities it follows that C can also only take discrete values (for a
given value of fax). This property is only important as long as M and Q are small. In
the macroscopic regime of large M and Q the value of C can be dialed to any positive
value and it becomes effectively continuous. We come back to this in Section 4.
Notice that the case of M = Q, which gives C = 0, corresponds to an extremal

Reissner-Nordström black hole. In this sense, the name extremal instanton for flat 4d
solutions (2.4) is justified. In Section 4 we comment on how to express the extremal
instanton action in terms of ` and MADM, consistent with, for instance, [17; 89; 97].
This example illustrates nicely how 4d cored or extremal instanton solutions can be

obtained from black holes/branes with mass M and charge Q. Of course, one could
also go beyond such simple toy-models we just discussed, allowing also for dilaton
couplings α 6= 2

√
2/3. We expect the relation C = `2(M2 − Q2) to be modified by

the corresponding parameter a 6= 0 in this more general case. Furthermore, one would
expect that after SUSY-breaking extremal objects in string theory would appear as
non-extremal instantons in the 4d effective theory.
Last, let us remark on possible implications for cored gravitational instantons arising

from the Weak Gravity Conjecture. In particular, if the Weak Gravity Conjecture holds
in the 5d model we expect that objects with M > Q can in principle decay. As cored
gravitational instantons arise from such unstable objects upon dimensional reduction,
one may wonder whether this instability is then inherited by the instantons. If cored
gravitational instantons are indeed ‘unstable’, they should not be included in the path
integral and, as a result, they would not give rise to contributions to the potential. We
leave this interesting question for future work.
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3. Instanton Potentials from Euclidean Wormholes
The goal of this section is to show that the one-instanton action, describing a Giddings-
Strominger wormhole, gives rise to an instanton potential of the structure cos θe−S.
We begin with a brief review of Coleman’s derivation [98; 99] of the energy eigenvalues

for a simple one-dimensional quantum mechanical system with periodic potential V ,
e.g. V (x) ∼ sin2(2πx). These considerations can be applied to quantum field theory
and in particular to our system as well.
The Hamiltonian is H = p2/2 + V (x). An instanton or an anti-instanton correspond

to tunnelling events from x to x + 1 or x − 1, respectively. Using the dilute-gas ap-
proximation we can distribute instantons and anti-instantons freely in time. Let us
introduce a basis of states |j〉 in which the particle is localised at x ' j. Then for some
time interval T > 0, transition amplitudes are [98]

〈j+|e−HT |j−〉 =
(
ω

π

)1/2
e−ωT/2

∞∑
N=0

∞∑
N̄=0

1
N !N̄ !

(Ke−S0T )N+N̄δ(N−N̄)−(j+−j−), (3.1)

where j− and j+ are the positions of the initial and final state, respectively. N and
N̄ count the number of instantons and anti-instantons. Moreover, ω is defined by
ω = V ′′(0). K is the familiar determinant factor, which depends on details of the
potential V . S0 denotes the instanton action. The Kronecker delta can be rewritten as

δab =
∫ 2π

0

dθ

2πe
i(a−b)θ, (3.2)

and thus, after performing the summation,

〈j+|e−HT |j−〉 =
(
ω

π

)1/2
e−ωT/2

∫ 2π

0

dθ

2πe
i(j−−j+)θ exp

(
2KT cos θe−S0

)
. (3.3)

From this we can read off that the system has an energy eigenbasis

|θ〉 =
∑
j

eijθ |j〉 (3.4)

with eigenvalues
E(θ) = 1

2ω − 2K cos θe−S0 . (3.5)

This derivation reveals the logic behind the famous contribution ∼ cos θe−S to the
axion potential in quantum field theory, where the centres of the instantons are not
distributed on a time interval but instead in a region of spacetime with volume V . One
then simply has to replace the variable T by the volume V .

In the following we explain how this computation can be used to derive an instanton
potential induced by Euclidean wormholes. In the previous Section 2 we reviewed
that Euclidean wormholes exist in the presence of a non-vanishing 3-form flux H with
quantised charge n ∈ Z. An instanton would then correspond to a transition from n to
n+1. By the logic of Coleman’s computation above, this should induce a shift-symmetry
breaking potential.
In [17] this was questioned, because Euclidean wormholes appear as conduits and

charges would not disappear. In other words, one always has an instanton and an
anti-instanton, thus preserving n.
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We argue that this issue is more subtle: the two ends of a Euclidean wormhole do
not necessarily have to end at the same hypersurface of constant Euclidean time, but
can also close on distant hypersurfaces. Similarly, the two ends can have very large
spatial separation such that, from a local perspective, a potential à la Coleman should
be induced. Then, a Minkowskian observer would only see either the instanton or anti-
instanton part of the wormhole and thus find a change in the charge n, see Figure 6.
This invalidates the reasoning in [17], and hence we do not see any argument against
the breaking of the shift-symmetry due to Euclidean wormholes.

Euclidean Time

Figure 6: This picture presents a wormhole which opens at some initial time ti and
closes at tf > ti. The dotted line indicates the separation of the two events.

In fact, Coleman’s computation [98] suggests how to derive the instanton potential
due to Euclidean wormholes explicitly: because of charge conservation we are interested
in computing the transition function 〈n|e−HT |n〉. Then, we also have N = N̄ and thus
arrive at the sum

〈n|e−HT |n〉 =
(
ω

π

)1/2
e−ωT/2

∞∑
N=0

1
N !N ! (Ke

−S0T )2N . (3.6)

This is also pictorially consistent: in the case of Euclidean wormholes we are only
allowed to sum over such configurations where N = N̄ because the wormholes have two
ends connected to the same universe. The angle θ, which we will subsequently argue
to be our axion field, is now introduced as follows. The above sum can be expressed in
terms of a Bessel function I0(x),

I0(x) =
∞∑
m=0

1
m!m!

(
x

2

)2m
, (3.7)

which has the integral representation

I0(x) = 1
2π

∫ 2π

0
dθ exp(−x cos θ). (3.8)

Putting everything together, we find

〈n|e−HT |n〉 =
(
ω

π

)1/2
e−ωT/2

∫ 2π

0

dθ

2π exp
(
−2KT cos θe−S0

)
, (3.9)
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i.e. after switching to an eigenbasis of H as before,

|θ〉 =
∑
n

einθ |n〉 , (3.10)

we can read off the energy-eigenvalues as

E(θ) = 1
2ω + 2K cos θe−S0 . (3.11)

Finally, we want to make the identification of θ with our axion field, which induces the
wormholes. Due to the relation n ∼

∫
S3 θ′, we can treat n as the conjugate variable to

θ. It is precisely the axion-field which is dual to the 2-form B with quantised 3-form
flux

∫
dB = n.

To summarise, we conclude that Euclidean wormholes indeed induce an instanton
potential ∼ cos θe−S. Thus the axionic shift-symmetry is broken. It would be interest-
ing to study whether this can be seen more directly by building an analogy between
gravitational and gauge instantons, where the role of the term θTr(F ∧F ) is played by
θTr(R ∧R).

In the following we apply the presented derivation of the instanton potential to cases
of S = nS0, giving rise to potentials of the form ∑

n cos(nθ)e−nS0 .

4. The Limit of Validity of Gravitational Instanton
Actions

In this section we summarise the instanton actions for all cases C < 0, C = 0 and
C > 0 and find limits for the validity of the computation. Qualitatively, we have

S ∼ n

fax
(4.1)

in all three cases. This is of course already known for Euclidean wormholes, see e.g. [9;
28; 75–81] and also for C ≥ 0, see e.g. [17; 75].
Furthermore, we address one concern raised in [75]: the cored gravitational instanton

solutions have a singularity at r = 0 and hence it is unclear whether these solutions
can be trusted all the way to the limit r → 0. In fact, we expect a breakdown of the
solutions at some radius r = rc > 0, which will be estimated in Section 6. We expect
such a cutoff radius to be present in any extra-dimensional theory independently of
whether a curvature singularity exists or not. Therefore, even the extremal instantons,
which do not have singularities, should only be trusted down to r = rc. The situation is
different for the Euclidean wormhole solutions, where we can have full control over the
solution as long as r0 & rc, with r0 ≡ |C|1/4 being the radius of the wormhole throat at
the centre.
The limit of validity affects the computation of the instanton action. In the case of

C ≥ 0 one would usually integrate from r = 0 to infinity, but instead we can only rely
on the contribution from the interval (rc,+∞). Whenever a significant fraction of the
action comes from (0, rc), we cannot trust the instanton actions computed in [17; 75]
and we will discard these cases.

20



Thus, the initial task of this section is the evaluation of the on-shell contribution
of the integral in (2.19). We proceed by using the equations of motion successively.
Details of the computations are presented in Appendix E.
At first, by tracing Einstein’s equations, we can express the Ricci scalar by the trace

of the energy-momentum tensor:
R = −T. (4.2)

One can then rewrite (2.19) as

S =
∫
M
d4x
√
gF(ϕ)H2. (4.3)

However, this is not yet the full contribution to the instanton action, because the
Gibbons-Hawking-York boundary term has to be taken into account. It is

SGHY = −
∮
∂M

d3x
√
h(K −K0), (4.4)

where h is the determinant of the induced metric on ∂M . K and K0 are the traces of
the extrinsic curvatures of ∂M in M and flat space, respectively.
Then, the instanton action is computed as

Sinst = S + SGHY =
∫
M
d4x
√
gF(ϕ)H2 −

∮
∂M

d3x
√
h(K −K0). (4.5)

Henceforth, we restrict to the case F(ϕ) = exp(−αϕ)/(3!f 2
ax). Using this together

with the equation of motion (2.21) and (2.27), (2.34) or (2.35) depending on the choice
of C, one can rewrite the first term, S, in the instanton action as an integral over ϕ.
The contribution from SGHY is computed by considering a surface of constant r, see
[17] or Appendix E.
In the following we analyse the instanton action case by case:

Case C = 0:

Extremal instanton solutions go along with a flat metric (C = 0). Thus, we have

SGHY = 0. (4.6)

However, the fields ϕ and B have a non-trivial profile, and therefore we obtain a non-
zero contribution to the instanton action, which reads

Sinst = − n

fax
lim
rc→0

∫ ϕ(∞)

ϕ(rc)
dϕ exp(−αϕ/2) = 2

α

n

fax
. (4.7)

Using (2.34) the contribution from r = 0 to r = rc is

∆S = 2
α

n

fax

(
1 + αn

4Afax
1
r2
c

)−1

. (4.8)

Demanding that ∆S � Sinst implies
αn

4Afax
� r2

c , (4.9)
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which in turn can be rewritten as a lower bound on Sinst:

Sinst �
8A
α2 r

2
c . (4.10)

This bound depends on the cutoff rc and the dilaton coupling α. Interestingly, the bound
gets weaker for larger α such that contributions from gravitational instantons become
increasingly important with increasing α. However, as we will describe in Section 5.2, a
regime of large dilaton coupling α may not be attainable in string theory. We find that
only rather small values of α ∼ O(1) arise from the simplest string compactifications.
Before addressing the next case, we want to point out that (4.7) can be rewritten as

Sinst = `MADM (4.11)

in the case of α = 2
√

2/3, where MADM is the ADM-mass of our extremal 5d RN-black
hole of Section 2.3, which is consistent with e.g. [17; 89; 97].11

Case C > 0:

The Gibbons-Hawking-York boundary term yields

SGHY = −3Ar2

√1 + C

r4 − 1
∣∣∣∣∣∣
∞

rc

= 3Ar2
c

(√
1 + C

r4
c

− 1
)
, (4.12)

where A = 2π2.
The contribution from (2.19) is given by the integral

S = − n2

Af 2
ax

∫ ϕ(∞)

ϕ(rc)

exp(−αϕ)√
n2 exp(−αϕ)/(A2f 2

ax) + 6C
=

= 2n
αfax

√
exp(−αϕ) + sinh2K+

∣∣∣∣∣
ϕ(∞)

ϕ(rc)
, (4.13)

where we used (2.36). Combining those two results and taking rc → 0, we obtain the
instanton action

Sinst = 2
α

n

fax

e−K+ + α

2

√
3
2 sinhK+

 . (4.14)

As before, we need to ensure that the integral from r = 0 to r = rc only gives a minor
contribution to the full instanton action (4.14). This contribution is

∆S ≡ (S + SGHY)|r=rcr=0 = (4.15)

= 2
α

n

fax

√exp(−αϕ(rc)) + sinh2K+ −

1− α

2

√
3
2

 sinhK+


− 3Ar2

c

(√
1 + C

r4
c

− 1
)
.

11For the derivation of (4.11) we used that the black hole charge Q is related to n by n = 2π2√6Q. This
can be obtained by dimensional reduction of the term 1/(2·3!)

∫
(?5F̂ )2 together with F̂τρ =

√
6Q/ρ3

and (2.8).
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In the limit r2
c/
√
C � 1 this can be simplified to

∆S = 4n
αfax

sinhK+

(
r2
c

2
√
C

) α√
2/3

+ 3Ar2
c + . . .

= 2n
αfax

sinhK+

2
(
r2
c√
C

) α

2
√

2/3
+ α

2

√
3
2

(
r2
c√
C

)+ . . . , (4.16)

where omitted terms decrease as r4
c/C. The condition ∆S � Sinst turns out to be

self-consistent with the imposed regime r2
c/
√
C � 1. More precisely, by choosing

√
C

sufficiently large one can always ensure that ∆S � Sinst. According to (2.36) this is
equivalent to choosing (n sinhK+)/fax sufficiently large. This is very similar to the
parametric situation encountered above for C = 0.
To determine the strongest constraints on inflation we are interested in identifying

the instantons with the smallest action. For a given value of n/fax and at a fixed
dilaton coupling α cored gravitational instantons correspond to a family of solutions
parameterised by K+ (see Section 2.2). We wish to identify the instanton with the
smallest action in this family. As pointed out in Section 2.3, while K+ is expected to
take discrete values, it can be effectively treated as a continuous parameter in the limit of
macroscopic objects. Hence we can determine the solutions with the smallest action by
formally extremising (4.14) with respect to K+ as it was done in [17]. For α ≥ 2

√
2/3

the action of cored instantons is always bigger than that of extremal instantons. If
0 < α < 2

√
2/3, the smallest cored instanton action is as big as the extremal instanton

action for α = 2
√

2/3. To summarise, we obtain

Scored(α) ≥

Sextremal(α) for α ≥ 2
√

2/3
Sextremal(α = 2

√
2/3) for α < 2

√
2/3

, (4.17)

where the extremal instanton action was computed above in (4.7). The upshot is that
the contributions to the axion potential due to cored gravitational instantons will always
be subleading compared to the effects due to a suitable extremal instanton. As we are
interested in determining the strongest constraints on axion inflation, we will hence
neglect cored instantons in the following analyses and focus on extremal instantons and
Euclidean wormholes instead.

Case C < 0:

For Euclidean wormholes the coordinate r is defined on r ∈ [r0,+∞), where r0 ≡ |C|1/4
is the size of the wormhole at the centre. As long as r0 & rc one can safely integrate
from r = r0 to r =∞. As r0 ≡ |C|1/4 ∝ n/fax (see (2.28)) the condition r0 & rc can be
fulfilled by choosing n/fax sufficiently large.
As pointed out in Section 2.2 we will only consider wormholes with dilaton couplings

α < 2
√

2/3 in order to have regular solutions for ϕ. We then proceed with calculating
the action. The Giddings-Hawking-York boundary term vanishes [28],

SGHY = 0, (4.18)
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since two asymptotically flat regions are connected by a handle and thus the integral
gives zero. The on-shell contribution from (2.19) for only half of the wormhole12 is
given by

Sinst = − n2

Af 2
ax

∫ ϕ(∞)

ϕ(r0)

exp(−αϕ)√
n2 exp(−αϕ)/(A2f 2

ax)− 6|C|
=

= 2
α

n

fax
sin

απ
4

√
3
2

 , (4.19)

where we used the solutions for C < 0 from Section 2.2. Notice that the limit α → 0
corresponds to the Giddings-Strominger wormhole [28], and we have

Sinst = π
√

6
4

n

fax
. (4.20)

Furthermore, in the limit α → 2
√

2/3 we find the instanton action of an extremal
instanton with α = 2

√
2/3.

Summary

We summarise our results for the instanton action. For one, the instanton action
Sinst scales as Sinst ∼ n/fax for all three types of gravitational instanton. Results
were obtained in an effective theory with a cutoff at a length scale rc. The existence
of this cutoff implies that not all gravitational instanton solutions can be trusted in
the framework of the effective theory. One can derive a criterion for deciding which
gravitational instantons to include. While numerical factors may vary, this condition
exhibits the same parametric behaviour for all three types of gravitational instantons:
given a cutoff at a length scale rc one has to choose n/fax � r2

c for being able to trust
the instanton action computed in the effective theory.
In order to determine the importance of such gravitational instantons it is crucial

to estimate the size of the cutoff scale rc. The first step is to see whether moduli
stabilisation places a lower bound on rc.

5. Gravitational Instantons and Moduli Stabilisation
We now want to make progress towards realistic string compactifications. The pure
Einstein-axion system is relevant only below the moduli scale. Above that scale, moduli
can play the role of an additional scalar ϕ with dilatonic coupling to the axion or 3-form
kinetic term. We will make use of our detailed discussion of this extended system in
Section 2 and Section 4.

5.1. Gravitational Instantons in the presence of a potential
We only consider the lightest modulus, which we will call ϕ. For instance, it could
be the saxion associated with the axion θ. We will assume stabilisation at ϕ = 0. In
12To get the instanton action, we have to divide the full wormhole action by two, as the wormhole

represents a pair of instanton and anti-instanton. For more details, see Appendix E.
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the throat region of the instanton, the modulus will be typically driven away from this
value. We will assume that this displacement is small enough so that the potential of
the modulus can be approximated by a mass term, i.e. V = m2ϕ2/2.
The obvious extension of (2.2) is then

S =
∫
d4x
√
g
[
−1

2R + 1
2F(ϕ)H2 + 1

2g
µν∂µϕ∂νϕ+ V (ϕ)

]
. (5.1)

We take F to be exponential, which is the case discussed in detail earlier and which is
typical for string-derived models (see Section 5.2). Nevertheless, due to the presence of
the potential, solutions are more complicated than before. We make the most general
ansatz respecting spherical symmetry

ds2 = λ(r)dr2 + r2dΩ2
3, (5.2)

as in Appendix A. From the derivation therein it becomes clear that λ(r) is no longer
given by (1 + C/r4)−1. However, we will see that for r � r∗ ≡ 1/m the mass term
is negligible and we can use the approximation λ(r) ' (1 + C/r4)−1 (cf. the related
discussion in [78]). Thus, the three types of gravitational instantons analysed above
remain relevant.
The fact that the mass term is negligible close to the centre of the instanton is intu-

itively clear: The field strength contribution to the energy-momentum tensor increases
as one approaches the centre and hence, for sufficiently small r, the contribution from
the mass term becomes subdominant. This will become more explicit below.
Employing (5.2), the Einstein equation Grr = Trr and the Klein-Gordon equation

read

1
2(ϕ′)2 − λ(r)V (ϕ) + 3

r2 (λ(r)− 1)− 3λ(r)F(ϕ) n2

A2r6 = 0 (5.3)

ϕ′′ +
(

3
r
− λ′(r)

2λ(r)

)
ϕ′ − λ(r)V ′(ϕ)− 3λ(r)F ′(ϕ) n2

A2r6 = 0. (5.4)

Here we also used (2.22) and (2.24), which specify the profile of H.

Approximation

As already sketched above, the strategy is as follows: Let ϕ0(r) and λ0(r) ≡ (1+C/r4)−1

be the field and metric profiles for V ≡ 0. Then we work out the conditions under which

Trr(ϕ0, λ0)� V (ϕ0) . (5.5)

This specifies the regime where we can expect the ϕ0(r) and λ0(r) to provide good
approximations to the true solutions ϕ(r) and λ(r).
We now go into more detail: The full energy-momentum tensor of (5.1) reads

Tµν = −gµν
[1
2F(ϕ)H2 + 1

2∂ρϕ∂
ρϕ+ V (ϕ)

]
+ 3F(ϕ)HµρσH

ρσ
ν + ∂µϕ∂νϕ. (5.6)

Taking ϕ = ϕ0 and λ = λ0 we find

Trr(ϕ0, λ0) = 3C
r6(1 + C/r4) −

V (ϕ0)
1 + C/r4 , (5.7)
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where (2.25) was used. We see that the potential is negligible compared to the curvature
contributions if (for C 6= 0) ∣∣∣∣3Cr6

∣∣∣∣� 1
2m

2ϕ2
0 . (5.8)

Appealing again to (2.25), we first consider the regime r � |C|1/4. Then ϕ′0(r) ∼ 1/r3

and hence
ϕ0(r) ∼ 1

r2 . (5.9)

Here we treat n/A and C as ‘O(1) factors’ and disregard them. We explain this below.
With this, (5.8) translates to

r � r∗ ≡
1
m

. (5.10)

Now, our interest is in the case m � 1, i.e. in moduli much lighter than the Planck
scale. This implies r∗ � 1 so that r∗ � |C|1/4, giving us a large validity range for
our approximation ϕ0 ∼ 1/r2. Crucially, while |C| also figured as a large parameter in
other parts of this paper, here the much stronger hierarchy 1/m � 1 dominates and
our crude approximation concerning ‘O(1) factors’ is justified.
Next, we need to consider the region r . |C|1/4. While here the profile ϕ0(r) is more

complicated, we are now deeply inside the regime of large field strength. It is easy to
convince oneself that the potential ∼ m2ϕ2 remains subdominant. What is less obvious
is whether the m2ϕ2 approximation remains justified, given that the field now moves
significantly away from zero. This will be discussed later.
Finally, the extremal instanton with C = 0 requires an extra comment. In this case

the energy-momentum tensor vanishes and the criterion (5.8) is no longer applicable.
Instead, we require that the mass term in (5.3) should be subdominant compared to
every other term in this equation, i.e.

m2ϕ2
0 �

3F(ϕ0)n2

A2r6 , (5.11)

which yields again the condition r � 1/m (here we used that F is approximately
constant for large r). Note that in this case the behaviour of ϕ0 at large r is specified
by (2.34) and the role of the ‘largish’ parameter |C|1/4 is taken over by n/fax.
To summarise, we have now argued rather generally that the gravitational solutions

found in the absence of a potential are good approximations for r � 1/m. We will not
need the behaviour of ϕ outside that region, at r →∞. Indeed, by redefining ϕ we can,
as argued before, always ensure that the ϕ0 asymptotically approaches the minimum
of the potential at ϕ = 0. Thus, even while the actual profile of ϕ(r) can significantly
deviate from ϕ0(r) at r � 1/m, there is no doubt that the fundamental property
of ϕ approaching zero at large r will be maintained. Crucially, since 1/m � |C|1/4
and the action integral is dominated by the region r . |C|1/4, we can also trust the
zero-potential solutions for evaluating the action, independently of the large-r region.

5.2. Dilaton Couplings from String Compactifications
The gravitational solutions in Section 2.2 were obtained for scalars with dilatonic cou-
plings, i.e. where the prefactor of the kinetic term for the axion is given by F(ϕ) =
e−αϕ/(3!f 2

ax). This form frequently occurs for effective theories obtained from string
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theory compactifications. The value of α will depend on the precise identification of
the axion and scalar with the corresponding fields in the string compactifications. In
the following, we will provide relevant examples.

The Axio-Dilaton

Let us first consider the case where both the axion and the scalar descend from the
axio-dilaton field S = C0 + i/gs with string coupling gs and universal axion C0. It
appears in the Kähler potential as

K = − ln
(
−i(S − S̄)

)
. (5.12)

The kinetic term of the Lagrangian L ⊃ KSS̄∂µS∂µS̄ then becomes

L ⊃ g2
s

4 (∂C0)2 + 1
4g2

s

(∂gs)2 . (5.13)

Canonical normalisation of our saxion gives gs = g0
s exp(

√
2ϕ). Thus, the field strength

coupling reads
F(ϕ) = 1

2 · 3!
1
KSS̄

= 1
3(g0

s)2 exp(−2
√

2ϕ), (5.14)

so in our notation the dilaton coupling α is α = 2
√

2. Notice that ϕ→∞ corresponds
to the strong coupling limit, while the weak coupling limit is given by ϕ→ −∞.

Kähler Moduli at Large Volume

Let us now consider the Kähler moduli sector at large volume. In particular, consider
the case where the volume is dominated by one Kähler modulus T . For example, this
arises in the scheme of moduli stabilisation known as the Large Volume Scenario (LVS)
[93]. The relevant part of the Kähler potential is

K = −2 lnV = −3(T + T̄ ) + . . . . (5.15)

Here we wish to identify the saxion with Re(T ) and the axion with Im(T ). The leading
contribution to the kinetic term for the saxion and axion is then given by

KT T̄ = 3
(T + T̄ )2

. (5.16)

Canonical normalisation gives

Re(T ) = exp
−

√
2
3ϕ
 , (5.17)

and hence

F(ϕ) ∼ exp
−2

√
2
3ϕ
 . (5.18)

The dilaton coupling is thus α = 2
√

2/3.
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Complex Structure Moduli in the Large Complex Structure Limit (LCS)

It is well-known that complex structure moduli in the LCS limit give rise to a shift-
symmetric structure in the Kähler potential. Let u be a complex structure modulus in
the LCS regime and z denote the remaining complex structure moduli. Then we have

K = − ln
(
κuuu(u+ ū)3 + κuui(u+ ū)2(zi + z̄i) + κuij

2! (u+ ū)(zi + z̄i)(zj + z̄j) +

+κijk3! (zi + z̄i)(zj + z̄j)(zk + z̄k) + f(zi)
)
, (5.19)

where the κijk denote the intersection numbers of the mirror-dual Calabi-Yau three-
fold and f is a function of the remaining complex structure moduli zi and accounts
for instantonic corrections to the Kähler potential. For the moment only u shall be
stabilised in the LCS limit, i.e.

Re(u) > 1 . (5.20)
Thus, one obtains

Kuū = 3
(u+ ū)2 (5.21)

at leading order as long as κuuu 6= 0. Omitted terms scale as (u + ū)−3. Therefore,
canonical normalisation yields

Re(u) = exp
−

√
2
3ϕ
 , (5.22)

and hence α = 2
√

2/3.
In the situations studied so far the saxion and axion arose from the same complex

scalar field. However, one may also consider the case where the saxion and axion
originate from different moduli. To give just one example, let us again consider the
complex structure sector of a CY threefold, but now we will assume that two complex
structure moduli u, v are in the LCS regime. Further, we assume the following hierarchy

Re(u)� Re(v)� 1 . (5.23)

We will now consider the axionic field Im(v) and study the coupling to the saxion Re(u).
As before, the leading contribution to the kinetic term of the saxion is

Kuū = 3
(u+ ū)2 , (5.24)

and the canonically normalised saxion is given by (5.22). The leading contribution to
the kinetic term for the axion is

Kvv̄ ∼
1

(u+ ū)2 ∼ exp
−2

√
2
3ϕ
 , (5.25)

where omitted terms decrease as (u+ ū)−3. While both Kuū and Kvv̄ scale as (u+ ū)−2,
this behaviour has different origins in the two cases. The leading contribution to Kuū
comes from κuuu(u+ū)3, whereas it is the terms κuvv(u+ū)(v+v̄)2 and κuuv(u+ū)2(v+v̄)
which contribute to Kvv̄ at leading order.
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Despite these differences we again find

F(ϕ) ∼ exp
−2

√
2
3ϕ
 , (5.26)

and α = 2
√

2/3.13
Note that in all the cases examined above the dilaton coupling is just outside the

range allowing for Euclidean wormhole solutions 0 ≤ α < 2
√

2/3. This observation and
a possible way out have been pointed out in [88; 100]. The idea is as follows. Even
if wormholes charged under individual axions do not exist, one can nevertheless find
solutions which are charged under more than one axion (see also [101]).
We will conclude this section with an example that allows for the existence of Eu-

clidean wormhole solutions and may be useful to illustrate and develop the above idea.
Let us consider both the axio-dilaton sector and the complex structure moduli sector
of a CY 3-fold at LCS:

K = − ln
(
−i(S − S̄)

)
− ln

(
κuuu(u+ ū)3

)
. (5.27)

In the spirit of [88; 100; 101] we could now investigate Euclidean wormhole solutions
charged under both the universal axion as well as the complex structure axion. Al-
ternatively, we may assume that we can stabilise moduli such that S = iu. Then we
effectively have the theory of one 4-fold complex structure modulus and we obtain

Kuū = 4
(u+ ū)2 . (5.28)

Taking the saxion as Re(u) and the axion as Im(u) we now find α =
√

2 which lies within
the range allowing for wormholes. We leave it for future work to investigate whether
this pattern of moduli stabilisation can be realised in a realistic compactification.

5.3. Maximal Field Displacements of Dilatonic Fields
In the previous sections we have made progress towards studying gravitational instan-
tons in the presence of moduli. The results of Section 5.2 imply that a restriction to
moduli with dilatonic couplings is well-motivated from string compactifications. We also
made progress towards understanding the role of the potential stabilising the modulus
in Section 5.1. In particular, in the regime r � 1/m the potential can be ignored and
gravitational instanton solutions for a massless dilaton will be good approximations.
There is another effect which we need to take into consideration. When approaching

the core of a gravitational instanton, the value of the dilaton increases. In the case
of a Euclidean wormhole it reaches a maximum at the wormhole throat, while for
extremal and cored instantons the dilaton diverges for r → 0. However, we cannot
afford arbitrarily large field displacements, as this will take us outside the range of
validity of our effective theory.
13This would be different if κuuu and κvvv were the only non-vanishing intersection numbers. Then we

would still have Kuū ' 3/(u+ ū)2 but now Kvv̄ ∼ (v + v̄)/(u+ ū)3 for Re(u)� Re(v). Assuming
that Re(v) is stabilised such that we can take it as constant, we would now find a dilaton coupling
α =
√

6.
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To be specific, consider the effective theory of the axio-dilaton at weak string coupling.
When approaching the centre of a gravitational instanton solution the string coupling
increases compared to its asymptotic value. If it becomes too large the supergravity
regime breaks down and we cannot trust our solutions. A similar argument can be
made for any effective dilaton-axion theory from string compactifications.
This gives us an additional criterion to decide which gravitational instantons to trust

and which ones to disregard. We will analyse this condition focussing on Euclidean
wormholes and extremal gravitational instantons. In the following, we will denote by
ϕmax the threshold value at which the effective theory breaks down.

Euclidean Wormholes

For Euclidean wormholes the displacement becomes maximal at the throat of the worm-
hole. Using our solution for ϕ(r) (2.32) one finds:

ϕ(r0) = − 1
α

ln cos2

απ
4

√
3
2

 . (5.29)

To trust the wormhole solution we require ϕ(r0) < ϕmax. The maximal displacement
only depends on the dilaton coupling α, which is not a free parameter, but a property of
the physical system studied. As a result the maximal displacement is model-dependent.
Recall that Euclidean wormhole solutions only exist for dilaton couplings in the range

0 ≤ α < 2
√

2
3 . The maximal displacement at the wormhole throat is smallest for α = 0,

grows when α is increased and eventually diverges for α → 2
√

2
3 . To give just one

example, the value α =
√

2 yields a displacement ϕ(r0) − ϕ(∞) = ϕ(r0) ' 2.2 in
Planck units, which may already be critical.
Another important result from this section is that the maximal displacement ϕ(r0)

is independent of the ratio n/fax, or, equivalently, the wormhole radius at the throat
r0. Hence we do not get any additional constraints on these quantities due to the
displacement of the saxion.

Extremal Instantons

For extremal gravitational instantons the ϕ-profile exhibits a divergent behaviour for
r → 0. As laid out in Section 4, we will nevertheless trust such solutions as long as
the dominant part of the instanton action arises from the region r > rc, where rc is
the length cutoff of our effective theory. This cutoff will be discussed in more detail in
Section 6.2. Here we will show that the displacement of the saxion gives an independent
condition for the reliability of our action.
Let us be more precise. Given a threshold value ϕmax beyond which our theory

breaks down, we can identify a radius rmin at which the dilaton crosses this value:
ϕ(rmin) = ϕmax. This can be made explicit using (2.34):

eαϕmax =
(

1 + αn

4Afax
1
r2

min

)2

. (5.30)

To trust our solution we need to ensure that ∆S/S � 1, where ∆S is the contribution
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to the instanton action from the region r < rmin. Using (4.7) and (4.8) we find

∆S
S

=
(

1 + αn

4Afax
1
r2

min

)−1

= exp
(
−α

2ϕmax
)
. (5.31)

Hence the relevant condition is

exp
(
−α

2ϕmax
)
� 1 , (5.32)

which gives an additional (model-dependent) constraint.
Last, let us return to one aspect encountered for the case of Euclidean wormholes.

There we observed that for α→ 2
√

2
3 the saxion displacement at the wormhole throat

grows without bound and would exceed any finite value ϕmax. Note that this does
not necessary constitute a pathology. Rather, the behaviour observed for a wormhole
becomes similar to that of an extremal instanton. In fact, in the limit α → 2

√
2
3 the

Euclidean wormhole becomes a pair of extremal instantons. We can then deal with the
divergence of ϕ as in the case of extremal instantons and cut our solution off at some
r = rmin.

6. Consequences for Large Field Inflation
In this section we will analyse to what extent gravitational instantons constrain axion
inflation. The idea is as follows: we will check whether the contribution to the axion
potential δV due to gravitational instantons can be large enough to disrupt inflation.
To be specific, gravitational instantons contribute as

δV = A cos(nθ)e−S , (6.1)

where S ∼ n/fax (see Section 4). Whether such instanton corrections can have sig-
nificant influence on the slow-roll dynamics clearly depends both on the size of the
instanton action S and the prefactor A. The latter is quoted to be of order M4

p [8; 9].
However, in Appendix F we give arguments why the prefactor A can be significantly
below the Planck scale in more realistic string compactification models. Specifically, we
expect A to scale as A ∼ V−5/3 with compactification volume V .
We then compare δV with the size of the axion potential during inflation. For large

field inflation the scale of inflation is of the order [102]

Vinflation ∼ 10−8. (6.2)

Hence, whenever we find δV ∼ 10−8 we will conclude that the effects of gravitational
instantons on the axion potential are in principle large enough to spoil inflation.
In what follows we compute δV only for the case of a single axion, but our results

can be straightforwardly extended to models of N -flation, kinetic alignment and the
Kim-Nilles-Peloso mechanism, see [9] for more details.

6.1. Action of the most ‘dangerous’ Gravitational Instantons
To check whether gravitational instantons are dangerous for inflation, we want to focus
on the instantons with the smallest action. At the same time, we need to ensure that
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these are solutions which we can trust within the framework of our effective theory. In
brief, we are interested in the most relevant instanton within the regime of validity of
our theory.
The breakdown of our effective gravity theory is crucial in this context, because it

will put a lower bound on the instanton action S. As explained in Section 4, in a
theory with length cutoff rc we can only trust gravitational instanton solutions with
n/fax � r2

c . This translates into a lower bound on the instanton action as S ∼ n/fax.
To calculate the contributions of gravitational instantons to the axion potential we

hence need to determine the cutoff rc. In Section 6.2 we will estimate the smallest
possible value of rc at which the description in terms of a 4-dimensional theory may
hold. Before doing this it will be instructive to check how large rc can be so that
gravitational instantons still induce a sizeable contribution to the inflaton potential.
Note that gravitational instanton solutions for the case of a massless dilaton will be

sufficient for our analysis, despite the fact that we are interested in the case of massive
dilaton fields. As described in Section 5.1 the non-zero potential does not affect the
action significantly.

Euclidean Wormholes

For any n and fax the Euclidean wormhole action is computed in (4.19). At the same
time the wormhole radius r0 scales as r0 ∼ (n/fax)1/2 according to (2.28). As we require
r0 & rc we get

Sinst & (2π2)
√

6 2
α

tan
απ

4

√
3
2

 r2
c . (6.3)

On the allowed interval 0 ≤ α < 2
√

2/3 the instanton action as a function of α increases
monotonically. Therefore, the most dangerous wormhole corresponds to the Giddings-
Strominger instanton with α = 0. Hence

Sinst ≥ Sinst(α = 0) & 3π3r2
c . (6.4)

Demanding that e−S & 10−8 implies rc . 0.4 (in Planck units).
In Section 5.2 we found that α =

√
2 can be obtained from string compactifications

and still lies in the allowed range of dilaton-couplings appropriate to allow for Euclidean
wormholes. This example requires rc . 0.2 in order to get a contribution of at least
δV ∼ 10−8.
Note that the prefactor A (see Appendix F) may potentially lower the size of the

contribution to the inflaton potential.

Extremal Gravitational Instantons

The action for extremal gravitational instantons is obtained from (4.7). However, we
have to take into account the computability condition (4.9) for the action. It follows
that

Sinst >
8 · (2π2)
α2 r2

c . (6.5)

In string theory α cannot be chosen arbitrarily large. The largest α we could obtain
from string compactifications was α = 2

√
2. Extremal gravitational instantons then
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become relevant if rc . 1. Hence, extremal gravitational instantons may turn out to be
somewhat more dangerous for axion-inflation than Euclidean wormholes.
We do not consider cored gravitational instantons, for which a similar analysis could

be made. The reason is that their action is always larger than that of a suitable extremal
instanton (see Section 4).

The question we want to address now is how small rc can be in any controlled model
of quantum gravity. Knowing that moduli displacements are not an issue, one would
naively expect that rc ' 1 can be problematic as we reach already Planck regime.
Notice however that it is important to determine rc as precisely as possible, because
due to δV ∼ e−S ∼ e−r

2
c the instanton contributions are very sensitive to every O(1)-

factorchange in the cutoff radius.

6.2. Estimating the Critical Radius rc
Let us take string theory as our model of quantum gravity. String compactifications
then yield a hierarchy of scales in the effective theory as depicted in Figure 1. We
expect that going beyond the Kaluza-Klein scale will render our effective description
insufficient. The reason is that the gravitational instanton solutions we consider are
obtained in a 4-dimensional effective theory which arises from a more fundamental
description upon compactification. For the 4-dimensional picture to remain valid, we
require the length scale rc associated with our 4-dimensional solution not to be smaller
than the length scale associated to the compactified extra-dimensions.
But how small can this length scale be? In string theory it cannot be arbitrarily

small. String compactifications exhibit a property termed T-duality which states that
a compactification with a small volume describes the same physics as another compact-
ification with large volume. This gives rise to the notion of a smallest length scale at
the self-dual value of the compactification volume.
Putting everything together, we arrive at the smallest possible value rc where we

can trust our effective 4-dimensional analysis. We find that rc should be related to the
length scale of the compact dimensions at self-dual volume Vsd of the compactification
space. In this way, we push the KK-scale as close to the Planck scale as possible,
allowing us to consider the lightest gravitational instantons we can obtain within the
regime of validity of our description.
What we mean by “related” is at this naive level ambiguous. There are at least

two “canonical” possibilities to make the definition of rc more precise. They differ by
factors of π, which are unfortunately crucial when comparing e−S with Vinflation. Given
the volume Vsd of the six-dimensional compact space at the self-dual point we can define
a length scale as V1/6

sd and a 3-volume by V1/2
sd . Two possible definitions of rc are then:

1. The volume of the S3 of our wormhole solution should not be smaller than V1/2
sd ,

i.e.
2π2r3

c = V1/2
sd . (6.6)

2. More generously, the great circle of S3 should not be smaller than V1/6
sd , i.e.

2πrc = V1/6
sd . (6.7)
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As a toy-model to compute Vsd we take T 6 and apply T-duality six times for each S1

to get Vsd(T 6) = `6
s = (2π)6(α′)3. To convert this into Planck units, recall that (see

e.g. [103])
M2

p = 4πV
g2
s`

8
s

. (6.8)

In the following we also go to the S-self-dual point gs = 1.
The first criterion (6.6) then gives rcMp =

√
4π · (2π2)−1/3 ' 1.3. Using (6.4) and

(6.5), which are both in 4d Planck units, the contributions to the axion potential due
to gravitational instantons are then:

Giddings-Strominger wormhole: e−S ' 10−68 ,

Extremal instantons: e−S . 10−15 for α = 2
√

2 .

Hence, in both cases the gravitational instantons appear to be irrelevant for inflation.
If we apply the second criterion (6.7) we have rcMp = 1/

√
π ' 0.56. This yields

Giddings-Strominger wormhole: e−S ' 10−13 ,

Extremal instantons: e−S . 10−3 for α = 2
√

2 .

Again, Euclidean wormholes contribute to the axion potential too weakly to interfere
significantly with inflation. However, extremal instantons can in principle be important,
but this will depend on the value of the dilaton coupling α. Note that for α = 2

√
2/3 we

still get e−S . 6·10−9 for extremal instantons, which is marginal as far as the significance
for inflation is concerned. However, we want to emphasise that our numerical results
should be taken with a grain of salt. In particular, given a value of a length cutoff rc we
only have a lower bound (6.5) for the action of the most important trustworthy extremal
instanton. However, δV is exponentially sensitive to the instanton action. Thus, unless
the instanton action is close to saturating the inequality (6.5) the contributions from
extremal instantons can quickly become irrelevant for inflation.
Of course, the instanton contribution δV = Ae−S cos(nθ) also involves the prefactor
A, which we estimate in Appendix F. We expect A ∼ V−5/3, which is O(1) at the
self-dual point. Note that in more realistic scenarios away from the self-dual point
(i.e. compactifications with a hierarchy of scales) it would suppress the gravitational
instanton contributions even further.

Our results can be summarised as follows: overall, we find that gravitational instan-
tons do not give rise to strong model-independent constraints on axion inflation, even if
we push the KK-scale as close to the Planck-scale as possible. Extremal gravitational
instantons may be important for inflation, but this is model-dependent, as the size of
their contribution depends on the value of the dilaton coupling α.

7. Gravitational Instantons and the Weak Gravity
Conjecture

Finally, we want to make further remarks on the relation between gravitational instan-
tons and the Weak Gravity Conjecture (WGC) [3; 9; 17]. The original form of the
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WGC requires that the particle spectrum of a consistent, UV-complete gravitational
theory with a U(1) gauge field contains at least one particle whose charge-to-mass ratio
is larger or equal to that of an extremal black hole [3]. There exists a straightforward
generalisation to gravitational theories with an axion coupling to instantons. In the fol-
lowing we will argue in analogy with the WGC for particles with U(1) charges, i.e. we
will treat instantons like particles with axion charge.
We start with the theory of an axion with an instanton-induced potential:

L = 1
2(∂θ)2 −

∑
i

Λ4
i e
−Si cos( ni

fax
θ) . (7.1)

The WGC then requires the existence of an instanton with

z ≡ ni/fax
Si

> z0 , (7.2)

for some z0 to be specified shortly.14 The quantity z is the equivalent of the charge-
to-mass ratio for the instanton, where the charge is given by n/fax and the mass cor-
responds to S. When working with black holes an object satisfying z > z0 is referred
to as superextremal, while a black hole with z < z0 is termed subextremal. It will be
useful to extend this nomenclature to the case of instantons. The WGC then requires
the existence of superextremal instantons.
To define the WGC for instantons it is hence important to determine z0. In the black

hole case z0 is the charge-to-mass ratio of an extremal RN black hole. By analogy,
we will define z0 as the charge-to-mass ratio of an extremal gravitational instanton as
suggested in [17]. There is further support for this assertion. In Section 2.3 we saw that
gravitational instantons in 4d are related to RN black holes in 5d. More specifically, the
relation C = `2(M2−Q2) implies that extremal black holes (M2 = Q2) are in one-to-one
correspondence with extremal instantons (C = 0). It is thus plausible that extremal
instantons play the role of extremal black holes in the WGC. Using our expression (4.7)
for the action of an extremal gravitational instanton we find

z0 = n/fax
Sextremal

= α

2 . (7.3)

Let us now compute the charge-to-mass ratio z for cored gravitational instantons
and Euclidean wormholes to see how they fit into this picture. We begin with cored
gravitational instantons. For fixed n/fax we have

Scored(α) ≥

Sextremal(α) for α ≥ 2
√

2/3
Sextremal(2

√
2/3) for α < 2

√
2/3,

(7.4)

and thus

zcored ≤


z0 for α ≥ 2

√
2/3

2
√

2/3
α

z0 for α < 2
√

2/3
(7.5)

14The WGC can be made more precise by adding further attributes to the condition z > z0 [3]. A
more careful definition becomes important when several U(1) group factors (or axion species) are
present. See [5; 9; 11; 13; 17; 25] for more details.
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Figure 7: Instanton action S vs. n/fax for (a) α ≥ 2
√

2/3 and (b) α < 2
√

2/3.
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extremal
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S

n/fax

S

Figure 8: Possible realisations of the WGC for gravitational instantons [104]. Red dots
denote extremal gravitational instantons while blue dots correspond to addi-
tional superextremal instantons required by the WGC.

We can make the following observation. For α ≥ 2
√

2/3 cored gravitational instantons
are strictly subextremal and do not satisfy the WGC condition z > z0. They hence play
a role akin to subextremal black holes in the WGC for particles. This is consistent with
the finding that for α ≥ 2

√
2/3 cored gravitational instantons are related to subextremal

black holes in higher dimensions (see [75] and Section 2.3). The situation is different
for α < 2

√
2/3. The lightest cored instantons are now superextremal. We illustrate our

findings in Figure 7.
Next, let us turn to Euclidean wormholes. From (4.19) we find

zwh = n/fax
Swh

= α

2 sin
(
απ
4

√
3
2

) > α

2 = z0 (7.6)

for 0 ≤ α < 2
√

2/3, which is the allowed range for wormhole solutions. We find that
Euclidean wormholes are strictly superextremal. In addition, one can also show that
zwh > zcored. This is displayed in Figure 7 (b).
What can one learn from these results about the WGC? We will discuss this question

for the two cases α ≥ 2
√

2/3 and α < 2
√

2/3 separately.
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For α ≥ 2
√

2/3 the spectrum of gravitational instantons does not contain any su-
perextremal objects that could satisfy the WGC. This is not surprising. Our analysis is
restricted to macroscopic gravitational instantons, while it is expected that microscopic
physics is responsible for satisfying the WGC. If the WGC is true, it could be realised
in two different ways which are shown in Figure 8. For one, extremal gravitational
instantons (red dots in Figure 8) could satisfy the WGC on their own. This occurs if
quantum corrections decrease the instanton action for small n such that they naively
become superextremal (LHS of Figure 8). If this is not the case (see RHS of Figure 8)
the WGC requires the existence of additional superextremal instantons (blue dot). At
the moment it is not clear which implementation of the WGC, if any, is realised. Un-
fortunately, our analysis is not suitable for resolving this issue.
Let us move on to α < 2

√
2/3. Interestingly, the set of gravitational instanton

solutions now contains superextremal objects in the form of wormholes and cored in-
stantons. It thus seems that the WGC is satisfied in Einstein-axion-dilaton systems in
virtue of cored instantons and Euclidean wormholes. Note that this is different to the
situations shown in Figure 8. Here the WGC would be satisfied by an infinite tower of
superextremal macroscopic objects.
Another interpretation of our findings is that the statement of the WGC has to be

modified for α < 2
√

2/3. In this regime the ‘lightest’ macroscopic object with given
charge n/fax is not the extremal instanton but the wormhole. Also the correspondence
between extremal instantons and extremal black holes in higher dimensions is lost for
α < 2

√
2/3. This may imply that the WGC condition is now set by the charge-to-

mass ratio of the wormhole rather than that of the extremal instanton. To satisfy the
WGC one would then require the existence of states with z > zwh. We leave further
investigations on this topic for future work.
Last, there may be further implications for gravitational instantons if the WGC for

axions is true: gravitational instantons may not be ‘stable’ in the following sense. To
be specific, consider a cored instanton with action S and axion charge n in a theory
with α > 2

√
2/3. This corresponds to a tunnelling process between two configurations

differing by n units of axion charge. Let us then assume that the WGC is true and
implies the existence of instantons with charge-to-mass ratio z > z0, where z0 is the
charge-to-mass of an extremal gravitational instanton as before. An immediate conse-
quence is that a tunnelling process will then always be dominated by the instantons
predicted by the WGC. For our example this works as follows. The instantons needed
to satisfy the WGC have z > z0 ≥ zcored. Let two such instantons have n1, S1 and n2, S2,
such that n1 + n2 = n. Since z > zcored it follows that S1 + S2 < S and tunnelling via
two such instantons will dominate over tunnelling via the cored instanton.15 This has
important consequences for the question whether gravitational instantons give rise to
contributions to the axion potential. In particular, it is unclear whether ‘unstable’ grav-
itational instantons should be included in the path integral calculation of the instanton
potential. We leave this interesting question for future work.

15Note that this is equivalent to the statement that (sub-)extremal black holes can in principle decay
if the WGC for particles holds.
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8. Conclusions and Outlook
It is of great interest to understand whether quantum gravity forbids periodic scalars
with large field range and flat potential. The obvious way in which this can happen is
via instanton-induced corrections. In detail, there are two specific options: On the one
hand, quantum gravity may demand the presence of instantons with certain actions
and charges, via a generalized weak gravity conjecture. This is rather indirect: One
tries to show that certain things ‘go wrong’ unless the relevant particles (or instantons)
exist.
There is, however, also a more direct approach: gravity itself supplies, in a rather

direct or ‘constructive’ way the instantons which may lift the flat potential. In the
present paper, we have tried to push this direct approach as far as possible, striving
also for maximal model-independence.
Our results are as follows. We observe that in a pure axion-gravity system a potential

for the axion is generated by Giddings-Strominger wormholes and that this potential
is parametrically unsuppressed if the cutoff is at the Planck scale. Trying to be more
precise about this, we encountered a surprise: If, as a model of high-cutoff quantum
gravity, we take string theory at self-dual coupling and self-dual compactification radius,
we are still left with a purely numerical suppression factor of exp(−3π2) ' 10−13. Such
a result makes it hard to hope for a strong constraint on inflation, even after further
refining the analysis.
Furthermore, we continued to ask for generic 4d constraints, but assuming more con-

cretely that the 4d theory arises from string theory with a potentially low moduli scale.
First, we found that in this setting nothing too dramatic happens to gravitational in-
stantons: One linear combination of the moduli acts as a 4d dilaton governing the axion
coupling; the instantons become more diverse in that extremal and cored gravitational
instantons exist in addition to wormholes; the calculation still breaks down only at the
Kaluza-Klein scale, which can of course still be high.
Unfortunately, the predictions now become model dependent as the coupling strength

of the 4d dilaton to the axion (an O(1) numerical factor) enters. Taking the highest
value for this factor that we could obtain in the simplest models results in a less severe
instanton suppression factor of exp(−2π) ' 10−3. This is of course highly relevant for
inflation, but easily avoided by considering models with different dilaton coupling.
In both of the above approaches, the suppression factors start out small and further

fall as exp(−r2), with r an appropriately normalised compactification radius in 4d
Planck units. As a result, while we do believe that gravitational instantons are the
most fundamental and model-independent way to constrain field ranges, the numbers
appear to allow for enough room for realistic large-field inflation.
Finally, we have attempted to connect our analysis of the various types of gravi-

tational instantons, including their dependence on the axion-dilaton coupling, to the
ongoing discussion of the weak gravity conjecture. In particular, we found a intriguing
regime where wormholes are the objects with highest charge-to-mass ratio and may
thus be sufficient to satisfy the instanton-axion weak gravity conjecture.

There are many directions for further investigations. By limiting our analysis to
gravitational instantons in 4-dimensional Einstein-axion-dilaton theories we were unable
to arrive at strong constraints on inflation. While this approach allows us to remain
ignorant about the detailed UV completion, we are forced to neglect potentially more
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important contributions. These would arise from gravitational instantons with low
instanton numbers, which are incalculable in the 4-dimensional Einstein-axion-dilaton
theory. However, a quantitative analysis may be possible if one assumes that UV physics
is described by string theory. It is expected that gravitational instantons will correspond
to non-perturbative effects such as D-brane instantons in string theory. To arrive at
stronger constraints a better understanding of non-perturbative effects in string theory
is desirable. In particular, it is expected that poorly understood non-BPS instantons
may become important during inflation [9].
There is a related question that is worthy of further examination. While more im-

portant instanton contributions to the axion potential may exist, it is possible that
the overall effect on the axion potential vanishes once all such contributions are in-
cluded. To calculate contributions from ‘more important’ instantons is equivalent to
studying instantons in a theory at a higher energy scale. However, taking string theory
as our UV completion, we would expect the theory to become supersymmetric and/or
higher-dimensional at some scale. It is then possible that, once we work above the
supersymmetry scale, there are cancellations between the various instanton contribu-
tions to the axion potential. This is somewhat analogous to the cancellation between
boson and fermion loops in supersymmetric field theory. We regard it as important to
determine whether such cancellations can occur.
While we were unable to arrive at strong model-independent constraints on inflation,

gravitational instantons may be important for inflation in models where the dilaton
coupling takes sufficiently large values. In the effective 4-dimensional theory the dilaton
coupling is a free parameter. However, one would expect that its value is constrained
by possible UV completions. Indeed, by considering simple axion-dilaton systems in
string compactifications, we find that the dilaton coupling typically takes O(1) values,
i.e. it can neither be very small nor very large. It would be interesting to examine to
what extent these results are generic.
The upshot of these points is clear: It is imperative to understand the ultraviolet end

of the instanton spectrum.
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A. Derivation of the Metric Structure of Gravitational
Instantons

We present a derivation of the metric (2.4) following [88], which also shows that C arises
as an integration constant. The most general 4d line element with rotational symmetry
is

ds2 = λ(r)dr2 + r2dΩ2
3, (A.1)

where dΩ2
3 represents the metric on S3. Let us be more generic than in (2.1) and

consider a set of moduli φI on moduli space with metric GIJ :

S =
∫
d4x
√
g
[
−1

2R + 1
2GIJ(φ)gµν∂µφI∂νφJ

]
. (A.2)

Due to the rotational symmetry of our system we take φI = φI(r). Variation of S with
respect to φK yields the equation of motion(√

ggrrGKJφ
′J
)′
− 1

2
√
ggrr∂KGJLφ

′Jφ′L = 0. (A.3)

Here, the prime denotes the derivative with respect to the coordinate r and ∂K the
derivative with respect to φK . Let us introduce a new variable τ such that dr/dτ =√
ggrr. The equation of motion above can then be rewritten as the geodesic equation

on moduli space, i.e.
∂2
τφ

I + ΓIJL∂τφJ∂τφL = 0, (A.4)
with Christoffel-symbols ΓIJL for the metric GIJ . Along the geodesics we then have

∂τ
(
GIJ∂τφ

I∂τφ
J
)

= 0 (A.5)

or, expressed in the coordinate r,

GIJφ
′Iφ′J = k

(√ggrr)2 = kλ(r)
r6 , (A.6)

where we introduced a constant k and used (A.1).
Furthermore, the rr-component of the energy-momentum tensor is

Trr = 1
2GIJφ

′Iφ′J
(A.6)= kλ(r)

2r6 . (A.7)

The algebraic form of λ(r) can now be read off from the rr-component of Einstein’s
equations. The rr-component of the Einstein tensor is

Grr = 3
r2 (1− λ(r)) (A.8)

and hence Grr = Trr yields

λ(r) =
(

1 + C

r4

)−1
, (A.9)

where C = k/6 is indeed an integration constant. It is interesting to note that the
metric component grr is determined independently of the functional form of GIJ(φ).
Also note that the metric is asymptotically flat, because λ(r)→ 1 as r →∞.
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Finally, we want to remark that for the creation of Euclidean wormholes (C < 0) it
is necessary to have GIJφ

′Iφ′J < 0 (see (A.6)). While one cannot simply put a wrong
sign into the kinetic term of the scalar fields, one can instead consider a Lagrangian
with a 2-form gauge field, whose dual field is an axion. According to our discussions of
quantum mechanical dualisation in Section 2.1, this axion is imaginary at the saddle-
point of the path integral and effectively obtains an opposite sign in the kinetic term.
Moreover, for solutions with C ≥ 0 one necessarily needs to include dynamical scalar
fields so that GIJφ

′Iφ′J > 0.

B. Charge Quantisation
Let us first recall how flux and charge quantisation usually work in a B2-/θ0-theory
with strings and fundamental instantons. For any 3-cycle S3 we have

QB

∫
S3
H3 = 2πn (B.1)

with integer n.16 Analogously, for any 1-cycle S1, we have

Qθ

∫
S1
F1 = 2πm, (B.2)

m ∈ Z. Obviously, n and m can only be non-zero if the relevant cycle is either non-
trivial in M or if it encloses the appropriate charged object.
The above are just the familiar flux quantisation conditions. In order to derive charge

quantisation, we temporarily go back to Minkowskian space and use the equations of
motion of

S = −
∫
M

1
2g2

B

H3 ∧ ?H3 +QB

∫
M
B2 ∧ j2, (B.3)

where j2 is the current modelling the distribution of strings. It can be defined explicitly
by

∫
Σ j2 = N , where N is the number of strings intersecting some surface Σ. Without

loss of generality we choose N = 1. From the equation of motion for B2,

d(1/g2
B ? H3) = −QBj2, (B.4)

we find, using Stokes theorem:

QB = −
∫
∂Σ

1/g2
B ? H3 = −

∫
∂Σ
F1 = 2πm

Qθ

. (B.5)

In the last step we used F1-flux quantisation. Thus, we see that

QBQθ = 2πm, (B.6)

which is the well-known Dirac quantisation condition. For the following, we take the
freedom to choose Qθ = 1, i.e. the periodicity of the axion field is in this case θ0 →
θ0 +2π. Then, combining (B.6) with m = 1 (here we assume that a string with smallest

16This follows from assuming gauge invariance of the coupling term in (2.6), i.e. one can define B2
with either the south- or north pole of S3 removed, getting the same result in both cases. This is
another argument to see the necessity of the i-factor in front of the coupling terms.
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charge exists) and (B.1), we find that the quantisation condition on H3 can simply be
expressed as ∫

S3
H3 = n. (B.7)

This flux quantisation condition (B.7) is at the heart of gravitational instanton solutions.
Now, we are actually interested in potentials introduced by gravitational instantons,

i.e., in shift symmetry breaking by quantum gravity. Hence, assuming the existence of
fundamental instantons defeats the purpose. So let us see how far we get with the logic
above if we abandon the source term in (2.5).
First, if we allow for geometries with non-trivial 3-cycles, the H3 flux quantisation

condition (B.1) can still be derived. All we need is the existence of strings coupled to
B2. This then also implies that QB is quantised. By contrast, (B.2) cannot be derived
without assuming the existence of fundamental instantons. However, if we allow for
geometries which also have non-trivial 1-cycles (see Figure 2), and if we postulate that
the dual potential θ0 is a globally defined function taking values on S1 (i.e. θ0 ≡ θ0+2π)),
then both (B.2) and charge quantisation, (B.6) and (B.7), follow.

C. Dualisation under the Path Integral
In Section 2.1 we are interested in computing

〈H(F )
3 | e−HT |H

(I)
3 〉 ∼

∫
b.c.

d[H3]d[θ0] exp
{
−
∫
M

1
2g2

B

(
H3 ∧ ?H3 + 2ig2

Bθ0dH3
)}

,

(C.1)
which is (2.12). Here, T ≡ tF − tI . At the end we want to obtain a path integral
over the variable θ0, i.e. (2.15). This is nothing but dualising from a set of canonical
momentum variables to their generalised coordinates.
Thus, we illustrate the subtleties of the computation leading to (2.15) by considering

the quantum-mechanical harmonic oscillator, i.e. H = q2/2 + p2/2. The momentum
p then corresponds to the background flux 〈H3〉 or, more precisely, to the quantised
charge n, while the position variable q corresponds to θ0. The transition amplitude
from state |qI〉 to |qF 〉 reads

〈qF | e−HT |qI〉 =
∫
d[p]

∫
b.c.

d[q] exp
{∫ tF

tI
dt (ipq̇ −H(q, p))

}
, (C.2)

with boundary conditions q(tI) = qI and q(tF ) = qF imposed.
In fact we rather want to compute 〈pF | e−HT |pI〉, which is expressed similarly:

〈pF | e−HT |pI〉 =
∫
d[q]

∫
b.c.

d[p] exp
{∫ tF

tI
dt (−iqṗ−H(q, p))

}
(C.3)

=
∫
d[q]

∫
b.c.

d[p] exp
{∫ tF

tI
dt (ipq̇ −H(q, p))

}
exp {−i(qFpF − qIpI)} ,

where we impose again p(tI) = pI and p(tF ) = pF . In the second step we integrated
the first term of the exponential by parts. In our case we have H = q2/2 + p2/2
which allows us to complete the square. Integrating out p without worrying about the
boundary conditions to be imposed yields the desired result

〈pF | e−HT |pI〉 ∼
∫
d[q] exp (−i(qFpF − qIpI)) e−S[q], (C.4)
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see also [105] for comments on the integration over the momentum. We wish to have a
closer look at this decisive step.
To do so, we write the amplitude 〈pF | e−HT |pI〉 as:

〈pF | e−HT |pI〉 =
∫
dqIdqF 〈pF |qF 〉 〈qF | e−HT |qI〉 〈qI |pI〉 . (C.5)

Now let us assume that the two dual relations (C.2) and (C.3) hold. Then, in particular,
(C.2) implies

〈qF | e−HT |qI〉 =
∫
b.c.

d[q]e−S[q], (C.6)

and the result (C.4) follows immediately (use 〈p|q〉 = e−ipq). The operation of integrat-
ing out p while disregarding its boundary conditions is thereby indirectly justified.
Finally, we can demonstrate this directly and explicitly by writing17

〈pF | e−HT |pI〉

=
∫ N∏

m=0
dqm

N−1∏
n=0

dpn 〈pF |qN〉 〈qN |e−Hε|pN−1〉 〈pN−1|qN−1〉 〈qN−1|e−Hε|pN−2〉 . . .

. . . 〈p1|q1〉 〈q1|e−Hε|p0〉 〈p0|q0〉 〈q0|pI〉 , (C.7)

where ε ≡ T/(N + 1) and q0 = qI , qN = qF . This becomes the discretised version of
(C.3):

〈pF | e−HT |pI〉 =
∫ N∏

m=0
dqm

N−1∏
n=0

dpn e
−iqN (pF−pN−1)−H(qN ,pN−1)ε . . .

. . . e−iq1(p1−p0)−H(q1,p0)εe−iq0(p0−pI). (C.8)

For the harmonic oscillator (and in fact for more general potentials V (q)) we can inte-
grate out p0, ..., pN−1 (after completing the square for each pm). As a result we find

〈pF | e−HT |pI〉 ∼
∫ N∏

m=0
dqm exp {−iqNpF} exp

{
−q

2
N

2 ε− (qN − qN−1)2

2ε

}
. . .

. . . exp
{
−q

2
1
2 ε−

(q1 − q0)2

2ε

}
exp {iq0pI} . (C.9)

This is precisely the discretised version of (C.4). Hence, integrating out the momenta
from (C.3) to (C.4) without considering the boundaries is indeed justified.

D. Analytical Solutions to Einstein’s Equation
Einstein’s equation (2.25) which follows from the action (2.19) can be solved analyti-
cally. We explain how to arrive at solutions (2.27), (2.34) and (2.35) for C < 0, C = 0
and C > 0, respectively.

First of all, (2.25) can be rewritten as:

±
∫
dϕ

1√
F(ϕ)n2/A2 + C

=
√

6
∫
dr

1
r3
√

1 + C/r4
. (D.1)

17We are grateful to K.-M. Lee for pointing out this possibility and for further discussions on this
issue. See also [81].
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Thus, integral representations can in principle be obtained for any F . For F(ϕ) =
1/(3!f 2

ax) exp(−αϕ), explicit solutions exist.
For the RHS, one finds

√
6
∫
dr

1
r3
√

1 + C/r4
=


−
√

3
2|C| arcsin

(√
|C|
r2

)
+ const for C < 0

−
√

3
2C arcsinh

(√
C
r2

)
+ const for C > 0

−
√

3
2

1
r2 + const for C = 0,

(D.2)

where we use the substitution y =
√
|C|/r2 for C 6= 0. The integral on the LHS can be

rewritten as
± 1√
|C|

∫
dϕ

1√
k exp(−αϕ)± 1

, (D.3)

with k ≡ n2/(3!|C|A2f 2
ax). If C > 0 (C < 0), the positive (negative) sign under the

square root applies. In the case of C > 0 we substitute

sinh y = 1√
k

exp(αϕ/2), (D.4)

and for C < 0 we take
sin y = 1√

k
exp (αϕ/2) . (D.5)

Using appropriate identities for the hyperbolic or trigonometric functions, one arrives
at

±
∫
dϕ

1√
exp(−αϕ)n2/(3!f 2

axA
2) + C

= (D.6)

=


± 2√

|C|α

[
arcsin

(
1√
k

exp (αϕ/2)
)
− const

]
for C < 0

± 2√
Cα

[
arcsinh

(
1√
k

exp(αϕ/2)
)
− const

]
for C > 0

±2
√

6Afax
nα

exp (αϕ/2) + const for C = 0.

From here one can read off the solutions, which can be rewritten as (2.27), (2.34) or
(2.35).

E. Computation of the Instanton Action
We present further details of the computation of the instanton action in Section 4. The
computation consists of determining the on-shell contribution from the action and the
contribution coming from the Gibbons-Hawking-York boundary term. We begin by
looking at the latter, where we follow [17].

Gibbons-Hawking-York boundary term:

The Gibbons-Hawking-York boundary term is

SGHY = −
∮
∂M

d3x
√
h(K −K0), (E.1)
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as described around (4.4). Starting from our metric ansatz (2.4) we choose hypersurfaces
of constant r. The normal unit vector n is then

n =
√

1 + C

r4
∂

∂r
. (E.2)

The trace of the extrinsic curvature is

K = ∇µn
µ = ∂µn

µ + Γµµνnν (E.3)

where ∇ is the Levi-Civita connection on M . One finds

Γµµr = 2C
r5

(
1 + C

r4

)−1
+ 3
r
, (E.4)

and therefore
K = ∇µn

µ = 3
r

(
1 + C

r4

)1/2
. (E.5)

By taking C = 0 we can also read off the trace of the extrinsic curvature of ∂M
embedded in R4:

K0 = 3
r
. (E.6)

It then follows

SGHY = −
∮
∂M

εS3(K −K0) = −3Ar2
[(

1 + C

r4

)1/2
− 1

]∣∣∣∣∣
boundary

, (E.7)

with surface area A = 2π2 of S3. Recall that according to our conventions the volume
form on S3 contains a factor r3. Clearly, for C = 0 we have SGHY = 0. For C > 0 the
boundary is at r = 0 and at r =∞,

SGHY = 3AC1/2, C > 0. (E.8)

In the case of C < 0 the integral vanishes, because we always consider instanton-anti-
instanton pairs, so SGHY = 0.
These are the results used in Section 4.

On-shell contribution:

We now evaluate the bulk action (2.19) on-shell, i.e. we plug in the equations of motion
successively. As described in Section 4, the first step is to express the Ricci scalar R by
the trace of the energy-momentum tensor using Einstein’s equations:

R = −T. (E.9)

The energy-momentum tensor Tµν from the action (2.19) is

Tµν = −gµν
[1
2F(ϕ)H2 + 1

2∂ρϕ∂
ρϕ
]

+ 3F(ϕ)HµρσH
ρσ
ν + ∂µϕ∂νϕ. (E.10)

Consequently,
T = gµνTµν = F(ϕ)H2 − (∂ϕ)2, (E.11)
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and then (2.19) becomes simply

S =
∫
d4x
√
gF(ϕ)H2 = A

∫
dr

r3√
1 + C/r4

F(ϕ)H2, (E.12)

where we used the rotational symmetry of our system. Next, we plug in the solution
to (2.21),

H = n

Ar3 ε, (E.13)

and restrict ourselves to F(ϕ) = exp(−αϕ)/(3!f 2
ax), for which we know the analytical

solutions:
S = n2

Af 2
ax

∫
dr

1
r3
√

1 + C/r4
exp(−αϕ). (E.14)

It is then convenient to rewrite the action as an integral over dϕ using Einstein’s equa-
tion (2.25). We consider only regular solutions. They are monotonically decreasing and
therefore we have ϕ′(r) < 0 everywhere. Hence,

S = − n2

Af 2
ax

∫
dϕ

exp(−αϕ)√
n2 exp(−αϕ)/(A2f 2

ax) + 6C
. (E.15)

The integral has to be evaluated case by case.
For extremal gravitational instantons with C = 0 we have

S = − n

fax

∫ ϕ(∞)

ϕ(0)
dϕ exp(−αϕ/2) = 2n

αfax
. (E.16)

In the case of C > 0 we obtain

S = − n2

Af 2
ax

∫ ϕ(∞)

ϕ(0)
dϕ

exp(−αϕ)√
n2 exp(−αϕ)/(A2f 2

ax) + 6C

= 2n
αfax

√
exp(−αϕ) + sinh2K+

∣∣∣∣ϕ(∞)

ϕ(0)
= 2n
αfax

e−K+ , (E.17)

where we used (2.36) and took K+ > 0. Combining this with the GHY boundary term
yields the desired instanton action (4.14).
Finally, for Euclidean wormholes, i.e. for C < 0, we have

S =
∫
d4x
√
gF(ϕ)H2 = 2× A

∫ ∞
r0

dr
r3√

1− |C|/r4
F(ϕ)H2, (E.18)

where the factor of two occurs because the left integral is over the whole Euclidean
space, and hence accounts for the whole wormhole and thus for the instanton and anti-
instanton, while the integral on the RHS integrates from the centre of the wormhole
to one end. The appearance of this factor may be seen more easily by evaluating the
integral on the LHS using the t-coordinate (2.33) and then changing coordinates from
t to r. As was noted in [11], this contribution has to be divided by two, because the
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instanton action Sinst should only take into account half of the full wormhole action.
Consequently, using the equations of motion as in the previous cases,

Sinst = − n2

Af 2
ax

∫ ϕ(∞)

ϕ(r0)
dϕ

exp(−αϕ)√
n2 exp(−αϕ)/(A2f 2

ax)− 6|C|

= 2n
αfax

∣∣∣∣∣∣sin
απ

4

√
3
2

∣∣∣∣∣∣ . (E.19)

Hence, (4.19) follows, where we can drop the modulus due to the restriction to 0 ≤ α <

2
√

2/3.

F. Estimating the Size of the Prefactor A in the
Instanton Potential

The contribution of gravitational instantons to the axion potential is given by δV =
Ae−S cos(nθ). While it has been proposed e.g. in [8; 9] that A ∼ 1 (in Planck units), we
attempt a somewhat more precise estimate. This is inspired by the analogies between
gravitational instantons and instantons arising from Euclidean branes wrapping an
internal cycle of the compactification manifold (see e.g. [8; 9; 17]). Let us start by
recalling how the latter contributes to the supergravity F -term potential in a simple
setup.
We consider a Euclidean brane instanton modifying the perturbative superpotential

W0 as
W = W0 + A(z)e−aT , (F.1)

where z denotes the complex structure moduli and T is a Kähler modulus.
Then the supergravity F -term potential

VF = eK
(
Ki̄DiWD̄W − 3|W |2

)
(F.2)

is corrected at leading order by

δV ∼ eKW0A(z)e−aτ , (F.3)

where τ is the real part of T . Recall that K = −2 lnV + ..., which gives a suppression
by 1/V2. Furthermore, we rewrite the above expression in terms of the gravitino mass
m3/2 ∼ W0/V and the KK-scale mKK ∼ 1/V2/3:

δV ∼ 1
V5/3

m3/2

mKK
A(z)e−aτ . (F.4)

If we were allowed to compare this with (6.1) then, using m3/2 . mKK, we would
conclude that

A .
A(z)
V5/3 (F.5)

in Planck units. Here we identified exp(−aτ) with exp(−S) motivated by the obvious
analogy: Indeed, the Euclidean brane action is proportional to the brane tension and
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the volume of the cycle. Similarly, the action of a cored gravitational instanton is pro-
portional to the ADM tension of a black brane wrapping a cycle in a higher-dimensional
version of the gravitational instanton system, see e.g. [17] for an example.
Nevertheless, our proposal to estimate A by (F.5) remains nontrivial. Indeed, we

first need to consider a large wrapping number n to relate to the calculable regime
on the gravitational side. This is unproblematic in the present case since these higher
instantons will contribute to W analogously to (F.1). Next, we are not interested
in Euclidean brane instantons (their effect is well-known) but in some possibly very
different type of instanton arising in a string model and not having a simple microscopic
description. The claim or proposal implicit in (F.5) is then that this instanton may,
conservatively, also be suppressed by a factor A which becomes small as the KK-scale
and SUSY breaking scales go down. This appears to be reasonable since, beyond
the simple Euclidean brane case discussed here, higher-dimensional and SUSY-based
cancellations are expected to occur above those scales.
Accepting the above proposal, compactification volumes in the range V ∼ 102 to 103

imply A ∼ 10−4 and 10−5, respectively, assuming that A(z) = O(1). Note that in order
to avoid destabilisation of the Kähler moduli the compactification volume is at most
of order O(103), see e.g. [59; 60; 65]. Nevertheless, the suppression by e−S remains
dominant in all regimes we considered.
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