Environmental change during MIS4 and MIS 3 opened corridors in the Horn of Africa for Homo sapiens expansion

Finn A. Viehberg a, *, Janna Just a, Jonathan R. Dean b, c, d, Bernd Wagner a, Sven Oliver Franz c, Nicole Klasen f, Thomas Kleinen g, Patrick Ludwig h, i, Asfawossen Asrat j, Henry F. Lamb k, Melanie J. Leng b, d, Janet Rethemeyer a, Antoni E. Milodowski l, Martin Claussen g, Frank Schabitz m

a Institute for Geology and Mineralogy, University of Cologne, Zülpicher Straße 49A, 50674, Cologne, Germany
b NERC Isotope Geosciences Facilities, British Geological Survey, Nottingham, NG12 5GG, United Kingdom
c School of Environmental Sciences, University of Hull, HU6 7RX, United Kingdom
d Centre for Environmental Geochemistry, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Leicestershire, LE12 5RD, United Kingdom
e Steinmann Institute for Geology, Mineralogy, and Palaeontology, University of Bonn, Nussallee 8, 53115, Bonn, Germany
f Institute of Geography, University of Cologne, Albertus-Magnus-Platz, 50923, Cologne, Germany
g Max Planck Institute for Meteorology, Bundesstr. 53, 20146, Hamburg, Germany
h Institute of Geophysics and Meteorology, University of Cologne, Pohligstraße 3, 50969, Cologne, Germany
i Institute for Meteorology and Climate Research, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggensheim-Lesoldsheim, Germany
j School of Earth Sciences, Addis Ababa University, P.O. Box 1176, Addis Ababa, Ethiopia
k Department of Geography and Earth Sciences, Aberystwyth University, Aberystwyth, SY23 3DB, United Kingdom
l Minerals and Waste Directorate, British Geological Survey, Nottingham, NG12 5GG, United Kingdom
m Institute of Geography Education, University of Cologne, Gronewaldstraße 2, 50931, Cologne, Germany

Article info
Article history:
Received 28 February 2018
Received in revised form 3 September 2018
Accepted 4 September 2018
Available online 29 September 2018

Abstract
Archaeological findings, numerical human dispersal models and genome analyses suggest several time windows in the past 200 kyr (thousands of years ago) when anatomically modern humans (AMH) dispersed out of Africa into the Levant and/or Arabia. From close to the key hominin site of Omo-Kibish, we provide near continuous proxy evidence for environmental changes in lake sediment cores from the Chew Bahir basin, south Ethiopia. The data show highly variable hydroclimate conditions from 116 to 66 kyr BP (thousands of years before present) with rapid shifts from very wet to extreme aridity. The wet phases coincide with the timing of the North African Humid Periods during MIS5, as defined by Nile discharge records from the eastern Mediterranean. The subsequent record at Chew Bahir suggests stable regional hydrological setting between 58 and 32 kyr (MIS4 and 3), which facilitated the development of more habitable ecosystems, albeit in generally dry climatic conditions. This shift, from more to less variable hydroclimate, may help account for the timing of later dispersal events of AMH out of Africa.

© 2018 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction
Anatomically modern humans (AMH) evolved in northern Africa and then eventually dispersed to populate the rest of the world (Hershkovitz et al., 2018; Hublin et al., 2017; Mallick et al., 2016; Paganini et al., 2016). There is a consensus that climate change was a possible driver of early dispersal events (Breeze et al., 2016; Groucutt et al., 2015; Timmermann and Friedrich, 2016). Shifts in hydroclimate, causing large-scale environmental change and consequent habitat loss or expansion, may influence demographic growth and dispersal success (Potts and Faith, 2015). In this context, regional wildlife communities, which were potential food sources for AMH, also changed their species composition and abundances...
as vegetation types adapted to the prevailing climate conditions (Assefa et al., 2008; Jönsson et al., 2014).

Climatic and environmental changes over the past 150 kyr for this region has so far been inferred from data from often discontinuous lacustrine deposits, speleothems and stromatolites (Blome et al., 2012; Lamb et al., 2018), and from distant marine sediment cores from the eastern Mediterranean, Red and Arabian Seas (Blome et al., 2012; Deplazes et al., 2013; Ehrmann et al., 2016; Tierney et al., 2017). The sediment record from Lake Tana at the northern edge of the Ethiopian Highlands (Costa et al., 2014) shows that the regional climate is driven by the interplay between the dynamics of two complex atmospheric circulation systems, the West African Monsoon (WAM) and the East African Monsoon (EAM), forced by variation in climatic precession and/or solar insolation (Mohtadi et al., 2016; Omondi et al., 2012; Trauth et al., 2001; Weldeab et al., 2007, 2014). The WAM transports and recycles moisture inland from the Atlantic Ocean, the Congo Basin and the Sudd Basin to east Africa (Weldeab et al., 2007). The incursion of the WAM into northeast Africa is strongest during the northern hemisphere summer, because of the northernmost position of the Intertropical Convergence Zone (ITCZ), associated with the strong Saharan Heat Low and the dominance of the opposing EAM resulting in a long rainy season (‘Kiremt’) (Diro et al., 2011; Weldeab et al., 2007). The EAM is linked to the South Asian Monsoon system and shows two seasonal aspects. Moist air masses move from the Indian Ocean to equatorial eastern Africa beginning in the spring of the northern hemisphere and continue to flow from south to north along the Ethiopian Rift System and result in a short but intense rainy season (‘Belg’) (Diro et al., 2011). During the northern winter season, dry air masses initially flow from the Arabian Peninsula parallel to the east African coast in the opposite direction. The ITCZ and the convection over the warm water masses of the Indian Ocean Dipole are the main driver of the EAM and equally limit its geographical extension (Diro et al., 2011; Weldeab et al., 2014). It is proposed that the interoceanic confluence passage of WAM and EAM, the Congo Air Boundary, swings towards the east of the Ethiopian Highlands during periods of high insolation maxima, leading to a strengthening of the WAM and producing a prolonged and stronger rainy season in northeast Africa, leading to lake level high stands (Costa et al., 2014; Junginger et al., 2014).

The catchment of Chew Bahir (~32,400 km²) drains parts of the Southwestern Ethiopian Highlands (Fig. 1a). This orographic barrier received exceptional amounts of precipitation during North African Humid Periods in the late Pleistocene (Ehrmann et al., 2016) making Chew Bahir an amplifier lake that is sensitive to hydrological changes (Street-Perrott and Harrison, 1985; Teller and Last, 1990). Sediment sequences from Chew Bahir record the past regional hydroclimate signal that is essential to assess the shifts in palaeoenvironment during the postulated Human Migration Waves by Human Dispersal Models (Timmermann and Friedrich, 2016).

Here we present a near continuous lacustrine sediment record from 116 kyr ago from close to the earliest known fossil Homo sapiens site in eastern Africa and thus at a gateway to a corridor region for human migration waves to sites out of Africa. Our study fills a crucial gap in available long palaeoenvironmental archives from the Horn of Africa, allowing a better understanding of the environmental context for AMH dispersal from northeastern Africa. The data are essential to challenge outputs of new and existing earth system in terms of moisture availability and landscape vulnerability.

1.1. Study area

The playa mudflats of Chew Bahir (~970 km²) lie at 500 m above sea level (asl) and are sporadically flooded by a few decimetres of water during the rainy seasons in spring (‘Belg’) and summer (‘Kiremt’). In the late 19th century, a maximum lake water depth of up to 8 m was documented (Grove et al., 1975). Chew Bahir is located in the Broadly Rifted Zone between the Main Ethiopian Rift (MER) and the Kenya-Turkana Rift and is filled with up to 5 km of sediment (Cohen et al., 2016; Foerster et al., 2012; WoldeGabriel and Aronson, 1987). It is a failed rift marking the transition between the active MER to the north and the Turkana Basin to the south (Ebinguer et al., 2000; WoldeGabriel and Aronson, 1987). The basin’s overspill in the south at approx. 540 m asl drains to the Turkana basin and limits the maximum extension of the lake surface to 2390 km² (Fig. 1a) (Lehner and Grill, 2013). The geometry of the Chew Bahir Rift is composed of Precambrian granitic and mafic gneisses and granites in the north and west, by, and of Miocene basalts and trachytes in the Telepte-Konso range to the east (Davidson, 1983). Oligocene basin flows with subordinate rhyolites, trachytes, tufts and ignimbrites cover the Precambrian basement units in the northern parts of the Weyto catchment (Corti, 2009; Corti et al., 2013a, 2013b; Keir et al., 2015; Roberts et al., 2012; Vetel et al., 2005; WoldeGabriel and Aronson, 1987). The total catchment (~32,400 km²) is divided into a larger regional catchment drained by the Sagan river including the Ethiopian Rift lakes, Lake Abaya and Lake Chamo (~22,000 km²) and a local catchment in the northwestern drained by the Weyto river (~7000 km²) (Fig. 1a) (Lehner and Grill, 2013). The extensive catchment connects the generally cooler Ethiopian highlands in the north with the hotter and drier lowlands (Fig. 1a) and hence different seasonal precipitation patterns account for the hydrology of the Chew Bahir basin (Nyssen et al., 2004). The two main rivers enter the Chew Bahir basin in the north and develop an extensive avulsion belt in the floodplains. Minor streams form alluvial fans on the foothills of the rift shoulders, the Hammar Range in the west and the Telepte Plateau in the east (Lehner and Grill, 2013).

2. Materials and methods

2.1. Coring operation and core handling

The coring site HSPDC-CHB-1A (N 4.7071°, E 36.8524°; Fig. 1a) is situated in the central most part of the Chew Bahir basin, being accessible and suitable for using land-based drilling equipment during 18th-24th March 2014. We used a rotary single tube drill operated by Addis Geosystems Ltd. with subsequent casing to a depth of 29 m below lake floor (mblf). The hole remained stable to the last core section taken at a depth of ~40 mblf. The core tube (inner diameter 86 mm and 76 mm) itself was 200 cm long while the maximum protruding length was 180 cm per core run to ensure continuous material supply. The consecutive core material was extruded and described in the field. The core was taken to the University of Cologne, Germany, and cut into a working half and an archive half. On opening the working halves were described for lithology and sediment colour.

2.2. XRF scanning, carbon concentration, and grain-size analyses

The working half cores were line-scanned by an X-ray fluorescence (XRF) Itrax Core Scanner (Cox Analytical Systems Ltd., Sweden) equipped with a Cu-source set to 30 kV and 30 mA, at a spatial resolution of 0.25 cm and a scanning time of 10 s per measurement. The specific element counts were normalised to the total element counts prior to further data processing. Eventually, the working halves were continuously sampled in 2 cm thick consecutive segments and freeze-dried. Prior to further analyses, carbonate nodules >5 mm were separated from the sediment aliquots and counted. Total carbon (TC) concentrations were measured at a
10 cm resolution with an elemental analyser (vario MICRO cube, Elementar Ltd.). In the same interval, total inorganic carbon (TIC) and total carbon (TC) were analysed by thermic-catalytic oxidation using a nondispersive infrared sensor (Dimatoc, 2000; Dimatec Ltd.). The content of total organic carbon (TOC) was then calculated as the difference between TC and TIC.

At 20 cm resolution, the grain size composition was determined using a Laser Diffraction Particle Size Analyser (Beckman Coulter LS13 320, Beckman Coulter, Inc.) at the Institute of Geography, University of Cologne, Germany. Samples were pre-treated with H2O2 (30%), HCl (10%) and 1.0 M NaOH to remove organic carbon, inorganic carbonate and biogenic opal, respectively. For aggregate dispersion, the samples were placed on a shaker for 12 h and then underwent one minute of ultrasonic treatment, adding Na4P2O7 and Al2(SO4)3. Statistical measures were calculated using GRADISTAT (Blott and Pye, 2001).

2.3. Ostracod analyses

At 20 cm intervals, >10 g freeze-dried sediment was weighed with an analytical balance (Sartorius AG, Germany), dispersed in 3% HClO at 40 °C for 1 h, wet sieved on a 150 μm mesh screen and thoroughly washed with deionized water. The remaining fraction was again freeze-dried and sorted for ostracod remains under a dissecting microscope. Ostracod valves were counted and identified for further palaeoenvironmental interpretation (Lindroth, 1953; Martens, 1984, 1990). If a sample yielded fewer than 300 valves, all valves were counted. Carapaces were counted as two valves. The counts are standardised to 10 g dry sediment.

2.4. Mineralogy

 Mineral identification and semi-quantitative analyses were undertaken on samples from three depth-intervals at 20 cm (144.0—601.5 cm and 1100.0—1498.5 cm) and 40 cm (2438.1—3348.1 cm) resolution, respectively. Dry powdered bulk sediment samples were determined by X-Ray Diffraction (XRD) using Bruker AXS D8 Advance with automatic slit and Ni-filtered Cu-Kα radiation at Steinmann Institute, University of Bonn (operation conditions: generator voltage (kV): 30, generator current (mA): 40, scan range (2θ): 4—70, step size (2θ): 0.04, counting time (s): 2, divergence slit: variable (v20), anti-scatter slit: variable (v20), detector slit: 0.2 mm). Mg contents in calcite were determined from the d(10.4) diffraction spacing shift using the idealized curve of Goldsmith and Graf (1958). For detailed analyses, thin-sections of nodules and bulk sediment samples were analysed by backscattered electron imaging secondary electron imaging, respectively, using a FEI Quanta 600 Environmental Scanning Electron Microscope (ESEM) equipped with an Oxford Instruments INCA Energy 450 energy-dispersive X-ray microanalysis (EDXA) system at the British Geological Survey, UK.

2.5. Oxygen and carbon isotopes

Endogenic calcite (excluding the nodules) in the bulk sediment samples was analysed for oxygen (δ18O) and carbon (δ13C) isotope composition using the classical vacuum technique excluding dolomite (Dean et al., 2015) and a Thermo Finnigan MAT 253 mass spectrometer at the NERC Isotope Geosciences Facilities, UK. Data are given as per mil (‰) deviations from VPDB and analytical
reproducibility was <0.1% for δ18O and δ13C based on standard materials.

2.6. Radiocarbon and optically stimulated luminescence and dating

Bulk sediment samples were chosen for radiocarbon dating, as suitable discrete material was not found. The sample preparation followed the standard procedure (Rethemeyer et al., 2013) and the measurements were carried out with the accelerator mass spectrometer at the University of Cologne, Germany (Cologne AMS).

Polymineral fine grain samples (4–11 μm) were extracted using conventional sample preparation techniques (Frechen et al., 1996). All measurements were carried out on an automated Risø TL/OSL DA 20 reader equipped with a calibrated 90Sr beta source using the post-infrared infrared stimulated luminescence signal measured at 290 °C (pIRIRSL290, Thiel et al., 2011). Stimulation was carried out with infrared diodes (870 nm, FWHM = 40) and the signals were detected through an interference filter (410 nm). The initial 4 s of the signal minus a background of the last 20 s was used for p-IRIRSL dating. Laboratory experiments included prior-IR stimulation temperature tests (Buylaert et al., 2012) using a range of temperatures from 50 to 260 °C and preheat plateau dose recovery tests. For these dose recovery tests, the samples were illuminated for 24 h in a Hönle SOL2 solar simulator and a laboratory dose in the range of the natural dose was given to the samples. Subsequently, the prior IR stimulation temperature was kept constant at 50 °C and the post-IRIR stimulation tracked the preheat temperature by −20 °C. The apparent residual dose after 24 h bleaching in the solar simulator was measured using routine measurements (Thiel et al., 2011). Samples C-L3918 and C-L3867 were taken from two adjacent samples from the same depth as an internal check on reproducibility.

Data analyses were performed using the Risø Luminescence Analyst software (version 4.10). Equivalent doses were calculated with an arithmetic mean. The radionuclide concentrations were measured with high resolution gamma ray spectrometry. The dose rate was calculated using conversion factors of Guérin et al. (2011) and the measured water content. The internal beta dose rate was calculated using conversion factors of Guérin et al. (2011) and Brennan (2003) were used. The cosmic dose rate was calculated following Prescott and Hutton (1994).

2.7. Palaeomagnetic analyses

For palaeomagnetic sampling and analyses, the sediment was sampled in oriented 6.2 cm² plastic boxes. Samples were analysed continuously in −2.5 cm intervals down to 28.60 m depth and below at 6 cm intervals. Disturbed sediments were excluded from analysis. In total 950 (averaged resolution of −4.2 cm), samples were measured. Volumetric magnetic susceptibility (κ) was calculated, using a KLY2 Kappabridge.

Natural and artificial remanence parameters were measured on a 2G 755R cryogenic magnetometer at the University of Bremen, Germany. Demagnetization of Natural Remanent Magnetisation (NRM) was conducted in 12 incremental steps (0 mT−100 mT). Anhysteretic Remanent Magnetisation (ARM) was imparted with a 100 mT AF and 50 μT DC field and subsequently demagnetized in 9 steps (0 mT−100 mT). The ratio of NRM and ARM demagnetization of the 30 mT step was used as a proxy for the relative palaeointensity (RI).

2.8. Comparison to the lake Malawi 18O record

To compare our Chew Bahir data to the 120 kyr Ca record from Lake Malawi (Lyons et al., 2015; Scholz et al., 2007, 2011) we corrected the published age–depth model of Lake Malawi to account for the finding of the Youngest Toba Tuff (YTT) (Lane et al., 2013). We developed a simplified age model for the relevant core MAL05-1C and adopted the published radiocarbon ages (Scholz et al., 2011) in the interval 0.0 to 21.053 mblf corresponding to 0−50.457 kyr BP, respectively. Furthermore, two additional age control points were inserted at 28.10 mblf, (YTT; −75.0 kyr), and 67.25 mblf, (palaeomagnetic inclination; ‘Blake event’ at 122.5 kyr). A linear sedimentation rate was presumed between the oldest radiocarbon age and each additional control point as accomplished in previous studies (Lyons et al., 2015).

2.9. Breakpoint analysis

We performed breakpoint analyses on the main geochemical and geophysical proxy datasets from core HSPDP-CHB-1A (K/Ti, Ca/ Ti, δ18O) described here. Each dataset was separately imported as a time series in the software package R including the library structchange (R Core Team, 2016; Zeileis et al., 2003; Zeileis et al., 2002) to analyse significant fluctuation changes in regression relationships over time. A 95% confidence interval is given for the time of significant proxy fluctuations.

2.10. Model simulations

Data from different climate model simulations were consulted to receive an overview of the spatial distribution and temporal evolution of the precipitation regime over Africa. Precipitation data from time slice experiments (125 kyr, 115 kyr; each 100 years of data available) covering the last interglacial (Langebroek and Nisancioglu, 2014) are consulted to analyse the effects of the orbital precession on the different spatial precipitation distribution over Africa.

Since complex earth system models are not yet capable to simulate a full glacial cycle, additional model simulations were carried out with an Earth System Model of Intermediate Complexity, CLIMBER2 (Ganopolski et al., 2001; Petoukhov et al., 2000). The model consists of a 2.5-dimensional statistical–dynamical atmosphere with a latitudinal resolution of 10° and a longitudinal resolution of roughly 51°, an ocean model resolving three zonally averaged ocean basins with a latitudinal resolution of 2.5°, a sea ice model, and the dynamic terrestrial vegetation model VECODE (Brovkin et al., 2002).

The model experiment spans the time 126 kyr BP to 0 BP, and is driven with orbital changes and prescribed greenhouse gases, as well as ice sheet extent diagnosed from an earlier experiment including the ice sheet model SICOPOLIS (Ganopolski et al., 2010). The precipitation threshold for full desert conditions in VECODE is set to 0.610−5 kg m−2 s−1. The relevant grid cells of Sahel and Sahara were selected to estimate the temporal evolution of the precipitation regime and vegetation coverage at the study area under the given model parameters.

3. Results

3.1. Core and sediment characteristics

Data from core sections of drill site HSPDP-CHB-1A (Fig. 1a) were spliced to produce a composite profile that consists of 3789 cm of sediments that were recovered up to a maximum drilled depth of 40.69 mblf, equating to 93% recovery. The
laboratory length measured supersedes the drilling data based on field depth given in previous reports (Cohen et al., 2016). Initial results from analyses of total carbon species (organic and inorganic; TOC resp. TIC) and total nitrogen (TN) from sample intervals of every 10 cm revealed that the material has very low TOC (mean < 0.67%) and TN (mean < 0.02%). Attempts to extract plant wax compounds from test samples with the highest TOC content with standard methods (Castaneda et al., 2010; Collins et al., 2014) returned an insufficient amount for reliable analyses.

The mineralogy of the core material is dominated by calcite and the silicate mineral analcime. SEM imaging of samples through the core sequence confirm that many of the calcite grains are fine euhedral rhombs, as would be expected of endogenic precipitates as opposed to a fragmental detrital and anhedral diagenetic calcite (Figs. SI-1 & SI-2; Kelts and Hsü, 1978; Leng et al., 2010; Talbot and Kelts, 1986). Analcime is a natural zeolite that can be formed authigenically from detrital silicates, such as illite/smectite, in high alkaline (pH > 9) pore waters that often develop in hydrologically closed basins (Fig. SI-1)(Gall and Hyde, 1989; Langella et al., 2001; Singer and Stoffers, 1980).

The sediment sequence was subdivided into two major lithozones (Fig. 2). Lithozone 1 (LZ1; 4069-1370 cm) consists mainly of medium-grained silt and shows a high grain size variability (mean 27.1 ± 24.4 μm). The sediment is intercalated with lithified carbonate layers or fine-sand beds (Fig. 2). Nodules (5 to >20 mm) of dolomite and/or high-Mg and high-Mn calcite occur sporadically in the sediment with increased abundance from 3948 to 1994 cm (Fig. 2).

Based on cyclic alternation of high (low) total inorganic carbon (TIC) concentrations and simultaneous Ca/Ti and to a lesser degree K/Ti peaks (troughs), co-occurring with low (high) magnetic susceptibility and fine (coarse) grain size, LZ1 can be subdivided in five zones (LZ1A 4069-3175 cm, LZ1B 3175-2537 cm, LZ1C 2537-2120 cm, LZ1D 2120-1709 cm and LZ1E 1709-1370 cm).

Lithozone 2 (LZ2) shows moderate Ca/Ti or K/Ti and TIC concentrations, with lower amplitudinal variations. The segment consists mainly of fine silt (mean 9.2 ± 3.8 μm) and a few fine-sand beds, which are intercalated in the sedimentary sequence (Fig. 2). LZ2 K/Ti has a notable minimum at 543 cm; here analcime and illite/muscovite follow the general potassium trend (Fig. 3).

3.2. Stable isotopes

Throughout the core, δ18O data from endogenic calcite show a total variation of nearly 17‰ (Fig. 2). The period from the base of the core sequence up to ~3890 cm (Fig. 2) shows a rapid shift from the lowest δ18O (min −5.8‰), to a period of higher and more stable δ18O (average + 2.4‰) until ~3175 cm (end of LZ1A). This is followed by an interval to 2639 cm that is characterised by a major excursion to higher δ18O (max +7.2‰) and a subsequent shift to low δ18O (min −2.9‰). Below and above a consolidated calcite layer at ~2530 cm (end of LZ1B) the values swing rapidly between high δ18O (max +5.7‰) and low δ18O (min −0.9‰). At 2367 cm, a shift to higher δ18O (average + 3.4‰) lasts until ~1790 cm. There is then a shift to lower δ18O (1786-1746 cm; average −1.3‰) followed by a

Fig. 2. Lithostratigraphy and proxies from Chew Bahir core HSPDP-CHB-1A plotted vs. core depth. (a) Stratigraphical column with grain size classes. (b) Macroscopic biological and mineral remains. (c) Ostracod valves standardised to 10 g dry-sediment; total sum (blue); Limnocythere cf. borisi (black) (d) Carbonate nodules counted per sample. (e) Magnetic susceptibility. (f) Arithmetic mean of grain size. (g) K/Ti ratio from scanning X-ray fluorescence (kcps – thousand counts per second). (h) Ca/Ti ratio from scanning X-ray fluorescence. (k) Total inorganic carbon (TIC) content from dry sediment. (l) δ18O of endogenic calcite. (m) δ13C of endogenic calcite. (n) total organic carbon (TOC) content from dry sediment. (o) Tie points in the age-depth model: radiocarbon bulk samples (open circle), luminescence samples (orange triangle), and relative palaeointensity correlation to GLOPIS (cyan diamond) (ages in kyr BP).
Fig. 3. Comparative core sections (A: 9.6—31.9 kyr, B: 52.0—67.7 kyr, C: 85.9—101.4 kyr) with results on detailed mineralogy, grain size distribution, element ratios and TIC. Arithmetic mean in grain size distribution (AM grain size), K/Ti ratio from XRF data (K/Ti), Illite/Muscovite (%), Analcime (%), Ankerite/Dolomite (%), Calcite (%), Ca/Ti ratio from XRF data, and TIC (%).
period of relatively stable δ18O (average + 4.3‰) that ends
−1370 cm (end of LZ1E), when there is a peak at −1350 cm (+ 8.7‰).
The subsequent period has high δ18O values (average + 7.3‰)
lasting to 310 cm, interrupted by two peaks centred on −690 and
620 cm (+11.0‰ and +10.4‰ respectively). Between 310 cm and
the core top, the isotope values fluctuate rapidly between high δ18O
(max + 9.0‰) and low δ18O (min +0.5‰).
While there are some similarities between the δ18O and δ13C
values, there are also substantial differences (Fig. 2). δ13C fluctuates
periodically by several per mil in the period from the base of the
core until −3500 cm (+ 2.0‰ at 4055 cm, min −3.0‰ at 3869 cm)
before more stable values between −0.5‰ and +0.5‰ until −3266 cm. After this, there is a shift to some of the lowest
values in the record (min −4.8‰ at 2966 cm) and then a rise to
higher values > −2900 cm. After a relatively stable period until
−2750 cm, there is a rise to −0‰ but with two peaks to higher
values (highest +5.6‰ at 2527 cm). Values then return to −1.5‰
until −2070 cm, before rising to between −0‰ and +3‰ for most of
the period until −1650 cm, albeit with a number of peaks again
(max + 5.7‰ at 1786 cm, at the time of very low values δ13O). Values
then decrease rapidly to a low of −4.4‰ at 1628 cm and then rise
(at the same time as a less dramatic rise in δ18O) to −1.1‰ to +2.5‰
for the most stable period of the record from −1400 cm to −450 cm,
at the time of stability in the δ18O record. As with the δ18O record,
there are rapid fluctuations between the top of the core.

3.3. Biological proxies
The ostracod record of Chew Bahir is dominated by four
ostracod species: Limmicrythre cf. borisi, Darwinulina stevensoni,
Ilyocypris sp., and Heterocypris giesbrechti (Fig. 4). The species
are members of halotolerant genera (De Deckker, 1981; McKenzie,
1971) that are also found in modern lake ecosystems within the
Chew Bahir catchment (Martens, 1990; Martens and Tudorancea,
1991). L. cf. borisi, especially, has fragile valves that are very well
preserved in most samples where it is present. In addition, an
abundant record of assorted juvenile instars is also found in the
described thanatocones. Ostracod valves occur only sporadically
in LZ1 (Fig. 2). In the upper zone of LZ1C (1933–1835 cm) there is an
abundant and partly monospecific faunal assemblage dominated
by L. cf. borisi. In L2Z, the ostracod record is more stable. Two gaps
with no or poorly preserved ostracod valves occur (at 601–380 cm
and 144–0 cm). Shell fragments of aquatic gastropod and
fish bones occur sporadically throughout the core, but are more frequent in
L2Z (see Fig. 2). Pollen and diatom remains are not preserved
continuously in the sediment record.

3.4. Bayesian age-depth model from radiocarbon, optically
stimulated luminescence (OSL) and palaeomagnetic ages
Results of previous studies from Chew Bahir sediments pro-
duced critical radiocarbon age estimates, which follow no sys-
tematic trend, with diagenetic and reservoir effects on biogenic
carbonate being the likely explanation (Foerster et al., 2012, 2014).
We evaluated the estimated radiocarbon ages of three bulk samples
from HSPDP–CHB–1A, because of their generally low organic carbon
content. The two lowest 14C dates show unexpectedly high
δ13C values for bulk organic matter (>2.3‰) and hence these were
excluded from the final age-model (Table 1).

In addition, nine samples through the sediment core were selected for luminescence dating using post infrared infrared
stimulated luminescence dating (p-IR IRLS) that was applied to
polyminal fine grains. The laboratory experiment using different
prior-infrared stimulation temperatures indicated a plateau
between 50 and 140 °C for sample C-L3863, between 50 and 220 °C
for C-L3866, between 80 and 180 °C for C-L3867, between 50 and 125 °C
for C-L3869 and between 50 and 110 °C for C-L3870 (Fig. SI-4).
Prior-IR stimulation temperatures above 200 °C reduced the p-
IR IR290 signal significantly. Finally, the lowest prior IR stimulation
temperature of the plateau range was used for further measure-
ments. Laboratory doses were successfully recovered for samples C-
L3866, C-L3867, C-L3869 and C-L3870 (Fig. SI-5, Table 2). In another
dose recovery experiment, laboratory doses for samples C-L3863
and C-L3864 were successfully recovered for p-IR IR stimulation,
which tracked the preheat temperature by −20 °C (Fig. SI-6,
Table 2). Only a small residual dose of 2–4 Gy was left after 24 h of
bleaching in the Hönle Sol2 solar simulator. The luminescence age
estimates were between 37 and 120 kyr (Table 3).

A first age-depth approximation was based on the accepted
radiocarbon age and nine luminescence ages. Subsequently, these
age control points were iteratively shifted within the error of the
individual ages to fit general patterns in our relative palaeo-
intensity (RPI) record with regional RPI data from the Somali Basin
(Meynadier et al., 1995). To further refine our age model, we
correlated minima and maxima in our RPI record to available
palaeomagnetic data from Chew Bahir (Trauth et al., 2015), the high
resolution alpine relative palaeointensity stack (GLOPS5, Laj et
al. 2013), and the RPI data from ODP site 984 (Channell et al., 2002)
from the Iceland Basin (Fig. SI-7). The inclusion of only three
additional correlation points within the uppermost 20 m showed a
strong correspondence of our data and the reference records.
Two minima in our RPI record were assigned to globally known
palaeomagnetic excursions (see Table 3).

The final age-depth model is based on one radiocarbon age, nine
luminescence ages and three tie-points derived from the correla-
tion of RPI record (see Fig. 5, Table 3). We used a Bayesian model
approach to determine the most likely age-depth curve using the
Bacon software (Blaauw and Christen, 2011) and the INTCAL13 data
set (Reimer et al., 2013). We presumed a dynamic setting for the
sediment accumulation rates and chose a step size of 15 cm seg-
ments to estimate the ages. The age-depth model reveals a mean
sedimentation rate of −46 cm/kyr in the interval 4068–1370 m,
relative to a mean sedimentation rate of −25 cm/kyr in the top part.

4. Discussion
4.1. Interpretation of proxies
From the sedimentological evidence, we interpret the XRF
scanning data in terms of elemental ratios. Ti is a commonly inert
and immobile element that occurs in a variety of mineral phases,
therefore we use it as proxy for clastic sediment supply, e.g. of
fluviatile (Haug et al., 2001) or aeolian (Yancheva et al., 2007) input. K
is also a ubiquitous element that is biocycled and easily leached
from soils as a water-soluble cation (Stiles et al., 2003). It is also
substituted in many mineral phases due to physical weathering, or
fixed in clay-complexes (Arnaud et al., 2012; Foerster et al., 2012,
2018; Langella et al., 2001) and therefore often bound to the
depositional or immobile element that occurs in a variety of mineral phases,
therefore we use it as proxy for clastic sediment supply, e.g. of
fluviatile (Haug et al., 2001) or aeolian (Yancheva et al., 2007) input. K
is also a ubiquitous element that is biocycled and easily leached
from soils as a water-soluble cation (Stiles et al., 2003). It is also
substituted in many mineral phases due to physical weathering, or
fixed in clay-complexes (Arnaud et al., 2012; Foerster et al., 2012,
2018; Langella et al., 2001) and therefore often bound to the
fine grain size fraction (Cven et al., 2010). In the hydrological setting of
the Chew Bahir basin, we use increased K/Ti ratio as indicator for
deposition of physically weathered minerals during periods of
enhanced erosional fluviatile input from a less vegetated arid
setting and/or K-enrichment due to authigenic mineral formation, i.e.
illmination of smectites in a hydrologically closed system when
alkalinity and salinity are high (Foerster et al., 2012) In contrast,
decreased K/Ti ratio indicates reduced deposition of detrital
material during more vegetated conditions of wetter climate when K is
dispersed in a hydrologically open system or not enriched in min-
neral phases.
Analcime is particularly abundant throughout the core. This is a natural zeolite that can form authigenically by reaction of detrital silicates, such as illite/smectite, with highly alkaline (pH > 9) pore waters that often develop in hydrological closed systems, and which may absorb K ions (Fig. 3) (Gall and Hyde, 1989; Langella et al., 2001; Singer and Stoffers, 1980). These conditions are present in the Chew Bahir basin and the high percentage of analcime may account for the relative accumulation of potassium during arid conditions.

Carbonate nodules found in the L21 comprise dolomite or high-Mg and -Mn calcite. We presume that they are early diagenetic for a number of reasons. Firstly, progressive coarsening of the grain size is observed from the edge to the centre of the nodules: in the centre, there has been more time for recrystallisation and grain growth so the grains have merged into a homogeneous tightly-interlocking crystalline mass (Fig. SI-3). Secondly, the Ca/Mg ratio in the dolomite nodules is > 1; Ca-excess is a common feature of diagenetic dolomites (Armenteros, 2010; Dean et al., 2015; Vasconcelos and McKenzie, 1997). Thirdly, detrital grains are often observed as being enclosed by the carbonate, showing that the carbonate formed after the original deposition of the sediments. δ18O values average +7.3‰ across 6 dolomite nodules. These values are high, suggesting formation from high δ18O water. The waters present when the dolomite and high-Mg calcite formed are believed to have been of meteoric origin.
liberated by recrystallisation of the originally deposited endogenic nodules formed in a playa lake environment (Armenteros, 1984), precipitated in the lake surface waters. The nodules, which are less (c. 3.5 ‰) enriched in δ18O than the original sediment must also have been enriched in Mg for dolomite formation (Meynadier et al., 1992). Mg-enriched pore waters in the sediments allowing for dolomite or high-Mg calcite formation, probably utilising Ca liberated by recrystallisation of the originally deposited endogenic calcite.

We analysed the bulk (fine fraction) calcite for stable isotopes. As discussed above, we consider the calcite to be endogenic, precipitated in the lake surface waters. The nodules, which are formed of dolomite (e.g. Fig. S3) and/or high-Mg/high-Mn calcite, were separated from the rest of the sediment and therefore not analysed because their isotopic composition will reflect conditions in the sediment where they formed, so isotope data would not be comparable to those from the endogenic carbonate formed in the lake waters. In terms of the drivers of endogenic calcite δ18O, temperature (which alone would lead to a c.0.2% decline in δ18O for every 1 °C temperature rise) can be ruled out as the main driver in this sequence because of the magnitude of the δ18O shifts. For example, the δ18O change in Chew Bahir from the LGM to the Holocene is c. 6 ‰, and would require a temperature rise of c. 25 °C, if temperature were the sole driver (Craig, 1965). This is unlikely, given the independent temperature reconstructions measured from elsewhere in eastern Africa for the LGM to Holocene, for example c. 6 °C in Lake Tanganyika (Tierney et al., 2008) and less (c. 3.5 °C) in Lake Malawi (Powers et al., 2005). Therefore, it is more likely that the other driver of δ18O in lake carbonates, δ13C of the lake water from which the carbonate forms, is the key (Leng and Marshall, 2004). In turn, this is likely to be influenced by two main factors at Chew Bahir. Firstly, in closed-basin lakes in semi-arid environments, changes in water balance lead to high magnitude changes in δ18O. When lake waters evaporate, δ18O increases. Secondly, changes in the predominant source of precipitation, Atlantic Ocean vs. Indian Ocean/Arabian Sea, will have a lesser impact. Precipitation from the former source has to travel further and is more recycled, so δ18O of the precipitation is lower by the time it reaches east Africa than precipitation from the Indian Ocean. However, the large magnitude of the shifts and, at times, the very high δ18O values, suggests evaporation is the key driver (Leng and Marshall, 2004), with higher δ18O indicating more evaporative lake waters, and lower δ18O less evaporative lake waters. This is supported by calculated breakthroughs of other aridity proxies, such as K/Th, also suggest a shift in water balance at 66-62 kyr (c. 1380–1477 cm). Additionally, δ13C supports the interpretation of a shift to drier conditions at this time (Fig. 2). δ13C values of endogenic calcite can change due to variations in the composition of inflowing carbon (e.g. related to changes in vegetation), within-lake productivity and the residence time of the lake (Leng and Marshall, 2004). The last of these is particularly important in closed-basin lakes such as Chew Bahir, with CO2 preferentially degassing 12C, leading to higher δ13C values (Leng and Marshall, 2004). While there is only a relatively weak statistical relationship between δ18O and δ13C, the overall trend is similar. Generally, both δ13C and δ18O are lower before 66 kyr and higher after 62 kyr, before lower values again at the time of the onset of the latest North African Humid period (NAHP; c. 15 kyr BP) (Figs. 2 and 6). δ13C, unlike δ18O, cannot be influenced by changes in the source of precipitation, thus the change to sustained high and stable values of both stable isotope ratios above 1380 cm core depth (L2) supports the interpretation of a drier, more stable hydroclimate after ~62 kyr. The calcareous valves of lacustrine benthic ostracods are usually well preserved in sediments, unless they are exposed post-mortem to extensive transportation, chemical and/or physical weathering, which causes the dissolution or destruction of the fragile remains (Lord et al., 2012). Selective destruction of valves can alter the species composition of a thanatocoenosis or ericate the ostracod record completely (Lord et al., 2012). Thus, the generally good preservation of undamaged thin-valved ostracod valves in the presented record implies calm and constant aquatic depositional conditions at the coring location and no post-depositional reworking processes (Lord et al., 2012). A limited species diversity, as recorded in Chew Bahir with only four species, is an indication for extreme environments (for example very alkaline...

Table 2

<table>
<thead>
<tr>
<th>Sample ID</th>
<th>Sample depth (mblf)</th>
<th>H2O (%)</th>
<th>n accepted</th>
<th>Radionuclide concentration</th>
<th>Dose rate (Gy/kyr)</th>
<th>RSD (%)</th>
<th>De (Gy)</th>
<th>Age (kyr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>C-L3863</td>
<td>7.235–7.355</td>
<td>PM FK 51</td>
<td>10/10</td>
<td>2.07 ± 0.26 6.68 ± 0.39 1.96 ± 0.20 2.32 ± 0.14</td>
<td>5</td>
<td>86.3 ± 4.5 37.2 ± 3.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C-L3864</td>
<td>8.450–8.555</td>
<td>PM FK 34</td>
<td>10/20</td>
<td>1.57 ± 0.26 7.30 ± 0.47 2.69 ± 0.22 3.11 ± 0.18</td>
<td>6</td>
<td>120.1 ± 7.9 38.6 ± 3.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C-L3866</td>
<td>16.365–16.520</td>
<td>PM FK 42</td>
<td>10/20</td>
<td>1.16 ± 0.30 6.25 ± 0.49 1.48 ± 0.12 1.87 ± 0.12</td>
<td>3</td>
<td>151.7 ± 7.7 81.2 ± 6.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C-L3918</td>
<td>19.340–19.470</td>
<td>PM FK 42</td>
<td>11/11</td>
<td>1.21 ± 0.31 7.80 ± 0.49 1.62 ± 0.17 2.09 ± 0.14</td>
<td>4</td>
<td>158.7 ± 8.0 76.0 ± 6.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C-L3867</td>
<td>20.340–20.470</td>
<td>PM FK 45</td>
<td>10/20</td>
<td>1.23 ± 0.31 6.62 ± 0.48 1.88 ± 0.12 1.99 ± 0.12</td>
<td>2</td>
<td>165.0 ± 8.4 82.7 ± 6.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C-L3919</td>
<td>27.080–27.195</td>
<td>PM FK 31</td>
<td>10/20</td>
<td>1.48 ± 0.20 6.77 ± 0.44 1.85 ± 0.15 2.49 ± 0.15</td>
<td>2</td>
<td>224.4 ± 11.6 90.3 ± 7.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C-L3869</td>
<td>30.420–30.535</td>
<td>PM FK 35</td>
<td>10/20</td>
<td>2.07 ± 0.36 9.54 ± 0.64 1.24 ± 0.13 2.32 ± 0.18</td>
<td>2</td>
<td>226.7 ± 11.6 97.9 ± 8.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C-L3920</td>
<td>34.815–34.940</td>
<td>PM FK 40</td>
<td>12/12</td>
<td>3.85 ± 0.43 7.58 ± 0.49 1.05 ± 0.09 2.42 ± 0.19</td>
<td>5</td>
<td>248.7 ± 12.8 103.0 ± 10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C-L3870</td>
<td>40.570–40.690</td>
<td>PM FK 58</td>
<td>10/10</td>
<td>2.34 ± 0.55 10.98 ± 0.75 0.92 ± 0.10 1.99 ± 0.17</td>
<td>6</td>
<td>228.4 ± 12.3 120.0 ± 12</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 3

<table>
<thead>
<tr>
<th>Lab code</th>
<th>Sample depth (mblf)</th>
<th>method</th>
<th>calendar age (kyr cal BP)</th>
</tr>
</thead>
<tbody>
<tr>
<td>C-L3863</td>
<td>1.4</td>
<td>IAC</td>
<td>9.551 ± 0.033</td>
</tr>
<tr>
<td>C-L3864</td>
<td>7.3</td>
<td>OS1</td>
<td>37.2 ± 3.0</td>
</tr>
<tr>
<td>C-L3864</td>
<td>7.7</td>
<td>OS1</td>
<td>40.0 ± 1.0</td>
</tr>
<tr>
<td>C-L3864</td>
<td>8.5</td>
<td>OS1</td>
<td>38.6 ± 3.4</td>
</tr>
<tr>
<td>n/a</td>
<td>13.9</td>
<td>OS1</td>
<td>64.0 ± 2.0</td>
</tr>
<tr>
<td>C-L3866</td>
<td>16.4</td>
<td>OS1</td>
<td>81.2 ± 6.6</td>
</tr>
<tr>
<td>n/a</td>
<td>17.1</td>
<td>OS1</td>
<td>74.8 ± 3.0</td>
</tr>
<tr>
<td>C-L3918</td>
<td>19.41</td>
<td>OS1</td>
<td>76.0 ± 6.4</td>
</tr>
<tr>
<td>C-L3867</td>
<td>19.41</td>
<td>OS1</td>
<td>82.7 ± 6.5</td>
</tr>
<tr>
<td>C-L3919</td>
<td>27.14</td>
<td>OS1</td>
<td>90.3 ± 7.1</td>
</tr>
<tr>
<td>C-L3869</td>
<td>30.48</td>
<td>OS1</td>
<td>97.9 ± 8.9</td>
</tr>
<tr>
<td>C-L3920</td>
<td>34.88</td>
<td>OS1</td>
<td>103.0 ± 10</td>
</tr>
<tr>
<td>C-L3870</td>
<td>40.64</td>
<td>OS1</td>
<td>120.0 ± 12</td>
</tr>
</tbody>
</table>

...
waters) (Castillo-Escrivà et al., 2015). Only few ostracod species colonise playa lakes, because species need to produce either desiccation-resistant eggs (uncommon in Limnocythere or they have to (repeatedly) be passively transported from distant refugia (Castillo-Escrivà et al., 2015; Mesquita-Joanes et al., 2012).

4.2. Hydroclimate history of Ethiopian highlands and rift

According to our age-depth model, the core HSPDP-CHB-1A extends the environmental history of the south Ethiopian Rift and adjacent highlands to 116 kyr (Figs. 6 and 7). Previous pilot cores (Foerster et al., 2015) provide a record of the last 28 kyrs. Based on the evaluated proxies, we infer that Lake Chew Bahir reacts very sensitively to changes in hydroclimate within its catchment and that the lake basin experienced several climate cycles with a high wet-dry amplitude (Fig. 6). The lithozones of the sediment core correspond to this cyclicity. We interpret the lower element ratios, coarser grain size and increased magnetic susceptibility values in LZs 1A and 1C as detrital input by fluvial processes during wetter climate conditions, consistent with AHP4 and AHP3 of Ehrmann et al. (2016; Fig. 6). During these times especially, the Ethiopian highlands were impacted by precipitation that caused sapropel formation in the Eastern Mediterranean Sea through the freshwater discharge of the Blue Nile (Ehrmann et al., 2016; Lamb et al., 2018; Revel et al., 2010). Significant hydrological changes fostered transport and deposition of detrital terrigenous material to the basin centre of Chew Bahir (Fig. 6). Temporary lake high stands in adjacent Lake Turkana (McDougall et al., 2008) (i.e. –104 kyr) are likely to have occurred synchronously in Chew Bahir. Further limnogeological evidence is needed to confirm a spill over of the Chew Bahir basin to the Turkana basin (and ultimately to the White Nile catchment). Nevertheless, the presence of authigenic analcime, diagenetic nodules and lithified carbonate layers that culminate in TIC maxima in LZs 1B and 1D also reveal arid conditions between NAHPs. The high variability in d^{18}O in this earliest part of the record before ~66 kyr also suggests large fluctuations between less and more evaporative lake waters.

The sediment record of Lake Tana in northwest Ethiopia shows similar high variability in hydroclimate on short time scales (Grove et al., 2015; Lamb et al., 2018). Likewise, further distant climate archives in north and east Africa imply episodic, but spatially nonsynchronous, wet/dry periods caused by a combination of insolation-driven shifts in the position of the ITCZ and the position of the westerlies for this time interval (Blome et al., 2012). In contrast, rapid shifts in hydroclimate during the Holocene NAHP1 are thought to be a regionally coherent feature, also connected to the Indian Ocean SST (Tierney et al., 2013).
et al., 2013) at 125 and 115 kyr (Langebroek and Nisancioglu, 2014), suggest much wetter conditions in the region of the Ethiopian highlands under high precession forcing at 125 kyr (Fig. 1b) compared to the drier conditions under low precession forcing at 115 kyr (Fig. 1c). Likewise, model simulations of intermediate complexity (CLIMBER2) (Ganopolski et al., 2001; Petoukhov et al., 2000) reproduce strong wet and arid fluctuations during MIS5 120-71 kyr (Fig. 7), which are also experienced in Lake Tana (Lamb et al., 2018). This implies that both the NorESM and the CLIMBER2 model are able to simulate the strong precipitation fluctuations of the hydroclimate in the study area. While the community climate system model (CCSM3) (Collins et al., 2006) estimates overall drier conditions for the last interglacial LIG at 125 and 120 kyr, than experienced for the last glacial maximum (21 kyr) (Otto-Bliesner et al., 2006). Thus the proxy data from our study provide a valuable source to validate model runs for this region.

Further we interpret the peaks of K/Ti and Ca/Ti in LZs 1B and 1D as distinct drought periods at ~98-85 kyr and ~77-68 kyr, supported by the breakpoint analyses from K/Ti and Ca/Ti proxies (Fig. 6). A synchronous shift in δ18O data to higher values supports the inference of highly evaporative lake waters. The LZ1B drought seems to be synchronous with extreme hydrological changes during MIS 5 in several African Rift lake basins south of Chew Bahir, e.g. lakes Naivasha (Trauth et al., 2015), Malawi (Scholz et al., 2007) and Tanganyika (Scholz et al., 2007). Here, the arid conditions led to low lake levels or even desiccation in these periods (Scholz et al., 2011; Trauth et al., 2003).

Between ~68 and 58 kyr (LZ1E), the aridity proxies (K/Ti and Ca/Ti) show a distinct sharp and steady increase to peak values and there is also a major shift to higher δ18O. Variable, coarser grain size suggests recurring erosional fluvial input close to the locality of the drilling site in a seasonal playa lake environment under arid conditions (Fig. 6).

We infer that a continuous lacustrine environment persisted at Chew Bahir from 58 to 32 kyr based on the presence of ostracod species. The assemblage and good preservation of autochthonous ostracod valves indicate a permanent body of water (Fig. 7). Similarly, the deposition of mainly clay/silt particles at the coring locality indicates sedimentation in a low-energy/lacustrine depositional setting (Fig. 6). Furthermore, δ18O is high (+8.5 to +6.0‰) and relatively stable for tens of thousands of years, implying the existence of a body of water at Chew Bahir that was
subject to a substantial amount of evaporation (Leng and Marshall, 2004). This interpretation is further supported by the occurrence of analcime, which forms in highly alkaline waters in closed lake basins (Langella et al., 2001). Similarly, high K/Ti ratios correspond with deposition of clay minerals (i.e. illites and smectites), which are formed as product by physical weathering in dry conditions (Fig. 6; Foerster et al., 2018).

This period coincides with weak WAM activities in Atlantic records and declining eccentricity and a reduction in precession-dominated climate that resulted in partly high lake level stands in the Ethiopian and Afar rifts (Laskar et al., 2004; Weldeab et al., 2007). Modelled precipitation is predicted low but in less variable amounts (Ganopolski et al., 2001; Petoukhov et al., 2000). During this time, a wetter hydroclimate was also inferred from the Dead Sea records (Waldmann et al., 2010), the aforementioned southern East African Rift lakes (Scholz et al., 2007; Trauth et al., 2015) and CLIMBER2 modelled vegetation cover (Figs. 6 and 7).

4.3. Terrestrial ecosystem changes

We understand from reconstructions and modelling of population sizes of large mammals of the past hundred thousand years in eastern Africa that evolutionary or ecological changes occur on rather long time scales (Bibi and Kiessling, 2015). So, it is noteworthy that the modelled effective population size of two regionally endemic equine species peak during the time period of our reconstructed stable hydroclimate phase between ~59 and 34 kyr (Jonsson et al., 2014) (Fig. 7). Equus grevyi (Grevy’s Zebra) and Equus africanus somaliensis (Somali wild ass) are arid adapted species that inhabit exclusively dry savannah habitats in the Chew Bahir region and thus being a valuable indicator species for this biome (Jonsson et al., 2014). We assume that their success is linked to the expansion of their preferred habitat in the Ethiopian Rift, which in turn was also able to support the subsistence strategies of human populations in the given region during that time interval. Following conceptual models that predict the genetic fitness of organisms (Potts and Faith, 2015) or their behavioural plasticity (Grove et al., 2015), we would expect a selection, at least in AMH, towards individuals that are adapted to a variety of different environments during the previous unstable period (Maslin et al., 2014). In the succeeding stable environment, evolved skills or at least sufficient levels of plasticity were then reached to enable dispersal out of the native habitat into distant regions with broadened habitable range (Grove et al., 2015; Potts and Faith, 2015). We therefore suggest, based on our palaeoenvironmental reconstruction presented here, that the optimal conditions for AMH emergence and dispersal from the Ethiopian rift and was most successful at the time between ~58 and 32 kyr in stable environmental conditions. This is in agreement with the evidence from archaeological records, genetic studies, and human dispersal models, which suggest a major dispersal event during the long lasting human migration wave 4 (HMW4; Mellars et al., 2013; Pagani et al., 2015; Tinnermann and Friedrich, 2016). The environmental change to more stable hydroclimate coincides also with the termination of the East African Middle Stone Age industrial complex described from archaeological sites in the vicinity of Chew Bahir (Shea, 2008). This signifies a strong impact of environmental stability on the change in cultural and adaptation strategies.

A further shift to a more arid environment occurred from ~32 kyr, inferred from increased analcime formation in our sediment record, lack of ostracod valves, and persistent high K/Ti ratios (Figs. 3 and 6). This proposed playa lake environment lasted for ~10 kyr, and also continued during the Last Glacial Maximum. Between 21 and 10 kyr, the presence of ostracod valves and the increase in detrital input from the Chew Bahir catchment (inferred from lower K/Ti ratios) suggest an increase in humidity and formation of a permanent lake again (Figs. 6 and 7). However, a distinct increase in calcite precipitation and fluctuating δ18O hint to drought periods (possibly Younger Dryas) after the onset of NAHP1 (Ehrmann et al., 2016). These dramatic environmental fluctuations are also seen in previously analysed short sediment cores from Chew Bahir in more detail (Foerster et al., 2012, 2015; Trauth et al., 2015).

5. Conclusions

Using multiple proxies that record hydroclimate change, we infer extremely variable hydroclimate in Marine Isotope Stages (MIS) 5 and 4 that can be reproduced in snapshot simulations of the last interglacial (125 kyr, 115 kyr) with NorESM (Langebroek and Nisancioglu, 2014) and transient simulations (126–0 kyr) by CLIMBER2. The proxy records provides evidence of rapidly fluctuating extreme wet and arid hydroclimates. The unstable conditions are followed by stable hydroclimate around ~58 kyr at Chew Bahir. This shift was likely triggered by orbital forcing in terms of declining eccentricity and a reduction in precession-dominated climatic extremes (Mohrani et al., 2016; Trauth et al., 2015). The timing of inferred lake water phases supports the numerical calculations of atmosphere-ocean-vegetation models of intermediate complexity and also falls in line with reconstructed wildlife population densities. We suggest from our proxy record that the optimal condition for AMH dispersal from Africa occurred ~58–32 kyr, a period of stable environments and abundant wildlife. Therefore, hydroclimate change may help explain the timing of AMH migration out of Africa.

Acknowledgements

The team members and partners from the project “Ethiopian lakes – Palaeoenvironmental Reconstruction in the Source Region of Modern Man” within the Collaborative Research Centre 806 “Our way to Europe - Culture and Environment Interaction and Human
Mobility” (CRC 806) like to take the chance to express their deepest gratitude to Henry F. Lamb for his shared knowledge and passion for palaeoenvironmental research. We feel very fortunate to have HFL in our contributing team. It is also due to his extensive international network and his expertise in Ethiopian fieldwork that the unique environmental archive of Lake Chew Bahr was successfully retrieved incl. the latest successful coring campaign within the framework of the Hominin Sites and Paleolakes Drilling Project (HSPDP). HFL’s pioneer work and extensive research output is inspiring to many of us to further expand our palaeoenvironmental and palaeoclimatic research.

G. Dorenbeck and Jonas Urban (University of Cologne) are thanked for support during fieldwork, and D. Klingenhi, N. Manfekte, S. Opitz and numerous students (Univ. of Cologne) for their competent help in core processing. We thank A. Hu (NCAR, Boulder) for granting access to CCRM3 model data. MJL and AEM publish with permission of the Executive Director of the British Geological Survey (NERC). Financial support was provided by the German Research Foundation (DFG, Collaborative Research Centre 806), NERC (NE/K014560/1, IP/1623/0516) and ICDP-SPP 1006 (SCHA 472/13-1, 13-2, 18-1, 18-2, 18-3 & TR 419/8-1, 8-2, 10-1, 10-2, 10-3). This publication number #17 of the Hominin Sites and Paleolakes Drilling Project (HSPDP). The data reported in this paper are available in the databases of PANGAEA and the Collaborative Research Centre 806 Database (DOI: 10.5880/SFB806.chewbahr) via http://www.crc806db.uni-koeln.de/.

Appendix A. Supplementary data

Supplementary data related to this article can be found at https://doi.org/10.1016/j.quascirev.2018.09.008.

References

Assela, Z., Yirga, S., Reed, K.E., 2008. The large-mammal fauna from the Kibish Member of the Hau Bar Member. J. Hum. Evol. 54, 501–512.

Bell, W., 1980. Alpha dose attenuation in quartz grains for thermoluminescence dating. Ancient TL 12, 8.

Bentsen, M., Bethke, I., Debernard, J.B., Iversen, T., Kirkevåg, A., Seland, Ø., Bibi, F., Kiessling, W., 2015. Continuous evolutionary change in Plio-Pleistocene and palaeoclimate research. Inspiring to many of us to further expand our palaeoenvironmental (HSPDP). HFL framework of the Hominin Sites and Paleolakes Drilling Project (HSPDP). The data reported in this paper are available in the databases of PANGAEA and the Collaborative Research Centre 806 Database (DOI: 10.5880/SFB806.chewbahr) via http://www.crc806db.uni-koeln.de/.

Cven, S., Francis, S., Lamoureux, S.F., 2010. Estimation of grain size variability with micro X-ray fluorescence in laminated lacustrine sediments, Cape Bounty, C...

