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Abstract 

Abstract mental representation is fundamental for human 
cognition. Forming such representations in time, especially 
from dynamic and noisy perceptual input, is a challenge for 
any processing modality, but perhaps none so acutely as for 
language processing. We show that LISA (Hummel & 
Holyaok, 1997) and DORA (Doumas, Hummel, & Sandhofer, 
2008), models built to process and to learn structured (i.e., 
symbolic) representations of conceptual properties and 
relations from unstructured inputs, show oscillatory activation 
during processing that is highly similar to the cortical activity 
elicited by the linguistic stimuli from Ding et al. (2016). We 
argue, as Ding et al. (2016), that this activation reflects 
formation of hierarchical linguistic representation, and 
furthermore, that the kind of computational mechanisms in 
LISA/DORA (e.g., temporal binding by systematic 
asynchrony of firing) may underlie formation of abstract 
linguistic representations in the human brain. It may be this 
repurposing that allowed for the generation or emergence of 
hierarchical linguistic structure, and therefore, human 
language, from extant cognitive and neural systems. We 
conclude that models of thinking and reasoning and models of 
language processing must be integrated—not only for 
increased plausiblity, but in order to advance both fields 
towards a larger integrative model of human cognition. 

Keywords: computational models, sentence processing, 
analogy, relational reasoning, concepts, binding, temporal 
asynchrony, oscillations, computational neuroscience 

Introduction 
Abstract hierarchical representations are the 

hallmark of human language (Chomsky, 1957). 
Forming such representations is certainly necessary 
during language processing (see Martin, 2016 for a 
possible process model). But what are the 
computational origins of such an ability? One 
possibility is that the brain repurposed a mechanism or 
process already at its disposal when abstraction become 
an efficient solution to a problem posed by the 
environment, such as communicating information 
across time and space, or predicating novel arguments 
that you have never encountered before.  

Ding et al. (2016) recently showed evidence of 
cortical tracking of abstract, hierarchical linguistic 
structures in oscillatory patterns in data from an 
electrocorticography (ECoG) and a 
magnetoencephalography (MEG) experiment. This 
tracking crucially could not be attributed to processing 
of acoustic information, transitional probability, or 
word predictability (Ding et al., 2016). Strikingly, LISA 
(Hummel & Holyoak, 1997, 2003), a symbolic-
connectionist model of analogy making, and DORA 
(Doumas, Hummel, & Sandhofer, 2008), a symbolic 
connectionist model of relational reasoning, predict 
such a representational pattern. We tested the 
hypothesis that the representational patterns produced 
by LISA and DORA during their processing will give 
rise to the hierarchical structures matching the linguistic 
structures observed by Ding et al. (2016) without any 
formal or structural changes to the model. Such an 
approach would be particularly compelling because it 
shines a light both on how the brain might parse 
language (i.e., the class of possible parsing mechanisms 
underlying cortical tracking of linguistic representations 
as seen in Ding et al., 2016), and about how linguistic 
structures might have come to be the way there are. In 
order to test these predictions, we simulated oscillatory 
unit data in LISA/DORA using the same sentence 
stimuli as Ding et al. (2016). We tested whether 
LISA/DORA parsed the sentences correctly, and we 
observed the pattern of unit firing LISA/DORA 
exhibited while processing the sentences.  

The LISA/DORA models 
LISA (Hummel & Holyoak, 1997, 2003) is a model 

of analogy and relational reasoning. DORA (Doumas et 
al., 2008) is an extension of LISA that learns structured 
(i.e., symbolic) representations of relations from 
unstructured (holistic flat feature vector) inputs. That is, 
DORA provides an account of how the structured 
relational representations LISA uses to perform 
relational reasoning are learned from examples. Both 
LISA and DORA are symbolic-connectionist models, 
or models based on traditional connectionist computing 
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principles that effectively implement symbolic 
representations as they solve the binding problem and 
can, therefore, represent compositional structures (see 
Doumas & Hummel, 2005, 2012).  

DORA accounts for over 25 phenomena from the 
literature on relational learning, as well as its 
development (e.g., Doumas & Hummel, 2010; Doumas 
et al., 2008; Lim et al., 2014; Morrison et al., 2012; 
Sandhofer & Doumas, 2008). In addition, as DORA 
learns relational representations, it comes to take LISA 
as a special case, and can simulate the additional 30-
plus phenomena in relational thinking simulated by 
LISA. The description of LISA/DORA that follows is a 
brief overview due to space constraints. For full details 
of the models and their operations see Doumas et al. 
(2008) and Hummel and Holyoak (1997, 2003).  
LISAese Representations  In LISA (and 
DORA after it has gone through learning) relational 
structures are represented by a hierarchy of distributed 
and localist codes (see Figure 1). At the bottom, 
“semantic” units represent the features of objects and 
roles in a distributed fashion. At the next level, these 
distributed representations are connected to localist 
units (POs) representing individual predicates (or roles) 
and objects. Localist role-binding units (RBs) link 
object and predicate units into role-filler binding pairs. 
At the top of the hierarchy, localist P units link RBs 
into whole relational propositions.  

goblinchr.

chaser+goblin

chase (goblin, 
gnome)

gnome

chased+gnome

chd.

P units

RB units

PO units

semantic units

Figure 1. Representation of a LISA/DORA 
representation of the proposition chase (goblin, gnome). 

We use different shapes to represent units in different 
layers (ovals for P units, rectangles for RB units, 
triangles and large circles for PO units, and small 

circles for semantic units) for the purposes of clarity. In 
the model these units are simply nodes in different 

layers of the network. 

Propositions are divided into two mutually 
exclusive sets: a driver and one or more recipients. In 
LISA/DORA, the sequence of firing events is 
controlled by the driver. We take the driver to be the 
focus of attention in LISA/DORA (i.e., what 

LISA/DORA is attending to at a specific moment). The 
driver contains one (or at most three) proposition(s). 
Activation flows from the driver units to their semantic 
units. Units in the driver and recipient are connected to 
the same pool of semantic units. Thus, units in the 
recipient become active in response to the pattern of 
activation imposed on the semantic units by the active 
driver proposition. The flow of activation from driver to 
recipient through shared semantic units is important for 
many of LISA and DORA’s processes including 
comparison, analogical mapping, relation learning, 
schema induction, and memory retrieval. We will not 
discuss these processes further as they are not important 
for the purposes of the current paper, but full details 
may be found in Hummel & Holyoak, 1997, 2003) and 
Doumas et al. (2008).  
Representing binding information What is 
most important about LISA/DORA for the purposes of 
the present paper is the manner in which the models 
solve the binding problem. As noted above, LISA and 
DORA are symbolic-connectionist models. That is, they 
are based on traditional connectionist computing 
principles (i.e., layers of interconnected nodes passing 
activation via weighted connections that are modified 
via Hebbian learning), but unlike traditional 
connectionist systems, they can process symbolic 
structure.  

Processing symbolic structure requires that 
representational elements in a system can be composed 
into meaningful structures in a manner that does not 
violate the independence of those elements (see e.g., 
Markman, 1999; Russell & Norvig, 2003). For 
example, representing a relational proposition like 
chase (goblin, gnome) requires representing that 
chasing, a goblin, and a gnome are all present, and that 
goblin is bound the chaser role and gnome to the 
chased role. Importantly, the binding of chaser to 
goblin must not change the fundamental meaning of 
either what it means to be a goblin or what it means to 
be a chaser—i.e., the binding system must not violate 
role-filler independence.   

In LISA and DORA roles and fillers are represented 
independently in the PO and semantic units. In order to 
behave symbolically, however, when a proposition in 
the driver becomes active, role-filler bindings must be 
represented dynamically on these units (i.e., POs and 
semantic units; see Hummel & Holyoak, 1997). Both 
LISA and DORA use time to carry this dynamic 
binding information.  

Binding information is represented in LISA with 
bound role-filler pairs firing in synchrony. To illustrate, 
when a proposition like chase (goblin, gnome) becomes 
active in the driver (Figure 2a), the units representing 
chaser and goblin become active and fire together 
(representing the binding between chaser and goblin; 
Figure 2a[i]). Subsequently, the units representing 

2280



chased and gnome become active and fire together 
(representing the binding between chased and gnome; 
Figure 2a[ii]). Bound role-filler pairs fire together, and 
out of synchrony with other bound role-filler pairs. 
These distinct firing bursts allow LISA to code bindings 
between roles and their fillers, and process these 
structures symbolically, forming the basis of LISA’s 
capacity to solve analogical mappings, and perform 
relational inference (see Hummel & Holyoak, 2003) 

(i) (ii)

(iii) (iv)

(i) (ii)

goblinchr.

chaser+goblin

chase (goblin, 
gnome)

gnome

chased+gnome

chd.

(a)

(b)

goblinchr.

chaser+goblin

chase (goblin, 
gnome)

gnome

chased+gnome
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goblinchr.
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gnome)

gnome

chased+gnome

chd. goblinchr.

chaser+goblin

chase (goblin, 
gnome)

gnome

chased+gnome

chd.

goblinchr.

chaser+goblin

chase (goblin, 
gnome)

gnome

chased+gnome

chd.goblinchr.

chaser+goblin

chase (goblin, 
gnome)

gnome

chased+gnome
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Figure 2. Dynamic binding in LISA and DORA. (a) 
Binding in LISA. (i) To bind the role chaser to goblin, 

units coding for chaser and goblin (as well as those 
coding conjunctively for chaser+goblin) fire. (ii) To 
bind chased to gnome, units coding for chased and 
gnome (as well as those coding conjunctively for 

chased+gnome) fire. (b) Binding in DORA. (i-ii) To 
bind the chaser role to goblin, units coding for chaser 

(as well as those coding conjunctively for 
chaser+goblin) fire, followed by the units coding for 

goblin (as well as those coding conjunctively for 
chaser+goblin). (iii-iv) To bind the chased role to 

gnome, units coding for chased (as well as those coding 
conjunctively for chased+gnome) fire, followed by the 

units coding for gnome (as well as those coding 
conjunctively for chased+gnome). 

In DORA, binding information can be carried either 
by synchrony (as in LISA) or by systematic asynchrony 
of firing, with bound role-filler pairs firing in direct 

sequence.1
 

During asynchronous binding, when a 
proposition like chase (goblin, gnome) becomes active 
in the driver (Figure 2b), the units representing chaser 
fire (along with units conjunctively coding for 
chaser+goblin and for the chase (goblin, gnome) 
proposition; Figure 2b[i]), followed directly by the units 
representing goblin (along with units conjunctively 
coding for chaser+goblin and for the chase (goblin, 
gnome) proposition; Figure 2b[ii]), representing the 
binding of chaser to goblin. Then, the units 
representing chased fire (along with units conjunctively 
coding for chased+gnome and for the chase (goblin, 
gnome) proposition; Figure2b[iii]), followed directly by 
the units representing gnome (along with units 
conjunctively coding for chased+gnome and for the 
chase (goblin, gnome) proposition; Figure 2b[iv]), 
representing the binding of chased to gnome. In short, 
bound role-filler pairs fire in direct sequence, and out of 
synchrony with any other bound role-filler pairs. These 
patterns of sequential oscillation dynamically code role-
filler bindings in DORA, and underlie DORA’s 
capacity to use the representations that it learns to 
support relational reasoning (e.g., analogical mapping, 
schema induction, and relational induction; see Doumas 
et al., 2008) and to learn structured relational 
representations from unstructured object 
representations.  

Crucially, sequential firing of related constituent 
elements is a necessary property of binding via 
synchrony and systematic asynchrony. When 
LISA/DORA perform any structured processing, a 
pattern will invariably emerge wherein bound elements 
within a larger compositional proposition will fire in 
direct sequence and at a different time-scale than units 
coding for conjunctions of independently bound 
elements and full propositional compounds. In the 
following section we show that the pattern produced by 
LISA/DORA as it processes compositional structures 
matches very closely the temporal pattern of spike 
activity observed in Ding et al.’s (2016) when people 
process compositional propositions.  

Simulation 
Ding et al. (2016) presented auditory strings of 

synthesized speech in Mandarin Chinese in an MEG 
experiment, and strings of synthesized speech in 
American English in an ECoG experiment. They 
manipulated the structural relationship between the 
units in the auditory string, i.e., the syllables. In one 
condition, there was no meaningful relationship 

                                                             
1 Asynchrony-based binding allows roles and fillers to be 
coded by the same pool of semantic units, which allows 
DORA to learn representations of relations from 
representations of objects (Doumas et al., 2008). 
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between the strings of syllables, in the second 
condition, phrases were formed from adjacent syllables, 
and in the third condition, sentences emerged from the 
string of syllables. Using this design, they observed 
peaks in the MEG-based oscillatory response on the 
timescale of syllabic rate (4Hz), phrasal rate (2Hz), and 
sentential rate (1Hz). Importantly, for trials with 
Mandarin sentences only speakers of Mandarin 
(compared to English speakers in a control group) 
showed tracking of phrasal and sentential 
representations in the form of peaks at 2Hz and 1Hz, 
respectively, although both English and Mandarin 
speakers showed tracking of speech/acoustic-syllabic 
stimuli regardless of language comprehension. The 
ECoG data from English speakers showed a similar 
pattern to the Mandarin MEG data, but without direct 
one-to-one acoustic-syllabic-to-phrase correspondence. 
Importantly, Ding et al. also observed cortical activity 
coding for sentence structure when English speakers 
tracked sentences of varying syllabic durations. For 
example, when English speakers tracked sentences with 
a noun phrase followed by a verb phrase wherein the 
initial noun phrase was three or four syllables (e.g., “the 
gold lamp”, or “mahogany desk”), cortical activity 
tracked the entire phrasal structure, with a burst firing 
for the duration of the phrasal unit. Ding et al. 
controlled for effects of predictability in a string by 
showing that tracking of phrasal and sentence forms is 
not confounded by transitional probability.  

Ding et al.’s results suggest definite structural form 
emerging during sentence processing. Specifically, 
beyond processing information at the level of syllables 
(or the basic features of a sentence tracked even by non-
speakers of a language), speakers of a language process 
information that appears to track phrase structure and 
sentence structure. Moreover, when processing simple 2 
argument verb structures, the structural pattern that 
emerges is two significant cortical response peaks 
(seemingly capturing phrasal information) firing within 
(at twice the rate) of a single cortical response peak 
(seemingly capturing sentence information).  

We simulated the Ding et al. (2016) studies using 
the same English sentences used in their experiments 5 
and 6 (with native English speakers). All of these 
sentences took the form modifier-noun-verb-noun, 
forming sentences like, “new plans give hope”, and 
“dry fur rubs skin”. LISA/DORA can represent 
sentences of this type in two ways. Most simply, such 
sentences could be represented with the modified noun 
represented as a single object containing both the 
semantics of the object and the modifier (see Figure 
3a). Alternately, LISA/DORA can represent 
hierarchical propositions by representing propositional 
structures as arguments of other propositional 
structures. For example, to represent “dry fur rubs skin” 
the modified noun phrase “dry fur” can be represented 

explicitly by the propositional structure dry(fur), which 
can then serve as the argument of the agent role of the 
rubs relation (see Figure 3b; details of higher-order 
structure representation in LISA and DORA can be 
found in Hummel & Holyoak, 1997 and Doumas et al., 
2008). We have previously hypothesised that 
LISA/DORA can alternate between these types of 
representation depending on the properties of the 
current task (e.g., Doumas et al., 2008; Rabagliati et al., 
submitted). Specifically, when modifier information 
must be considered explicitly, the later type of 
representation (as in Figure 3b) might be employed. 
Alternately, when the modifier information can be 
considered implicitly, the former type of representation 
(as in Figure 3a) can be employed. For the purposes of 
the current simulations both types of representations 
would work, however we used the hierarchical 
representations (i.e., Figure 3b) to code the sentences 
following our assumption that participants coded the 
modifier-noun structure explicitly.  

dry-furrbr.

rubber+dry-fur

rubs(dry-fur, 
skin)

skin

rubbed+skin

rbd.

(a)

rbr.

rubber+dry(fur)

rubs(dry(fur), 
skin)

skin

rubbed+skin

rbd.

(b)

furdry

dry+fur

Figure 3. Representations of the sentence “dry fur rubs 
skin” in LISA/DORA. (a) A representation where the 
dry-skin modified noun is represented as a single unit 
connected to the semantics of both dry and skin. (b) A 
higher-order representation of the sentence where the 
modified noun is represented as a predicate structure, 
dry(skin) taken as an argument of the agent role of the 

rubs relation. 
 

2282



It is important to note that the DORA model can 
learn all of the representations used in the current 
simulation from experience. As demonstrated 
previously (e.g., Doumas & Hummel, 2010; Doumas et 
al., 2008; Hamer & Doumas, 2013; Lim et al., 2014; 
Sandhofer & Doumas, 2008), DORA can learn explicit 
structured (i.e., symbolic) representations of verb 
structures like give, rubs, or chases, and of single-place 
modifiers like dry, new, or golden from experience with 
objects in the world involved in those relations or with 
those feature. For the present study we hand-coded 
these representations, as the process of learning was not 
the focus of the current simulations.  

To simulate Ding et al.’s experimental procedure we 
allowed LISA/DORA to process Ding et al.’s English 
sentences one at a time. Representations of the sentence 
structures entered the driver (i.e., were attended to). 
LISA/DORA processed the sentences as it normally 
would (i.e., the units fired to represent and encode 

binding information; see above). We tracked firing rate 
of all the nodes in the driver as LISA/DORA processed 
the sentences. Because of the controlled length and 
structure of the sentences, DORA, like the participants 
in the Ding et al. experiments, took the same amount of 
time to process each sentence. The results of the 
simulation and the comparison to the patterns observed 
by Ding et al. are presented in Figure 4. Interestingly, 
the pattern of firing of the nodes in the various layers of 
LISA/DORA very closely mirror the patterns observed 
by Ding et al. Specifically, just like the human 
participants, DORA showed an activation burst in it’s P 
units that lasted throughout the processing of the 
sentence (i.e., firing at the 1Hz range), activation bursts 
at twice the rate of the whole sentence burst (i.e., the 
RB unit firing in the 2Hz range), and activation bursts 
at 4 times the rate of the whole sentence burst (i.e., the 
PO units firing in the 4 Hz range).  

Figure 4. The solid line represents cortical power of participants listening to 4 word sentences played for 1 second in 
Ding et al. (2016). High cortical firing is evident at the 1Hz (the duration of the sentence), 2Hz, and 4 Hz range. The 
dashed line depicts firing in LISA/DORA while processing the same sentences used in Ding et al. There is evidence 
of units firing for the duration of the sentence, at intervals of half the length of the sentence, and at intervals lasting 1 

quarter of the length of the sentence.
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Conclusion 
We have shown that abstract, hierarchical linguistic 

representation can be acquired, represented, and 
processed by LISA/DORA, models that were built for 
completely different purposes (analogy making in the 
case of LISA and relation learning in the case of 
DORA). Specifically, we have shown that the 
oscillatory activation patterns in LISA/DORA that arise 
as a natural consequence of the models performing 
dynamic binding appear to very closely fit data from 
human cortical tracking of hierarchical linguistic units 
(Ding et al., 2016).  

It is interesting that models built for completely 
different purposes so successfully perform another task 
without modification. It is notable that extant models of 
sentence processing would likely not generalise so 
seamlessly to tasks such as analogical reasoning. Both 
probabilistic grammar (e.g., Levy, 2008) and 
connectionist approaches (see Joanisse & McClelland, 
2015 for a review) must either be given a set of explicit 
grammatical phrase structure rules, or must learn the 
statistical specifics of a particular syntactic structure or 
parsing problem, rendering them unable to generalize to 
problems that routinely violate statistical and featural 
regularity like analogical reasoning (see, e.g., Holyoak, 
2012).  

We take our results to provide computational support 
the general claim—see, e.g., Penn, Holyoak, and 
Povinelli (2008)—that the ability to form and represent 
relational roles may underlie a number of our uniquely 
human cognitive capacities such as language. It is, 
perhaps, telling that the very same mechanisms that are 
necessary for processing relational structure and 
performing relational cognition seem to so closely 
simulate language processing.  

Given our results, we suggest that models of 
relational reasoning and language processing might 
fruitfully be integrated. Such an integrative approach 
offers the possibility of producing powerful, 
neurophysiologically and cognitively plausible models 
that can perform well on multiple problems. We aim to 
further articulate the model by testing DORA on natural 
speech input, varied syntactic structures, in rich 
discourse contexts, on multilingual input, and with 
different assumptions about existing knowledge 
representations.  
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