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Abstract
Quantitative MRI (qMRI) provides standardized measures of specific physical parameters that are

sensitive to the underlying tissue microstructure and are a first step towards achieving maps of

biologically relevant metrics through in vivo histology using MRI. Recently proposed models have

described the interdependence of qMRI parameters. Combining such models with the concept of

image synthesis points towards a novel approach to synthetic qMRI, in which maps of fundamen-

tally different physical properties are constructed through the use of biophysical models. In this

study, the utility of synthetic qMRI is investigated within the context of a recently proposed linear

relaxometry model. Two neuroimaging applications are considered. In the first, artefact‐free

quantitative maps are synthesized frommotion‐corrupted data by exploiting the over‐determined

nature of the relaxometry model and the fact that the artefact is inconsistent across the data. In

the second application, a map of magnetization transfer (MT) saturation is synthesized without

the need to acquire an MT‐weighted volume, which directly leads to a reduction in the specific

absorption rate of the acquisition. This feature would be particularly important for ultra‐high field

applications. The synthetic MT map is shown to provide improved segmentation of deep grey

matter structures, relative to segmentation using T1‐weighted images or R1 maps. The proposed

approach of synthetic qMRI shows promise for maximizing the extraction of high quality

information related to tissue microstructure from qMRI protocols and furthering our

understanding of the interrelation of these qMRI parameters.
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1 | INTRODUCTION

Quantitative MRI (qMRI) provides standardized measures of specific

physical parameters that are sensitive to the underlying tissue micro-

structure. The standardized nature of these parameters facilitates

comparison across sites and time points, which greatly improves the

sensitivity and efficiency of multi‐centre and longitudinal studies.1

qMRI is also the first step towards achieving maps of biologically rele-
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vant metrics through in vivo histology usingMRI.2 However, since qMRI

metrics are sensitive to multiple biological factors (e.g. fibre density,

water, myelin and iron content), multiple parameters are needed to

improve biological specificity.3 The multi‐parameter mapping (MPM)

protocol1 is one such quantitative imaging approach, in which data

are combined to calculate maps of the longitudinal relaxation rate

(R1), the effective transverse relaxation rate (R2*), the magnetization

transfer saturation (MT) and the effective proton density (PD*).

Given a set of qMRI parameters, such as are generated with the

MPM protocol, it is possible to synthesize images with arbitrary con-

trast weighting through use of the appropriate MRI signal model.4–6

This provides a flexible and time efficient approach to investigating

tissue integrity and pathology, e.g. by generating multiple inversion

recovery images covering a range of inversion times. Such a synthetic

approach has been proposed as a first step towards the adoption of
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fully quantitative imaging within a clinical environment,7 and clinical

utility has been demonstrated, e.g. in the visualization of tumours.8

Going beyond physical models that describe the MRI signal as a

function of scanner parameters, such as flip angle, repetition and echo

times, biophysical models that describe the interdependence of MRI

parameters, such as R1, proton density (PD) and macromolecular tissue

volume fraction, have more recently been proposed.9–11 Combining

such models with the concept of synthesizing images points towards

an alternative approach: synthetic qMRI. In this case quantitative maps

of fundamentally different physical properties are constructed through

the use of biophysical models as distinct from constructing simple

weighted images as in the conventional approach to synthetic MRI.

Such modelling approaches may enhance the robustness of quantita-

tive imaging protocols that aim to quantify multiple parameters.

For example, high resolution (finer than 1 mm isotropic) and whole

brain coverage leads to extended MPM protocol durations (25 min

or more) and therefore increased vulnerability to motion, which

could render valuable data unusable. In addition, at ultra‐high field

(>3 T) acquiring an MT‐weighted volume can be particularly

challenging due to the supra‐linear increase in specific absorption

rate (SAR) with field strength. The absence of an MT‐weighted

acquisition, due to either motion or SAR limitations, is particularly

problematic since it prohibits the construction of an MT map, yet

these have been shown to facilitate improved segmentation of deep

grey matter (GM) structures.12 These segmentation benefits are of

great clinical importance because changes in regions such as the

basal ganglia are associated with a number of pathological conditions,13

including Parkinson's and Huntington's diseases, both of which are

associated with involuntary movement such that remaining still

during data acquisition may be particularly difficult for these

patient groups.

In this study, the utility of synthetic qMRI is investigated within the

context of the recently proposed linear relaxometry model.11 In this

model, which stems from the fundamental principles of the fast

exchange regime,14 the components of the apparent longitudinal relax-

ation rate (R1) are expressed as a weighted sum of other qMRI metrics.

Quantitative maps of MT and effective transverse relaxation rate (R2*)

are used as surrogates for the macromolecular and paramagnetic

contributions to R1 respectively. This model can be constructed on a

participant‐specific basis by pooling over GM and white matter

(WM). The coefficients of this general linear model, which are global

scalars for the whole brain, exhibited remarkable stability across a

large, heterogeneous cohort.11 This stability indicates that the mean

of the population‐derived model coefficients could be used on newly

acquired maps to achieve the goal of synthesizing a full set of quanti-

tative parameter maps from just a sub‐set of the MPM protocol. The

utility of doing so is demonstrated with two applications in the neuro-

imaging domain. In the first application, artefact‐free quantitative maps

are synthesized from motion‐corrupted data by exploiting the over‐

determined nature of the relaxometry model and the fact that the

artefact is inconsistent across the quantitative maps, and is instead

captured by the residuals of the model. In the second application, an

MT map is synthesized without the use of an MT‐weighted volume,

which directly leads to a reduction in the SAR of the protocol. Using

the synthesized MT map, we assess whether the previously
established improvement in segmenting deep GM structures, relative

to segmentation using T1‐weighted images, is maintained.
2 | THEORY: LINEAR RELAXOMETRY
MODEL

In the absence of exogenous contrast agents, the measured R1 is

dominated by contributions from free water spins, bound water spins

at macromolecular sites and a smaller, spatially varying contribution

from iron sites.15,16 Under conditions of fast exchange, the measured

R1 can be expressed as a weighted sum of the relaxivities of these

compartments14:

R1 ¼ R1f þ fMr1M þ fFEr1FE þ ∑
j
f jr1j: (1)

Here R1f is the relaxation rate of free water; fM is the fraction of

spins at macromolecular sites with relaxivity r1M; fFE is the fraction of

spins at iron sites with relaxivity r1FE; the index j sums over any

unspecified contributions. The relaxivity describes the increase in the

relaxation rate relative to free water sites, e.g. r1M = R1M − R1f, where

R1M is the relaxation rate at macromolecular sites. A model of the

apparent R1 purely based on imaging data can be constructed by

replacing the known contributors to R1 with voxel‐wise surrogate

imaging markers11:

R1 rð Þ ¼ β0 þ β1MT rð Þ þ β2R
�
2 rð Þ þ ε rð Þ: (2)

Here, R1f is taken to be a constant, β0. The macromolecular term,

fMr1M, is replaced by a map of MT saturation17; r in parentheses

denotes spatial location, indicating the voxel‐wise nature of the model.

A single, global model coefficient, β1, which holds for both GM and

WM, describes the macromolecular contribution to the measured R1.

Similarly, an R2* map and additional global model coefficient, β2, are

used as a surrogate for the contribution from iron sites, i.e. fFEr1FE.

ε(r) is a map of model residuals encompassing any potential unspecified

contributions to R1 and noise.

A single set of β parameters has been shown to be sufficient to

model the contributions to R1 across GM and WM.11 Given these

model coefficients, which may either be published values or values cal-

culated directly for the participant, a synthetic R1 map is calculated by

rewriting Equation 2 as follows:

bR1 rð Þ ¼ β0 þ β1MT rð Þ þ β2R
�
2 rð Þ: (3)

Similarly, a synthetic MTmap is calculated by rearranging Equation

3 and using the measured R1 map:

dMT rð Þ ¼ R1 rð Þ−β0−β2R�
2 rð Þ� �

β1
: (4)

Equation 4 allows a map of MT saturation to be calculated without

the acquisition of an MT‐weighted volume, since its calculation relies

only on the model coefficients and the measured R1 and R2* maps.

Note also that the synthesized quantitative maps,cR1 rð Þ anddMT rð Þ,
do not contain model residuals. This means that noise sources, such as

motion artefact, that lead to inconsistencies across the constituent
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maps are removed. This is the proposed mechanism for motion arte-

fact removal. As part of the MPM protocol, three contrast weightings

are acquired with predominantly PD, T1 or MT weighting. The R2*

map is derived solely from the decay of the signal across the echoes

of the PD weighted volume whereas the R1 map relies on the combina-

tion of the PD and T1 weighted volumes. A map of MT saturation

requires data from all three weighted volumes since, unlike

magnetization transfer ratio (MTR) maps, it is corrected for spatially

varying T1 times. Given the over‐determined nature of the model when

the model coefficients are known, artefact‐free maps can be calculated

using Equations 3 and 4, depending on which of the weighted volumes

have been corrupted by motion according to the following scenarios.

1. The MT‐weighted acquisition is corrupted by motion. In this case,

Equation 4 can be used to construct a synthetic MT map free of

motion artefact. This is the optimum case for correction since

the MT‐weighted acquisition contributes only to the calculation

of the MT map.

2. The T1‐weighted acquisition is corrupted by motion. In this case,

the R1 map will be most heavily degraded by motion artefact

and Equation 3 can be used to construct a synthetic R1 with

reduced artefact level.

3. The PD‐weighted acquisition or both the T1‐ and MT‐weighted

volumes are corrupted by motion. In these cases, all maps will

be corrupted by motion to some degree and the possibility of

improving the quality of the maps is reduced. The correction

achievable will depend on the extent of motion artefact across

the constituent volumes.
3 | METHODS

All data were acquired on a 3 T whole body MR system (TIM Trio,

Siemens Healthcare, Erlangen, Germany) equipped with an RF body

coil for transmission and a 32 channel RF head coil for receiving. The

studies were approved by the local ethics committee and informed

written consent was obtained from all participants prior to scanning.
3.1 | Data acquisition

Two studies were performed to assess the utility of synthesizing

quantitative parameter maps using the linear relaxometry model and

maps derived from the MPM protocol. The first study assessed the

performance of generating synthetic quantitative data free of

motion artefact from motion‐corrupted data. The second study

investigated tissue segmentation performance in a group of volunteers

representing the typical population at a cognitive neuroimaging centre.

Both studies utilized a whole‐brain MPM protocol with 1 mm isotropic

resolution, which consisted of three spoiled multi‐echo 3D fast low

angle shot (FLASH) acquisitions acquired with predominantly PD, T1

or MT weighting, as determined by the repetition time and flip angle

(respectively 23.7 ms and 6° for the PD‐ andMT‐weighted acquisitions;

and 18.7 ms and 20° for the T1‐weighted acquisition). For the MT‐

weighted acquisition, a Gaussian RF pulse (4 ms duration, 220° nominal
flip angle) was applied 2 kHz off‐resonance prior to non‐selective exci-

tation. Gradient echoes were acquired with alternating readout

gradient polarity at six equidistant echo times between 2.2 ms and

14.7 ms. Two additional echoes were acquired for the PD‐weighted

acquisition at 17.2 ms and 19.7 ms. To accelerate data acquisition, par-

allel imaging (speedup factor of 2) was used in the anterior–posterior

phase‐encoded direction and reconstructed using the GRAPPA algo-

rithm. A partial Fourier acquisition (6/8 sampling factor) was used in

the left–right phase‐encoded direction. The duration of the PD‐ and

MT‐weighted acquisitions was just under 7 min. The T1‐weighted

acquisition was just over 5 min. 3D echo planar imaging (EPI) data of

spin and stimulated echoeswith 11 different nominal flip angles ranging

from 65° to 115° in 5° steps were acquired with 4 mm isotropic

resolution in order to map the transmit field inhomogeneity (TE/TM/

TR = 37.06/31.20/500 ms; see also Reference18). Given that an EPI

readout was used to acquire these data and is affected by off‐reso-

nance effects, B0 field mapping data derived from the phase difference

of a dual gradient echo acquisition were also acquired to correct for

geometric distortions.19 A spatial map of the actual flip angle achieved

was calculated by taking the inverse cosine of the ratio of the stimu-

lated echo and spin echo images for each pair. The transmit efficiency

was then calculated as the ratio of this achieved flip angle relative to

the nominal flip angle. In areas of excessively high B0 off‐resonance,

the flip angle estimates were interpolated to avoid bias. This efficiency

was used to spatially correct the nominal flip angle when computing

the quantitative maps.18,20 The scan time for the full MPM protocol

was approximately 24 min.

Quantitative maps were derived from the MPM protocol in the

Statistical Parametric Mapping framework (SPM12.0, Wellcome Trust

Centre for Neuroimaging (WTCN), London) using bespoke MATLAB

tools (MathWorks, Natick, MA, USA). Briefly, regression of the log

signal from the eight PD‐weighted echoes was used to calculate a

map of R2*. The first six echoes for each contrast weighting were then

averaged to increase the signal‐to‐noise ratio.21 Quantitative maps of

the apparent R1 were calculated from the PD‐ and T1‐weighted

volumes using the rational approximation of the Ernst equation22

incorporating correction for transmit field efficiency as described

above.18 The FLASH acquisitions use both RF (50° phase increment)

and gradient spoiling to minimize unwanted magnetization coherence

pathways. However, residual errors can remain. To address this, we

simulated the FLASH acquisitions using Bloch‐Torrey equations for a

range of expected transmit field efficiency. The correction parameters

describing the linear dependence of the actual T1 value on the apparent

T1 were derived from these simulations as described in Reference 23

and used to correct for imperfect spoiling of transverse magnetization.

Semi‐quantitative maps of the percentage loss of magnetization

resulting from the pre‐pulse in the MT‐weighted acquisition were cal-

culated as described by Helms et al.17 accounting for spatially varying

T1 times and flip angle inhomogeneities.1
3.2 | Motion artefact correction study

MT and R1 maps were synthesized for 12 motion‐affected datasets.

These datasets had been excluded from various neuroimaging studies

on the basis of failing visual inspection because of excessive levels of
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artefact consistent with intra‐scan motion in one or more of the con-

stituent FLASH volumes. Equations 3 and 4 were used to generate

synthetic maps of R1 and MT respectively using the mean relaxometry

model coefficients reported in reference 11. The success of motion

artefact removal was evaluated by expert raters (n = 5, experienced

physicists from WTCN), given that such evaluation has been shown

to be a robust means of assessing motion artefact correction.24–26

Each rater was presented with the original map and the corresponding

synthetic map and had to decide which image had the least motion

artefact, i.e. performed a forced choice rating assessment. The evalua-

tion was carried out by each rater in two blocks, one for MT maps and

one for R1 maps. For a given parameter, the original and synthetic

maps were presented together, with identical windowing. The relative

position of the maps was randomized across cases. The expert raters

were free to navigate through the maps in all three planes and given

as much time as required to decide which map had the least motion

artefact. For each of the 12 cases, a binomial distribution was used

to test the null hypothesis that, given five raters, the probability of

selecting the synthesized map did not significantly differ from chance,

i.e. 50% for this forced choice assessment. The threshold for signifi-

cance was p < 0.05.
3.3 | Voxel‐based morphometry (VBM) group study

MPM data were acquired from a group of 30 healthy volunteers (13

male, age range 18–25 years, mean 21.6 years, std dev. 1.9 years). R1

and R2* maps were used in Equation 4 to generate synthetic maps of

MT, again using the mean model coefficients reported in Reference 11.

For each participant, the first echo of the T1‐weighted FLASH

volume (TE = 2.2 ms), the R1 map, the measured MT map and the

synthetic MT map were segmented into GM and WM probability

maps using the unified segmentation approach27 as implemented in

SPM12.0. Default settings were used with one exception. The

segmentation routine estimates the signal modulation imposed by

the net sensitivity field of the receiving RF coil. This estimation is

regularized with an a priori estimate of the sensitivity field. Given that

the quantitative maps were not modulated by this receive sensitivity

field, the regularization was increased (from default to ‘very heavy

regularization’) when segmenting quantitative maps.

To achieve optimal inter‐subject registration, the tissue probability

maps (TPMs) derived from the MT maps were used to spatially normal-

ize the data using the non‐linear diffeomorphic DARTEL algorithm28 as

implemented in SPM12.0. The resulting DARTEL template and defor-

mation fields were used to normalize the GM TPMs to the Montreal

Neurological Institute (MNI) stereotactic space. The probability maps

were scaled by the Jacobian determinants of the deformation field as

recommended for VBM studies29 and smoothed with an isotropic

Gaussian kernel of 3 mm full width at half maximum while preserving

the 1 mm isotropic voxel size in MNI space.

A voxel‐wise two‐tailed paired t test was carried out within

SPM12 to assess GM volume differences between the synthetic MT

map and each of the other image types. Significance was defined as

voxels having a p value less than 0.05 after small volume and family‐

wise error corrections for multiple comparisons. An explicit mask

described by Callaghan et al.30 was used to exclude cerebrospinal fluid
voxels. Given the a priori hypothesis that GM tissue classification

would be variable for deep GM structures, the statistical analysis was

restricted to a central search volume focusing on these structures. A

sphere with a radius of 4 cm, centred on the basal ganglia, was used.
4 | RESULTS

4.1 | Motion artefact correction

Results of the forced choice assessment are presented in Table 1. In

50% of cases, the perceived level of motion artefact was significantly

reduced in one of the synthetic parameter maps. MT was improved

in four cases. An example of an improved MT map is shown in

Figure 1. R1 was improved in two cases and an example is shown in

Figure 2. As would be expected, in no case was there a significant

improvement in both synthesized maps.

4.2 | GM segmentation

Improved segmentation performance, i.e. segmentation specificity, is

expected to result in significantly higher GM probability in GM regions

and/or significantly lower GM probability in WM regions.

4.2.1 | Synthetic MT maps compared with T1‐weighted
data

Table 2 lists significant differences between the segmentation of the

synthetic MT maps and the T1‐weighted data. The synthetic MT map

had significantly higher GM probability than the T1‐weighted data in

the following GM regions: pulvinar nucleus of the left thalamus, left

pallidum, within the brainstem, particularly the left and right substantia

nigra, and in the pons at the level of the pontine reticular formation

(Figure 3A, red; Table 2). The GM probability was significantly lower

(Figure 3A, blue; Table 2) in one GM region (the left gyrus rectus), and

in distributed bilateral WM regions encapsulated by the ROI (dashed

black arrows in Figure 3A).

4.2.2 | Synthetic MT maps compared with R1 maps

Table 3 lists significant differences between the segmentation of the

synthetic MT and R1 maps. The synthetic MT map had significantly

higher GM probability than the R1 map in the following GM regions:

left and right pallidum and focally within the right substantia nigra

(Figure 3B, red; Table 3). The GM probability was significantly lower

in two GM regions: the left gyrus rectus, the right lingual gyrus and

within the interhemispheric fissure (Figure 3B, blue; Table 3).

4.2.3 | Synthetic MT maps compared with original mea-
sured MT maps

Table 4 lists significant differences between the segmentation of the

synthetic and original MT maps. The synthetic MT map had signifi-

cantly lower GM probability than the MT map in distributed GM

regions encompassing the left and right pallidum, extending into the

right putamen, in the left and right substantia nigra, in the gyrus rectus

and in multiple WM regions (Figure 3C, blue; Table 4). The GM proba-

bility of the synthetic MT map was significantly higher in one WM

voxel (Figure 3C, red).



TABLE 1 Percentage of five raters who selected a particular synthe-
sized parameter map as having lower artefact levels. An asterisk indi-
cates significance at p < 0.05

Participant
% raters selecting
synthetic R1 map

% raters selecting
synthetic MT map

Significant
improvement

1 0* 100* synthetic MT
(Figure 1)

2 100* 20 synthetic R1
(Figure 2)

3 0* 100* synthetic MT

4 20 40 —

5 80 20 —

6 20 100* synthetic MT

7 80 0* —

8 40 80 —

9 0* 100* synthetic MT

10 100* 0* synthetic R1

11 60 0* —

12 20 80 —
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5 | DISCUSSION

The MPM protocol produces maps of R1, R2* and MT. The

interdependence of these maps is described, to a large extent, by the

principled linear relaxometry model of R1. We have demonstrated

how this model, together with population‐derived model coefficients,

can be leveraged to synthesize quantitative maps from a subset of
FIGURE 1 A, Multiple axial slices through the motion‐corrupted MT map
relaxometry model; C, the model residuals, expressed as the percentage of
the motion artefact. D‐F, A single slice through the weighted volumes show
whereas the PD‐ E, and T1‐weighted F, acquisitions are free of motion arte
the MPM maps. This raises the possibility of generating synthetic

quantitative maps of MRI parameters without actually acquiring the

data typically required and introduces speed and/or robustness to

quantitative imaging that will be of great importance in translating such

approaches to a clinical environment.

Motion leads to inconsistencies across the imaging data used in

the linear relaxometry model, which are largely captured by the model

residuals facilitating artefact correction. Although motion is captured

in the residuals these cannot be used to quantify the performance of

the proposed method, since they will be influenced not only by arte-

fact but also by any unspecified contributions to the measured R1, as

well as any systematic bias. Therefore, to quantify the performance

of the method we have used expert image quality rating, which is

model independent and thus allowed an independent assessment of

the method. This evaluation found significant data quality improve-

ment in 50% of the cases evaluated by expert raters skilled in the

identification of motion artefact.

In each case, significant artefact reduction was only achieved in

one or other of the synthetic maps since at least a subset of artefact‐

free maps are required to afford an improvement. Significant image

quality improvements occurred most frequently for MT maps. Intra‐

scan motion occurring only during the MT‐weighted acquisition will

only affect the MT map. This is the optimal scenario for the presented

correction scheme, an example of which is shown in Figure 1. Improve-

ment occurred less frequently for synthesized R1 maps since both the

PD‐ and T1‐weighted FLASH volumes used to calculate the R1 map will

also contribute to the R2* and MT maps, and therefore if intra‐scan
of Participant 1; B, the synthetic MT map generated using the linear
the mean of the measured and synthetic MT values, which capture
s that the MT‐weighted acquisition D, has been corrupted by motion
fact. This is the optimal scenario for motion artefact correction



FIGURE 2 A, Multiple axial slices through the motion‐corrupted R1 map of Participant 2; B, the synthetic R1 map generated using the linear
relaxometry model; C, the model residuals, expressed as the percentage of the mean of the measured and synthetic R1 values, which capture
the motion artefact. D‐F, A single slice through the weighted volumes shows that the MT‐weighted acquisition D, is artefact free whereas the PD‐
E, and, to a greater extent, the T1‐weighted F, acquisitions are corrupted by motion artefacts

TABLE 2 Clusters in which the GM probabilities derived from the synthetic MT maps and T1‐weighted images were significantly different, p < 0.05
after small volume and family‐wise error correction. Clusters with fewer than 10 voxels were excluded

Primary location
p

value
Cluster
extent

Peak t
score

MNI coordinates

x [mm] y [mm] z [mm]

Synthetic MT > T1 weighted Left thalamus and substantia nigra <0.001 2445 11.18 −18 −28 −2
Right substantia nigra <0.001 675 10.78 8 −19 −17
WM <0.001 41 8.67 −19 16 −11
Left substantia nigra <0.001 27 7.69 −13 −22 −10
Brainstem <0.001 14 7.65 14 −27 −24
Left pallidum <0.001 37 7.28 −13 2 −3
Pons <0.001 10 7.15 1 −23 −33

Synthetic MT < T1 weighted WM <0.001 3258 15.30 28 −21 19
Left gyrus rectus <0.001 119 13.84 −1 16 −22
WM <0.001 2891 13.49 −34 −23 23
WM lateral to left substantia nigra <0.001 128 11.03 −15 −17 −13
WM lateral to right substantia nigra; right thalamus <0.001 164 10.56 17 −16 −12
WM <0.001 54 10.13 −37 −28 7
WM <0.001 57 9.07 32 3 −12
Splenium <0.001 30 8.87 19 −46 14
WM <0.001 130 8.61 −6 26 −1
WM <0.001 50 7.92 −7 20 23
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motion has occurred during the acquisition of these volumes artefact

will be present in multiple maps, limiting the performance of the

correction scheme, e.g. in Figure 2. In those cases for which no

improvement was achieved, motion artefact was present to some

extent in all of the constituent FLASH volumes and therefore all of

the MPM maps.

In addition to variable performance, bias can be expected in the

synthetic quantitative maps. We have previously reported11 that this
bias can lead to reduced R1 in WM (of order 1.62%) and increased R1

in GM (of order 0.97%). This reduces the contrast between GM and

WM, which is an important consideration if a parameter map is to be

replaced with its motion‐artefact‐free synthetic counterpart. This bias

can arise because of components that have not been explicitly

included in the model. However, it has previously been shown that

macromolecular and iron components, which are rather well captured

by MT and R2* respectively,31,32 are the dominant contributors to



FIGURE 3 Regions showing either higher (red) or lower (blue) GM probability when using the synthetic quantitative MT map as input to the
segmentation algorithm as compared with A, a T1‐weighted image, B, a quantitative R1 map, and C, a quantitative MT map. For display purposes
only, the results are presented at a statistical threshold of p < 0.001 without correcting for multiple comparisons and are overlaid on the average

normalized MT map of the cohort. Note that the statistical analysis was restricted to a sphere, with a radius of 4 cm, in the centre of the brain. The
outline of the sphere is indicated in black. The dashed arrows in A indicate WM regions in which the GM probability was lower for the synthetic
MT map

TABLE 3 Clusters in which the GM probabilities derived from the synthetic MT maps and R1 maps were significantly different, p < 0.05 after small
volume and family‐wise error correction. Clusters with fewer than 10 voxels were excluded

Primary location
p

value
Cluster
extent

Peak t
score

MNI coordinates

x [mm] y [mm] z [mm]

Synthetic MT > R1 map Left pallidum <0.001 169 8.58 −13 5 2
Right pallidum <0.001 62 7.38 20 −1 −3
Left pallidum 0.002 12 7.11 −23 −12 −3
Right substantia nigra 0.002 10 6.76 13 −16 −12

Synthetic MT < R1 map Left gyrus rectus <0.001 210 11.40 −3 14 −24
Interhemispheric fissure <0.001 287 10.46 0 −49 17
Right lingual gyrus 0.002 12 7.31 8 −47 2
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R1.
11,15,16,33–35 Any orientation‐dependent or higher‐order relation-

ships that exist between the qMRI maps are not captured by the model

either, and may also be a source of bias.36

Any relaxometry model, such as the one used in this work, must

make simplifying assumptions about the nature of the interaction

between water compartments. A central assumption concerns the

timescale over which the interaction between the different water

compartments of the tissue occurs, which may be short, intermediate

or long.14 In our case, we build upon the assumption of fast exchange

whereby we assume that the rate of exchange between compartments

is higher than the difference in the relaxation rates of these constitu-

ent compartments.37 As a consequence, the signal we measure is a

weighted sum of the constituent compartments visible via MRI.11,14
There are multiple reports that support this assumption by showing

that the longitudinal relaxation rate in the brain is well described by a

mono‐exponential form and that deviations from this behaviour are

small.e.g. 15,38 Limitations in the validity of this assumption may be a

source of bias. Models such as the one presented here are also a first

step towards in vivo histology,2 in which quantitative maps are

combined using biophysical models in order to extract descriptors of

the underlying tissue such as myelin and iron levels3 or the degree of

myelination of fibres.48 Any biases present in the parameter maps

derived from this model would propagate through to these biological

descriptors. Further development of the model will allow us to test

and refine the validity of the model assumptions, such as the exchange

between water compartments within the brain. Future work will assess



TABLE 4 Clusters in which the GM probabilities derived from the synthetic MT maps and the original MT maps were significantly different,
p < 0.05 after small volume and family‐wise error correction. Clusters with fewer than 10 voxels were excluded

Primary location
p

value
Cluster
extent

Peak t
score

MNI coordinates

x [mm] y [mm] z [mm]

Synthetic MT < MT map Left pallidum <0.001 3914 15.24 −22 −7 1
Right pallidum <0.001 4253 14.40 25 −13 −1
WM <0.001 534 13.98 −25 −33 19
Right substantia nigra <0.001 551 13.65 9 −18 −12
Left gyrus rectus <0.001 199 12.22 −2 14 −24
Left substantia nigra <0.001 491 12.21 ‐9 −18 −11
WM <0.001 44 9.96 9 −32 19
Left thalamus <0.001 222 9.62 −21 −29 2
Right thalamus <0.001 63 9.50 23 −27 2
Corpus callosum body <0.001 44 8.99 4 −6 25
WM <0.001 105 8.92 23 −5 24
WM <0.001 33 8.90 26 −32 22
Genu <0.001 14 8.30 −3 22 10
Corpus callosum body <0.001 40 8.24 −2 −15 24
Corpus callosum body <0.001 17 8.01 −2 15 17
Corpus callosum body <0.001 12 7.69 −2 −25 22
WM <0.001 39 7.62 −20 −16 20
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if it is possible to achieve the desired motion artefact correction with-

out introducing bias, e.g. through the use of regularization and the

inclusion of higher‐order effects determining the relationship between

the underlying features of the tissue microstructure, quantitative

parameter maps and image contrast.

Clearly there are many other approaches to motion artefact

correction, e.g. optical motion tracking,39 estimating motion directly

from the MR signal itself40–42 or retrospective approaches that operate

on the acquired k‐space data.43 However, these approaches have the

respective drawbacks of requiring additional hardware, sequence mod-

ification and associated time‐penalties, or significant computational

effort. The approach presented here follows the idea of maximally

exploiting consistencies across multiple data sets acquired as part of a

single quantitative imaging protocol, e.g. as done in the ESTATICS

approach to creating maps of the effective transverse relaxation rate

from multiple image contrasts.44

An MT‐weighted image is required in order to calculate a map of

the percentage saturation due to MT or similar measures such as the

MTR.45 If an MT‐weighted image is not available, e.g. because of

insufficient scan time or because motion has corrupted the data, we

have shown that synthetic maps of MT can nonetheless be generated

using the linear relaxometry model with population‐derived model

coefficients. When the GM probabilities derived from this synthetic

MT map were compared with those derived from T1‐weighted data

we found that the synthetic MT map had significantly higher GM

probability in deep GM structures such as the substantia nigra, at the

interface between the caudate and thalamus and in the anterior

portion of the pallidum. Improved performance was also found for

the synthetic MT maps in the substantia nigra and pallidum when

compared with quantitative R1 maps. Additionally, both comparisons

only found significantly lower GM probabilities in WM regions, i.e.

the synthetic MT map more accurately classified the different tissue

types. It is not surprising that the synthetic MTmap did not outperform

the originalMTmap. This finding points towards some limitations of the

relaxometry model, for example the issue of bias discussed previously.

Biophysical models can provide insights into morphometric stud-

ies that show differential GM volume estimation, which is dependent
on the contrast of the data used as input to the segmentation routine

used for the morphometry.12,46 Understanding these effects is of

critical importance for computational neuroanatomy studies, particu-

larly when there is ambiguity over the origin of observed changes,

e.g. due to co‐localized and interacting effects of atrophy and MRI

parameter changes, as occur during ageing.46 It has also been shown

that age‐related atrophy and differences in tissue microstructure can

be captured by the qMRI parameters used in this study.30,46 To circum-

vent any atrophy‐related confound being introduced here, the cohort

used was restricted to a narrow age range (18–25 years).

The linear relaxometry model itself assists with the interpretation

of the differential segmentation performance we have seen. Consider-

ing the pallidum for example, the effects of reduced myelin content

and increased iron content counteract each other in the R1 map

whereas in the synthetic MT map the effect of reduced myelin content

in the pallidum should dominate since the iron effect has largely been

removed. For this reason, there is greater contrast between the

pallidum and the surrounding WM in the synthetic MT map than in

the R1 map, resulting in improved delineation of GM and WM by the

segmentation algorithm. These effects of iron and myelin also combine

to increase contrast in the T1‐weighted acquisition. The reduced

myelin content of the pallidum means that the T1 relaxation time is

longer than in the surrounding WM, leading to reduced signal intensity

on a T1‐weighted acquisition. The inevitable T2* weighting that is also

present, since a TE of 0 ms cannot be achieved, means that the higher

iron content additionally reduces the signal intensity of the acquisition

due to more rapid signal decay. Hence, rather good segmentation

performance was achieved for this structure using the T1‐weighted

acquisition as input.

In keeping with previous studies comparing segmentation perfor-

mance on T1‐weighted MDEFT (modified driven equilibrium Fourier

transform)47 and MT maps,12 we also find that the MT map is the

optimal choice to drive the segmentation algorithm, since it supports

an even better delineation of subcortical structures (Figure 3). There-

fore, if the time is available to acquire the extra data required to calcu-

late a map of MT saturation, and if it is not corrupted by motion

artefact, then this quantitative map should be the first choice for
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morphological studies based on segmentation. It should be borne in

mind that the segmentation performance will also depend on the algo-

rithm and prior information, i.e. the TPMs, used. These were constant

across all analyses presented here, which utilized the segmentation

algorithm and default TPMs of SPM12.

While this demonstration has been specific to the MPM protocol,

the approach could be extended to other protocols to generate

synthetic quantitative maps of MRI parameters without acquiring the

data typically required. This raises the possibilities of improving

efficiency and/or robustness in quantitative imaging, which is of great

importance in translating such approaches to a clinical environment.
6 | CONCLUSIONS

Modelling and exploiting the interdependence of quantitative parame-

ter maps facilitates greater insights into the underlying tissue micro-

structure and the removal of artefactual inconsistencies, e.g. due to

head motion. Robustness to motion is a key requirement for quantita-

tive imaging, particularly for the study of non‐compliant participants,

such as patients suffering from movement disorders. Here we have

shown improved robustness to motion by creating synthetic qMRI

maps free of artefact by applying biophysical models to motion‐

corrupted data. In addition, synthetic MT maps have been used to

demonstrate improved segmentation of deep GM structures in

comparison to that achieved with conventional T1‐weighted data or

quantitative R1 maps. The proposed synthetic qMRI approach shows

promise for furthering our understanding of the inter‐relation of

MRI parameters and for maximizing the extraction from qMRI

protocols of high quality in vivo histology information related to

tissue microstructure.
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