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Abstract

Communication and integration of information between brain regions plays a key role in healthy brain function.
Conversely, disruption in brain communication may lead to cognitive and behavioral problems. Autism is a neu-
rodevelopmental disorder that is characterized by impaired social interactions and aberrant basic information
processing. Aberrant brain connectivity patterns have indeed been hypothesized to be a key neural underpinning
of autism. In this study, graph analytical tools are used to explore the possible deviant functional brain network
organization in autism at a very early stage of brain development. Electroencephalography (EEG) recordings in 12
toddlers with autism (mean age 3.5 years) and 19 control subjects were used to assess interregional functional
brain connectivity, with functional brain networks constructed at the level of temporal synchronization between
brain regions underlying the EEG electrodes. Children with autism showed a significantly increased normalized
path length and reduced normalized clustering, suggesting a reduced global communication capacity already
during early brain development. In addition, whole brain connectivity was found to be significantly reduced
in these young patients suggesting an overall under-connectivity of functional brain networks in autism. Our
findings support the hypothesis of abnormal neural communication in autism, with deviating effects already
present at the early stages of brain development.
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Introduction

Healthy brain function depends on efficient commu-
nication between brain regions. Communication within

and between these brain regions, on both the microscopic and
macroscopic level, is assumed to be driven by the large-scale
synchronization of activity in networks of neurons (Buzsaki
and Wang, 2012; Jensen et al., 2007; Uhlhaas et al., 2009;
Wang et al., 2011). By quantifying synchronization between
each possible pair of brain regions, a functionally connected
brain network can be constructed. From these functional
brain networks, graph theoretical characteristics can be
obtained, providing insight in the general organization and
communication efficiency of these networks, and in particu-
lar, in the balance between local processing and global inte-
gration (Sporns et al., 2000; Stam, 2010; van den Heuvel
and Hulshoff Pol, 2010). Recent studies demonstrate that
brain networks show nonrandom organizational properties,

including a small-world organization (Watts and Strogatz,
1998) reflecting high clustering (likelihood that neighbors of
a node are strongly interconnected) and a short characteristic
path length (the shortest path between any two nodes aver-
aged for all pairs of nodes) and the formation of densely con-
nected hubs (Bullmore and Sporns, 2012; van den Heuvel,
2012). Such an organization of brain connectivity has been
shown to play a crucial role in enabling a balance between ef-
ficient local specialization (high clustering) combined with ef-
ficient global integration of information (short characteristic
path) (Sporns et al., 2000). For instance, higher clustering
and shorter communication paths have been related to better
cognitive abilities in adults (Li et al., 2009; van den Heuvel
et al., 2009), while deviant brain topologies have been
found to underlie several neurological and neuropsychiatric
diseases (Ahmadlou et al., 2012; Basset and Bullmore, 2009;
Kramer and Cash, 2012; Liu et al., 2012; van den Heuvel
et al., 2010). Furthermore, it has been shown that the
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communication efficiency of brain networks is under genetic
control (Fornito et al., 2011; Glahn et al., 2010; Smit et al., 2008;
van den Heuvel et al., 2012) and optimizes during typical de-
velopment (Boersma et al., 2011; Smit et al., 2012). This makes
the examination of the underlying brain network organiza-
tion in neurodevelopmental brain disorders, such as autism,
of great relevance.

Autism is a neurodevelopmental disorder that is char-
acterized by language and communication deficits, im-
paired social interactions, restricted and stereotyped
behavior as well as atypical sensory sensitivity, and
these symptoms emerge already in the first years of life.
At this early age in the typically developing brain, pro-
found maturational processes occur, such as pruning of
superfluous connections and myelination of long-distance
axons (Huttenlocher, 1984; Lebel et al., 2008), leading to
weakening of short range, and strengthening of long-range
functional connections at a spatial level (Fair et al., 2009;
Supekar et al., 2009; Thatcher, 1992). In addition, increased
levels of slow-wave interregional phase synchronization
and decreased levels of high-frequency oscillations are
noted in the developing child (Vakorin et al., 2011). Dis-
turbances of these developmental processes both at micro-
and macroscales have been hypothesized to underlie
aberrant communication between brain regions in autism
(Courchesne and Pierce, 2005; Levy, 2007; Levy et al.,
2009). Indeed, functional brain connectivity has been
found to be affected in autism ( Just et al., 2012; Kana et al.,
2011; Muller et al., 2011; Murias et al., 2007; Vissers et al.,
2012; Wass, 2011). A previous study using graph analytical
techniques to examine the overall organization of functional
brain connectivity in autism showed reduced levels of abso-
lute clustering and a longer absolute characteristic path
length in electroencephalography (EEG)-based networks,
which were suggested to reflect inefficient local and global
topology of the brain network in adult patients (Barttfeld
et al., 2011). Besides a recent functional magnetic resonance
imaging (fMRI) study that reports on disrupted synchroni-
zation in the spontaneous slow fluctuating cortical activity
in autistic toddlers (Dinstein et al., 2011), our knowledge
of the underlying organization of functional brain networks
at this early, but crucial stage of brain development remains,
however, limited. As a pattern of accelerated brain develop-
ment or overgrowth in the first years of life and a subsequent
decline in growth around the age of four has been theorized
in autism (Courchesne et al., 2011; Wass, 2011), investigating
the brain dynamics at these early developmental stages is
crucial for gaining new insight in deviant brain development
in autism.

The present study reports on novel findings of aberrant
brain functional network organization in autistic toddlers.
Functional brain networks were constructed from EEG re-
cordings of 12 autistic and 19 control children, aged 2–5
years old. Whole brain connectivity strength as well as
measures of local and global network efficiency were
computed to examine whether, and if so, how network con-
nectivity and communication efficiency is affected in autis-
tic children, as compared to healthy children at the same
neurodevelopmental stage. In particular, our study provi-
des first evidence that the balance between information seg-
regation and integration in autistic toddlers is already
disturbed.

Methods

Participants

This study presents data collected previously from patients
who were recruited from the Department of Psychiatry of the
University Medical Center in Utrecht, and from Karakter
Child and Adolescent Psychiatry University Center in Nijme-
gen (two patients). The study was approved by the ethics
committee of the University Medical Center Utrecht. Written
informed consent was obtained from the parents or guardians
of each child and the study was conducted in accordance with
the standards set by the Declaration of Helsinki.

A group of seventeen children with a clinical diagnosis of
autism spectrum disorder (ASD) according to DSM-IV crite-
ria were included in this study. The group of patients (from
which complete EEG recordings were obtained, that is, 12
children, see exclusion criteria below) received a clinical diag-
nosis according to DSM-IV criteria of Autism (2 patients),
Asperger Syndrome (1 patient), or Pervasive Developmental
Disorder Not Otherwise Specified (9 patients). The clinical di-
agnoses were assigned on the basis of an extensive interview
with the parents, a psychiatric observation, and a psychomet-
ric assessment of the child by a multidisciplinary team con-
sisting of a child psychiatrist, child psychologist, and
licensed social workers specialized in developmental disor-
ders. Unfortunately, we did not have complete autism diag-
nostic interview and/or autism diagnostic observation
schedule scores to reliably test for correlations between the se-
verity scores of autism and brain network parameters in these
very young patients. Twenty-two control children were
recruited from different schools and child care centers in the
Utrecht area. The Child Behavior Checklist (CBCL/1.5–5)
(Achenbach, 2000) was completed by the parents, and the
Vineland Social-Emotional Early Childhood Scales (Sparrow
et al., 1998) were administered to exclude clinically relevant
psychopathology among the control children. All children
scored within the normal range of the CBCL and Vineland
scales and were included for further analysis.

Additional exclusion criteria based on the EEG recordings
(described in the EEG Recordings section below) led to exclu-
sion of three controls and five patients in total. This resulted
in a total set of 19 controls (mean age 3.53 – 1.19 years; IQ =
108.0 – 12.4) and 12 autistic children (mean age 3.35 – 0.80
years; IQ = 85.0 – 17.2) who were included in the analysis.
Subject characteristics and statistics are listed in Table 1.
Groups did not differ in age. IQ estimates significantly dif-
fered between groups, with the autistic patients showing

Table 1. Subject Characteristics

Controls Patients t p

n 19 12
Boysjgirls 19j0 10j2 Fisher’s exact 0.142
Agea 3.53 (1.19) 3.35 (0.80) t26 = 0.453 0.654
IQb 108.0 (12.4) 85.0 (17.2) t28 = 4.253 < 0.001
Included

trials
27.4 (2.2) 32.1 (4.0) t29 =� 0.591 0.559

Number of subjects, distribution of sex, age in years [mean (SD)],
IQ [mean (SD)], and number of included trials [mean (SD)] are
shown. Bold text indicates a statistical significant difference.

aAge data not available for two controls and one patient.
bIQ data not available for one patient.
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significantly lower IQ scores than the group of healthy con-
trols ( p < 0.001).

EEG recordings

Data were selected from a task-dependent EEG study, in
which children passively watched pictures of cars and
faces. In the current study, the effect of autism was primarily
studied on both task conditions grouped together, as the
main focus of this study was on the effect of autism on func-
tional network organization and not necessarily on task per-
formance. A detailed description of the task procedure and
the results for the separate task conditions are presented in
the Supplementary Materials (Supplementary Data are avail-
able online at www.liebertpub.com/brain).

EEG recordings were obtained from 32 electrodes positioned
at standard EEG recording locations of the international 10/20
system by using a BioSemi Active Two EEG system (BioSemi),
while participants were sitting in an acoustically shielded room
(midline: Fz, Cz, Pz, Oz; frontal: Fp1, Fp2, AF3, Af4, F3, F4, F7,
F8; frontocentral: FC3, FC4, FC5, FC6; central: C3, C4; centro-
parietal: CP1, CP2, CP5, CP6; temporal: T7 (T8 was excluded
due to continuous artifacts in most children); parietal: P3, P4,
P7, P8; parieto-occipital: PO3, PO4; occipital: O1, O2). An
online Common Mode Sense-Driven Right Leg (CMS-DRL)
was used as a reference. Horizontal electro-oculography
(EOG) was recorded from electrodes at the outer canthi of the
eyes by means of adhesive rings. Vertical EOG was recorded
from electrodes placed infra- and supra-orbital to the left eye.
Impedances were typically kept below 5 kO for both EEG re-
cordings and EOG recordings. The EEG was sampled at a
rate of 2048 Hz and stored offline as continuous signals.

EEG time series were segmented in epochs starting 100 ms
before and ending 900 ms after stimulus presentation. Seg-
ments with artifacts were excluded for further analysis,
using a semiautomated artifact correction tool (Brain Vision
Analyzer software package [Version 2.0]) and additional vi-
sual inspection of the data. Typical artifacts that led to exclu-
sion, included eye blinks or movements, muscle artifacts,
drowsiness, and detached electrodes. Two controls and five
patients in total were excluded due to sleep or drowsiness
or noisy data due to detached EEG electrodes or other arti-
facts. Furthermore, one control was excluded due to spike-
wave discharges, which might indicate epileptiform activity.
In total, this resulted in the inclusion of (on average) 32
artifact-free segments [mean (SD) = 32.1 (4.0)] in the patients
and 27 artifact-free segments in the control group [mean
(SD) = 27.4 (2.2)], each of length 1000 ms.

Functional connectivity: phase lag index

The phase lag index (PLI) expresses the level of asymmetry
of the distribution of the instantaneous phase differences
between two EEG signals. A detailed (mathematical) descrip-
tion of PLI can be found in (Stam et al., 2007). An advantage
of PLI over other nonlinear measures of connectivity (e.g.,
correlation, synchronization likelihood) is that the PLI is
much less affected by the influence of volume conduction/
common sources and reference electrodes.

Connectivity matrix formation

For each selected trial, EEG signals were filtered in broad
band (0.1–30 Hz, i.e., standard event related potential filtering),

and in the theta-alpha band (4–10 Hz), and the beta band
(10–25 Hz; Fig. 1A). We deviated from the standard definition
of frequency bands, since in developing young children the
power spectrum is dominated by slow frequencies; the alpha
peak occurs at slower frequencies (*8 Hz) in young children
(Boersma et al., 2011; Marshall et al., 2002), which is in contrast
with the faster alpha peak frequencies in adults (*10 Hz)
(Cragg et al., 2011; Smit et al., 2011). To prevent splitting up
the alpha band at this 8 Hz alpha peak and capturing as
much slow oscillations as possible, we chose to combine the
alpha and theta frequency bands, ranging from 4 to 10 Hz.

For each frequency band, and for each epoch (each consisting
of 2048 samples), the level of synchronization (PLI) was com-
puted between each pair of electrodes (Fig. 1B) using the
BRAINWAVE software, version 9.70 (CS,/home.kpn.nl/
stam7883/brainwave.html). This resulted in a trial-specific
31 · 31 connectivity matrix (electrode T8 was excluded), repre-
senting the functional dynamics between brain regions (Fig. 1C).

The resulting PLI connectivity matrices were used to con-
struct undirected, weighted networks in which each EEG
electrode is a node, and the PLI values represent the weights
of the links between nodes (Fig. 1D). Functional connectivity
networks were visualized using the EEGLAB toolbox
(Delorme and Makeig, 2004). To obtain whole brain connec-
tivity strength (S), PLI matrices were averaged for each
trial, and subsequently averaged over all trials (per dataset).

Graph analysis of functional brain networks

Graph analytical tools were applied (using BRAINWAVE
software) to characterize the topology of the obtained
weighted functional brain networks (Stam et al., 2009). For
each node, the weighted clustering coefficient Cwi was calcu-
lated, expressing the likelihood that neighbors of node i are
connected in which the strength of the connections between
the node and the neighboring nodes are taken into account.
Averaging Cw over all 32 nodes resulted in an average,
whole brain, weighted clustering coefficient reflecting the
level of local organization of the network.

For each pair of nodes, the weighted shortest path, that is, a
path that minimizes the sum of the inverse PLI weights, was
computed. Averaging the weighted lengths of these shortest
paths resulted in the weighted characteristic path length
(Lw), a commonly used measure for global network commu-
nication capacity.

As a normalization step, both average absolute clustering
(Cw-r) and average absolute path length (Lw-r) were calculated
for 1000 randomized networks with similar number of nodes
and edge weights and symmetry as the observed graph. The
normalized clustering coefficient (gamma) was then defined as
the ratio of the clustering of the observed and the average of
the collection of randomized networks (Cw/Cw-r). In a similar
fashion, the normalized path length (lambda) was defined as the
ratio of the path length of the observed and the average of the
randomized networks (Lw/Lw-r). A network is said to show
small-world characteristics when Cw/Cw-r > > 1 and Lw/
Lw-r * 1, with a small-worldness (SW) index defined as the
ratio of gamma/lambda, exceeding 1 (Humphries et al., 2006).

Statistical methods

Statistical analysis performed using SPSS (version 20).
Independent samples t-test and Fisher’s exact tests were
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used to test for differences in subject characteristics between
groups. To test for group differences in whole brain connec-
tivity and network parameters, independent samples t-tests
(equal variances assumed) were used.

In addition, network-based statistic (NBS) was used to test
for differences in connection strength between autism and
control groups (Zalesky et al., 2010, 2012). NBS is a nonpara-
metric statistical test that isolates clusters of edges that signif-
icantly differ between groups. To examine both increased and

decreased connections, a threshold of p = 0.025 was set to se-
lect supra-threshold connections. Testing all 31 · 30/2 unique
connections, the largest connected component of supra-
threshold connections was determined and compared to the
cluster-sizes in a randomized condition. To this end, subjects
were randomly assigned to two groups of equal sizes as the
original subject groups, and the largest connected component
of the supra-threshold connections was determined for these
groups. This process was repeated 5000 times, resulting in a

FIG. 1. Consecutive steps of
functional connectivity
analysis and graph analysis
applied to electroencephalog-
raphy (EEG) recordings of
brain activity. (A) EEG
recording and filtering of the
EEG signals in broadband
(0.1–30 Hz), theta-alpha band
(3–10 Hz), and beta band
(10–25 Hz). (B) Computation
of the phase lag index (PLI)
between all pairwise
combinations of EEG time-
series (example of electrode
pair F3 and P3). (C)
Representation of weighted
connectivity matrices per
frequency band, with the
element values indicating the
strength of functional
connection between to two
time series. (D) Computation
of graph metrics. The average
whole brain connectivity
strength (S), absolute
clustering (Cw), normalized
clustering (gamma), absolute
path length (Lw), and
normalized path length
(lambda) were computed.
Normalized network
measures gamma and lambda
were computed by
comparing the network
measures of the original
network to randomized
networks.
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null-distribution of component sizes that can occur on the
null-hypothesis. Finally, the observed cluster size of the orig-
inal data was assigned a p-value as the percentage of random
permutations that exceeded this value.

Pearson correlations were used to examine a possible asso-
ciation between network metrics and age and IQ.

Independent samples t-tests were used to study the effect
of autism for separate task conditions (see Supplementary
Data).

Results

Broad band

Patients showed significantly increased lambda (normal-
ized path length) in the broad band ( p = 0.004) compared to
control children, suggesting aberrant organization of global
communication in patients showing relatively longer normal-
ized path length, that is, in proportion to randomized net-
works. Furthermore, a trend toward decreased SW was
found ( p = 0.084) in this frequency band, whereas whole
brain connectivity strength (S) did not significantly differ be-
tween patients and controls.

Theta-alpha band

In theta-alpha band, a significant reduction of gamma (nor-
malized clustering) was found ( p = 0.021) and, additionally,

SW significantly decreased ( p = 0.010) in patients compared
to controls. Whole brain connectivity strength did not differ
between groups.

Beta band

Patients showed a significant reduction in whole brain con-
nectivity strength S in the beta band ( p = 0.009; Fig. 2 and
Table 2) which was accompanied by significantly reduced
Cw (absolute clustering) and significantly increased Lw (ab-
solute path length).

Figure 3 illustrates which of the functional connections
were reduced (blue color) and increased (red color) in autistic
children as compared to controls, in broad, theta-alpha and
beta band. A widespread significant cluster of 51 reduced
connections (NBS; p = 0.003) was found in autistic children
compared to controls, in the beta band. In broad band the in-
creased connections did not form a connected cluster.

An overview of the results of the t-tests for group differ-
ences in whole brain connectivity strength, clustering, path
length, gamma, lambda and SW per frequency and an over-
view of the direction of the effects can be found in Table 2.

In the Supplementary Materials, the effect of autism was
studied in the separate conditions (Supplementary Table
S1), showing similar results as for combined conditions. Fur-
thermore, besides the applied t-tests, statistical evaluation
was performed using nonparametric permutation testing,
being less sensitive to the effect of group-size and potential
outliers. Permutation testing (10,000 permutations) revealed
similar results, which are described in the Supplementary
Data.

Since autistic children showed significantly lower IQ than
control children ( p < 0.001), we tested if IQ and graph mea-
sures were correlated. In both control children and patients,
no significant correlations were found between network pa-
rameters and IQ. A supplemental test showed that subgroups
of control and autistic children with overlapping IQ showed
significant differences in connectivity and graph parameters
equal similar to the results obtained in the complete groups
(see Supplementary Table S2 for test statistics). Furthermore,
no significant correlations were found between network pa-
rameters and age.

Discussion

The present study demonstrates abnormal functional net-
work organization in autistic children, showing that affected

FIG. 2. Whole brain connectivity strength (S), as the average
of all PLI values between all electrode pairs, in broad, theta-
alpha and beta bands. Significant reduced connectivity was
found in autistic children (light gray bars) in the beta band
( p = 0.009) compared to controls (dark gray bars).

Table 2. Results t-Test

Broad Theta-alpha Beta Direction group effect

t29 p t29 P t29 p Broad Theta-alpha Beta

S �1.019 0.317 0.637 0.529 2.784 0.009 [ Y Y
Cw �1.157 0.257 0.906 0.373 3.109 0.011 [ Y Y
Lw 0.915 0.368 �0.627 0.535 �2.647 0.013 Y Y [
Gamma �1.599 0.121 2.449 0.021 1.706 0.099 [ Y Y
Lambda �3.107 0.004 �1.241 0.225 1.415 0.168 [ [ Y
SW 1.787 0.084 2.766 0.010 0.784 0.439 Y Y Y

Results of independent samples t-test are shown for whole brain connectivity strength (S), clustering (Cw), path length (Lw), normalized
clustering (gamma), normalized path length (lambda), and small-worldness (SW) for each frequency band. Arrows indicate the direction of
the group effect: Y, pt < con; and [, pt > con. Bold text indicates a statistical significant difference ( p < 0.05).

DISRUPTED FUNCTIONAL BRAIN NETWORKS IN AUTISTIC TODDLERS 45



brain connectivity in autism may be already present at the
early stages of brain development in patients. Functional net-
works differed in topology, leading to increased lambda (nor-
malized path length) in broadband, together with reduced
gamma (normalized clustering) and SW in theta-alpha
band, suggesting an abnormal balance of information integra-
tion and segregation at the system level in autism. Inherent
to these organizational differences, deviant connectivity
strength was found in autism, both averaged over the
whole brain (Fig. 2) as well as at the level of single connec-
tions (Fig. 3). In broadband EEG, a pattern of strengthened
connections was found in children with autism, whereas
whole brain connectivity strength (S) did not significantly dif-
fer between groups. Furthermore, in theta-alpha band, no dif-
ference was found in S and only few connections showed
increased or reduced strength in autism. Finally, in the beta
band, a cluster of 51 reduced connections was found and av-
erage whole brain S was significantly reduced. Taken to-
gether, these findings support the interpretation that not
merely connectivity strength is affected in autism, but also in-
volves an aberrant organization of connectivity.

Over different developmental stages of typical brain matu-
ration, functional connectivity tends to weaken locally and
strengthen over longer distances concurring with matura-
tional processes like pruning of synapses and myelination
of long-range axons, and leading to decreasing (local) segre-
gation and increasing (global) integration with development
(Barry et al., 2004; Fair et al., 2009; Giedd et al., 1999; Hag-
mann et al., 2010; Thatcher, 1992; Uddin et al., 2010; Yap
et al., 2011). These typically developing functional networks
show small-world features. However, disturbed temporal co-
ordination of these local and global synchronization pro-
cesses at different stages of brain maturation might lead to
neuropsychiatric disorders (Uhlhaas and Singer, 2012). Sev-
eral patterns of over- and under-connectivity at distinct spa-
tial and temporal scales have been reported in autism ( Just
et al., 2012; Kana et al., 2011; Li et al., 2012; Muller et al.,
2011; Murias et al., 2007; Vissers et al., 2012; Wass, 2011). A
recurrent pattern of local over-connectivity (most pro-
nounced within frontal areas), and decreased connectivity
from frontal to other brain areas has been found in autism
(Courchesne et al., 2011; Just et al., 2012), supporting our cur-
rent findings of reduced global communication capacity in
autistic toddlers. Additionally, studies have observed en-
hanced local synchronization within parietal areas in children
with autism, suggesting local over-connectivity in parietal

areas (Perez Velazquez et al., 2009). Regarding local connec-
tivity patterns, the present study showed reduced normalized
clustering in whole brain networks, suggesting a reduction in
local information processing at the system level in young chil-
dren with autism. This apparent discrepancy might be
explained by the fact that previous studies focused on connec-
tivity patterns within one specific brain region, whereas the
present study examined clustering patterns between all
brain regions. At this system level, only a few graph theoret-
ical studies have shown deviations in clustering (local segre-
gation) and average path length (global integration) in
anatomical and functional networks in adults with autism
(Barttfeld et al., 2011; Dennis et al., 2011). Our results confirm
and extend the findings of Barttfeld and colleagues who
found reduced (absolute) clustering and increased average
path length in slow frequency EEG networks, and suggested
that the topology of the adult network departs from small-
world behavior in autism (Barttfeld et al., 2011).

Interestingly, our findings tend to suggest a shift or disba-
lance in slow versus fast frequencies in children with autism,
as suggested by the observation that network parameters are
increased in slow, and somewhat reduced in fast frequencies
in children with autism (Table 2). Healthy brain development
has been characterized by an ongoing increase in interre-
gional phase synchronization in the slower frequencies and
desynchronization in faster oscillations, a developmental tra-
jectory that starts prenatally and continues into early adult-
hood (Vakorin et al., 2011). The deviant pattern found in
the present study might suggest that young children with au-
tism show abnormally fast brain maturation compared to
controls at this age. Indeed, consistent with such a hypothesis,
an accelerated or overgrowth of brain volume in the first
years of life (and subsequently a decline in growth) in autism
was previously found in structural MRI studies (Courchesne
et al., 2007, 2011; Hazlett et al., 2011). In terms of cognitive
functions, slow frequencies, such as theta oscillations, are in-
volved in memory function in adults, especially when cross-
frequency coupled to faster frequencies such as gamma band
frequencies (Canolty and Knight, 2010; Osipova et al., 2006).
Furthermore, alpha band synchronization has been associ-
ated with cognitive functions such as top-down control and
regulation of (visual) attention (Engel et al., 2001); interest-
ingly, recent studies suggest that alpha band activity at
source space appears to be confined to regions referring to
the well-known default mode network and other attentional
networks commonly found in resting-state functional MRI

FIG. 3. Significantly stron-
ger (red) and weaker (blue)
connections ( p < 0.025) in au-
tistic children in respectively
broad, theta-alpha, and beta
band. Beta band showed a
cluster ( p = 0.003) of 51 con-
nected links showing reduced
connectivity in autistic chil-
dren, as compared to control
children.
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studies (Hillebrand et al., 2012; Sadaghiani et al., 2012). How-
ever, the association between development of cognitive func-
tions and development of synchronization patterns in
different frequency bands in children is not well understood
yet. Longitudinal investigation of how the potential trajectory
of early overgrowth and declined growth of brain volume later
in life is related to abnormal development of functional brain
networks in subjects with autism is of great importance. It
would add to our understanding of how structural and func-
tional brain development contribute to the expression of
autism and might serve as a coarse template for understanding
developmental aspects of other neurological and neuropsychi-
atric diseases that have been associated with altered brain effi-
ciency previously (Ahmadlou et al., 2012; Basset and Bullmore,
2009; Kramer and Cash, 2012; Liu et al., 2012; van den Heuvel
et al., 2010). Since it has been shown that brain network orga-
nizations are under genetic control in adults (Fornito et al.,
2011; Smit et al., 2008, 2010) and children (van den Heuvel
et al., 2012), graph analytical metrics of the efficiency of the
organization of the brain’s network might be important inter-
mediate phenotypes for molecular-genetic studies in autism.

Some methodological considerations need to be taken into
account when interpreting the findings of this study. Tod-
dlers passively watched pictures of cars and faces during
EEG recordings. The effect of autism was studied combining
the two task conditions. In the Supplementary Materials a de-
tailed description of the task procedure and additionally, the
group effect in the separate conditions can be found, showing
similar results as for combined conditions. Interestingly,
group differences tend to be more pronounced in the ‘‘cars
condition.’’ Previous studies showed atypical processing of
basic visual stimuli in autism, including preferential attention
to detail (Behrmann et al., 2006; Ronconi et al., 2012; Vlamings
et al., 2010) and faster responses to objects than to faces in in-
fants at high risk for autism (McCleery et al., 2009), suggest-
ing enhanced local processing. Based on our findings, one
might speculate that the aberrant processing of visual infor-
mation in autism, especially of objects, is also reflected in a
disbalance of information processing at the system level in
large-scale functional networks. Since these early deviations
in basic perceptual processing might have consequences for
development of higher order processing, it is important to
gain further insight in how this deviant perceptual processing
relates to aberrant brain network organization in children
with autism. Constructing directed networks incorporating
information on the direction of information flow (Stam and
Van Straaten, 2012) might help to further explore whether
and if so, perceptual processing is affected in autism.

Another potentially confounding factor in functional con-
nectivity studies is the effect of volume conduction and active
reference electrodes causing spurious correlations (Nunez
et al., 1997). However, in contrast with measures such as co-
herence or synchronization likelihood, PLI has been shown to
be less sensitive to these zero-phase lag effects while reflect-
ing functional connectivity in EEG as well as other measures
(Stam et al., 2009).

As previous studies have shown an association between in-
telligence and brain network organization (Li et al., 2009; van
den Heuvel et al., 2009), a potential confounding effect in the
present study might include that the children with autism
had a significantly lower intelligence score than control chil-
dren. To this end, a post hoc analysis was performed on sub-

groups with overlapping IQ, resulting in comparable effects
as shown for the complete groups. These additional findings
suggest that the changes in organization in brain networks of
children with autism are unlikely to be related to group dif-
ferences in IQ. Future investigation of the association of net-
work parameters and clinical scores might lead to better
understanding of, and give new insight in possible underly-
ing pathophysiological mechanisms affecting the brain as a
developing large-scale complex communication system.

In conclusion, our findings demonstrate that autism is re-
lated to aberrant functional organization of the brain’s net-
work, suggesting an abnormal balance of information
integration and segregation already at the early stages of de-
velopment. Moreover, our findings tend to point into the di-
rection of a possible developmental disbalance between
connectivity and network organization between the low
and high frequency bands. Our findings thus suggest an ab-
normal developmental trajectory for functional brain dynam-
ics in patients with autism, a deviating pattern of less efficient
global brain communication that is already present during
the earlier stages of brain development.
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