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Zwei Geschichten von jenseits des Standardmodells:

In dieser Arbeit werden zwei Erweiterungen des Standarafi®grsentiert: Zee-SU(5) und Zee-LR. In
beiden Theorien erhalten die Neutrinos aufgrund des Zeeh&tdasmus durch Quanteneffekte eine Masse.
Zee-SU(5) basiert auf der SU(5) groen vereinheitlichteedite mit dem skalaren Sektér;, 45 und
10y. Die Rolle des zweiten Higgs-Dubletts &% ist entscheidend fr die Korrektur der Massenrelation
der down-artigen Quarks und geladenen Leptonen und dieugurg der Neutrinomassen. Zur berpr-
fung der Testbarkeit dieser Theorie werden Bedingungerefidreinheitlichung detailliert untersucht und
Beschrnkungen fr die Beobachtung des Zerfalls des Protogtaellen und zuknftigen Experimenten wie
Hyper-Kamiokande betrachtet. Die Theorie sagt auf nliéVeise eine Relation zwischen den Massen
der Neutrinos und der geladenen Leptonen vorher sowie détsefan eines leichten, farbgeladenen Ok-
tetts, das zu exotischen Signaturen am LHC fhren knnte. RasLR-Modell hingegen ist ein simples
links-rechts-symmetrisches Modell, dessen skalareroBekis zwei Higgs-Dubletts besteht, die die links-
rechts-Symmetrie brechen, sowie einem geladenen Sindletth das Neutrinomassen generiert werden und
leptonenzahlverletzende Prozesse impliziert werderse3idodell sagt leichte sterile Neutrinos voraus. Um
die Phnomenologie der Theorie zu untersuchen, werdengliwtiren am LHC mit zwei geladenen Leptonen
unterschiedlichen Flavors und fehlender Energie sowidlZeter schweren Eichbosonen mit dem leichten,
rechtshndigen Neutrino untersucht. Es wird angemerks bagle Theorien die fr Symmetriebrechung und
Massenerzeugung minimal bentigte Anzahl an Freiheitggrach skalaren Sektor einfhren, unter der die

Renormierbarkeit der Theorie erhalten ist (im Fall von Z4(5) ohne zustzliche Fermionensingletts).

Two stories for beyond the Standard Model:

We propose two extensions of the Standard Model which prédégorana neutrinos: Zee-SU(5) and Zee-
LR. In both theories neutrinos get mass at the quantum leveligh the Zee mechanism. The Zee-SU(5)
is based on the SU(5) grand unified theory with, 45, and 10z composing the scalar sector. The role
of the second Higgs doublet in tH&; is crucial since it is responsible of correcting the dowpetyjuarks
and charged leptons mass relation and generating neutr@ssas. In order to understand the testability
of the theory, unification constraints are studied in degad proton decay bounds are discussed at current
and future experiments such as Hyper-Kamiokande. The yh@edicts as a natural outcome a beautiful
relation between neutrino masses and charged fermion masska light colored octet which could give
rise to exotic signatures at the LHC. On the other hand, treel£is a simple left-right symmetric model
whose scalar sector is composed of two Higgs doublets, nsfigle of breaking the left-right symmetry,
and one charged singlet, responsible of the neutrino massaon and lepton number violation processes.
This model predicts light sterile neutrinos. In order to ersand the testability of the theory, we study the
signatures with two charged leptons of different flavor anssing energy at the LHC and the decays of the
heavy gauge bosons involving the light right handed neoivife remark that both theories have the minimal
degrees of freedom in the scalar sector needed for symmedaking and mass generation such that the

renormalizability of the theory is preserved (without exfirmion singlets in the case of Zee-SU(5)).
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I INTRODUCTION

|. INTRODUCTION

The Standard Model (SM) is currently the most satisfyingtii¢o describe physics at the electroweak
scale. Its agreement with experimental data is astonishmgarticular after the discovery of the W
and Z bosons, being the discovery of the Higgs boson the \clwerrthe top of the cake. Up to now,
there is no phenomenological disagreement with the SM plieds except for the fact that neutrinos are
massive in nature, whereas the SM predicts them to be masshgsart from this experimental issue,
there are open theoretical aspects which strongly sughattite SM is only an intermediate step in our
understanding of physics. For instance, the SM does noideavunified description of the strong, weak
and electromagnetic forces. In the context of the SM, chaugetization is not explained (hypercharge is
put in by hand), the fermion assignment is made ad hoc, thébauwf families and the hierarchy in the
fermion masses is completely arbitrary, not to mention thérariness in the Higgs sector and the apparent
violation of the naturalness principle. All of these isseasourage us to expect a more fundamental theory
at higher energies. Nevertheless, since the SM fits the wixdelata so perfectly well, one expects any new
theory to match the SM at low energies.

A fundamental tool to explore beyond the electroweak scathe concept of an effective field theory.
To start with, we all know that gravity is there and it is urtéorately not contemplated by the SM, so that
we are aware that the SM breaks down, at latest, at the endrgyewgravitational effects start to matter, i.e.
the Plank scalé/p; ~ 101 GeV. In that sense, the SM is indeed an effective field theorfais so that its
Lagrangian can be written as:

EzESM—i—ZZ(A(::iO{L—Fh.C.), (.1)

n=5 1

Looking at the above expression, one may wonder which woellthb next effective operata@? in order

of relevance. Since higher dimensional operators are sappd by powers of the mass scale of the new
theory A, we look at the next higher dimension operator (dimensiae) find then we find that there is only
one possible operator according to the SM symmetries, toalked Weinberg operator, which (a) violates
lepton number, (b) predicts massive neutrinos. Indeedyediqted by this effective approach, neutrinos
have been found to be massive (surprise!), which sets uple sta 10'* GeV for the next scenario of
new physics.

One may think about the effective field theories as layersadrdaon, where each layer corresponds to
an effective theory at some energy scale. Under the pergpaxtthe SM being an effective field theory,
we could ask ourselves about the way to reach the next lagerSM UV-completion), taking into account
that any attempt to build a Beyond the Standard Model (BSkyth will be strongly constrained since it
must reproduce the SM at low energies.

We know that Yang-Mills theories seem to work pretty well. tBehy the universe is described by
three different groups? Why do we have three couplings these inputs in our theory) to describe the
observables? Since early times, there has always beendaaneong philosophers and scientists to reduce
the multiple phenomena in Nature to the minimal number ofland principles. Perfection, beauty and
simplicity are concepts intimately bounded when qualifyacertain physical theory. Therefore, we may
find attractive the idea of a unified group describing Natufbeories of this kind are known as GUTs
(Grand Unified Theories). The simplest GUT, based on SU(&% mroposed in 1974 by H. Georgi and S.
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Glashow [L] and as we will show later, it comes with some striking prédits such as the decay of the
proton P]. Indeed, if next dimension operators in Eq. (I.1), i.e dirsien six, are taken into account, one
realizes that baryon number is violated, so that they préldéproton will decay at some point. The reader
may notice that this process can be really suppressed atvihedale (although it really depends on the
magnitude of the new physics scale) but give to the protougmaime and for sure it will decay (unless
there is a special hidden symmetry forbidding these dinmen8ioperators). This is also a good motivation
for GUTs. This theory also predicts a great dessert betwemprlectroweak and the GUT scale. However,
this simplest GUT model has been ruled out since it cannobdege the experimental data at low energies.

On the other hand, one can also find unsightly to have theypasymmetry in the electroweak
interactions. In the SM there is no explanation about pafitjation in the electroweak sector. To make
the SM look nicer, one may attempt to correct this asymmettgling the correspondent right partners
(SU(2)r) and ending up with a left-right symmetric modé&H-p] which, surprise, predicts massive Dirac
neutrinos as a natural outcome. One of the main attractiiggpon this theories is the existent connection
between spontaneous parity violation and neutrino magses [

We will follow these two tendencies (GUT theories and lggtit symmetric models) and will introduce
in the following two different simple and realistic extemss of the Standard Model in which neutrinos
get mass at the quantum level through the Zee mechardknRegarding the structure of the presented
material, this master thesis is organized as follows: finsgection Il, we introduce the simplest possible
GUT theory [1], based on SU(5), and discuss its advantages and limigatibnsection 1ll, the simplest
mechanisms to generate neutrino masses are discussedidtlotigeir application in the context of SU(5)
theories. We end the topic of GUTSs, in section 1V, by intrddgca simple renormalizable extension
based on SU(5) (Zee-SU(H)]) which corrects the main problems contained in the sim@345) theory.
This model contains, apart from the usiall0 fermionic andb, 245 scalar representations, an extra
107 and 45, responsibles for the Zee mechanism. We show the consystdrtbe theory according to
experimental constraints such as unification and protomydet current and future experiments such as
Hyper-Kamiokande, which predicts a light scalar coloretebcAn interesting relation between neutrino
and charged fermion masses appears for the first time in titexdoof GUT theories.

The second block the thesis is based on left-right symmsiddels. We start in section V revisiting
the simplest left-right symmetric theorg][ with the minimal Higgs sector to break the LR-symmetry,
which predicts Dirac neutrinos. In section VI we list somdeasions which allow neutrinos to have
Majorana masses though the seesaw mechanisms. In sectiomévpropose a new left-right symmetric
model, LR-Zee 10], in which neutrinos get mass through the Zee mechanisns i§tthe most economic
model regarding the field content of the theory which contfeteg massive Majorana neutrinos and
it comes along with some new interesting predictions whioh @so studied in this section such as
a light sterile neutrino in which new gauge bosons could yemad lepton number violation signals
such as decays into two charged leptons of different famiied missing energy, which could be
tested in the near future by experiments such as MEG2 or MD2&ils regarding calculations, Feynman
rules, field content and properties of the new two BSM-tresoproposed here can be found in the appendix.

The results of this master thesis are summarized in thedwilp publications:

» P. Fileviez Perez and C. Murgui, ‘Renormalizable SU(5)fldation,” Phys. Rev. 34 (2016) no.7,
075014 doi:10.1103/PhysRevD.94.075014 [arXiv:16047G3Bep-ph]].

¢ P. Fileviez Perez, C. Murgui and S. Ohmer, “Simple Left{Righeory: Lepton Number Vi-
olation at the LHC,” Phys. Rev. 34 (2016) no.5, 051701 doi:10.1103/PhysRevD.94.051701
[arXiv:1607.00246 [hep-ph]].
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[I. GRAND UNIFIED SU(5) THEORY

In this section we present a brief review of the simplest aditheory, SU(5)-GG, proposed by Georgi
and Glashow in 19791]. We will remark the crucial points of the theory without tjed to deep into
details, since our interest lies mostly in the new variarthefmodel that we propose as an improvement of
the original theory 9]. An advanced reader could skip this part, although he omséne find it interesting
in the sense that this has been written as a summary of theytkeeping an advanced level. A completely
beginner in this topic is also encouraged to read it sincendtiought it may seem too technical, this
summary has been filled up with pedagogical references tpafally will help its understanding.

A. Field content and SU(5) structure

The rank of a symmetry group is given by the total number ofjaiieal generators. For a given SU(N),
the number of diagonal generators correspond¥ te 1. In the SM one has two for SU(3\s, As), one
for SU(2) (I5) and one forU(1)y (i.e. the identity). Thus, any gauge group embedding the SMtm
have at least rank 4. Besides, in order to reach unificatfcandidate group must be simple or else the
product of identical simple factors (in this case a commarptiag constant could be obtained by imposing
certain discrete symmetries). There are many groups witk 4avhich could be in principle candidates to
embed the SM[SU (2)]*, [O(5)]?, [SU(3)]?, [G2]?, O(8), O(9), Sp(8), Fy andSU(5). From the above
list, the first two candidates are ruled out since they do notain.SU (3) as a subgroup. In order to avoid
arbitrary super-heavy fermion masses in the Lagrangiancéindidate group must accommodate complex
representations (otherwise an explicit mass term for timaitas would be allowed by the symmetry). The
groups[Gs]?, O(8), O(9), Sp(8) and F; have only real representations whereas the cand{@4fé3)]?
is not suitable since the charge operator would be a gemesh®U(3) and its traceless condition would
notably violate the generation structure of the quadk§.[ Therefore, we are only left with the candidate
SU(5) as the minimal group (rank 4) in which the SM can be embedded.

SU(5) is a non-abelian, special unitary group. The cornedjmy restrictions of its nature, i.e. traceless
and determinant equal to the unity, determines the numbgemérators (degrees of freedamd.o.f.) of

the group: N2 — 1 N55 94, From here we already see that the number of gauge bosonteddbub SM
one, which turns into a prediction of new heavy gauge bosoméich the SM is completely blind.

Moreover, SU(5) is a simple group, which means that aboved¢heM - (in the regime where it is a
good symmetry), wheré{,; 7 refers to the scale where SU(5) breaks to the SM, the cougplang unified

91(Mgur) = 92(Mcur) = 95(Maur) = gs. (1.1)

wheregs refers to the coupling of SU(5).

Let us now focus in the structure of SU(5). One has to takedntmunt that the electroweak interactions
are blind to color and vice versa, which basically impliest e groups SU(3) and SU(2) need to commute
with each other. Furthermore, leptons are color singlaisthat the SU(3) generators must have zero
eigenvalues for these components. These facts tell us aheuwgtructure of the representations for the
generators in SU(5): we reserve the first three rows and awduor the color group SU(3) (red area) and
the last two rows and columns for the weak group SU(2) (blea)ar
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24 ~ D (1.2)

The generators of SU(5) can be built by taking the generatiocX5), imposing the traceless condition and
normalizing them to 1/2 in the usual manner (see commentedtios -unification constraints- about the

normalization of a non-abelian gauge group and the Dynldexi The complete list of the generators can
be found in the appendix (see referentg][chapter 9 for a detailed construction of the generatorsfro

a group theory perspective). Here we will briefly stress tlagyahal generators of SU(5) since they are
of special importance in the spontaneous symmetry breatongext. There are a total of four diagonal

generators\; (where a normalization aof /2 is understood):

1 0000 10 0 00 0000 O 100 0 O
0-1000 1 01 0 00 0000 O 9 010 0 O
A=]0 0 0001, =—72]00-200],X3=(0000 0 |,Aua=—=]001 0 O
0 0000 \/300000 0001 O 15OOO—%O
0 000O 00 0 00 0000 ~1 OOOO—%

The first two correspond to the diagonal generators of SWBEreasi,s corresponds to the diagonal
generatorTs of SU(2). The last one corresponds to the hypercharge apeg®nerator of/(1)y. Thus,
the symmetry must be broken in such a way that the hyperchargains unbroken if the SM wants to be
recovered, so that the breaking has to occur in the directiok,s. Notice that the generator &f(1)y
has been built such that it commutes with SU(2) and SU(3) mgoulhe traceless condition of SU(N)
generators and the normalization criterion has fixed theofdhe details.

As it will be discussed in the following, the breaking of SYb the SM is realized by an adjoint
representation of scalarg4y, getting a vev in the direction of the hypercharge operdtet.us now deal
with the breaking of a general SU(N) by an adjoint repredemteof scalars. The adjoint representation
transforms a& — UXUT, whereU is a unitary matrix which can be generally expresset as ¢'©«7",
being T, the generators of the group. Therefore, an infinitesimaidsf@mation of the field is given
by 0¥ = i0,[T% X], which after symmetry breaking reads @3%) = i0,[7% (X)]. Thus, broken
generators do not commute wifL) whereas generators of the unbroken symmetry do. Due to symnme
transformation invariance of the potential, one alwaysehtie freedom to bring>) to a diagonal form.
Taking into account that the identity matrix commutes withvaatrices, it is straightforward to realize that,
if (X) has ai x i-th block of equal diagonal entries, all generators whosezeyo entries lie entirely
within thei x i-th block will commute with(X). Furthermore, any combination of the diagonal operators
proportional to(X) also commutes witkl. This explains why if the vev ofX) in the SU(5) case is taken in
the direction of\yy, i.e. (X) ox Aoy4, the SMis recovered and = #%)\24 where# is an arbitrary constant

which we choose to bg = \/g in order to match it with the SM hypercharge. Notice that¢csin

Ly oy 3 2, _ 1
Tr{(5h20)} = ZTr{Y?} = o, (11.3)
thengoy = %/\24 = \/gY. The further breaking of the SM {6(1).,,, hypercharge is performed by the usual

Higgs complex doublet which lives in the fundamental repnégtion of SU(5). Therefore, the remaining



I GRAND UNIFIED SU(5) THEORY

unbroken generator, the charge operator, is given by

1 51
Q = §A23+\/;§A24 (11.4)
= TL 4y, (1.5)

Here, one can see how the quantization of the electric ctaiges naturally from the intrinsic properties
of SU(5); the traceless condition imposes the relation betwquark and lepton charges which in the SM,
in contrast, are considered an input of the theory. This & ainthe main successful predictions of the
SU(5) grand unified theory, which shows the power of havihdoates participating in the SM unified in
only one group.

In SU(5) we have the fundamental irreducible represemtdiiavhich splits, according to the convention
we have chosen for the distribution of the SM groups in SU{5)ollows:

| s
)]

} SU(2)

According to the above convention, this representation lwanwritten from the SM point of view:
5 ~ (3,1) @ (1,2) where the first quantum number represents the multiplet uBt¥3) and the sec-
ond one, the multiplet under SU(2). By taking combinatiohthe fundamental 5 and anti-fundamental
representations, one can build the rest of irreducibleesaprtations ofU (5). We show here explicitly the
construction of the ones we will use to accommodate the fiehdent of the SM. The quantum numbers of
the representations along with the location of the fieldslmfound in detail in the appendix. Composite
representations can be built through the tensor produtieifidilowing way:

55 = {(3,1,-1/3) ® (1,2,1/2)} @ {(3,1,-1/3) & (1,2,1/2)} ~ (11.6)
10 15
(3,1,-2/3)®(3,2,1/6) @ (1,1,1) @ (6,1, -2/3) & (3,2,1/6) & (1,3,1),  (I.7)
(u)L qr (e)L
5@5 = {(3,1,-1/3) & (1,2,1/2)} ® {(3,1,1/3) & (1,2, -1/2)} ~ (11.8)
24 _ 1
(8,1,0)®(1,3,0) ® (3,2,-5/6) ® (3,2,5/6) & (1,1,0) & (1,1,0) . (1.9)
Gu W, X, Y, Yu

where the third quantum number corresponds to the hyperehdihese representations have two indices
since they are constructed from a tensor product. The 1@septation is antisymmetriw d.o.f)

and the 15 is symmetric{7*L d.0.f.). The24 corresponds to the adjoint representation, which is a bit
special since it is a real representation and is tracelesg4{ = 0 (Einstein convention is assumed). This
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representation accommodates the gauge bosons of the.tExpficitly,

24 \@
VMZZV;? = (11.10)
a=1
2B 1 1 c1 C1
Glu + \/_3% quzB GSN XU YN
2 2 2 Cc2 Cc2
. Glu qu + \/—3—‘6 G3M2B Xu Yu
3 3 3 C3 C3
= ﬁ Glu GZM Gi’w + \/—3_8 ; X Y,
1 2 3 w 3 +
Xu Xu Xu 7; -1/ 15Bu 3 Wu
1 2 3 - w 3
Yu Yu Yu Wu —7‘2‘ =/ 10 B

Notice that the theory predicts 12 new gauge bosons which narpresent in the SM (off-diagonal blocks
above). More about these new fields will be discussed in theseetions.

The matter component (fermions) fits perfectly (regardingrqum numbers of the multiplets compo-
nents) in theb and 10 representations (see appendix for detailed desaripf fields location inside the
representations):

d{ 0 wu§ —uj w dp
ds 1 —u§ 0 uf wuz do
5= ds [, 100=—7| u§ —uf 0 ug ds3 |. (.11
e V2 —u; —us —uz 0 et
-V —d1 —dg —d3 —€+ 0

It is remarkable how the 15 d.o.f. of the SM can be embeddedsimguhe two simplest representations in
SU(5) in such a way that quarks and leptons are unified. Trosésof the highest motivations to believe
that the SU(5) is actually the UV-completion of the SM.

The scalar content of the SU(5)-GG is composed of the minanabunt of scalar Higgses needed to
break SU(5) tdJ(1).,, by stepping into the SM. In order to first break SU(5) to the &\24 Higgses are
needed, as we will discuss in next section. The 24 scalarbedistributed as follows:

2% = (Ei;,gg) 25’?) + X5 Aos, (1.12)

whereX 3 5y and¥ 5 5 will play the role of Goldstone bosons onsé/(5) is broken.

An extraby representation (the subindex H refers to the scalar repegsen, i.e. “Higgses”) is needed
in order to break the SM t&'(1).,,,. This fundamental scalar representation is composed dbeecbscalar
triplet 7" and a complex Higgs doubléf which will play the same role as the well-known Higgs in the :SM

5= | T2 |. (11.13)
Ht
HO
For completion, we write here the Lagrangian of the minima(5 unified theory (the definition of the
covariant derivative and the transformation propertiedenrSU(5) for each representation can be found in

10
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the appendix, along with more details about the Lagrangian)
L=LE+Ly+L5 -V, (11.14)

whereﬁf( refers to the kinetic Lagrangian of the fermiohs
£k = i%Tr{EJDlO} + i51P5, (1.15)

which is responsible of the phenomenology regarding iotemas between fermions and gauge bosons, and
Ef{ is the kinetic Lagrangian of the scalar sector,

s — %Tr{(DM24H)T(D“24H)} + (Du5n) (D 55), (11.16)

responsible of the gauge bosons masses plus gauge bosaggs-ikteractions. The Yukawa Lagrangian

Ly, as we will see in the section “Fermion masses” will genemasses for the fermions once the symmetry
is spontaneously broken, along with some interactions stiggermions. Finally, the scalar potential is

addressed in the next section and it is responsible of thet@peous symmetry breaking taking place in the
theory.

B. Symmetry breaking and scalar potential

As far as we are aware from our energy range availabilityrluand leptons are different particles
which cannot transform among each other. Therefore, thé&)S&mmetry must be strongly broken at
some energy scale to the well-known SM. Besides, the SM wither break td/(1).,, at the electroweak
(EW) scale. Thus, the symmetry breaking takes part in twasséecording to the following patterns:

() SU®G5) MY SUB3) 2 SUR) @ ULy,
(i) SUB)®SUR) @ ULy X U@1)em.

In the first step, a total of 12 d.o.f. (24 d.o.f. from SU(5) - d®.f. from the SM) are broken, so that
12 Goldstones will arise. Those will be eaten by an equal munabd gauge bosons which therefore
will become massive. These bosons are the leptoquark gaeigs firhich mediate proton decay. The
non-observation of this phenomenon forces the mass of thesegauge bosons to be heavy. Thus, so
does the breaking scale 6fU(5), fact that is completely in agreement with unification ceeists (see
upcoming sections). For this breaking to occur, one needsttoduce a set of scalars in the adjoint
representation, i.e. 24 Higgses.

In the second step, the SM gauge symmetry group breaks 6(the,,. In the process, three d.o.f. are
broken, which turn into the three massive gauge bokﬁﬁsandzu, leaving only nine massless gauge fields
(9 unbroken d.o.f.), which correspond to the photon and theng. This second breaking-step requires to
introduce a fundamental scalar representafign

! The normalization factot /2 appears as a consequence of the explicit form of the covadimivative for the antisymmetric
representation. See appendix for the explicit expression.

11
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Breaking step ISU(5) — SU(3) @ SU(2) @ U(1)y

In order to break the SU(5) symmetry to the SM, which is a maxigroup (same rank = 4), the scalar
Higgs whose vev is responsible for the breaking must be dedingder the SM plus it must be real. Apart
from 1, the smallest real representationSdf (5) is the adjoint representation 24. In general, a scalar field
in the adjoint representation has the property that doebneaik the rank of the group, due to the fact that
under a unitary transformatiof24) — U (24) UT, one can bring(24) to a diagonal form, which in turn
implies

[(24) ,T,diagonal = 0, (1.17)
i.e. the diagonal generators are presendsi. [Thus, the24y is our candidate.

The most general scalar potential for they which is invariant under a given SU(N) gauge symmetry
is given by

V(24y) = e ETri24, }+A (Tr{242,})? —Tr{24 1, (11.18)

whereu? < 0 in order to ensure spontaneous symmetry breaking. HersceetiZ, symmetry has been
assumed for simplicity. The gauge invariance of the potential allow us to bring tee of the24 in
a suitable diagonal form through a SU(N) unitary transfaroma(since fields ire4; are hermitian), i.e.
(24H>§. = 4,;®" where®’ are real. After rotating the fields to its diagonal form thégmtial reads as

2 N N 2 \ N
. Z 1 Z 2 2 2 : 4

Notice that the traceless condition must be satisfied,N.¢. ; ®; = 0. The fact that the potential can be
written as a function of the diagonal entries constrainéspbssibilities for the breaking pattern 8t/ (5).
By taking

N 2 N N-1 N-1 2
(Tr{®%})” — Tr{®*} = (Z @3) —) @} =2 > e+ (Z @?) > >0,
i=1 i=1 1<i<j<N-1 i=1 j=1
= (Tr{®%})* - Tr{®*} >0, (11.20)

one realizes that the dominant term in the above potentifikei®ne leaded by;. Thus, the requirement
thatV is bounded from below implies that > 0. Now, one must distinguish between two possibilities:

(a) For)y < 0 (the parametei, may be negative for a restricted range of val %) A <
A2 < 0) the vev which minimizes the potenti&l is given by [L5],

(@) = V24 ) { 1fori1<i< N —1, (11.21)

IN(N — —(N —1)fori=N.

2 See referencel] for the potential without any global symmetry assumption.

12
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Hence, in our cas&/ = 5,

1
V24
01) = (By) = (P3) = (By) = —— 1
(@1) = (®2) = (P3) = (Py) W0 | L, gy 2 . 1.22)
B5) = 24 (_y) ~2V10 B
—4
This would breakSU (5) — SU(4) @ U(1).
(b) ForAy > 0and N odd, i.eN = 2k + 1, the potential is minimized bylf],
i 1/2 1forl1<i<k+1,
(®) = vau {2(k+1)(2k+1)} . —%fork—iﬁgig%—i—l. (1-23)
ForN =5 (i.e. k = 2),
(1) = (@) = (Dg) = —= "y
1) — 2) — 3/ — \/ﬁ _ 'U24
(@4) = (P5) = = | —5 -3
Vs \ 2 i

The last step corresponds to the breaking of SU(5) to the &ibkghe group is broken in the direction of
Aoy (i.e. hypercharge operator). The minimum condition,

oV N .
=&, [ n2+ )\ P2 + \y®? | = .25
aq)l <:u + 1; 7 + 2 z) 07 ( )

yields to the following expression for the vev:
2 =—. 11.26
V24 M+ 2)g ( )

From the kinetic Lagrangian for the scalar fields,

D,245)1 (D*2477)} (1.27)

—~

1
LY D ST

SSB

55 1y {(1'95[Au, 245\) (ig5 AP, <24H>])} - gg§v§4 (XX +YiY™) 4 h.c.

N =

one can read the mass of the new gauge bosons, which is giveftby: M2 = %g%vi.

Breaking step 25U (3) @ SU(2) @ U(1)y = U(1)em

We still need to break the SM down &&(1).,,,. It turns out that the easiest way to do it is by introducing
a fundamental scalar representatign which decomposes, according to our organization criteliiio a
colored triplet under SU(3) (three first components) andatascoublet under SU(2) (last two components)
which plays exactly the same role as the SM Higgs. In any SW{i)metric group, the breaking of the
symmetry by using a vector representation implies the tésluof the rank of the group by two units (if
the symmetry of a certain SU(N) group is broken by a vectorasgntation, the breaking pattern goes as

13



I GRAND UNIFIED SU(5) THEORY

SU(N) — SU(N — 2). Since the rank of a special unitary group of dimension N vewgiby N-1, the
resulting group after the SSB will have two diagonal germgaless than the original one)d].

The most general potential for5g; representation reads as
V(5i) = —p25}5m + A5 ly5m)° (11.28)
We assume the vev to be in the neutral direction,
(55) = diag(0,0,0,0, vs) (11.29)

in order to induce the desired pattern (keep the electricgeghanbroken). According to this breaking, the
following relation between the gauge masses is obtainedpected:

1
M3, = cos® Oy M3 = Zg%vg. (1.30)

However, since the 24 real scalars are also needed for penfgrthe two breaking steps, one has to take
into account the cross terms in the potential which are sdsmg invariant,

V(245,55) = a 55,55 Tr{24%} + 8 55,2435 (11.31)

Hence, the whole scalar potential is composed by the foligwhree contributions:V = V(24y) +
V(5m) + V(24m,5m). After the breaking ofSU(5), we can write the total potential as an “effective”
potential as a function of the triplet and the doublet Higgsiting in5 (from a SM point of view)’.

V(24n,50) 2P V((24p) ,5u) = a %v§4(TTT + HTH) + B3, (1—15TTT + %HW) . (11.32)
Thus, the masses of the colored triplet and the Higgs douiéet as,

My = —p2+ %(3()@ +98)v3,, (1.33)

Mj = —pé + %(3()@ + 4B)v3,. (11.34)

The Higgs doublet is required to live at the EW scale, owinghi fact that it contains the Goldstones
which will be eaten by thé) and Z. In order to achieve that, a delicate cancellation has tairositice
Mx > Myy. However, if some fine-tuning is applied in Eq. (11.33), thasa of the triplet will be heavy.
This huge splitting in the mass scale of thg representation is known as the doublet-triplet splitting
problem and, whereas it is not in contradiction with the thied is pretty anti-aesthetic though. This
unnatural cancellation can be arranged at tree level, Hidtiee corrections will re-introduce this problem.
This is known as the Higgs hierarchy problem and unfortupate cannot get rid of it in the SM, neither
in the context of this grand unified theory.

3 Strictly speaking, the vev of thed also contributes to the breaking of SU(2) due to the crossedstinV (24, 55 ), since
(24y) = Diagonal2,2,2, —3 — ¢, —3 + ¢). Here,e ~ O(M§, /M&yr). Indeed, this means that tRd contribution to the
breaking of SU(5) is much smaller tham, which is highly encouraged by the electroweak precisish(e~ 1).

14
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C. Fermion masses

The most general Yukawa interactions which are renormakzand SU(5) gauge invariant are
Ly 3Y15 10 5*H 4+ Y310 10 57 €5, (1.35)

wherees refers to the dimension 5 Levi-Civita tensor. The nomenctaf the Yukawa couplings will
be justified in the following sections. The above Yukawa laaigfian, apart of generating part of the phe-
nomenology of the theory, is the responsible of the fermi@sses after the symmet8Al — U(1)ep, is
spontaneously broken, i.e. the neutral componeitzofiets a vev. Explicitly written in terms of the color
(4,4, k = 1,2,3) and weak isospind, 5 = 4, 5) indices, the above equation reads as

Ly D Yi(5;10° + 5510°%)5%, + Y3(10¥ 10 + 10°0107%)57, €1 5105- (11.36)

Now, the Levi-Civita symbol can be split in a 3-d tensor withlar indices times 2-d tensor with SU(2)
indices as followse; j1qap = €ijx€qs- But One has to be careful because once the tensor is splatisym-
metric contractions with the other representations whislolve SU(2) and color indices mixed are lost.
Then, we have to consider them when breaking the 5-dim tensor

Ly DY {d ¢ + L5 *eC Y HE + 2Y3(uf €7 ¢ 4 ¢"PuS e*™) Ho,jre g (1.37)
By performing the contraction;;,e* = 252,
Ly D Y {d ¢ + L5 eC Y HE + 4Y3(uf ¢*° + ¢Pul ) H e (11.38)

When the Higgs gets the vev, i.é5H>5 = vz and (5H>i = 0 for i # 5 (spontaneous symmetry breaking),
so that

,U*

Ly O Vi—=(dCd + eeC) + 4(Y; + Y —=uCul. 11.39
Y 1\/5( ) +4(Ys + Y5 )\/5 (11.39)
Therefore, the masses of the fermions are given by

My = MT =y, 11.40
d ¢ VG (11.40)

v
M, = 4(Y3 + V) —. 11.41
( 3 3 )\/5 ( )

Notice that the Yukawa coupling of the up-type quaiks= Y3+ Y3, is symmetric. Here we have another
strong prediction from SU(5): independently of the freedointhe unfixed Yukawa couplings; andYs,

the model predicts exact masses for the down-type quarkshendharged leptons at an energy scale in
which SU(5) is a good symmetry. This prediction, when rugnilown to low energies through the RGE
equations, turns to be wrong according to the current exyarial values of the measured fermion masses
at the EW scale. This is one of the main reasons why this sithptary of SU(5) has been ruled out. But, as
we will see soon, it can become realistic again by introdyisiome extra representations, although it looses
a unique prediction like the above one coming naturally ftbemmodel itself.
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D. Unification of the gauge couplings

SU(5) is an unified theory, parametrized by only one couplitg order to test the viability of the
theory, one needs to compare the GUT predictions with theclogrgies experimental values. The running
group equations (RGE), which are a direct consequence of#flan-Symanzik equation (any physical
observable must not depend on the renormalizable scalehwshunphysical), allow us to connect different
energy scales, according to

d
~—Gi = Pilgi ) 11.42
g (1) = Bilgi(p)] (11.42)
whereg; refers to the3-function of a Young-Mills theory, which is given by

3

% L 4 -
Bi = 155 bi whereb; = 3;S(R)E(R)Jl;[idlmj(]%) . (11.43)

The s-function encodes the dependence of the coupjiran the renormalization scale. Her js the rep-
resentation according to which a complex field transfotnig(R) is the Dynkin index of the representation
which is given by

T;(R)6" = T{T{(R)T(R)}, (11.44)

and it depends on the choice of the gauge group and on thesesppation R. By contracting the above
expression withd,;, the following relation arises:

d(G)T;(R) = d(r)Ca(r), (11.45)

where d(G) is the dimension of the group antir) the dimension of the chosen representation. The
1Cy(r) = T? is called quadratic Casimir operator. For a SU(N), the fundamental representation is
usually normalized to 1/2. It is important to remark thatendas the above normalization is chosen for the
non-abelian groups SU(2), SU(3) and SU(5), the abelian bidimalization may be arbitrarily normalized
(for the SM casel/(1)y is normalized in order to obtai(e) = 1). Notice that the hypercharge operator
in SU(5), however, is normalized as a non-abelian generagoiC'(r) = 1/2, which then differs from the
old SM U(1) coupling:

Old SM coupling:g' ¥ }

/Y 2 ! 2
New SM coupling:g: Ty | (9 —> = (91Ty) (11.46)

2

2 2
> g” (3 (%) +2<—%> ) Lty (11.47)
g = \/ggl (11.48)

“n case of real fields (i.e. the adjoint representation) dsth be taken into account that complex fields have the daulnieber
of degrees of freedom, so that expression (11.43) must idetivby a factor of 2.
®Since [T°, T*T*) = 0 for all T° of SU(N), C2(r) is an invariant of the algebra, so that it characterizes éaebucible

representation of the group. Hend&, 1. The constant of proportionality is indeed the quadratisi@a operator so that it
corresponds to the normalization of the representation.

Hence,
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This is an important fact that one must take into account dieioto compare both theories, SM and SU(5).
The term dim(R) in equation (11.43) refers to the dimensidihe field concerning the other gauge groups
(i.e. multiplicity due to other gauge symmetries). TH@r) is given by

1 for R scalar
S(R){ 2for R chiral fermion (11.49)
—11 for R gauge boson

In Table | are listed the beta contributions of the SM fieldsspghe extra fields predicted by the SU(5). As

TABLE I: Contributions to theB;; coefficients for SU(5).

5 10 Vau 5u 24n

bi/Bij| lp (d)p|(u)r qr ()| Gy Wy|Hy T | ¥g X3
b5 515 5 5|0 Ol wre| O O
b |1 0| 0 3 0|0 -Z 1 0 0 irs,
by |0 1| 1 2 0 |-11 0|0 %rp|drg, O
Bul 3 %% B 3|0 B[Fuwr] 0
Bys |1 -1 -1 1 0|11 =21 _Lp|-Lry lpg

one may already have noticed, unlike in the SM in which theipeters), andg’ are independent, in SU(5)

there is only one coupling, i.gs, so that the Weinberg angle in the context of SU(5) is totikgd. In the
energy range where the SU(5) symmetry holds= g1 = g0 = g3,

2 3,2 3,2
. _CQem g 891 B95 3
Sy = — = —— =55 =55 5 =3 (11.50)
s g +g5 3911t9 595t 9;5

This prediction is only valid whelSU (5) is a good symmetry, i.e. at scalesMx. In order to compare
this number with the experimental value, one needs to cengitk radiative corrections to continue the
couplings and masses to the low scale at which experimemthade (see last part of this section).

The running of the gauge couplings at 1-loop level (RGE)vsgiby,

=1/ %y _ —1 ﬁ M
a; (1) = a; " (n) + 5 -Log (u) (11.51)

wherea; = g?/(4m) andu* is a given energy. For the Standard Model particle contéetpeta functions
acquire the following values, according to equation (1):43

41
M = 2

10 2

0 M = 1. (11.52)

Fig. 1 shows how the couplings do not match altogether attaingpoint, for any energy scale. Thus, the
SM alone cannot yield to unification when we let its couplingis to high energies.

To proceed in the study of unification, let us consider nowatberall contribution

Log(Acur/Mi)
B, =b; + EI b;r’, wherer Log(Acur /M)’ (1.53)

being I an intermediate particle betweéd,; < M; < Mgyr. Following Giveon et al. 17], one may
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FIG. 1: Running of the couplings of the SM, as andas are plotted in red, blue and green, respectively. Couplings
do not match at any energy scale. In the present plot onlydhticfe content of the Standard Model was taken into
account.

express the running shown in Eq. (11.51) in a more suitablg, wa. in terms of the differenceB;; =
B; — B; and the low energy scale observables:

Bos _ 5 sin? Oy — a/as (11.54)
Bis 8 3/8 — sin? Ow .
Meaur 167 3/8 — sin? Oy
L = — 11.55
0g< MZ > 5a Blg ( )

where unification, i.e.a; (Mgur) = ao(Mgur) = as(Mgur) = acgur, has been assumed. Here
a N (Mz) = 127.94, sin? Oy (Mz) = 0.231 anday(Myz) = 0.1185 [18]. Adopting the experimental
values mentioned above,

Bos

2B _ 0718, .56
Bry (11.56)
Mooy 184.87
L _ . 1157
Og( My, > Bra (11.57)

Thus, this values must be reached in order to achieve uificatf the couplings (i.e. to accomplish
equation (11.51) where unification is already assumed)nFnow on we will refer to these equations as the
unification constraints.

For the minimal SU(5) model (SU(5)-GG) the unification raa&es the form:

SU(5) SM 1 1 1

SU(5) SM _ 1 1
B12 ( ) BlZ - grzfi + ETT

(11.58)

where the leptoquark boson§, andY), are, by definition, at the GUT scale (where the breaking from
SU(5) to the SM gauge group occurs), so that 0 for them. As we have already shown before, only with
the SM field content unification cannot be achieved. The dguest “Could unification be reached by the
influence of the extra fields that SU(5) includes?”

Let us assume the most optimistic model, whegds super light {7 = 1), X5 is super heavyrfg, = 0)
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and the triplet is super heavy too/( = 0), sinceX5 help to increase the unification ratio wheréasand
the triplet low it. Under these optimistic assumptions, ethieflect the most suitable situation to achieve
unification in SU(5) i.e. the maximum value achievable, thkig of the unification ratio reads as

<0.6 (11.59)

Thus, unfortunately, unification cannot be reached for thé5$5GG. This is one of the reasons why this
model, in spite of its beauty and its simplicity, has beerduwut.

To express it differently, if we leave thén 6y, unfixed and assume that unification is reached at some
energy scale, the Weinberg angle at the EW scale predictadeb§U(5) can be computed. First, let us
write explicitly and in a suitable way the equations in (1)5

_ _ 3 _ b M,

o L) = a™!cos? OWB = aGlle(MGUT) + ﬁ Log ( iUT> , (11.60)
-1 1.2 1 b2 MGUT

ay () = o “sin®Ow = agpp(Maur) + o Log , (1.61)
_ _ b M,

a5 (1) = agyr(Mour) + 5 - Log (—iUT> . (1.62)

By manipulating the above equations in this way (II£§III.60)—§(II.62), one gets the following relation,

AGUT) 6m [ 1 8§ 1 }
Lo = - = . 11.63
g ( i 3by +5b; — 8b3 [a(p)  3as(w) (11-63)

Playing with equations (11.60) and (11.61) and using thexabequation, the GUT coupling can be expressed
as a function of the values of andas at the SM scale,

1l 1 a(p)

Finally, by taking (11.61)+(11.62) and using the equatidh&3), the Weinberg angle is given by

3(b3 — bg) 5(b2 — bl) a

—. 11.65
8b3 — 3b2 — 5b1 8b3 — 3b2 — 5b1 (0%} ( )

sin? Oy =

Adopting the experimental valueg Mz)~! = 129.94 andas(Mz) = 0.1185 (at the EW scale)18],
the predictions from SU(5) for the GUT scale and the unifiegbting are

Aqur ~ 1.195 x 10%GeV, (11.66)
agyr ~ 40.747, (11.67)

and the value of the Weinberg angle at the EW scale such tlifatation is achieved is given by,
sin Oy ~ 0.207. (11.68)

This value is surprisingly close to the experimental vafué 0y (Mz) = 0.231[18] but still it is outside
the experimental error range, even considering two-loggectons. Therefore, unification is not achieved
in the context of the minimal SU(5) theory.
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E. Anomaly cancellations

One of the most beautiful, magical we would dare to say, pitgpsd the minimal SU(5) theory is that
is anomaly free. An anomaly is a breakdown of a classical sgirytby quantum effects. It spoils the
Ward-Takahashi identities at any regularization of thé qulantum theory which, in other words, means
that any gauge theory with non-vanishing anomalies is mo@mmalizable. The fermion content in the SM
is just right to make the theory anomaly free. Since the presef anomalies spoil the renormalizability of
the theory, any extension of the SM will be constrained byathemaly cancellation conditions. Anomaly
cancellation will thus play a central role in building anyybad the SM theory.

It can be shown that in 4 space-time dimensions all anomatiedve the triangle anomaly shown in
Fig. 2, with two vector and one axial couplings. Thus, eliating this anomaly eliminates all of therhl].
The amplitude of the above process is given by

k — ps
ﬁ}’/// ’]1()

a

FIG. 2: Triangle anomaly graphs.

T = (11.69)

2 / drk Tr [TcTaTb] Tr [75’7)\(k + H/l)’Yuk’Yl/(% - gﬁ)] —Tr [TchTa}Tr{’YS’Y)\(k - 7}&)71/%7#(% +g/1)]
(2m)" k2 (k + p1)*(k — p2)? ’

whereg is the gauge coupling of a given gauge group. Notice thatrfieetinvolving the generators of the
symmetry groufl}, is taken over the charges of the group whereas the tracevingoggamma matrices is
taken over the Dirac space.

From the Ward-Takahashi identities, which are the germatidin of the Noether's theorem at the quan-
tum level, the vector and axial currents are expected todwedf divergences, so that the following contrac-
tions,

(pl + p2)>\T>\ul/ = 0,
Py = 0, (11.70)
pgT)\uu =0

are expected to be zero. Let us focus on the first equationeotéh (11.70). Since the left-hand side
corresponds to a pseudo-scalar quantity, the only conibinptoportional to momenta; andp, that can
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be built is the following one:

2

Ag
(pl + pQ)AT)\,uV = W 4 ey,l/po'p/l)pg, (”71)

where the factor 4 is just a matter of convention (although ¢hoice of the normalization ofl is in
principle arbitrary, it will be understood at the end of thection).

Let us now take the derivative with respecpfpin both sides of the above relation, setting= —ps = p
for simplicity,

A Ag® 0.
5aT)\;w = _16?46;11//)05(117 (I.72)
Ag?
= Toyw(p, —p) = 16%46%0;90. (11.73)

Here, the factorA parametrizes the anomaly in the sense thaf 0 corresponds to a violation of the
conservation laws. In order to obtain an explicit exprassibA, let us perform the amplitude of Eq. (11.70).
By replacingk’ = k + p, Eq. (11.70) reads as,

i 5 "k Tr [TCTaTb] Tr {75’}/0‘(// — p)’y,,kq —Tr [TCTbTa] Tr [75,}/(1]%[’%/(]/ _ ?)’Yu]i[/
T (p, _p) =g / (27‘1’)” (k/2)2(k’ ~ p)2
(11.74)

By using some trace identities such/iaf’ = k'* and the properties of Clifford algebfa*,~"} = 2¢*,
the above integral can be rewritten as

d"k #

(2m)" (k%)2(K — p)?
(1.75)

where# = k'Qk'BTr [(Voy iy P ] — k2T [Pk py” ] + 2K @K OTr [P y5v#py”]. The integrals with

respect the momentia can be evaluated by using the tabulated integrals in thenalppeOnce the momen-

tum k" has been integrated out, the amplitude reads as

)

o drE #Tr [TeToTY] + #Tr [TeTPTe
row g [ (77T T (77T

@ O T

2

[eyih % g a C . V_ .«
T (pa _p) = 16?-”- |:{T ,Tb},T :| iTr [75’}/”’}/ Y p] (“76)
92 b
= 5T [{T T },T} 4 €pyacp’ (11.77)

Hence, comparing the above equation with Eq. (11.73) wetiflel = Tr [{T“, T, TC] . Anomaly factors
corresponding to different representations in SU(5) atedi below. From Table Il one can see that in SU(5)
anomalies in the fermion sector are beautifully canceladesi

A(5) + A(10) = 0. (1.78)

Any extension of the SU(5)-GG which involves extra fermiepnesentations should be added in such a
way that the anomaly coefficients cancel out.
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TABLE II: Anomaly coefficients for some representations ld(8) and, concretely, SU(51LD).

rep dim(n) A
' SUNN) SUG]  SUN)  SUBG
0 N 5 1 1
Ad N?—1 24 0 0
H Myl 10 N —4 1
N(y+1) 15 N +4 9

N(N—-1)(N—-2 A N-3)(N—-6
(W-LWN-2) g | NG 1

]
@j N(N+1)(N-1)(N-2) 45 (N—4)(N2—-N-8) 6

8 2

N(N-D(N-2)(N=3) & |(N-H(N-3)(N=8) 4

24 6

F. Proton decay

Last but not least, we would like to end this brief review ab8W(5) with one of its most striking
predictions. Unlike in the SM, where the proton is complesthble, in SU(5) there are indeed fields which
can mediate proton decay. This process is strongly constidby experiment, so that the GUT scale is
pushed to be high. The discovery of proton decay signalsdvoetome a strong argument pro the SU(5)
unified model as the candidate for the SM UV completion, bdbianately no evidence on proton decay
has been found yet.

In the minimal SU(5) theory, proton decay can be mediatechbynew gauge bosons X and Y plus the
colored Higgs triplet. We will study qualitatively the poot decay from an effective point of view. For that,
we will construct all the effective operators which lead totpn decay processes, i.e. operators involving
the leptoquark gauge bosons and the colored scalar triplet.

Lepto-quark gauge bosons contribution

The fermion-gauge boson interactions are encoded in thadarkinetic Lagrangiancf(:

5475 —Tr{T0A10}
s ﬁ(dO"eaﬁeﬁ +eCenpq® + Tae*ul) X + h.c, (11.79)

where X4 = X# (= Y#) for a = 4(= 5). Here, left chirality of the fields is understood. By intetijrg
out the leptoquark gauge boson fields we are left with a sixedsional effective Lagrangian that reads as

2 . . —_— JE——
Le = 2 ein(uC) 7ug™ {eCeaprq™ + (A7) 4 eapl’} + h.c. (11.80)

M2
The above interactions can lead to two different channetgatbn decayp — 7° et (u*) andp — 7t v
(see Fig. 3,4). The decay rate of these processes can batestiqualitatively from the above Lagrangian.

According to the effective theory, it will be proportional the coupling of the effective interaction squared.
Hence,
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FIG. 3: Decay channel — 7% e (u™). FIG. 4: Decay channgl — 7.
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where the fifth power of the proton mass has been added td €iifiensional analysis (the decay rate has
dimensions of energy).

From the experimental bound on the process ©'e*, we have that the decay lifetimép — 7% ™) >
1.29 x 10%* years P0]. We took this bound since it is the most restrictive one dreteafore sets a lower
bound for the mass-scale of the leptoquarks in the SU(5)-GG:

Mx = 5 x 10%GeV, (1.82)

where we usedn, = 0.938 GeV andagyr has been taken from the unification predictions, i.e.
(agur)~' ~ 40. This result is in perfect agreement with the unificationesgaedicted by the unification
constraintsA g ~ 10'° GeV.

Colored triplet contribution

For the colored triplet case, the “dangerous” interactishich may give rise to proton decay live in the
Yukawa Lagrangian (see appendix for more details):

Ly > Yi{qr TL + (d) TT (u)} + Ya{qr T qr + (u) T ()}, (1.83)
= Ly DY (ad) — equ)T] — Y (d2)i(ug); T) €% — 8(Y 4+ Y20 uldl T ey, + 4(Y® + Yi®)el (ug) T
By integrating out the colored triplet the following diméms 6 effective Lagrangian is obtained,
1 a c c i c(,C i c(,C ij
55:6 ~ mZ 1 b (st + Y3d ) {Vadbec(ud)i — equpeq(ug)i — (dg)i(uﬁ)jeg(uﬁ)keuk
T

+ 2e,ub wl e — 2vad) uddSe + 2(d§),~(u§)jul§dld(5,i(5{ — 5;5%)6“1“} . (.84)

Therefore, the decay rate can be estimated qualitativebugh the effective vertex of the interaction lead-
ing to proton decaylold oneg. The decay rate will be proportional to the feynman ruleasgd, so that

5
2 M
Ir ~ (Yi(Y; +Y5)) MZ (11.85)
T
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where, as before, the fifth power of the proton mass has bedadad compensate dimensions.

In order to estimate the lower bound on the triplet mass iedury proton decay constraints, we will
assume the Yukawa couplings to be of the orderdf.01 GeV. Notice that the mass of the colored triplet
is less constrained than the leptoquark gauge bosons nirass,tise decay is proportional to the product
of the two Yukawas which can be really small. Imposing aghamost constraining bound from proton
decay,r(p — 7%™), we get

Myr = 103GeV. (11.86)

This result is also in agreement with the predictions confiiam unification constraints.
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I11. M ASSIVE NEUTRINOS

Probably one of the most known failures of the SM is the ptéaticof massless neutrinos. Even thought
for long time it was thought that neutrinos had not mass gdal to their actually pretty tiny mass), their
massive nature has been proved through effects such aseagcillations. Therefore, the SM needs to be
extended in order to allow neutrinos to have mass. Diffeneethanisms has been introduced in literature
to provide mass to neutrinos. Here we review the most commen:dhe seesaw mechanism and radiative
corrections.

Neutrino masses are not allowed in the SM due to mainly theasans:
(a) The absence of a right handed neutrino.
(b) The scalar content of the SM is composed of a Higgs doublet
(c) The renormalizability of the theory.

The condition (a) does not allow neutrinos to have Dirac ma$s the SM. Reasons (b) and (c) do not
allow the SM to have Majorana masses since they imply exagserwation of the lepton and baryon
numbers. Therefore, massive neutrinos require to abana@wfthose, i.e. require to go beyond the SM.

Let us start by abandoning reason (a), so that we add a righieldaneutrino to our theory. In this case,
neutrinos would get mass in an exactly analogous way as ethéegtons do. After the symmetry breaking,
the Dirac neutrino mass would read as

M, =Y,v (I11.1)

but it turns out that neutrino masses are a couple of ordensagiitude lower than the lightest charged
lepton mass. Assuming that, ~ 0.1 eV,Y;, < 10~!2. This result does not look “nice” in the sense that
there is no reason able to explain why the neutrino Yukawas $mall compared with the rest of the
Yukawas. Apart from “aesthetic” issues, Dirac neutrinos perfectly valid under a theoretical point of
view and they are currently not ruled out (yét)

On the other hand, neutrinos might be Majorana particleserdis an overall preference among the
physicist community for Majorana neutrinos since they mgylan the smallness of neutrino masses. We
will contemplate the possibility of having Majorana nenti$, so that the global symmetry B-L is broken.
In the context of new physics, the SM can be regarded as aatieffdield theory of a higher energy
fundamental theory. Assuming that there is new physics aakea (higher than the EW scale), it will
manifest itself by non-renormalizable operators supeesy powers of2 /A whereF refers to the energy
scale of the interaction antl to the mass-scale of the new particles.

£:£5M+ZZ<AHZ_4O{‘+h.C.>, (111.2)

n=5 1

% Notice that we did not specify how this right-handed (RH)tni@o is introduced in the theory. If the RH-neutrino is duced
through a singlet, a Majorana mass term would automatichibyv up since it is allowed by the symmetries of the Lagrangia
and therefore neutrinos would be Majorana. Neverthelé#ise iRH-neutrino is introduced through some other repitasiem
such that the Majorana mass term is forbidden by the symesetone could enjoy Dirac neutrinos. For instance, the gistpl
left-right symmetric model predicts Dirac neutrinos, aswitt see later.
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FIG. 5: Topology (a). FIG. 6: Topology (b).

whereC?" are the coupling constants. The heavier the new partidiesyeaker their effect, so that the
effect of new physics is dominated by the low dimensionalraimes. Therefore, we are interested in
building the lowest dimensional operators which violaggtd® number. It turns out that there is only one
gauge and Lorenz invariant dimension 5 operator which doesanserve lepton number, and it is called
the Weinberg operator, which is defined as,

C Tx\( At
0i= Yab( La? Kgqﬁ ng)’

where a and b are flavor indices. This operator will lead to gokd@a mass term for the neutrinos after the
spontaneous symmetry breaking,

(I11.3)

2
SSB
05 -Y,

abAVLVLi(M) Y

e (I11.4)

To obtain a neutrino mass lower than 1 eV, one needs 10'? GeV (assuming the coupling of the order
of one), indicating that new physics at high scale is exgkatdich is a good motivation for GUTSs.

There are only three possible tree-level realizations ef Weinberg operator using only renormal-
izable interactions. These are the so-called seesaw ment@n If we “zoom” in the effective vertex,
there are only two possible topologies which will generdtie ¥Weinberg operator at low energies
according to Lorenz invariance (see Fig. 5,6). Now, by frrttmposing to all possible renormalizable
interactions to be consistent with the gauge symmetry oStflewe are given by the following possibilities:

In the case of topology (a), we have

e lrop~(2,—-1/2)®(2,1/2) = (3,0)®(1,0) = Fermion triplet (3,0) and fermion singlet (1,0), both
hyperchargeless.

o lro* ~ (2,-1/2) ® (2,-1/2) = (3,—-1) & (1,—1) = Fermion triplet (3,1) and fermion singlet
(1,2), both with hypercharg& = 1. We discard both possibilities since they have hyperchacge
that they cannot have Majorana mass.

In the case of topology (b), we have

o Ul ~ (2,—-1/2) ® (2,—-1/2) = (3,—1) & (1,—1) = Scalar triplet (3,1) and scalar singlet (1,1),
both with hypercharg®” = 1. The scalar singlet is discarded since it does not have autyahe
component and, hence, it cannot give mass at tree level. dMergit cannot couple with the scalar
doublete.
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FIG. 7: Seesaw type-I. FIG. 8: Seesaw type-II. FIG. 9: Seesaw type-Ill.

Hence, we are left with three possibilities which we could &l the SM in order to generate Majorana
masses for the neutrinos at tree level (see Figs. 7,8,9)made singletNy (type-l seesayy, a scalar triplet
A (type-ll seesaw, a fermion tripletX r (type-lll seesaw) or any combination of those.

A. Type-l seesaw

Let us consider a sterile right handed neutrig ~ (1,1, 0), i.e. a singlet under all SM gauge symme-
tries. The most general Lagrangian that can be written déggthis new fermion is given by (apart from
the usualCgps)

_ _ ~ 1_
E3lLYe¢eR—lLY,,¢NR+5N§N3+h.c. (11.5)
where\I/g/R = (\I/L/R)C. Here,Mp is a nxn symmetric matrix and;,, a 3xn matrix, where n corresponds

to the number of right-handed neutrino generations. Afp@amnganeous symmetry breaking, the neutrino
mass becomes a combination of a Dirac mass term and a Majonana

1—
Lmass = VEMpNpg + h.c+ 5N,Q;‘MRJ\IR +h.c. (111.6)
N—_—— ———
Loirac ﬁMajorana

Notice that neithetVy nor v;, are Majorana particles (even though we ddli “Majorana mass”) since
they are 2-component spinors. However, one can bridge fhevigh the familiar 4-component Dirac case
and construct Majorana spinors as follows:

v=uvp+ (1), (11.7)
N = Ngi + (Ng)°. (111.8)

Here, one can see explicitly that = » and N¢ = N, confirming their Majorana nature.

The above Lagrangian can be rewritten in terms of the new fagospinors by taking into account that
PL(V) =y, PR(V) = I/g andPL(N) = Ng,PR(N) = Ng,

1 _ 1.
Lmass= 5(MprN + MENv) + SMrNN, (111.9)

where the identity\/po N = Mg]\fcuc = M} Nv has been used. Her&{p = Y, /+/2. Hence, one ends
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up with the following mass-matrix in the bagig, N):

1, = 0 M v
L=5( N) <Mg MZ) <N> (111.10)

In the limit Mr > Mp the above matrix can be diagonalized (block-diagonalizéére more than one
family of neutrinos is considered) by using the unitary sfanmation defined a8 = <—1pT f) where
pt =My ML

The eigenvalues are given by,

(I1.11)

M, 0 M~ —MpM;*MT
M = T 1 DMp Mp
U(o M2>U:>{M2:MR

and the corresponding eigenstates read as

x = <§;> =U! (;) =yt <]’<[> = <p’f,y_f]x[> (I11.12)

From a mass scale point of view, one can see that fapafixed (we follow the notationm -small letter-
refers to the scale of the mass matri®); ~ 1/mgr and My x mp. Therefore, the heavieil,, the
lighter M. This effect justifies the name of “seesaw” (see Fig. 10). iatrix p can be assumed to be

M2 ~ Mmp mp fixed

FIG. 10: Seesaw mechanism: the heavier one side, the lititgerther side.

proportional to the scalg ~ m% /mg. In the limitmpg > mp, p is very suppressed so that the eigenstates
in Eq. (11l.12) can be approximated by, ~ v andy, ~ N, and thus the physical masses are given by
My ~ M, andMg ~ Mpy.

From Eqg. (11l.11) one could guess the scale of the new RHfimeut By assumingn,, ~ 0.1 eV and

mp ~ v, we have that

(10%)?
mpg

<1071% = mp = 10MGeV, (111.13)
as already predicted by the Weinberg operator.

Due to the fact that the new patrticle introduced is sterild pretty heavy, it is hard to check the
viability of the mechanism. There is no interesting phenoohegy to look at but the fact that neutrinos
are predicted to be Majorana. Therefore, one can hope tthes$fajorana nature of the neutrinos through
double-beta decay experiments. If neutrinos were foundet®iac, the seesaw mechanism would be
automatically ruled out.
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Realization of type-I seesaw in SU(5)

In the context of SU(5), type-l seesaw can be easily realigeadding to the field content three singlets
which will play the role of right-handed neutrinos, complgtsterile R1]. However, the addition of singlets
to the minimal theory does not help to achieve unificatiogeisinglets do not contribute in the running of
the couplings (a complete representation does not coteriiouthe beta-functions unless the fields which
reside there have different mass scales), so that this ralresiension (SU(5)-GG plus three singlets) is
ruled out. Moreover, the addition of these singlets impleee unknown mass scales which are in principle
not constrained by any phenomenological bound or unifinatemuirement. The arbitrariness of the new
scales makes this alternative not specially attractivearpf the addition of these singlets, to make the
GUT realistic one needs to further add other represen&iiorder to satisfy the unification constraints
(the relation between the charged leptons and the downdupeks can be corrected either introducing
suitable extra representations or by non-renormalizatbéractions).

B. Type-ll seesaw

The simplest seesaw type-II realization consists on adaitiplet scalar field\ ~ (1, 3,1) under the
gauge symmetry of the SM2P]. The representation of the triplet is given by

ot + ++
A= 50 = <5 goﬂ —55+/\/§> (111.14)

Notice that the triplet corresponds to the adjoint reprigem of SU(2) so that it transforms as a tensor
with two indices (22 matrix) with the restriction of being traceless, i.e. ataf 3 d.o.f A = (67 +
69 /V2, Ay = (67T — 6°)/v/2, A = 6T). The Lagrangian of the SM is modified not only in its Yukawa
and kinetic parts (as in the type-l seesaw) but also in thieuspatential since now we are introducing a
scalar which also couples to the SM Higgs:

L = Liinetic + Ly — V(H, A), (11.15)

where
Lyinetic = Efi%tic-i—-rr (D“A)T(D”A) , (1.16)
andly = LM — YalCey Al + hic. (111.17)

The covariant derivative for the adjoint representatiodefined as (see appendix),

!

9 _ayrra g
Dyl = 8, +iZ[o" Wi, A] + i BuA, (I11.18)

wherea = 1, 2,3. The most general scalar potential that one can write witigg$idoubletd and a Higgs
triplet A reads as,

V(H,A) = —m%,H'H + %(HT H)? + MATr{ATA} + <pHTz'02ATH + h.c.) + M(HTH)Tr{ATA}

2
F o (Tr{ATA) + MHTAATH. (111.19)
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The neutral component of the Higgs doublet breaks the symmsét(2),, x U(1)y to U(1).,, by getting a
non-zero vev. But a non-zero vev for the Higgs doublet immedly implies a non-zero vev for the neutral
component of the scalar triplek, otherwise a tadpole would be induced. The spontaneous symym
breaking is guaranteed by imposing; > 0 in the above potential.

Once the the neutral components get a vev, {&.) = va/v2 and (H°) = vy/+/2, neutrinos get a
Majorana mass (from the Yukawa Lagrangian):

M, = vAYa, (111.20)

and, from the kinetic term in the Lagrangian, some of the gea@sons get mass too:

2 2

My = £ +204), ME =2

2 2
2 72COS2HW(UH+4'UA). (|”21)

Notice that the explicit form of the covariant derivative the adjoint representation (commutator involved)
is the responsible of the factor of 2 in front of the vev of thiplét. This leads to the experimental constraint

v =/v} + 203 = 246.2 GeV (see reference §]). Therefore, the-parameter in this model is given by

M3, ) 1+ 20% /vy
M?2 cos? Oy 1+ 403 Jv,’

p (I1.22)

which is strongly constrained by the electroweak precisiata which requires the-parameter to be very
close to the unity, i.e.p = 1.00040 (1.7 o above the SM expectatiopsy; = 1)[18]. This constraints
the vevs of the doublet and triplet Higgs and thus requirasdp > va. Hence, we can assume that
v ~ v = 246.2 GeV.

The minimum conditions of the potential read as,

- _ z h - = .23
By M+ v+ 2(/\1 + A)vva + ﬁ,uva 0, ( )
ov 1 1 !
Son = MivA + §(>\1 + >\4)v2vA + )xgvi + ﬁ,uvz = 0. (11.24)
which can be rearranged in a more suitable way as
2 Ao, 1 2 3
my = ZU +§()\1+>\4)UA—|—\/§,LWA—|—)\2UA, (11.25)
1?1
M3 = —=p— — = (A1 + M) — Ava. 111.26
A= 5 2( 1+ A1) 2UA (111.26)
In the limit whereva < v, from Eqg. (I11.26) the following expression is obtained,
1 ,uv2
VA = — . .27
AT VRME SO0 T A (i.27)
For Ma > v, the above equation simplifies in
[ v?
M,~ |-+ ) —=——Ya. 111.28
(MA> VaMy ( )

Notice that the term in the parenthesis is dimensionlesthisrrelation one can see the seesaw effect taking
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place in the inverse proportional relatidd, o Mgl sincev is fixed experimentally.

Realization of type-1l seesaw in SU(5)

In the context of SU(5), the simplest way in which neutrinas get mass through the seesaw type-Ii
mechanism is by adding E5;; representation in the scalar sector, since it contains larstiplet under

SU(2) @r):

15 = (1,3, 1)@(3,2, 1/6)@(6,1,—2/3) (11.29)
N——
A A3z 2 As

The corresponding scalar potential is given by,
Vacalar=V (51) + V(151) + V(245) + V (55,155) + V (5, 245 ) + V (155, 245), (111.30)
where
* V(5m)=—p35°5; + A1 (5755)%,

* V(155)=—ui515°715% ; + Aa(1527157, 5)% + A315*7155 1570155,

V(24 57)=— 13, 249247, + X4(24%24%,)% + 01249247247, + 15249247 247,240,

V(51.241)7025%,24%5° + 65550247247, + 7552492457,

V(245,151)=As 15715 5247248 + a315°7 247157, + Ag15°0247,245 155 4 A 19157724157 243,

V(51 151)=M15,5%15% 1577 + as555515%7 + a35°5°15% 5 + A125515%71575 57,
The Yukawa interactions of this SU(5) extension read as,
— Ly =Y1510155 + Y5 1010 5e5 + Y, 55 154, (11.31)
wheree; refers to the Levi-Civita tensor in 5 dimensions.
The relevant interactions for the type-ll seesaw mechaaignhus given by
Lseesaw= —M3, THALATY — Y (L CA7lL + asdTAL® + hec. (11.32)

Here,

L ATt _N/*/E) (11.33)

cI>~5§;:<HO> andAT~15§‘f:<_A+/\/§ A0

wherea andg are SU(2) indices, i.ex, 5 = 4,5 (notice that in SU(5Y;, ~ (_ey> sincel;, D 5%).
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Once the triplet under SU(2) containedlify; acquires a vev, the SM symmetry is spontaneously broken
so that neutrinos get a Majorana mass through the followitegaction:

Vf (0]

AT / 2
=M, ~as Y, <(I)>

-~ - s,

(111.34)

vy, N O

The addition of thel5 is an attractive extension of the minimal SU(5) theory siitdeas enough power

to recover unification, as it is studied in detail in Ref$4,[23, 24]. However, in contrast to thé5y
representation, the relation between the charged leptdrdawn-type quark masses cannot be corrected
only by 15z;. Nevertheless, non-renormalizable interactions caresbiig problem.

C. Type-lll seesaw

The simplest version of the seesaw type-Rb[[consists in adding a hyperchargeless triplet of fermions
(p) to the SM for each fermion family.

p= % <p0£3/§ _pﬁ;ﬁ> ~ (3,1,0). (111.35)

One always have to put special attention to the addition of feemions since they may spoil the hopeful
anomaly cancellation taking place in the SM. In this casereths nothing to worry about since adjoint
representations do not influence into anomalies (see TBble |

The most general renormalizable Lagrangian that can béewiity taking into account this new triplet
of fermions is given by,

| p— -

where¢ refers to the charge conjugate of the SM Higgs field. The fnshtin LBeyondis the kinetic term
which mixes the new fermions with the gauge bosons. Notiaefdr the new fermions one has explicitly
in the Lagrangian a Majorana mass term, due to the fact tegtdhe hyperchargeless (otherwise it would
violate U(1)y) and are triplets unde$U (2);, which is the adjoint representation, i.e. they transform as
¥ — UTSU. The Yukawa interaction is the responsible to give a Majanarass to the neutrinos after the
spontaneous symmetry breaking (SSB) through the followiteyaction:

HO\ HU

N po s 1

Y,v?. (11.37)

Hence, here one finds again the same structure than in typesbh&, where the mass of the neutrino
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is inversely proportional to the mass of the new fermion riresk (Here thep plays the role of the
right-handed neutrino in the seesaw type-I).

Moreover this seesaw is very characteristic for its richnameenology. The new fermions will interact
with the gauge bosons through the kinetic term in the Lageangt p*Z and p0p=W ¥, and will mix with
the ordinary charged leptons of the SM through the new Yukimexactions. It is remarkable that this
mixing is much easier to see than the mixing of neutral neosrinduced in seesaw type-I.

Realization of type-Ill seesaw in SU(5)

A simple and realistic extension of the minimal SU(5)-GG mlodan be obtained by adding to the
usual particle content a 24 fermion representation (ndheé the addition of new fermion content in the
adjoint representation does not spoil chiral anomaly détwns). The minimal type-Ill mechanism The
triplet contained in the 24 representation can generatérineumasses through the type-Ill seesaw. It
is remarkable that, since a fermion singlet is also incluihed4, type-l seesaw is obtained as a bonus.
This model predicts, as the minimal SU(5) does, equal mdssdke up type quarks and charged lepton
masses. In order to correct this relation, higher dimerdioperators must be included, loosing then the
renormalizability of the theory.

The new Yukawa interactions read as,
L. 1_. . . .
Ly D yy5%24p5y + K% (Y2424 + yh2424F + y5Tr(24r245)] + O(A7?) (111.38)

where the index accounts for the number of generations of ordinary ferm{eris 2,3 according to exper-
imental evidence). After the SU(5) breaking to the SM, (2d) # 0, the relevant Yukawa interactions
responsible for the neutrino masses are given by,

seesawlil 1ot b S H — %SFSF - %TFTF +he. (111.39)
whereyr andyg are linear combinations of thg, andy’ve/A (a = 1,2, 3) above and the mass term of
the fermion singleSr and the triple’» come from the termn zTr{24%} in the scalar potential. The mass
therefore is given by

- i ,J i o
mij = 02 <—yTyT + 9595 ) . (111.40)

mr mgs

Since only one generation of new fermions is introduced thieery predicts one massless neutrino. This
can be easily understood by noticing that the Yukawas indhise are simply vectors (here, only one
generation of new fermions is added, so that there is onlyfamgly index involved in the Yukawas).
The triplet and singlet Yukawas define a plane in the 3-dimilfaspace. One can rotate this plane in
Eq. (I11.39) such that one of the neutrinos does not couplbadih the triplet and singlet new fermions.
Therefore, it is straightforward to see that, in Eq. (lI)40ne of the eigenvalues of the neutrino mass
matrix is zero (the determinant of a matrix is an invariantre it does not depend on the basis chosen).

About the masses of the extra fermion content, they areyigistrained by the unification constraints.
The contribution of the fields from the 24 fermion represBaiato unification is shown in Table (Ill). As
one can see from the beta functions above, the fermionttiipl24, T, is the only field which helps to
increase the unification ratio, i.e. helps to achieve urtifica Since, as we have already shown, the particle
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TABLE IlI: Contributions to theB;; coefficients from th@4 .

24 p
Bi; Tp Sr Or E@ogr X3ar
Big _ngF 0 0 %TE(B,Q)F %Tz<3,2)F
Bas %TTF 0 _2T0F %TZ(SQ)F 3" Er
Doesithelp? v X X X X
Proton decay x X X v v

content of SU(5)-GG is not enough to ensure unification otthaplings, a splitting in the4r needs to be
introduced. The unification constraints set therefore greupound to the mass of the fermion triplet (for
the Planck scale cutoff):

mr < 10%1TeV. (111.41)

A detailed study on bounds coming from unification constsaand proton decay in th&lz can be found
in reference 27]. The prediction of a triplet of extra fermions below TeV &markable in the sense that it
is likely to be found at LHC, which shows the predictive powéthis SU(5) extension.

D. Zee mechanism

The Zee model is a mechanism proposed by Antony Zee in 804t gives mass to neutrinos through
first order radiative corrections. In the Zee mechanism éutrno masses two extra Higgses are needed to
generate neutrino masses at one-loop level: a charged scagket under SU(2) and a second Higgs doublet
(the standard model one is already counted). Fig. 18 shosvtoffology of the process in the unbroken
phase. We are using the following notatiof;, ~ (1,2,—1/2) wherea = 1,2 andé™ ~ (1,1,1). The

Hy)
|

J -

ot - = ~ H}T

Vd AN
/
/ \
S < I < \ <
Vi €Lk €Rl VL

HY?
FIG. 11: Zee model generating 1-loop radiative mass to ireagin the unbroken phas8g][

relevant interactions are given by (assuming a generatteféetheory with the usual SM field content plus
the extra charged singlet mentioned above),

Vee D IO + 1Y, Hyer + nH,Hyd~ + h.c. (11.42)
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where/l; ~ (1,2,—1/2), eg ~ (1,1,—1), A is an antisymmetric matrix in the flavor space (due to
Fermi statistics), and, are the Yukawa matrices for the two Higgses present in thergheNotice that
here the global B-L symmetry is broken due to the simultanepresence of the Yukawa interaction
proportional toA and the scalar potential term proportionalito Non of these terms alone would break
the symmetry since the B-L number of the new charged sirgtetuld be in principle defined such that
theU (1) p—1 symmetry holds. Nevertheless the co-presence of the @rerforces this symmetry to break.

Explicitly in the SU(2) space, the above interactions read a
Viee D IL(YiHy + YaHa)er + A §ioal6" 4+ p Hyioa Haé™ + h.c. (111.43)

Although one could compute the mass correction coming fieendaop shown in Fig. 18 in the unbroken
phase by using the dimension five Weinberg operator in actaffetheory context, since we do not know
how heavy the Higgses running inside the loop are, we are gtingpthe mass assuming the symmetry
is already broken (broken phase). Indeed, the heavier aerglitjgses, the better is the approximation in
the unbroken phase. However the computation in the brokesepbives us the exact expression for the
radiative mass.

After the symmetry breaking, the doublets read as
H 1 ! H 1 3
1= 0 - 40 2 = 0 - 40
—(H] +v1 +iA ’ —(Hy +v2+1iA ’
\/5( 1 1 1) \/5( 2 2 2)

where HY and HY correspond to the CP-even Higgses, atjdand A to the CP-odd ones. Expanding the
terms of equation (111.43) as a function of the fields congdliin the doublets,

1 _
Vzee D vL(YiH{ + Y2HS Jer + NS (V[HY + v1 +iAY] + Ya[HY +vo +4AY] ) eg + 2Av5er ot +
+ p {Hf (HY + vy +iAY) — (HY +v1 +iAY)Hy } 6 (11.44)

But these Higgses are not physical since they do not havegamhd mass; their masses are mixed by the
scalar potential terms listed below, which is the most gaimenormalizable potential that can be written as
a function of the mentioned fields,

V(Hy, H2,0") =V (Hy) + V(Hz2) + V(6T) + V(Hy, He) + V(Hy, Ha, 0), (11.45)
where
o V(H)=m2H|Hy + \ (H]H,)?,
o V(Hy)=m2HHy + Mo(HIH;)?,
o V(6T)=m25*5 + \s(5*6)2,
o V(Hy, Hy)=m?,(H| Hy+0.C)+ay (H Hy) (H} Hy) +as(H{ Ho) (HS Hy )+ % ((HIH2)2 v h.c.),
« V(Hy,8)=byHlH,6%5,
o V(Hy, 8)=by H} Hy0*5,

* V(Hy, Hy,d) = bs(H]Hy + h.c) + puH]ioo H6* + h.c.
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which minimum conditions are,

oV 1 |
8<v ! mivi + Ao} + misvs + 2 (a1 + a3 + ag) v1v3 =0, (111.46)
1
oV 1
2

The mass matrix for the charged Higgs doublets is given by,

T

Hy m% + /\111% + %v% m%z + azviva + Fu1va H1+
, (111.48)
H2_ m%z + aszvivg + “72111212 m% + /\Q'U% + %’U% H;_
which, when applying the minimum conditions (111.46) antl.d7), can be rewritten as
H\" /-4 4 Hf
u1 (11.49)
V1 )
Hy A )\
whereA = m3, + (%2 + CL3) v1v2. The eigensystem of the mass matrix is thus given by,
mi. = 0, G* = (sinBHT + cos BHY)T, (111.50)
24 + + +\T
myg+ = T snop H= = (cos BH —sinfH; )" . (11.51)

The mixing angle3 is defined asan 3 = v; /v, by the diagonalization of the mass matrix for tHe™ and
HJ . Herev; andv, are the vacuum expectation values of the neutral compowétite Higgses; and
H, respectively, satisfying the relatiarf + v2 = v2, wherev = 246 GeV. In the above equatioi* are
the Goldstone bosons which will be eaten up by the gauge basdhe unitary gauge.

It turns out that the rotation matrix that rotates the CPdddgyses to the physical basis is the same that
diagonalizes the charged Higgses above:

A} cosf sinf A
(4)- (2,02 (4)

The diagonalization of the neutral Higgs&4 and HY gives rise to two physical Higgses: one heakdy,

and one lighth:
H? _ cosa  Ssina H
<H8> N <—Sina cosa) < h ) (1n.53)

Hence, we are left with three Goldstones which we can getffithem by going to the unitary gauge. By
applying the above rotations one can express the relevaaraations in (111.43) as a function of the new
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fields,
1
Vzee D VL(Yicos B — Yasin B)H ep + ﬁiﬁ(Yl cos B —Ys sinﬂ)AO er+erM,er +
1 1
+ —er(Yicosa — Yosina)Her + —er(Yisina + Yo cos a)h eg + Goldstone terms-
7 (M1 2 JHer 7 (Y1 2 )her

+2 A0 er St +pvHYS + pcosf (%Ug — v1> 5~ G + higher order int. (111.54)
2

whereM, = %v(Yl cos 5 + Y sin f3) is the mass of the electron. In the above equation only thenskec
order interactions are written explicitly since are thesoakour interest. Notice that the new fields written
above are not all physical yet. We still expect mixing betw#fge two new charged Higgse€® and
H#*, with the charged singlek*, which we did not consider yet. However, as the above exjpreshiows,
the charged Goldstor; ™, decouples from thé* so that only the mixing between™ and H* has to be
considered. Defining, as the mixing between thE* and the singlet*, these fields can be written as a
linear combination of the now physical charged Higgsgsandh; in the following way:

6% = cosf,hT +sinf,hi, (111.55)
H* = —sinf,hi + cosb hi. (111.56)

Thus, we can finally write the potential as a function of thggital Higgses, which in the unitary gauge
reads as

1
LD g (YrcosB— YasinB)(cosOy hy —sinfy hi) er + 7 ér (Yicosa —Yasina) H eg +

1 .
+ —¢éz (Visina+ Yocosa) heg + - er (Y7 cos B — Yasin ) A% ep +

V2 V2
+ 2 A0 (cos Oy hi +sinfy hy) er. (111.57)

Fig. 12 shows the topology of the Zee mechanism in the unbrghese. Two different diagrams are
contributing to the 1-loop radiative correction to the mgwt massesi; andh,). The Feynman rules of the

FIG. 12: Zee model generating 1-loop radiative mass to imasin the broken phase, where= 1, 2.

interactions taking place in the Zee-mechanism are:

v A . { a=1:AyT'1, wherel'y = 2icos 6. Pr, (I11.58)

a = 2:\j;I'y, wherel'y = 2isin 0, Py,
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v; Vi T, = { a=1:—(Yy;5cos B — Yoy, sin B)sin 64 P, (111.59)
j a=2: (Yy;jcos 8 — Yo;jsin ) cos 04 Pg,
ffj
hy
/
= 7 : 4 7,0 (111.60)
Therefore, the 1-loop correction is given by,
'k %+ Me, 1
Q- = ZAUT, P, - P ik
/ L R
" k X N (I11.61)
= NI, P, e.f’fﬂ'k/ .
A LMMe; a (2m)* k2 — m}%a k2 — mzj

The above integral can be computed through the dimensiegailarization method by introducing the
so-called Feynman parameters, so that

d*k 1 1 dk ! 1
/(2@4 K2 —mik—m? / (27r)4/ d [x(k:2 —m2) + (1— ) (k2 — m2)2

4k
d /d

whereA = z m2 + (1 — z)m2. By Wick-rotating the limits of integration and moving toetfEuclidean
space, momenta can be integrated assunilidignensions (see appendix for more details) so that,

(11.62)

4 1 i 1
/ﬁ/o da (k2—1A)2 _ (477)2/0 do <3—Log(xm + (1= 2)m?) — 5 + Log(4r) + Ofe )) =

(2m)4 €
(11.63)
wherep  refers to the renormalization scale. By integrating thefesin parameter,
m2
! 2 2 2 m;Log (m_%)
/ Log (z m; + (1 — 2)m;) do = 14 Log(m;;) + ——, (111.64)
0 mg — my
the integral in Eqg. (111.63) reads,
. 2| og (74
i dmpd my, m2 _
=— —-1- Lo b ¢ 11.65
(47‘(’)2 fy—’_ g<mg >+ mg_mg MR? ( )

which has been computed by using dimensional regularizaki@re ¢ comes from performing the integral

in d = 4 — e dimensions. Notice that in the limit — 4, ¢ — 0 and the above integral diverges. The
implementation of the dimensional regularization is noghelse than a mathematical trick to parametrize
the divergences. But divergences are unphysical (we dobsatree them in the physical measurements) so
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that one expects they do not show up in the final result. Eitigliby adding the 1-loop correction of each
of the two diagrams contributing to the radiative mass omesege how divergences do cancel, as expected
(notice the imaginary unit can be absorbed by the free Magp@nase of the neutrinos).

The total radiative correction reads as

mp, Log my _ mp, Log m2J
—®— = NPy, [ TLE | LVANTINY S ¥ VLl ERpt =
1672 R I 1 m%u — mgj m%Q — mgj

+

(11.66)
Notice that the renormalizable scale “corrects” the dinmrssof the coupling\ in the sense that = Apij,°
is dimensionless at any dimensidn Here, we are interested in the limit— 4, i.e. ¢ — 0, and thus the
renormalization scalgr disappear as one would expect since it is completely unpalysBy assuming
m2 <« m?
ej ha’

m2
| | . Log (W)
- =1 Xme, (V¥ cos B — Yo7¥ sin ) Tﬁ; sin(20) | Py. (111.67)

Therefore, the Majorana mass matrix for the neutrinos readsotice the factor of two coming from the
fact that the mass is Majorana),

2

M, — A (MY cos B — Yo sin B) 4 (V7 cos B — ¥ sin ) MIAT) sin 26, Log | %

v = 33 (Y] cos B =Yy sin B) + (Y  cos B — Y5 sin ) M, sin 26, Log oz
hl
(111.68)

Notice that the mixing anglé, is proportional to the: parameter. Hence, the neutrino mass matrix, accord-
ing to the above expression, is also proportionak tavhich as we have already discussed, is responsible
for the breaking of the global B-L symmetry. When— 0 , the B-L symmetry is recovered. Then, loop
corrections to this parameter must be proportiongl icself, which means that, if. is small, loop cor-
rections tou cannot be large. In this sense, it is said that ghgarameter is protected by the symmetry.
Notice that the Zee-Wolfenstein modé, 28] requires only one Higgs coupled with the fermions, which
leads to a resulting mass matrix with zero diagonal entfiiégs particular model has been ruled out by the
experiments 29, 30]. However, in the general scenario for the Zee mechanisnreMweo different Higgs
doublets with different couplings to the fermions are imaol, one has enough freedom to reproduce the
values for neutrino mixings and masses. See for insteijddr a recent study of the Zee model.
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V. REALISTIC RENORMALIZABLE SU(5) MODEL

From the first section of this report, we can summarize theaknmints” of the simples§U (5) gauge
unified theory in three main problems:

(i) Y. = Y,is notsatisfied according to experimental data at the GUIE sica. fermion masses predicted
by the SU(5) model are wrong.

(i) The SM-couplings do not unify at any energy scale.
(ii) The model predicts massless neutrinos.

Those are the main aspects for which the SU(5) model has béshaut. So now one could askiVhat is
the simplest realistic renormalizable model based on SRJ(5)

The “easiest” way (in the sense of adding the least possiliaber of particles), to fix problem (i) by
keeping the renormalizability of the Lagrangian is by iduoing a45y representation (see appendix for
its field content), i.e. 45 scalar87]. Problem (ii) can be solved by introducing new represématwhose
beta functions contribute positively to achieve the unifa@aconstraints imposed by Egs. (11.56,11.57). We
will show that the addition of thed5 is enough to solve problem (i) and (ii) simultaneously. Ideor
to give mass to neutrinos, i.e. tackle problem (iii), SU(&8hde extended by adding an extra singlet
representation (seesaw type-B3][, a symmetricl5y representation (seesaw type-I1B4] or a 24 matter
representation (seesaw type-l and type-I8%,[36], since the adjoint representation is the only one whose
addition does not spoil the beautiful anomaly cancellatib8U(5).

Apart from the seesaws, there are other ways to give mass twetltrinos, as we have already reviewed
in last section. By restricting ourselves to the fermiondethat exist in the standard model, the light
neutrino massn, comes from a dimension 5 operator which may be generateceatldvel by the
seesaw mechanism, or at the n-loop level with an extra sagipre factor of(1/1672)", along with the
suppression of new coupling constants which appear in e dtagram. These new Yukawa matrices can
be constrained by the structure of neutrino mass matriximisidetermined by the neutrino oscillation data.

As it is shown in table IV, the realistic model which requitbe least number of extra fields and could
solve the presented problems would be the type-I seesaw) &td(@el, where one has at least two singlets
/. right-handed neutrinos, and the extfg; Higgses. However, as we have already discussed in the sectio
of neutrino masses, the introduction of a singlet impliega gcale in the theory: one naively expects the
fermion singlets to get mass from above the GUT scale sirgie tliasses are not protected by the SU(5)
gauge symmetry.

Thus, the next candidate would be the Zee-SU(5) model. Wéobghis option under the motivation
of building the most economic renormalizable unified thelbejng able to solve, one by one, the main
problems of the original SU(5) (without the addition of extinglets).

7 one neutrino could be massless since we in principle onlywkmass differences between the three generations of them.
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TABLE IV: Possible renormalizable extensions of SU(5)-@3.“extra field content” is understood any extra repre-
sentation apart from the field content of SU(5)-G@5t;.

Y. #Y]| m, #0 |UnificationExtra field contennumber of new d.o f.

type-l seesaw v 1p, 1p 47

type-Il seesaw v 155 60

45  |type-lll seesay v 24 69
Zee model v 10p 55

Colored seesaw v 24 69

A. Theoretical framework

In the Zee model, in order for the neutrinos to get mass, agedascalar, which is a singlet under
SU(2) and SU(3), and a second Higgs doublet are needed, at@contained in0y and455 respectively.

The simplest extension of the SU(5) model consists on the ffiafds composing SU(5)-GG (see first
section of this report) plus 45 and10y representations. We address the field content of thesesepre
tations, their quantum numbers and the Lagrangian of theemodletail in the appendix. In the context of
this Zee-SU(5) unified model (SU(5)-GG45 + 10g) the Yukawa Lagrangian reads as,

Ly =510 (Y1 5% + Y2 45%) + 1010 (Y3 55 + Y4 455 )es + Ys 551055 + h.c. (IV.1)

wheree, andes refer to the Levi-Civita symbol with 2 and 5 Lorentz indicesspectively. Explicitly written
in the flavor (a,b) and color (i,j,k) spaces,

Ly =Y{"5;410 55 ; + Y510 51,4455, + e 10 105 55 €shms + Y105 10545 1 €11tm (v2)
Y5ab5ia 5]' blog + h.c. .
From the above expression it is straight forward to realizd Y5 is antisymmetric due to Fermi statistics,

which constraint the degrees of freedom of the matricesnlit bas three d.o.f. (as long as we consider
three families of fermions in Nature).

The Yukawa Lagrangian gives mass to the fermions of our yhece the symmetries are spontaneously
broken and the Higgses get a vev. Therefore, the mass nsatricke different fermions can be written as
a function of the Yukawa couplings. By looking at each ternthef Yukawa Lagrangian is straight forward
to see that,

Mg = My(Y1,Y3),
M, = Me(Yl,YQ).

All Yukawa interactions can be found explicitly written ihe appendix, but here we will obtain step by
step the fermion masses in order to illustrate the process.

41



IV REALISTIC RENORMALIZABLE SU(5) MODEL

Fermions get mass ondé) and HY get their corresponding vevs. These fields live in
Hf‘ ~ 5Ha7
oy (IV.4)
HS ~ 457170 — Sepye45 e

where the roman letters refer to color indicégj, k¥ = 1, ..., 3, and the greek ones to th#/(2) indices,
a, 8 = 4,5. To the down-type quarks mass and the electron mass caesithe first term in Eq. (IV.2), i.e.

Ly O Yi(5;,10° 4 55107)5%,, + 2Y25,107%(45% )}, + Y25,1077(455)%, + h.c. (IV.5)

where the factor of two comes from the contraction ofthg and the two lower indices of th&%;, which
are both antisymmetric. In terms of the fields,

Ly D Y{d{ ¢ + t3?* Y HT |, + 2Yad{ ¢7“Haadl + Yolae® e (—3)eg e Hs +hc.  (IV.6)

Taking into account only the neutral component of the Higgshdets, i.e.a = 5 andd = 5, which is
responsible for the fermion masses, we have

Ly DY{dS d'+eeCYH) +2YydS d HY —6 Yo ee® HY +h.c (IV.7)

Therefore, after the spontaneous symmetry breaking,

Ly >dSd (Yl% + 2Y2%> +eCe (YIT% - 6Y2T%> +h.. (IV.8)

where we have written explicitly the transpose of the® term since our convention for the mass term
definition isM7 ¢ f.

On the other hand, for the up-type quark masses, terms ldgdggdandY; are the ones that matter. All
possible combinations contributing to the quarks mass eamrliten as follows,
Ly DY3(10710% 4+ 10°107%)5% ¢ 5005 + Ya(10°°107% (45,)" (V)
— 10710 (455) Vesjinp + Ya109105(455) Ve 1.5, '

Now, by splitting the Levi-Civita tensor in its SU(2) and S)(ndicese;;ras = €ijreas and taking into
account the possible miscounting in the mixing between viszdpin and color indices as we have already
commented in last section, we have

Ly D2 Y3(10910% + 10107%)5% ¢ jpeap + Ya(4 10°107% — 2 10910°%)(455) P €160

+ Yal09 105 (455)2 e sne - (V10
By writing it in terms of the fields,
Ly D2 Ys(y; Ceiglgha 4 gioy, Cejkm)Hlﬁeijkeag + Yi(4 qmejkmugl — 2 €Iy, C O‘k)ékHz €ijl€as (V.11)
-3 Y4ezymumqk0667ea5H‘ge,-jkem + h.c. '
and using the following contractions;,e® = 2 andewe = 262, we have
Ly D4 Yg,(ul q @+ qw‘uc)Hl €ap + Ya(8 qw‘uc 4 uc O‘l)eagHQB — 12Y4ul‘?qko‘em;H‘S (V.12)

= 4(Ys + Y ul ¢ @eapHY — 8(Ys — Yl (e Hy + h.c.
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Focusing ons = § = 5, after the spontaneous symmetry breaking, the above estpneeads as

i V1 T, C. i V2
— —8(Yy - Y, Juyu'—. V.13
\/5 (4 4)2 \/5 ( )

Therefore, altogether, the dependence of the mass matvitteshe Yukawa couplings is explicitly given
by:

Ly D 4(Ys + Y )ulu

vE o
My =Y1—2 4 2Y,—2
S RN
v v¥
M, =Y =2 — 6y & (IV.14)
N ) NG
(%3] 7\ V45
M, =4(Ys +Y{)—= —8(vy — V)=
u (3 3)\/§ (4 4)\/§

In contrast with the predictio,] = Y, from SU(5)-GG, here there is enough freedom to reproduce the
measured fermion masses at the EW scale, so that problean(Becsolved within the proposed extension
of the SU(5). However, the Yukawa Lagrangian does not allewtrinos to get mass at tree level. As we
have already mentioned, we can give mass to the neutrinogghrthe Zee model (radiative corrections),
by using the “new”10y introduced and the second Higgs doublet containethjp. We will refer in detail

to the generation of neutrino masses in the upcoming sechbanfirst we will focus in the study of the
unification of the Zee-SU(5) model.

B. Unification and proton decay

In this section we study the consistency of the theory by shghat unification can be achieved in the
context of the Zee-SU(5) model and we constraint the availphrameter space for the mass scales of the
new fields by imposing experimental bounds (proton decatitifes and collider bounds), which will give
rise to interesting predictions.

Unification constraints

As we have shown, in the original SU(5)-GG couplings do natyuat any energy. In order to satisfy
the unification constraints new representations must bedaddeach of the fields living in the extra
representations may or may not help to satisfy the unifinationstraints (11.56,11.57), and the strength
(or relevance) in which they contribute to unification is gldged by the mass scale of each field (see
Eq. I1.53). In this subsection we analyze which are the domtions of the extra fields considered in the
proposed model and we study the possibility of unificatiocoading to the mass scale of these fields and
the experimental constraints coming from the LHC or frompieton decay lifetimes of different channels.

In the proposed extension of SU(5), we consider an eiXtfarepresentation, able to correct the relation
between charged fermion masses in a renormalizable waya &6g representation, which contains the
charged singlet able to give mass to neutrinos through tieenzerhanism. The contribution of these new
fields to the beta functions is listed in Table V. As we can fee) the45y representation, only the fields
®3 and H, can help to achieve unification. Even thoughtstrictly does not help to satisfy the unification
constraints sincé,; > 0, due to the negative value of i35 (see Eq. (11.57)) it may help to increase the
GUT scale and thus suppress proton decay. Apart from theletswiplet splitting problem irb g, which
was needed to satisfy proton decay experimental congrdiate in thel5; we have the same fine-tuning

43



IV REALISTIC RENORMALIZABLE SU(5) MODEL

TABLE V: Contributions to theB;; coefficients of the extra fields in Zee-SU(5) model.

45H 10H
Bi; ! P B3 Py D5 D Hy |67 d@o or
Bz —15Te) T57®: —570s 15704 T5Tes 1570c —15THa |57+ _1_75TA<3,2) BT
Bas —3Te, —grey 370; §T0s 70 —§T®s §'Hy | O %Tﬁ(a,z) 6T
Does it help? x X v X X X v X v X
Proton decay x X v X v v v X va X

2Through the termiso5; 10°(45%)%,, the proton can decay via the tree-level process shown iniBigfter the electroweak
symmetry is spontaneously broken.

problem, becausé&, must be light in order to have a large expectation value toecbthe fermion masses
relations whereas other fields sitting46;; need to be heavy since they mediate proton decay (see next
subsection).

In the 10y representation, however, orrfyg,Q) could help to unification, but one has to be careful with
this field sinced 3 ») couples to fermions through the terki$ 5 10 in the following wayAeaﬁdcﬁaé(ﬁg 2"

whered s 5) = (5(23/’2) 5(_1/)3) inthe SU(2), space. Hencey; o) alone cannot mediate proton decay. How-

ever, the tererM}*Hgaézgz) € ub453 10y in the scalar potential together with the above interaction
may contribute to proton decay through the process showigirlB.

U = < d
L7
< HY > —
2 ~ _+ 513
de B | (32 S U

FIG. 13: B-L violating proton decay contribution.

A qualitative study on the bounds of the delta mass scale egetiormed by considering the effective
coupling of the process shown in Fig. 1, which is given by

Lo D Yo aE2 ine. (IV.15)

In order to satisfy the bounds on proton dta'q:a))wQ/M(S M% < 1/(10'2GeV)? as in the usual Higgs
mediatedd = 6 proton decay contribution. Notice that due to the preseridée triplet mass squared
in the denominator, the mass &f; ,) is not necessarily required to be heavy (the parameteasd v
are constrained to be small since they appear in the neutrass matrix). In this way the B-L violating
contribution to proton decay mediated by 5y can be understood. Therefore, in principle it could be
relatively light and it would still be in agreement with pootdecay bounds.

In spit of this, as we will show, there is no need to assume antyqoilar mass scale for the fields sitting

in 10y, i.e. a degenerate mass scale for the representation cassbmed. The unification constraints
allow us to keep the mass scale of thgy unfixed. It is enough to consider the splitting in they
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to achieve unification. Therefore, for simplicity and preding in the most natural way, we will not
assume any splitting in th&0g neither in the24. In Fig. 14 we show the region where unification of

16.0 L Unification constraints 1
_o18L e~ 1
3 : O p-nlet (HK)
= I ]
o 156 |-mim o e o o e ]
o L 4
|

15.4 | 1

3.0 3.5 4.0 4.5 50 55 6.0

Log,, Mo,

FIG. 14: Dependence of the scalé;, with Mgy dictated by the unification constrains (blue line) whdp, = 1
TeV. The dashed green line shows the naive LHC bound on therezbloctet mass)/s, > 3.1 TeV [37]. The
red dashed line shows the limit on the GUT scale from the atirer&perimental value on proton decay lifetime,
7(p — wlet) > 1.29 x 1034 years RO]. The orange dashed line shows the projected limit on théoprdecay
lifetime from the Hyper-Kamiokande collaboration,(p — 7’e*) > 1.3 x 10 years B8]. The mass of thebs
(implicit) is in the rangel 08- — 1082 GeV from left to right.

the gauge couplings at 1-loop is satisfied (see Egs. (11.58)). The red shadowed region is ruled out
by the current experimental bounds on proton deegfy — 7’e*) > 1.29 x 103* years p(], and the
green shadowed region is dismissed due to LHC bounds on tbeedmctet massile, > 3.1 TeV [37].

We also show the limit projected (orange line) by the Hyparfokande collaboration on proton decay
bounds,r,(p — %) > 1.3 x 10% years Bg|. The mass ofb3 ~ (3,3, —1/3) is implicit in the plot,
and it changes from0%6 to 10%Y GeV. One may argue that/s, cannot be set arbitrarily light since;
potentially contributes to the proton decay through theavuk Lagrangian (see appendix), and indeed the
mass scale must be thus far limited, but as we are showingirsgetion, the constraint can be relaxed due
to the freedom of having a product of two Yukawa couplinge ohthem ¥) not being restricted by the
fermion masses, so that the rangeldf,, used in Fig. 14 is justified) 7, has been assumed to be light in
order to avoid fine tunning in Eq.(IV.14), concretely we tadly, = 1 TeV.

The allowed parameter space fixes the upper and lower boumdhd field ®; (notice that this is
only true in the case where the mass scale of the field9 jnis either degenerate or very heavy), ~
[103,1051] GeV. Hence, the model predicts a light colored Higgs witlydacross sections through QCD
interactions, as one can see from the Yukawa Lagrangiarafsmndix for more details):

Ly D2d%Y® g, + 4u¢(Yy— Y] )qr® + h.c. (IV.16)

It is remarkable that, due to the antisymmetry of the secamapling above, decays af; into two
top-quarks would not be observed. Therefore one could hevticesignatures such as signals with one
top quark and three light jets (gluons can produce a pajr; afolored scalars which may decay into a pair
of quarks from different families. From all possible decay® pattern top plus three light quarks -which
will hadronize into three light jets- is of special relevargince this signal is not predicted by the SM).
Moreover, if Mg, is close to the TeV, one might see these signals at the LHC.pFieaomenology of
colored octets has been investigated in the literatuBS-5[7]. The existence of this light colored octet is
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one of the main predictions of the model.

So far we have shown that, in the context of this model, urifinacan be achieved in agreement with
experimental bounds and, moreover, we come out with a grediof a colored light Higgs whose exotic
phenomenology could be found in the LHC.

Proton decay

In the Zee-SU(5) model there are several fields contributingroton decay. In the first place, one has
the leptoquark gauge bosons predicted by $i8&5) theory, X* ~ (3,2,—5/6) andY* ~ (3,2,5/6),
which sit in the adjoint representation. These bosons edideptons and quarks through the kinetic terms
in the Lagrangian, as we have already discussed in lastahakxd we know, in the SU(5)-GG model, one
also has the colored tripléf, sitting in 55, which couples to both leptons and quarks and, hence, also
mediates proton decay. In tH&y representation, from the Yukawa interactions (see appggmdie can
see thatb; and ®5 are also proton decay candidates. The fiejdmay also mediate proton decay but its
two body decay at tree level is killed by the antisymmetryha tlavor space of the effective Yukawa (see
Table VI) [58]. However, one cannot dismiss the contribution of the thredy decay although it is higher
suppressed. In th&0y representation at first sight there is no mediator of protecayg, at least at tree
level, but there is one field in this representation, &), which could mediate proton decay through the
process shown in Fig. 13. However, as we have shown in lagbsethis process is quite suppressed by
the mass of the triplet squared. In last section we alreadyeati that unification constraints require, from
the extra Higgses, onlif, and®, to be light, which do not contribute to proton decay, so thatdafety of
the theory is in principle guaranteed.

In Table VI are shown the mediators of proton decay and theespondent naive estimation of the
decay rate from dim-6 effective operators, which are listethe appendix. The case @f is slightly more

TABLE VI: List of tree level exchange (d=6) operators in Z8E{5) which contribute to proton decay. The relevant
coefficients are shown in the last colunif. represents the effective Yukawa coupling, which is antisyatric. The
effective Lagrangian leading to proton decay is writtenéted in the appendix.

| field | £h? ~ Lgqql | decay channel | decay width |
5
Kps Yo A p— et (uh)n I'~a?le
X
5
T |fr> mi% {(la Y1¢*) (g5 Y3 ¢,)”) + (d°Y1u) (u Y3 e) } | p—70e(ut) [T~ (V1 Y3)2m—§
p—vnt
®3 Lay D i (la Y2 48) (40 Ya a7)e™ p— VKt T~ (VaVa)? ok
z »
p— et ad
s Loy D g (d° Yo u)(u Yy e) p— 7Ot (rt) | D~ (YaYi)? o
Py P
~ ~ 5
D Log D —5—(d°Ya e®) (u® Yy u) p— mlet () (7H)|T ~ (Y2 Yy)?F
Pg Pg

delicate. The unification constraints requitéy, ~ 1036 — 1039 GeV but this field is a proton decay
mediator. From the above table, we have
M h

[~ (YaY)2—E < .
Mg, ~ 10%(yr)

(IV.17)
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wherer(p — K%™1) = 5.9 x 1033 yr [59].

Entering in this equation the proton mag, = 0.938 GeV, the lowest possible value 8f5., allowed
by the unification constraints, i&q, ~ 105, and assuming that the coupliig ~ 1073 (it is constrained
by the fermion masses), one gets that

Yi=Y, -V ~107'2. (IV.18)
4

The smallness of the coupling may startle the reader (or mgy so that we stress a couple of points in
order to make clear that this number is perfectly consistent

(@) In contrast to the Yukawas, = f(M., My) andY, = f(M., M), which are constrained by the
charged leptons and down-type quark masses (see Eq. (hd3harefore cannot be arbitrarily small
(unless fine-tuning was assumed), the YukaWgaandY, are only constrained by the up-type quark
mass. Hence, the model fixes a combination of both YukawasEge(IV.3)) so that one degree of
freedom is left, which can be used to 3Gtarbitrarily to any value (always regarding perturbation
constraints). This shows the consistency of the coupling.

(b) Moreover, just as a comment regarding the “aesthetius}} coupling is a combinatioY; =
Yy — Yl which means that, if th&, matrix is almost symmetricy, will be very suppressed in a
natural way.

From table VI, one can see that the main contribution to prakecay comes from the new gauge bosons
(the rest of the candidates are suppressed by the produckainé couplings).

In order to estimate the proton decay rate in a more rigorays we will appeal to an effective operator
theory. We assume that the proton and the positron play teeofehiral fermions, whereas the meson is

a scalar field. Under this assumptions, the proton decay eaefresented roughly through the process
shown in Fig. 15. We assunfeto be the coupling of the feynman rule of this interaction.

¢ (pQ)

N P(ps)

FIG. 15: Decay procesSy (p1) — £(p2) P(ps3)

The partial decay width of the process above with an initileon state/{') and a final state containing
a pseudo-scalar mesoRYand anti-lepton4) reads as,

(N — Pl) = ?TN (1 - <@>2>2 | <7r0‘ 0B-L ‘p> 2, (IV.19)

s my

whereOf‘L are the effective operators involved in the process. Bygute effective operator approach,
the possible dimension-six (three quarks and one leptdajrau by integrating out the heavy gauge fields
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IV REALISTIC RENORMALIZABLE SU(5) MODEL

X* andY*) operators which ar8U (3).. color singlets and'U (2);, x Uy (1) invariant are:
OF L = 2 eiji €ap uG" Qiaael 1 Qs (IV.20)
OS_L = k% €ijk €ap U%’Y”Qg’aadfb’mfzﬁb- (IV.21)

where@ = (u,d), L = (v,e); i, jand k= 1,2,3, are the color indices, a and-b 1, 2, 3 are the family
indices, andy, 5 = 1,2 are theSU(2) indices. From the above, one can write down the effectiveaipes
for each decay channel in the physical bai§:[

O(es, dg) = C(eS, da)eijuuly"u;eS s, (IV.22)
O(ea,dg) = C(ea,dg)eijkW’y“uj%’yuea, (IvV.23)
Oy, da,d5) = C(ur,da, dg)fijk@’wdja%’m’/l- (IV.24)

The C! are the perturbative estimate of Wilson coefficients in GUddels, and concretely in SU(5) they
are given byC! = k?c! wherek; = ggur/v2Mx,y and thec! have the following form 1],

c(es, dg) = VVEP + (ViVip) P (VaVil )L, (IV.25)
c(ea,df) = V" VY, (IV.26)
(v, da, df) = (ViVup)'* (VsVen)™. (IV.27)

Here, theV’s are mixing matrices defined as

Vi = ULU,Va = ELD, V3 = DLE,

(IV.28)
Vup =U'D andVgy = E'TN.
The matriced/, E, D andN define the Yukawa couplings diagonalization, so that
ULY,U = Y39, DLY,D = V",
¢ u ¢d d (IV.29)

ELY.E =Y NTY,N =y

By using the identityd " Cy#e = (ITCy*e)T = —eT Cy* T, the above effective operators can be rewritten
in a more suitable way:

O(el,dg) = —2C(eS,dg) ek uj,CY"uir e rCudisL, (IV.30)
Oleq,df) = —2C(eq,dF) €k ujL" Cy™ w;iR digrCyyear, (IV.31)
O, da,d5) = =2 C(v,da,dF) €iji djer Cy"uir digrCyuviL, (IV.32)

regarding the application of the following Fierz identi§2], whereh refers to a certain chirality andh
to the opposite one,

(A}, Cy*B_1)(CL,CyuDy) = —2(A},CDy)(CL,CB_y). (IV.33)

This identity allows us to eliminate the dependence of tifecéf’e operators on the Dirac matrices, so that
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the rearranged expression gains a global fact@: of

O(e5,,dg) = 2 C(eS,dg) eiji (u]pCdrar)(elrCuir), (IV.34)
O(eq,df) = 2Clea,d) eiji (uj Cear)(dizrCuir), (IV.35)
OV, da,df) = 2 C(vy, da, df) €iji (djo,Crip)(digrCuir). (IV.36)

By defining the productz, y)r/1, = zT'C Pr1, y as introduced by referencé3d we can rewrite them as
follows:

O(ﬁg,dﬁ) = 2 C(ﬁg,dg) eijk (ujdkg)L(eaui)R, (|V37)
O(ea,d5) = 2Cl(eq,dF) €iji (ujea)r(drsti)r (IV.38)
OV, da,d5) = 2 C(vy,da,dF) €ij (djarn)L(drsus) g. (IV.39)

Hence, the proton decay width in the context of the effeatiperator approach reads as,

(N = PO = A2 <1— (%’;)2)2

whereW{ (N — P) corresponds to the matrix element of the three-quédk( (0192)L/R 931/ ‘P> and
A refers to the running of the operators, which must also Imsiciered, defined as

A= AgcpAsr = < ag(mp) >6/23 ( a3(Q) >6/25 <MZ))> 2/7. (IV.41)

az(Mz) az(my) az(Mgur

2
, (IV.40)

> C'W{(N — P)
I

Here, Agcp ~ 1.2 corresponds to the running from thé, to the@ ~ 2.3 GeV scale, whiledsg ~ 1.5
defines the running from the GUT scale to the electroweale$64).

Particularly, for the most relevant channels,

D(p— n%f) = SZAKH| (x°] (ud)rur [p) P (Je(et, ) + [e(e,d)) (IV.42)
m m2 2
_ + c
lp—K'v) = 8_7: <1 - m—§> Azkf‘zi: |c(vi d, s°) (K| (us)rdz [p) +
+ c(v;, s,d°) <K+‘ (ud)gsy, |p>‘2 . (IvV.43)

where it has been taken into account that| (ud) Lur |p) £ (7% (ud)gur, |p), i.e. the matrix elements
are invariant under parity transformations.

In general the Wilson coefficients cannot be predicted stheeabove matrices are unknown. In
our analysis we have assumed the most conservative scdimariibe sense of less optimistic case in
which the diagonal entries of the mixing matrices productsemjual to the unity) in which(e, d®) = 1,
andc(e®,d) = 2 for p — 7% and, in the case gf — K*v, we usec(v,d,s) = (V3Vgn)* and
c(u, 5,d°) = Ve (VaVen)'

The quantities7° | (ud) gur |p), (K| (us)rdy [p) and(K | (ud) rsy, |p) entering in the decay ampli-
tude are the different matrix elements computed in lattadewations. Here we use the values reported in
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Ref. [64]:
(7°] (ud) gur, |p) = —0.103,
(K| (us)pdy |p) = —0.054, (IV.44)
(K*| (ud)gsy, [p) = —0.093.

In Fig. 16 we show the conservative predictions for the pratecay lifetime and the current experimental
bounds,r,(p — 7e™) > 1.29 x 103! years POl and 7,(p — K*v) > 5.9 x 103 years p9). As one
can see, the proton decay predictions are not far from theh refethe Hyperkamiokande experiment so that
proton decay could be found according to this model (howesece we have taken the most conservative
bounds, it cannot strictly speaking completely ruled oW have shown that unification can be achieved
in this model in agreement with the experimental bounds otoprdecay lifetime.

1038

1037 i

1036 i
@ H.K.
a:,‘ 1035 E
et S.K. 2014
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FIG. 16: Predictions for the proton decay lifetimes. Theebline shows the predictions for the degay—+ 7™,
while the purple line shows the predictions for the depay+s K+i. The horizontal red dashed line shows the
current experimental value on proton decay lifetimgp — 7%™) > 1.29 x 103* years RO] from the Super-
Kamiokande collaboration. The orange dashed line showprtjected limit on the proton decay lifetime from the
Hyper-Kamiokande collaboratiom,(p — 7%™) > 1.3 x 10%° years Bg. The green vertical line represents the
LHC bound, Mg, > 3.1 TeV [37], on the colored octet mass.

C. Neutrino masses

The mass expression (111.68), along with the argumentatidlowed to compute it, is a completely
general result which could be valid in principle for manyrsgos as long as they have as an effective
field theory the Zee potential we started with. The key pofrthis work is that we embed this model in a
unified theory which allows us to establish certain inténgsand powerful relations between the fermions
inside the model. The Zee model can be realized in a grandedriifieory based oSU (5): the extra
charged singlet scalar needéd, [8], is embedded in the antisymmetric representatiop, and the other
field required, a second Higgs doubled (as we have discusgee glives in thet5. It is remarkable that
this second Higgs doublet is already contained in any teaksd renormalizable SU(5) model, since the
45 representation is the simplest addition needed to cotneatass relation between the charged leptons
and the down-type quarks without loosing the renormallizggknf the model. Thus, there is no need to add
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a new Higgs doublet, which shows the simplicity of the model.

In the SU(5) language the needed interactions for the Zee mechanisnasead

Vsui) O Ab510g +510 <Y1*5*H — %Y2*45*H> - %,u 5y45510% + h.c. (IV.45)
where the couplings in the SU(5) theory has been redefineddier @0 match thé’,.. potential defined
before in Eq. (I11.43) with the SU(5) potential. Therefors, = (YU ®)* | v5 = —6(v;’V®)* and
B = =6 psy(s)-

Using the relation between the charged fermion masses anduttewa couplings, taking into account
that the definition of the mass of a fermigrthat we have introduced for the fermion masses in SU(5)-Zee
wastfCMffL whether in the section of the generation of neutrino madsesigh the Zee model the
mass is defined aﬁLMffR, and writing it in terms of the redefined couplings we have

1
VoM, = Y vs — §Y2Tv45, (IV.46)
V2M, = Yivus + Youss. (IV.47)

Here,vs = v; anduys = vo. Thus, the Yukawa couplings read as

1

Yy = —— (M, +3M7), V.48

1 2\/5215( d) ( )
3

Yy = —— (M, — MD). V.49

2 2\/5@45( d) ( )

and therefore the neutrino mass matrix can be written asaifumof the charged lepton masses and down-
type quarks:

M, = M, (ceMeT + 3ch;;> + (ceM;k + 3ch§) MT)T, (IV.50)

where the coefficients, andc, are given by

2

1 — 4sin? 3) sin 26 -+
¢ = QL= dsin"f)sin2y 2|, (IV.51)

87220  sin2p m:

1

1 sin264 mlzﬁ

= 2 1. V.52
cd 8m24/2v sin 20 8 m? ( )

+
hl

according to Eq. (111.68). Clearly one can see that, siicandY> cannot be simultaneously diagonalized,
the diagonal elements of the neutrino mass matrix are noteagn if \ is antisymmetric. Therefore, the
model has enough freedom to be consistent with the expetaineadues for neutrino masses and mixings.

This relation between the masses of the neutrinos and thrgazhdermions is quite interesting since
one would not expect any connection like this in the cont&8Wd(5)-GG. Notice that the antisymmetric
matrix A which enters in Eq. (IV.50) has only three free parameters.

Due to the explicit dependence of the fermion masses on tkawa couplings (see Eg. (1V.3))/,, and
M, cannot be simultaneously diagonalized. Therefore, by ingrin the basis in which\/, and M,, are
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diagonal, the down-type quark mass matrix adopts the fatigiorm: M, = D:Mjmg VCT xa WhereD,.
corresponds to the rotation matrix which diagonalizesdthejuarks. Notice that it has only three degrees
of freedom in the real case (symmetric matrix). In this cehtme finds

M, =AM (CeMedmg + 3CchM§mchTKM> + (CeMedmg + 3CdV0KMMjngCT> Miag \T
(IV.53)

where all phases have been neglected for simplicity. Assh@wvn in Eq. (IV.53), the model has enough
degrees of freedom to reproduce consistently the expetaieaiues of neutrino masses and mixing angles.
We remark that this freedom also refuses the prediction efrdétio between the fermion masses but one
can constrain the unknown parameters of Eq. (IV.53) by irmgpoexperimental bounds regarding neutrino
masses and mixings. We stress the beauty of this outcome Betise that the above relation is an intrinsic
prediction of the unified model and it comes out in a naturat.wa
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V. LR-SYMMETRIC THEORIES

Left-right (LR) symmetric models are regarded as appeatixtgnsions of the Standard Model, since
they present a more symmetric structure in the represengatif the fermion sector along with the fact that
they give an explanation about the parity violation (ldftral preferred structure) at the electroweak scale
and predict massive neutrinos as a natural outcome.

The simplest LR symmetric theories are based in the follgugauge symmetry grou3{6]:
G=5U3).®@SU2),®SU2)rU(1)p_L. (V.1)

The main difference of LR symmetric models with respect ® 8M is the prediction of a right handed
neutrino which allows neutrinos to have a Dirac mass. Ndtieg in this model there is a total of seven
generators2? — 1 for each SU(2), I.eT} p wherea = 1, .., 3 which obey the Lie algebra

[Tg,}% TIb,,R] = Z'EabcT[c,7R (V.2)

and one for U(1),«f, so that, apart from the SM gauge bosons, three extra magsaige bosons are
expected ngt and Z') after the LR symmetry is spontaneously broken(t@l).,,. In this section we
summarize the main features of these models by first intindube basic field content and then discussing
the masses of the fields after the gauge symmetry is sponisigesind how this breaking occurs.

A. Field content

LR symmetric models enjoy sixteen Weyl degrees of freedanthat they can accommodate sixteen
chiral fields, i.e. one more than the SM. The matter contegivisn by fermion multiplets. Fermions are
embedded in doublets 6fU (2);, andSU(2)r and are completely symmetric under— R,

Q= ()~ a2, Qn= (4)~ a2

for quarks, and for leptons

€L = <VL> ~ (172717_1)7 ER = <VR> ~ (171727_1)7
er €R

where the third quantum number corresponds to the charde @fitelian groupy (1) 5—z, which is defined
by the breaking of the LR-model to the Standard Model in suglag that the electromagnetic charge is
recovered after the breaking. The hypercharge operatafiised! by the unbroken gauge symmetry in the
processSU (2)r ® U(1)p—1, — U(1)y. The explicit form of the charge operator depends on thekiorga
pattern to thd/(1).,,, as we have already mentioned in the context of SU(5). Bytpkn infinitesimal
SU(2)r ® U(1)p—r, transformation and imposing that it leaves the vacuum statriant (taking into
account thatb transforms a® — e’ "%, beingT* the generators ang, the corresponding phases),

56=2(6 0+ Ip)p 20, V3)
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we find that¢; = & = 0 andés = p, so thaty” = T + £-L where the normalization factor is chosen to
recover the already known electric charges in the SM. Afierlireaking of the SM t&/(1)..,,,, the charge
operator is defined as

B—-L
Q=TF4+Y =TL 4+ TR + 5

N———
Y

(V.4)

It is straightforward to realize that the charfe— L corresponds to the difference between the baryon and
lepton number of the field involved, which justifies the labfthe charge. Notice that, in the context of LR
symmetric theories, the hypercharge has a physical meaniogntrast with the Standard Model, where it
is introduced ad-hoc. Here, the LR symmetry is deeply camewith the baryon-lepton symmetrgJ].
Every doublet has a flavor index in addition. The completet&trmion generations requires three copies
of the above multiplets to cover them, as in SU(5) theoridse Jcalar sector of the theory is discussed in
the next section since it depends on the way chosen to bredlRfsymmetry to the SM one.

B. LR Symmetry breaking and Dirac neutrinos

SinceMyy,, > My, according to experiment, the LR symmetry must be brokenraegmoint. A scalar
sector is needed in order to first break the LR gauge symnwethetSM and then give mass to the fermions
in the model by keepind/(1).,, unbroken. For the last propose, we are lead to introduce bletounder
both SU(2), andSU(2) g, ®, which we will call "bi-doublet* and it transforms as,

SU(2)r

- oY DT
b = i 2) lsU(z)LN 1,2,2,0 s
(o % (1,2,2,0)

along with the following Yukawa interactions
£->0Q; <Y1<I>+Y2<f>) Qnr+ 01 (Y3<I>+Y4<i>> g+ h.c, (V.5)

where® is defined agr,®* o, i.e.

~ 0 * &t _
i (2 Grh) ~ @20 (v:6)

This bi-doublet field is required in order to connect left aight fermion multiplets through the Yukawa
Lagrangian. However, it turns out that it is not enough tdyfbleak the LR-symmetry group @(1).,, as
we show right after.

The most general form of®) such that the electromagnetic gauge-invariance is predésithe follow-

ing:
o U1 0
(5 n)

Once the neutral components of the bi-doublet acquire a agsliown above), the symmetry is sponta-
neously broken and, therefore, fermions become massiviicéNthat the condition ob being an extremum
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of the scalar potential requires that

o*V o !
<W> (6®) = m3T%, (®) = 0. (V.7)
due to the fact tha® transforms a® — ®e'’“% beingT® the generators ofU(2) g (@ =1,---,6)
andc, the corresponding phases. The unbroken linearly indep¢rdenbinations of generators define the
breaking pattern of the process. In this case,

(T +TR) () = 0, (V.8)
(B—L)1 = 0. (V.9)

Hence, the vev of the bi-doublet breaks the symmetry dowlii(tb) ® U (1) [5]. Therefore, extra Higgs
multiplets are required to recover th&1).,,. There are many options to perform this breaking. Here we
will discuss the two simplest (in the sense of minimalityaieting degrees of freedom) ways.

In order to keep the discussion as general as possible, ietraduce first two scalars and specify their
guantum numbers later:

or & or (V.10)

Actually, as we will shown, only one of them is required todk¢he LR symmetry group down 6(1).,,,,
but the LR symmetry demand the parity-partner to be there. ifiinoduction of the above scalars leads to
the following potential,

2 /

A A
V= —%(cp% + ©R) + 1(90% + ¢h) + 5@%@%, (V.11)

where linear terms do not appear since these scalars shaujdgquantum numbers under SU&) The
above potential may be rewritten in the following way,

2 !
" A A=A
V=——(w%+¢%)+1(w%+¢%)2+ 5

5 PLY R (V.12)

Notice that the breaking pattern depends crucially on tga sf A" — X [13]. If ' — X\ < 0, the
minimization of the potential requires both thébr) # 0 # (¢1). This would be a problem since LR
symmetry implies that¢z) = (¢r). On the other hand, iK' — A\ > 0, then (¢1) = 0 and (¢r) # 0 or
vice versa, which naturally induces a parity breaking. Siwe are interested in breaking the LR symmetry,
i.e. SU(2)r @ SU(2), @ U(1)(p—ry — SU(2)r, ® U(1)y we opt for the second possibility.

Thus, as summarize, the breaking occurs in two steps:

SU@2)r® SUQR)L © U1 p_p) 2 SUQ)L 2 U1y H U1)om. (V.13)

8 which will forbid them due to symmetry invariance.
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The minimal way to perform the full breaking is by introdugitwo Higgs doublets,

_ (H _ (H

There is another alternative for the role @ and¢; which leads to seesaw mechanism for the neutrino
masses, in which the candidates are triplets under SUE)\i;, ~ (1,2,2) andAgr ~ (2,1,2). We will
discuss the above alternatives in more detail in the foligvgections.

Independently on the alternative chosen to break the LR stmnfermions get mass through the bi-
doublet, which is the responsible of breaking the electedn®/mmetry. Onc@ gets a vev the masses of
the fermions read as,

My = Yivg + Yaus, (V.15)
Mp = Yivg + Youi, (V.16)
Mg = Ysvy + Yo7, (V.17)
MP = Yzu, + Yyu3, (V.18)

wherev; and v, are the vacuum expectation values for the fieiflsand ¢9, respectively. Notice that
neutrinos in the context of LR theories get a Dirac mass intarabway. By taking the limit in which
Y; <« Yy andvy < vy, one can explain the smallness of neutrino masses with&naiduncing any fine-
tuning. In this context, the masses would be given by

ME ~ Y4’UT, (Vlg)

MP = <Y3 +ME|”—2|2> . (V.20)
vy

It is important to remark that this simple model which presliDirac neutrinos does satisfy without any

problem any constraint coming from experiment, althougioés not provide a "natural“ explanation about

the smallness of the neutrino masses.

C. Majorana neutrinos

The SU(2)g ® SU(2)1 ® U(1)(p—r) With two Higgs doublets and one Higgs bi-doublet will be the
minimal LR symmetric model on the market till Dirac neutrsnare ruled out. However, physicists tend to
think that the smallness of neutrino masses might be an agufaor their Majorana nature. We already
showed that Dirac masses for neutrinos are obtained by demitsj the minimal scalar content needed
to break the LR symmetry to the SM. As we show in this sectibeyd are alternative ways to break
spontaneously the symmetry which imply different scalartents for the theory.

Type-l seesaw realization in LR

An alternative way to break the LR symmetry down to the SM idridsoducing two Higgs tripletsA 1,
andAg [7], defined as,

_ A+/\/§ A+t
AL,B = < AO —A+/\/§> ) AL ~ (37 17 2)7 AR ~ (17 37 2) (V21)
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The above scalar sector comes along the following termseairytikawa Lagrangian:
1
Ly DLa=3 ({1 CimYaAA Ll + (RCiTsYAARLR) + h.C. (V.22)

and the corresponding scalar potential,

2 2
V= - Z M?jTr{‘I’I’q’j} + Z N TrH{®[ @} Tr{®f @/} + A;jler{‘I’I‘I’j‘I’L‘I’l} — w?Te{ AL AL + Al AR}
1,j=1 i,9,k,1=1

o [Tr{ATLA et Tr{AEAR]ﬂ] ¥ o (Tr{ATLA LALALY +Tr{ALARALA R}) +psTr{Al A AL AR}

2 2
+ 3 ayTr{ele;) (Tr{NLAL} + Tr{A}zAR}> + 3 By (Tr{NLAchicbj} +Tr{A;AR<1>j<I>j})
i,j=1 1,j=1

2
+ Z ’YijTr{AE(I)iAR(I)}L (V.23)
ij=1

where®; = & and®, = &. The LR symmetry is spontaneously broken once the neutrapoaents of
the scalar sector get a vev according to

(Ag) = (UOL 8) (Ap) = <U‘; 8) and () — <"‘(’)1 72) (V.24)

Notice that only(Ag) is needed to breakU (2)r @ SU(2), @ U(1)p—, = SU(2)L @ U(1)y. The vevs

of the bi-doublet will be responsible, as before, of the Skbling toU (1).,,. Let us assume that, = 0
(this assumption is strictly speaking not correct sinceviineof the bi-doublet forced ;, to get a non-zero
vev [7]. However, as we will shown in next section, this vev is of tirder of O( (®)? /vg) < (®)).
Therefore, once the LR symmetry is broken, the right-hantadrinos get a Majorana mass through the
following Yukawa Lagrangian,

1
L3P = §YAvRV£CVR +h.c.= Mg = Yavg. (V.25)
Hence, we are left with an already familiar mixing of Majoaaaind neutrino masses,
L, = MRI/g;CI/R + mprLvr + h.c. (V.26)

which in a matrix form reads as,

0 mp 0 L(Yavy + Y41)*)>
M, = = o 2 27 V.27
<m1£) MR> <% (YE;’Ul + Y4U2) —YAUR ( )
This mixing, after diagonalizing the matrix, leads to thiddwing neutrino masses:

1 (ngl + Y4v§)2
—_—— = V.28
4 YA’UR ( )

~ Mp = Yavg. (V.29)

M,

T —1
v, ~ —mpMp mp =

M,

VR

From here the smallness of the left-handed neutrinos caxgb&ired through the seesaw type-I mechanism,
i.e. the heavier the right-handed neutrino mass, the light left-handed neutrino mass. The process is
shown in Fig. 17.
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A

> > <

Vr. Vr vr Vr.

FIG. 17: Type-l seesaw mechanism in the context of LR-symiiteories.

Type-1l seesaw realization in LR

However, it can be showr¥] that, once the bi-doublet gets a veyv, the tekaL@ARCI)T in the scalar
potential implies that(AL/R> cannot vanish. In the casg # 0 one has to put special care since left-
handed neutrinos get also a Majorana mass, so that the massforathe neutrinos is given by

ML mp YAQ}L l(YE),’Ul + Y4v*)>
M, = = 2 2 V.30
<m’£ MR> <%(YE;’U1 + Y4U§) —YAUR ( )

which leads to the following eigenstates:

1 (Y- Yyv3)?

M,, ~ My — m%MglmD — Yaup + _M (V.31)
4 YAvR

M, ~ Mg =Yavg. (V.32)

Hence, one has to make sure that< My in order to apply the seesaw type-I mechanism. But, as we will
show here, this vev is actually pretty suppressed byth#hrough the seesaw type-1l mechanism (here we

follow the approach of Mohapatra and Senjanovig. [

After the spontaneous symmetry breaking, the scalar patéaee Eq. (V.23)) reads as,

V(ALa ARa V1, UZ) -

!

p p
— (0 ud) + i 1 +oh) + Ev%v% + (v7 + vE) (o1 + g + Br1)v (V.33)

+ (11 + a2 + Bo2)vs + (dauz + 2B12)v1v2 + 2vLvR [(111 + Y22)v1v2 + 112(0] + v3)]
+ terms which only depend an andwvs,,

wherep = 4(p; + p2) andp = 2ps. By assuming w.l.o.g. that, < vy, in order to encourage the
suppression of th&8/’z — W, mixing [65], the above potential can be rewritten as

p P oo

V(AL Ag,v1) ~ =p*(v + vR) + (VL + vR) + S0LvR + 5 (VL + vR)vT + Burvget,  (V.34)

wherea = 2(ay1 + a2 + f11) and = 2+12. By computing the minimum conditions one gets,

oV / !

8—1)11 = —/j,z’l)L + p’u% +p va% + av%vL + ,B’U%UR ; 0, (V-35)
oV / !

% = _N2UR —+ pv% +p ’UR’U% + OA)%’UR + 5@%1)[, ; 0. (V-36)
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After some algebra, i.a:g(Eq. (V.35)) -vr(EQ. (V.36)),
(0= 0 yorvr — Bt | (v} — ) = 0. (V.37)

Two possible solutions arise from the above expressiomviay v% and (b)(p — p Jvrvr — fv? = 0.
Since we are interested in breaking the parity symmetry, is@add solution (a), so that we are left with

VLUR = 8 —v?. (V.38)
(p—1r)
Hence,
2
vp oc 2L (V.39)
UR

where the proportionality constant is given By(p — p'). The above expression reflects the type-Il seesaw
mechanism and one can see that, as londZs) # 0, one cannot avoid a combination of type-Il and
type-l seesaws in the process of giving mass to the neutrinos

Type-lll seesaw realization in LR

Let us stick now into the minimal scalar content, i.e. two dgfigloublets as introduced in last section
and let us extend, on the other hand, the fermion sector. ridesitin LR models can get mass through
type-lll seesaw mechanism by adding fermion tripletgone for each family),

1000 \/ip}> L p% V20l
oL ~ (3,1,0) and pgp= = R R) ~(1,3,0), (V.40)
<pr ) B0 2 \vaop -, ) B0

and the minimal scalar content required to break the LR symmymiee. two Higgs doublet$i; and Hg.

The realization of type-Ill seesaw in the context of LR synmicemodels was first done by Fileviez i6§).

The relevant interactions for the type-Ill seesaw are glwen
—cHE S Yp(ﬁzcwgpLHL + l%C’iangHR) + MpTr{p£C’pL + p%C’pR} + h.c. (V.41)

Let us build "Majorana“ 4-dim spinors as follows,

v = VL+(VL)C,
N = Ng+ (Ng)°, (V.42)
p = pr+ (pr)C,

so thatv® = v, N = N andp = 5¢. Once the Higgses get a vev, the LR symmetry is spontaneously
broken sincerp # vr. Assuming thav; = 0 w.l.0.g. (this limit corresponds indeed to a minimum of the
scalar potential, see referen&)[ the following mass matrix is obtained in the bagis N, p):

0 MP 0
M, = | (M2)" 0 —5v5 YR | . (V.43)
0 —55Vun M,

Assuming the mass of the triplet is heavy, i, > Y,vr/2v/2, the triplet can be integrated out angd
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gets mass through the type-Illl seesaw mechanism (seers&glassive neutrinos”):

2)2

My, = -2v,(M,)~'v ] (V.44)

VR 8
Hence, one is left with the following effective mass matiixthe basigv, NV)),

0 MP
My~ <<M,,D>T M ) |

VR

(V.45)

Therefore, a further type-l seesaw occurs in the processradrgting neutrino masses. The masses (eigen-
values) of the neutrinos after diagonalizing the above imate given by

My, ~ M, =MPM; " (M?)T, (V.46)
MX2 ~ My, (V.47)

where the new eigenstatgs andy» has been approximated toand NV, respectively, sincé/, , > MP.
Notice that this modeld6] generates neutrino masses in the context of LR theoriesighr a “double
seesaw” mechanism, i.e. a combination of type-lll and typeesaws.

In next section we introduce a simple LR extension which gees neutrino masses through radiative
corrections.
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VI. SIMPLE LR-SYMMETRIC MODEL WITH MAJORANA
NEUTRINOS

We present a simple LR symmetric model with the minimal degaf freedom that predicts Majorana
neutrinos. This model is characterized by the inclusion afharged scalar singlet which will play
an important role in the neutrino mass generation. As ogptsdhe models introduced before, in this
model neutrinos get mass through the Zee mechanism. Wddreveill address to this model as “Zee-LR".

This section is organized as follows. First, we present téle ftontent of the model and we show
that, after spontaneous symmetry breaking, the limit inclwhire work is indeed a minimum of the scalar
potential and therefore corresponds to a physical scenditi@n, we discuss the Zee-mechanism in the
context of our model and we show how neutrinos get Majoransses Next, we introduce the new gauge
bosons predicted by the Zee-LR model and study their mostaet properties. In the last part of this
section, we discuss some phenomenological aspects wigiehdirect consequence of this particular model.

A. Field content of the Zee-LR model

Apart of the basic field content of any LR theory (i.e. fermimntent introduced in last section plus
the bi-doublet), the Zee-SU(5) model requires two scalabtiis to break the LR gauge symmetdy
and Hg). Moreover, an extra scalar charged singiétis included to give mass to the neutrinos through
radiative corrections, as we discuss in next section. Hetheescalar content of our model, excluding the
bi-doublet, is composed on:

HF Hj
HL - < L) ~ (27 17 1)7 HR - < R> ~ (1727 1)7 6+ ~ (17 172).
HO Hp

In the context of this model, the most general renormalaaihlar potential that can be written satisfying
LR symmetry constraints reads as
V = —u4(H Hy + HyHg) + Ay (HLHL)? + (HLHR)?) + A\or(H) Hp)(HL Hg)
— ()i Tr(®]@3) + A (@] @) Tr(®] @) + A, Tr(@] ;0] @)
+ai;(H Hy + Hy HR)Tr(®®;) + bij(H} @@L Hy + HE O Hp) + c;(H] @ Hp + Hy ! Hy)
— 13675+ Ns(676T)  + d(HI Hy + HLHR)d™ 6% + ey Tr(®]d,)6~ 6+
+ Ni(HFio9®;Hpo™ — Hyiod ®IHLOY),
1 1 1 1 1 1
where(u3,)i; = (15)i » )‘z('jl)sk = )‘E'il)ck’ )‘z(jl)cl = )‘I(flzj ’ )‘z('jl)sl = )‘g'iz)w
2 2 2
Nob = M = N = Niher @i =aji, by =bu, ey =ecji.

In order to break the LR symmetry and gefiy,, > My, , one must assumer >> vy, v1,v2. In the
appendix we show that this scenario does correspond to axwiniof the above potential and it is therefore
realistic. We also derive the masses of the scalar sectdiuaston of the parameters of the scalar potential
for the limitv; = vy = 0.

61



VI SIMPLE LR-SYMMETRIC MODEL WITH MAJORANA NEUTRINOS

B. Majorana neutrinos through the Zee mechanism

In the context of the Zee-LR model, neutrinos get radiatiassnthrough the Zee mechanism. Fig. 18
shows the realization of the Zee mechanism in the unbrokasephHere, neutrinos can get radiative mass
at 1-loop, unlike in the usual left-right symmetric modetegented in literature, due to the presence of the
charged single™. Notice that for 1-loop radiative neutrino masses we onlgchi® consider the charged
scalar fieldsb} andd™, wherea = 1, 2.

my Hy,
AN /
_ N/ .
(S+ / - ~ QZS]'
, AN
/ \
> | < | < \ =
VL/R e + e VL/R
|
@Y

FIG. 18: Zee mechanism generating Majorana left/rightdeaimeutrino masses.

The relevant interactions in the Lagrangian to generatérineumasses at the quantum level are given
by,

e S <Y3<I> + Y4<i>> CRANLLLLLST T A plrlrdT + M HE i00® Hpo~ + Mo HL ios® Hpo~ +h.c.

(VI.1)
Notice that here\; # Ag, i.e. we will assume the discrete left-right parity symmet hold only in the
gauge sector since we are mainly interested in the case wheteR symmetry scale is low and besides,
since the discrete symmetry is not spontaneously brokenagtowall problems will be avoided].

In the broken phase, the Higgs sector can be written explad,

v+ Y +iA] ¢35 hy, Iy
d = _ ) H; = ) d Hgp = . .
( o1 vp ¢ +id9) LT\ (v + 1Y +ia) | AN TRT A L (v 4 b, +iAY,)

Once the symmetry is spontaneously broken, one has fiveahaglar fieldssy, ¢3, hi, hi, ands*,
four CP-even neutral scalar fields), 1%, ¢! and¢3 and four CP-odd neutral scalar field§ , A%, A} and
AY. The Higgses get mixed and one needs to define a basis in whlds fire physical, i.e. the mass is
well-defined. We assume there exists a unitary matriwhich rotates the charged scalar fields from the
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interaction basis to the physical basis with properly defimass. This change of basis is defined as

o) ([
2 2
Hf | =v|hi], (V1.2)
H%‘ h;}t
b hi

and thus we findb} = V,; b andé* = V; b wherei = 1,...,5 anda = 1,2. In the broken phase,
the Feynman rules for the physical fields are obtained franfaliowing Lagrangian (see appendix for the
Feynman rules),

Lfiien =€ | (Vi PL = YaPR)V5; + (YaPr = Y PL)ViS| h7v +2 05 (ALPL + ARPr)Vaihf e + h.c.

+ extra terms
(VI.3)

where the fields have been rotated to the physical basis. &tim“terms” refers to the rest of interactions
which do not participate directly in the process bellow. Ve aot writing them here explicitly since
our interest resides in the amputated amplitude shown in Egwhich, in the broken phase, will give
us the radiative left/right-handed neutrino Majorana n{agsourse the rest of the terms are participating
implicitly through the definition of the components of thexing matrix of the charged Higgses, which in
turn defines the components of the rotation matrix V). Letnss €alculate the left-handed neutrino radiative

/ \ + a&y

VL/Ra €3 VL/Ry

FIG. 19: Zee model generating Majorana left/right-handeatrino masses.

mass. By using the feynman rules in the broken phase, thepldorrection reads as,

d*k kF+m . . 1
Q- = Z/ o 2A O Vi Pp g [(YT)MV (YJ)MVM} [ERu Y =
85 i
d*k 1 1
— By \Byy/*
2>\ PLmeﬁ Z V5z |: ) V2 (Y4) Vlz:| / (27‘1’)4 k2 — mzﬁ k2 — M}i . (V|-4)

The above integral can be computed through the dimensiegalarization method proceeding as in section
“Zee mechanism” (see the mentioned section for the detadémilation of the integral at issue).

2 mg

dk 1 1 i |2 dmpz M08 <ME>

172 2 7 = 5| -~ 1—-7+Log 5 )T 2 pg's (V1.9)
@m)tk? —mZk? — My (4m)? | e m M —m?

(& (&

and thus one gets a solution which may be split in two terme:tbat depends on(on the charged Higgs
that is running over the loop) and the other one which doesTios last term will be killed by the unitarity
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of the V' matrix after we sum over all possible charged Higgses dautirig in the 1-loop correction to the
mass, i.e. the divergence will cancel along with the ungatsienormalization scale (by takirg— 0),
which shows explicitly the consistency of the theory. Pgfteverything togethet,

2

i 1 AT . <M5>
—®— = g5\ Prme, ) Vaing" | 1+~ + log (mf ) + Z [(Y; Vs — (Y|

(V1.6)
AssumingM? > mgﬁ,
iy aB 1 pR? By By
—@— = W/\L PL’I’)’Leﬁ 1+ -+ Log 1 <(}/3) 552—(1/4) 551)
7'(' € me,
M?
—EJWQ£>%«@W@—MWW@uf (VI.7)
7 €s

Indeed, the unitarity kills the divergence (i.65; = 0 = d52) and ur disappears when taking — 0.
Therefore, the Majorana mass matrix of the neutrinos aeduhrough the Zee mechanism reads as

2

o 1 [ Mh- * *
(MVL) T = m/\Lﬁmeﬁ Z Log (mQ;,) Vsi {(Y;)Bﬂyvm - (Y4T)BVVM] t aoy, (V1.8)

and proceeding analogously for the right-handed neutiis®Jajorana mass matrix reads as

2
(MR = Lxeb, > Log (Mhi
v T o427 R TeB ‘ 2

meB

)wﬂwm%—wNWﬁ+aew. (V1.9)

We therefore find that the neutrino mass matrix in the basis®), is given by
L D
M, = (Mg mV) . (V1.10)

R
my Ml/

One-loop corrections to the Dirac mass matrix vanish, soviiezonly need to consider its tree-level contri-
bution which is given by

mP = (V3)" vy + (Y2)* 03 (VI.11)

v

Notice that, from Eq. (VI.8),M,,L vanishes when, for all, Y3V;: = Y,V}; holds, which imply that
Y; = Y, = 0 and thus the complete mass mathik vanishes.

Regarding the above expressions for the Dirac and Majoran&ino masses, two different scenarios
may take place, which are discussed in the following.

® Notice that this renormalization scale corrects the diriverssof the coupling\ in such a way thak = Ap g is dimensionless
for all d.

64



VI SIMPLE LR-SYMMETRIC MODEL WITH MAJORANA NEUTRINOS

Pseudo-Dirac neutrinos

In the limit where the Majorana masses are small in companigith the Dirac mass, i.eM [t ML >
MP, a pair of almost degenerate eigenstates with a tiny mafeseatite will appear. The mixing angle is
almost maximal,

2MP
tan9 = WV]WL = 9 ~ gl’ad, (V|12)

and the sum of both Majorana masses is the responsible dighéysbreaking of the mass degeneracy.

Neutrinos in this context are called Pseudo-Dirac or qlasie neutrinos §8]. This scenario predicts
(almost) maximal mixing solution of neutrino oscillatioimto a sterile state which is encouraged by some
experiments and disfavored by othe68][ Although their current status is not encouraged, theynaite
ruled out (yet).

Low-scale seesaw mechanism

In the limit wherev, <« v1, the lepton mass reads as
mo7 ~ Y, vt (VI.13)

Considering this limit in the neutrino mass terms, we have

mP" = (V)™ oy +moT2 (V1.14)
vy
By
a 1 M? mi
ME = —2m., ) Log [ 21 ) Vi | (Yy)P7Vgs — —— V7 VI.15
v 42 7L m ﬁzi: g mgﬁ 5 ( 3) 2 v 1i| > ( )
R&Y 1 Ozﬁ M}%Z ﬁ—y * m?'}’ *
M = A me, Y Log | —3* | Vai | (V) Vi — ==V (V1.16)
) es 1

Notice that forYs < Yy, as we have already discussed, Dirac masses are suppradsae aaturally small.
In this context, the neutrino mass matrix in the bdsis  (vz)°) reads as,

M, mi * v
#)\Lme >, Log <m—’§> Vi [ygfvz*i — Vu‘] Ysu; + meﬁ
v M2
Vv + meé #ARme >, Log ( m’2> Vsi [ngl’;- - T—fVQ’g
(VI.17)
Assuming that the parity breaking couplings fulfill, < A\g,
ML ~o, (V1.18)

and thus it can be neglected in frontf?. Therefore, in the limit whera; < Az andMP? < M1 alow
scale seesaw takes place, i.e.

Dyavyi2
(MQ‘”:—%—F&HW (VI.19)
(M) ~ (M) 4o 5 . (V1.20)
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For this model (Zee-LR) to be consistent one must check tiafimit v < v, we are dealing with
corresponds to a physical scenario by studying the scatenpal. In the appendix we show that this limit
is indeed realistic since it minimizes the potential. Theneaf "low-scale” seesaw refers to the lightness
of right-handed neutrinos, which we justify in the followgin

We may wonder about the mass scale of the right-handed nesitiNotice that the sum over the charged
Higgs masses weighted by the combination of mixing mat@eesYukawa couplings is strongly constrain-
ing the scale of the neutrino masses due to the unitarityeofrttxing matrices. It is straightforward to see
that there is no lower bound for the right-handed neutringsysnce it turns to be zero when the charged
Higgs masses are degenerated. However, we can infer soraehgymds by assuming a conservative sce-
nario where the entries ofgz andY, are of order~ 1 and the mass of the lepton appearing in Eq.(VI.16)
corresponds to the tau mass, ~ 1.78 GeV. Due to the unitarity of the mixing matrices, the highestie
that the logarithm could reach is roughly twice the numberesponding to the highest difference between
the order of magnitude of the charged Higgs masses. Assutiingxtreme case in which one charged
Higgs is sitting at 100 GeV and another one at the Plank seasuming optimistically that our QFT is
valid until 10'° GeV), the upper theoretical bound for the right-handedneuimass would be

M <150 Gev (V1.21)

However, more realistically one would expect the mass ottiaged Higgses to be around the TeV scale.
Assuming the lightest scalar field to have a mass of the orfdEd@GeV, we find

mP ~ 0.4 GeV, (V1.22)

which give us an idea about how light right handed neutrimesa&pected to be in the context of this model.

C. New gauge bosons

Some of the gauge bosons of the theory get mass once theytHeaBoldstone modes (by going to the
unitary gauge, so that the gauge gets fixed) generated ladtéoltowing breaking pattern:

SUR)r®SU2)L@U1) -1 = U(L)em.- (V1.23)

After the spontaneous symmetry breaking, they get massighr¢he coupling with the Higgses whose
neutral components get a vev in the kinetic term of the Lagjeam

Linetic = TH{(Due) (D)} + (DuHL) (D" Hy) + (D, Hr) (D" Hp), (V1.24)

where the covariant derivatives are defined as,
Dué = 0ud+igt Wi Trad — igroWirTRa, (V1.25)
DyHpr = {0, +igr,rW, RTL.Ra + i19(B-1) @Z}% L AYHL R (V1.26)

For the calculation of the gauge boson mass matrices, tlosvialy normalizations have been assumed:

a 1173 1 + 11170 1 +
Tip=—7 WiTtra=| i - Yips | =| i Yipo (V1.27)
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where in the last step we have renamed the gauge chg%§R — WSL/R due to their neutral charge

nature. In the above, the mass matrices are assumed to leefolltwing basis,

W, 1 Wy
EM = (W; ng) Mcharged <W&> + 5 (Wg W}% Z%L) Mheutral W}% . (V|-28)
i Zh1
The mass matrix for the charged gauge bosons reads as
9 o2 402 — V1V
Mcharged: ( 2 (2 L ) g2 gngZR ! 22 s (V|.29)
—gLgrv1v2 (V% +v7)

Here, the mixing angle betwedf ~ and W~ is given bytan 20 g ~ 8%L¢io, whereers = v1v2 /0% 10,

In the limit wherevyp > v1,v9, vy, the charged gauge bosons basically do not mix with eachr,atee
0rr ~ 0, SO we can ignore it and assurfié; andW," to be (approximately) physical states. Therefore,
the Wr mass is given by

2
My, =~ %Rvg. (V1.30)

For the neutral gauge bosons, the mass matrix reads as

2
%(%’U%—I—Zﬂ) _9L29R,U2 _gLi]lBL,U%
2
Mheutral = —%zﬁ QTR(%U% +0?) —939%1112,% . (V1.31)
2
9LYBL ,,2 9RYBL ,,2 9BL (,,2 2
1L —71 VR G- (vg + L)

In general, due to the breaking patt&tti (2) r @ SU(2), @ U(1) p—1, = U(1)em We expect on one hand a
total of six massive gauge bosons and, on the other hand, asgleéss gauge boson, which will correspond
to the photon. Hence, the above matrix should contain a igeoalue. In general, the neutral gauge boson
mass matrix may be diagonalized by a general rotation métiith three Euler angle§/” € O(3)), but it
turns out that performing the following rotation:

WP = cosbyZy, +sinfy A,
W}% = coslpZp —sinby sinOrZ;, + cos Oy sinOrA , (VI.32)
Z%L = —sinfrZp — sin By cosOpZy, + cos Oy cosOrA ,
the photon decouples automatically and one only needs twgesrio rotate the gauge bosons to
the physical basis. Here}y, corresponds to the Weinberg angle, i.eanfy = gy /gr where
9y = 9BLYR/ g%L + g%z, andfp is defined asanfr = gpr./gr.
The rotation (VI1.32), called?, decomposes in twoR = Rs (6w )R1(0r). Thegy is defined by the

breaking of the LR model to the SM, i.&8U(2)r ® U(1)p—1, — U(1)y, which corresponds to the first
rotation, which rotate$l’ }% and Zpy, to a heavy gauge boson plus the hypercharge operator in theBSM

10 for a 2x2 matrix, the angle which describes the rotation éophysical basis satisfies thatn (26) = %, whereA;; are
the entries of the given 2x2 matrix.
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leaving theW? invariant, i.e.

Z"\  (cosOr —sinfg\ (W2
<B> N (sinHR cosfp > <ZBL ' (V1.33)
Hence,
W9 = cosfpZ + sinbpB, (VI.34)
Zpr, = —sinfrZ + cosOpB. (V1.35)

On the other hand, from the kinetic terms on the fobf®¥ we know that the terms proportional to the
hypercharge operatds (after rotationR(6r)) are

- B-L
UDY > <( 5 )gBL COSHR%—gRTfsinHR) B. (V1.36)

Taking into account the definition of the hyperchardg® = Y — T, and substituting it in the above
equation we have,

UV O Ygpr cosOrB — T3(—gpL cosOr + grsinOg)B. (VI.37)
Hence, sinceos p = ﬁ, the hypercharge coupling is identified as
R BL
gy = __9YBLIR (V1.38)

IR+ 981

The second rotation is related with the breaking of the SMrdta (1),,,. It rotatesW? and B to A
andZ, leavingZ’ invariant.

The kinetic part of the Lagrangian involving fermion-gaugeson interactions reads as

9dRrR,L ( _ _
Lei <u7“(1 ) W5+ oy (L £ ) Wi e+ h.c.)
IRL (b (14 75 YW3 , w— dy (14 75) W3 1 d 4+ 7" (1 £ 5) W3 1 v — eyh (1 + v5) W3
+ 1 (a1 £s5) Roopt — Ay (L £ v5)Wg 1, d + 0y (L £ 95)Wg v — ey (1 £ 75) R,L;ﬁ)
9L (1. u L Dyl e
+T guy ZBLuu—ng’y Zprud — vy Zpruv — ey Zprue | . (V1.39)

And after rotating the fields to the physical basis (applyioation (VI.32)) we can easily compute from
there the Feynman rules, which are listed in the appendixshidgy here an explicit example of how this
rotation has enough freedom to fully reproduce the SM in a@istent way:

We know that the interaction of the photon with leptons isgamrtional to their electric charge and that,

since neutrinos are chargeless, they must not couple toht®m We are showing that this is indeed
accomplished in the context of LR symmetric theories. Froenkinetic tern?;, D¢, + ¢r D/ g, taking into
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account only the neutral gauge boson interactions,

0
0 Pl +pDlp D % (ﬁ ﬁ) (gLWL _OgBLZBL WO 09BLZBL> <Z§>
WY -
75 o5 QRW(}]{ —9BLZ BL 0 VR
+ (7R R) < 0 —grW'h _gBLZBL> <6R>
= 317 [gLW%(l —v5) + gRWOR(l +75) — 2QBLZBL} v
+ié [—QLWOL(l —V5) — QRW%(l +75) — 29BLZBL] e.

Rotating the gauge bosons according to (VI1.32) and corieglenly the interactions with the photon, for
neutrinos we haveu(, for the vector coupling and, for the axial one)

1
vy = 2 (gr sin Oy + gg cos Oy sin O — 2951, cos Oy cos OR)

1
= ; cos Ow cosOr (9L + grtanfr — 2gpr) = 0. (V1.40)

1
ay = 1 (gr sin Oy + gg cos Oy sin O — 2951, cos Oy cos OR)
1
=7 ¢os Ow cos O (9BL + grtanbr — 2gp1) = 0. (V1.41)

from where we effectively see that there is no coupling wigh photon, as expected. On the other hand, for
the charged leptons,

1
vy =3 (g sin Oy + g cos Oy sin O + 291, cos Oy cos OR)

1
=-2 cos Oy cos O (g9Br, + 2981 + grtanbr) = —gpr, cos O cos Oy . (VI1.42)

1 1
ay = ~2 (g9 sin by — g cos Oy sinfr) = ~1 cos Oy cos 0 (gpr, — gr tan By ) = 0. (VI1.43)
and thus, one has the expected vector coupling with the phataportional to the electric charge of the
lepton, defined as = gy, sin 6y = gp1. cos 0 cos By and no axial coupling, as predicted by the SM. The
rest of the Feynman rules can be found in the appendix.

Once the photon decouples, we are left with the still mixedsive Z-Z' gauge bosons,

M2 M}22R M%R

Z_Z/ - (M%R MI2/L> 5 (V|44)
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where the entries of the mass matrix are
2 4 .2
v 9RrVR
Mpp = 2 (gh, +97) +e 5B, (V1.45)
4 ( ) 2(9129L + 91%2)
GBvE\ 930k + 9 (9 + 93)
2(9231, + g%{)

2 .2 2 2 2
M}, = ev} ngR2+ Zuf/BL(gLZJr 9r) 7 (V1.47)
(gBL + QR)

M}p = —¢ (VI.46)

Y

with € = (v} 4 v3)/v%. Hence, the mixing angle betwegh— 7' is given by

—Ag3 /93 0% + G (0] + gh)
(92BL + 912'{)2

Notice that this angle is of the order efso that it is highly suppressed in the limig > v1,v2, as one
would expect from the electroweak precision constraintstifermore, for;, — 0, the mass term of thg

2.2, .2 (.2, 2 .
andW; gauge bosons\/; ~ v? 91971959, +97) and My, ~ Lv?g? respectively, are related as

tan 26 ~ € (V1.48)

9

2095, +9%)
M‘%VL = cos? Oy M3 (V1.49)
wherecos 0y = —=2.— according to the definition dafy above. This is a beautiful result that shows the

Y L
consistency of this model with the standard theory when akestthe limitAMyy,, — oo.

In the limitvg >> v1, v9, vr, the masses of the new gauge bosons are given by

1

MWR ~ §ngR7 (V|50)
2 2
1 \/9BL T IR

My = Jvh(gh +9k) = ~— ——Miwy. (V1.51)

By assuming that the LR symmetry is respected in the gauderdes we have already mentioned it, we
assume the parity symmetry is not broken in the gauge settnder to enjoy a low scale LR symmetry
and avoid domain wall problems8T)) , i.e. g1, = gr, then

M, 1.2 My, (V1.52)

Through the relation of the masses (VI.52) we can establistwer bound on theéZ’ mass from collider
boundsMy, > 3 TeV [70]:

M, > 3.6TeV. (V1.53)

D. New Phenomenological Aspects

In this section we discuss the most relevant phenomenolbgsacterizing the Zee-LR model, i.e. the
new predictions of this particular model w.r.t. other atheatudied LR theories. These new features are
the decay widths of the gauge bosons and the lepton familgrflasmber violation processes due to the
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presence of the charged singlet.

Gauge Boson Decays

In this model the new heavy gauge bosons can decay into aglhéermions plus, since the model
predicts light sterile neutrinos, one has extra decay atlarinvolving those.

J(p2) P 6" (p2)
, e
Z (p1) Z (Pl) yd
/
AVAVAVAVAVZS
N
A
F(ps) SN ()
The Wr decays are
Wi = du;, &ui, &N;. (V1.54)

Here N refers to the heavy Majorana neutrinos present in the th@drgrefore, the branching ratio for the
lepton decays of the new gauge bosons will be larger thareii.hmodels with Higgs triplets where the
right-handed neutrinos are very heavy.

The partial widths oil/ fg in the center of mass frame are given by (see appendix for deigdls):

_ i 1 1
* Massless fermions’ (W — ev) = T(Wj — eN) =Ly —o(Wh — ud) = 6—MW <§g%> ,
T

. 1 mi\ (1
. H ; + - - 2 2 "t -2 2 .2
Top quark involvedI' (W — tb) = 127005, <2MW mg m%/v> (89R> (M, — my),

where all fermion masses have been neglected except thautog mass. The total decay width is thus
defined as

Liotar = 3T(Wi — e0) + 3T(W5 — eN) + 3(20n,—o(W5 — ud) + T(W — tb)),  (VI.55)
where the color of the quarks has been considered. Thusrdaheting ratios of the above channels read as
BRIW — qaqu) ~ 60%, BRWE — év)~20%, BR(Wj — eN)=~20%.
On the other hand, one has the decay modes of thmson.
7 —qq, I, 56, (V1.56)

In the broken phase, both tig; andW}% gauge bosons contribute to this decay since they can bewmritt
as a linear combination of the gauge bosdns’r andZ;, according to rotation (VI1.32). The reader may
notice thatZr and Z;, are still not the physical fields due to some mixing in the nmaa#rix, but since the
mixing angle is small (suppressed by the limit we are comsigeas discussed above), we can assume that
they do correspond to the physical massive gauge bosonkas8t ~ Z andZ; ~ Z. The Feynman
rules of the interactiong’ f f can be found in the appendix. The partial decay widthg ofre thus given

by (see appendix for more details):
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o 1 1 1 1
. qu—O(Z —>uu) :48—7TC0829R <293+§% 3912BL> MZ’y
R

o o 1 1 1 1
. qu_o(z —dd) = Kcos 20g <2g§g+§g;;L+ 39BL> My,

1 1 1¢2 1
. (Z — tt) = M2 cos® O [(MZ +3mt)<2gR__ﬂ>+(M§,_5mt) Q%} M2, — 4m?2,

48T 4 Z

0, 1 1 g3
. Fme—o VA o) — 20 -2 BL ’
(Z — ee) 18, 5 Or <29R + & 9BL

/ C s Ugh, (9r g%\’

e T(Z —»6t67) = 2, sin% O (4m3 — Mé,)?’/2 ,

48T M2 FESVERE
in the limit where the final state masses are neglected bubthguark one. We thus find for the branching

BR(Z — ) ~ 32.89%, BR(Z — dd) ~58.02%, BR(Z — ée)~ 7.42%,
BR(Z —inv.) ~0.28%, BR(Z — 6t67) ~1.38%.

where we have assumed that = gg, i.e. the left-right symmetric gauge symmetry holds in taeige
sector, so that

tan? @ 1/2
gBL = (ﬁ) IR (V1.57)

The branching ratio of the invisible width as a functionMdf;;, is shown in Fig 20. For the plots shown
in Fig 20 a mass aoll/s ~ 1 TeV has been assumed, since the model allows it to be rdiatight. On the
other hand, the heavier the charged singlet is, the closgharbranching ratios to the usual L-R symmetric
models, as one would expect.

100 b
10
1 L

2 — BR(Z—0%0")

< 0.100} _

x BR(Z—qq )
0.010 3 BR(Z—e€ )
0.001 { — BR(Z-inv)
1074}

2.0 2.5 3.0 3.5 4.0 45 5.0

Mz(TeV)

FIG. 20: Branching ratios of the differeat decays. AM;s ~ 1 TeV has been assumed for the plots. As it is shown,
the branching ratios are characterize by their increasidgpendence on t¢ mass as long as it grows.
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Lepton number violation at the LHC

Another special feature of the introduced model is the fameipton-number violating processes that it
may induce at the LHC. The extra singlet charged Higgs, couples to fermions through the Majorana

terms)\L@wJr and )\R@wﬂ which violate lepton number and therefore may generatitepumber
violating signals at the LHC, as we are showing in the follogvi

The 56~ at the colliders is produced through the following DrellaYjprocess, which afterwards can
decay into leptons according to

pp =7, 2,2 — 5767 = ef e BF, (V1.58)

which in general induces signatures with two leptons ofedéht flavors and missing energyz**s. The
number of events of these channels can be estimated by atingothe combinatorics of the different
channels participating in the process such that,

N(efe; EF*™*) = L x o(pp — 6%67) x BR(0T — ¢fv) x BR(6™ — ve; ), (V1.59)

where/ is the luminosity in fb and-(pp — 6767 is the partonic production cross-section of the charged
singlet, which is given by
1 d.Lcrp
olpp — 6T67)(s) = / de—qqa(ch — 6T67)(3), (V1.60)
T0 T

wheres = st is the partonic center of mass energy, betrtge fraction of the proton center of mass energy

carried by the quarks ang) = 4M52/s its threshold. The parton Iuminositg,ﬁ—qq is given by the parton

T
distribution functions which are empirical distributiamnictions that model the topology of the proton. They
are shaped from experiment. Here we will use the last updateed®DFs J1]. The parton luminosity is
defined as,

% = /1 dr |:fq/p (z, 1) fap <%v#) + fasp (%7:“) Tamw (‘T’/‘)} ) (V1.61)

dr P

wherey refers to the normalization scale ajficestimates the probability of finding the quarknside the
proton with energye.

The differential cross-section of the quarks is given by,

_ _ 17" [ _ _
o(qf— 6T67) = TF ||]T{”||cm /Z|M(qq — 0767 PdZem, (V1.62)

where M (qq — 6767) refers to the amplitude of the scattering process. Thestatliyg — 6~ can be
mediated only by the gauge boséig;, in the unbroken phase through the kinetic tefby,d—)(D*67).
Once the symmetry is broken, thi;; gauge boson becomes a linear combination of the three p@thysic
gauge bosong, Z' and~, whose feynman rules with respect to quarks arate listed in the appendix.
The process before and after symmetry breaking is showngnZi. The matrix element of this process
can be generally expressed as

iM = 0(p2) [Viw + Ay’ (3 — pa) u(p), (V1.63)

where the coefficient¥),, and A, refer to the vector and axial coupling of the interactiorspetively,
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FIG. 21: Drel-Yan process in the unbroken (left) and brokéghf) phase.

which are symmetric and depend on each physical neutrakgaagpn in the following way

* Bosony:
2
vy, = £ gqg,w, (V1.64)
Al, = 0. (V1.65)
e BosonZ:
Viay k. k
Z Z i
= , — ) V1.66
Vi = TR, + b, T (9“ M%,) (V1.66)
ALay k. k
AZ = Z , — ) VI1.67
W S My + iMyT (9“ M%,) (V1.67)
» BosonZ’:
' Viayz k,k
V7 = z y — V1.68
m s — MZ’ + ileF (gp, M%, ) ’ ( )
! Aq,azl kuk
AZ = A ,— ) V1.69
nv §— My +iMyT <gu M%,) ( )

The probability amplitude for this process in the center asmframe reads as

STIMP = (2 + A2)% [—(t —w)® + (s — 2mZ)(s — 4MF)] + (V? — A%)mj(s — 4MF), (VI.70)

spins

where it has been used tigt, = Vg, andA,, = Ag,., beingV” and A the scalar part of the expressions

defined above. Notice that, since the process takes plate is-thannel, the longitudinal component of
the propagator does not contribute to the amplitude. Byawtiglg the mass of the quarks, the amplitude

simplifies to the following expression,

ST IMP =20t u— M) (V9)* + (A49)?), (VI.71)

spins

which is a good limit, since all the quarks participating ive tprocess are light. The scattering we are
interested in involves protons and therefore the aboveesowith top quarks is quite suppressed by the

parton distribution functions/[l], which justifies our assumption.
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Thus, applying Eg. (V1.60), the partonic production cresstion of the charged scalar singlet is given
by

Ne(3 — 4M2)2

olqq — 6T67)(8) = =02 (|V9)2 + | A9, VI.72
(4q )(8) on s (Ve +1A477) (VI.72)
with
204 Vq Vq/a /

yo = €9, Vzoz PN : (VI.73)

S §— M7 +il'zMz S—MZ, +il' M,

Al A%,a,,

andA? — 297 + z 2 (V1.74)

§— Mz +iTzMz 8- M2, +il,y My

being N¢ the number of colors. In the above formula, since the gaugersoare unstable particles, one
needs to consider that the full propagator will in generalehan imaginary part, which will reflect into a
Breit-Wigner distribution. Recalling that by the optichEbrem

1
Lot = —IME(m3) + - - (VI.75)
mp

wherem p is the pole massy(p?) is defined as the sum of 1Pl self-energy diagrams and-theefer to
non-1PI diagrams, one can see that, assufiipg< mp (weakly coupled theory), 1&(m%) = m pLiot.
Notice that the imaginary part of the 1Pl resummation is rers for unstable particles. Therefore, in order
to keep the mass real, one needs to modify the definition gfdleemass{2], so that

m3 —m% + ReX(m%) = 0, (VI.76)
wheremp, refers to the renormalized mass, and hence the propagatis as

1

. VI.77
p? —m3 + impliot ( )
From experimentl¢'®! ~ 2.5 [18] whereas the total decay width &t is given by,
riofel = 3.20(Z" — Gu) + 30(Z — tt) +3-30(Z — dd)+
(VI1.78)

30(Z — ee) +30(Z — w) +30(Z — NN)+T(Z — 6t67).

Notice the extra factor of three for the quarks due to coldri¢iv to detectors are blind). We considered all
guarks and leptons massless except for the top quark.

In Fig. 22 we show the production cross-sectiondofi~ as a function ofM; for different values
of the Z' mass for a center of mass energy of 13 Té\|[ For the calculations, the PDFs from the
reference T1] has been used. As it can be seen, the effect of the resormn€eelevant importance since
it increases considerably the cross-section of such eventie SM predictions. For instance, notice that
the production cross section reaches above 1 fb whef ithass is below 650 GeV.

For computing the cross-section, the mixing angle in thegdthscalar sector has been neglected

1 the mixing among the charged scalars can modify the ratepe@d. However, due to the huge amount of freedom in the
mixing matrix, one could not compute any rate without makimg assumption.
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FIG. 22: Drell-Yan production cross-section for chargedlacsingletsits~ as a function ofd; in the present
model. The dashed line corresponds to the SM predictionteesehe solid lines show the results for different values
of Zpr. For the calculations, th¢;, = gr scenario and a center of mass energy /13 TeV has been assumed.

Notice that a small mixing angle between the charged scigles and the charged scalars living in the bi-
doublet would indicate that™ decays mainly into leptons. Since the term which inducesdogling ofé™

to quarks is also the responsible of generating neutrincesasee Fig. 18), the decay of the charged sin-
glet to quarks is generally suppressed, which encouragesssumption that*t decays mainly into leptons.

In Fig. 22 (top) we show curves of constant number of eventsre/the cross sections fafg;, at
13 TeV shown in Fig. 22 has been used, and a luminositf of 3 fb~! and a center of mass energy
of s = /13 TeV has been assumed. In the plot, two different values oftZthmass are shown. Notice
that, for instance, one would expect more than 10 events fal@es of Mz, ,, below 500 GeV and
BR(6 — ¢ ;) above0.6.

In Fig. 22 (bottom), the prediction for the number of evergsumingl = 25 fb ands = 14 TeV is
shown. As it would be expected, the number of events incseemesiderably with the luminosity.

One has to be careful with the noise of other signals. The damiSM backgrounds of these processes
at the LHC are the W and Z pair production. The ZZ channel wélar produce two charged leptons
with different flavor. However, the WW channel may fake thgnsitures. To discriminate between this
background and the signal processes, one may look into Hrgethlepton transverse mass, which is defined
as (for one isolated lepton and several jets):

—

mp = \/ngpE:,”Jiss(l — cos Aqﬁ(ﬁ),ﬁ'}“ss. (VI.79)

Herepfp is the lepton transverse momentum ahqb([,ﬁ’}“ss) is the azimuthal angle between the lepton

and the missing transverse momentum directi@id [It is straightforward to see that a distribution &fr

has an end-point at the true mother mass. Therefore, thgtmeid due to the W pair production can be

reduced by requiring the transverse mass to be above the lbesss. This will make things easier when

regarding the search of these signatures at the LHC, sohbairesent model could be tested in the near

future.
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FIG. 23: Contours of expected number of events for 3'fat /s = 13 TeV (top) and for 25 fo* at /s = 14 TeV
(bottom) inM;-BR(6T — e v;) plane.
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VII. SUMMARY

As we have already discussed, experimental evidence eagesius to interpret the SM as an effective
field theory which describes pretty well the low energy eipental observables but does not provide an
explanation to other phenomena such as neutrino oscilgtarity violation on the electroweak sector and
S0 on, not even mentioning gravity. Under the powerful ¢ifecfield theory perspective, one may wonder
about new theories (UV-completions of the Standard Modélictv are able to explain some features not
contemplated by its low energy (electroweak scale) retdiaa

In this thesis we have proposed two simple and realisticnsites of the Standard Model which
improve it at a some extent. Both theories have in common ribatrino masses are generated at the
quantum level through the Zee mechanism, so that both agipesainclude a scalar charged singiet
and a second higgs doublet in their field content. This mdshais an economic way to give mass to the
neutrinos which naturally explains the smallness of theissncompared with the other leptons.

In the first scenario, a renormalizable and realistic gramiflad theory based on SU(5) is introduced.
The field content of the theory consists in the usual 5 and it representations and thg, 245, 451
and10g conforming the scalar sector, being the charged scalalesifig embedded in the antisymmetric
representation and a complex scalar doublet livingtig the crucial fields for the implementation of
the Zee mechanism to give mass to the neutrinos. We studesitebtlity of the theory by showing that
constraints coming from unification and proton decay bowagtsbe satisfied, which in turn establishes the
range of the parameter space of its fields in which the theorgalistic: for the parameter space shown
in Fig. 14 unification is reached and proton decay bounds atisfied. It is remarkable that, in despite
of the fact that®; does not help to unification, it does help to increase the Gtéilesand thus suppress
proton decay. One of the main predictions coming from impgsinification and proton decay constraints
is the existence of a light colored octét;, which mass scale ranges from ~ [10%®,10%!] GeV. This
light field could give rise to exotic signals at the LHC suchoa® top and three light jets, due to the
antisymmetry of its Yukawa coupling with quarks in the flagpace. The Zee mechanism is implemented
in order to give mass to the neutrinos through radiativeemions at 1-loop level. As an outcome of the
theory, a beautiful relation between the neutrino massestlam charged fermion masses, given by Eq.
(IV.53), appears in a natural way, which shows the power ofritgathe Zee model embedded in a grand
unified theory.

In the second scenario, the left-right symmetric model &bleredict Majorana neutrinos with the least
degrees of freedom is introduced: one has the minimal Higg®sto break the LR symmetry, i.e. two
complex doublet scalarB z and H,, and a charged singlet Higgs. This simple model predicts light
sterile Majorana neutrinos which play a crucial role in tbes lenergy phenomenology. We study two
phenomenological aspects which are characteristic optnicular theory: the branching ratios of the new
gauge bosons decaying to fermions and the lepton nhumbeitigiolsignature in which two charged leptons
of different family plus missing energy are predicted to bedoiced. The decay of the heavy gauge bosons
predicted by the Zee-LR is interesting in the sense thatghirbe different of the predictions coming from
other LR-models due to the fact that this theory predictglat Isterile neutrino in which the heavy bosons
can decay, whereas in other LR-theories which predict hetajle neutrinos this decay is kinematically
forbidden. The branching ratios of the new gauge bo$bpsandZ are studied. We hope that the induced
modifications by the light sterile neutrino can be testedchatltHC. On the other hand, the presence of
the charged singlet predicts lepton number violation dignes,qg — 676~ — e;e; E7¥**, in which two
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charged leptons of different family lepton number and migstnergy may be produced at energies in the
available range of the LHC. The upcoming improvement on épéoin number violation experiments such
as the upgrade of MEG, called MEG2, or the experiment Mu2édctwhill be available in 2017-2018,
motivates the testability of the Zee-LR model.

We stress the beauty of these two BSM-theories: the ZeejSal{bough it has still too much freedom
in their parameters, it has all the advantages of a grancedrtfieory, such as the quantization of the elec-
tric charge, fermion mass relations, baryon and lepton munatmlation, strong and weak forces merged
together, etc. This theory also predicts some interestirigomes, named above, which are exclusive for
this theory, i.e. not contemplated by other GUTs. The Zeemhdrlel, on the other hand, has a strongly
predictive power due to its proximity regarding energy ssalWe hope to study in more detail the phe-
nomenology of these models, particularly lepton humbelatitn processes, which could be tested at the
LHC in a really near future. Both theories are so far the malinenormalizable theories which predict
majorana massive neutrinos (without adding extra fermioglats) that can be found on the market. They
have been introduced and studied in the following publocet

» P. Fileviez Perez and C. Murgui, ‘Renormalizable SU(5)fldation,” Phys. Rev. 34 (2016) no.7,
075014 doi:10.1103/PhysRevD.94.075014 [arXiv:16047G3Bep-ph]].

e P. Fileviez Perez, C. Murgui and S. Ohmer, “Simple LeftiRigheory: Lepton Number Vi-
olation at the LHC,” Phys. Rev. 34 (2016) no.5, 051701 doi:10.1103/PhysRevD.94.051701
[arXiv:1607.00246 [hep-ph]].

which are the pillars of this master thesis.

79



APPENDIX

VIl

VIIl. A PPENDIX

A. SU(5) generators

,24, where

Aiy =1,
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B. Field content and interactions of Zee-SU(5)

Representations if the Zee-SU(5) from the SM point of view:

5~ (1,2,-1/2)®(3,1,1/3)

lr, (@)L
10 ~ (3,1,-2/3) @ (3,2,1/6) @ (1,1,1)
——
(u®)L qaL (e)r
Vag ~ (8,1,0) ©(1,3,0) ® (3,2, -5/6) ® (3,2,5/6) @ (1,1,0)
—— = N——
Gu Wy Xy Yu T
Hy T
2y ~ (8,1,0)@(1,3,0)® (3,2, —5/6) ® (3,2,5/6) ® (1, 1,0)
SN—— N—— N——
s 33 X(3,2) X(3,2) Yoy
45y ~ (8,2,1/2) @ (6,1,—1/3) & (3,3,—1/3) @ (3,2,—7/6) & (3,1, —1/3) & (3,1,4/3) & (1,2,1/2)
P Do &3 Dy @5 D6 Hs
——
6+ 5(372) 5'1"

Location of the fields inside the representations (from now,g, k = 1..3 will refer to color indices and
«, B,v = 4,5 to weak isospin indices):

Matter representations

i 0 w§ —uy w dp

B S 1 —u§ 0  uf wuz do
5= S |, 10 = 7 us —uf 0 wug d3 |. (VIILYL)

e —u; —up —uz 0 et

-V —d1 —dg —d3 —€+ 0

5y representation

o
I
N~
w
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10y representation

(10g)% ~ 62  3d.of.

(1057)% ~ 8%, 6d.o.f.

(3:2)

(10g)*8 ~ e85+ 1d.o.f,

45 representation

(455)IF ~ f{®g, @5} = Ml Dy, + eTMey;,, D™ 9 -3 (trace) = 6 d.o.f
Dy = Doy andds,; = — Py, 6+3

(451)1% ~ f{®1, Ha} = [\ @19 + 67 HY 16 + 2 =18 d.o.f

(451)d  ~ €7k Dy, 6 d.o.f.

(45m)0 ~ f{®3 = (A1, Ao, Ag), &5} = ?%a[aa]g +02@5" 12 d.o.f.
458 ~ (A" +iA2") /V2 = (¢373)1 3

: TR .
4525 ~ (All — ZAQZ)/\/§ = ((ﬁ? 3) 3
455 ~ A3' V2 + @5 = (9373)T/V2 4 5’ 3
) . 2

(45H)?6 ~ P g, 3d.o.f.

(451)5" ~ —3e®THy'eos 2d.o.f.

where the following explicit form for the triplet in SU(2Y§/(2)) and in SU(3) Qs (3)) is used:

L A0 At
TSU(2) 10"A, = ( \/2_ _ L A0 ]
V2

Oty T Ve
Osu(3) : A*Qa = ‘T/i —QgUJ;Y/Z U}—/ .
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C. Yukawa interactions

Ly wkawa = 5 10{Y15}<{ + Y2(457q)} + 10 10(Y35H + Y445H) + Y55 5 10g

- 45 representation -

« Interactions ofd; ~ (8,2,1/2) = (¢17, ¢1°), wherea = 1...8:
Ly DYaqp (I’I (d9)r + Yaqr @1 (u)p,
Ly D 2Yy 5,107%(45% )%, +4Y3 101075 (45 1) eijmeas — 2V P10910°% (451 i jiéas

Ly D 2Y0{(dS)idy? (698 + (dS)oun? (6D HNYE + 4Vt — VIO {(ul)iuief, —
(u§)idy’ ¢ F AT

1 a C c 1 7 1 7
L3 ~ Eyz Pt = Y {(dS)idy? (ul) jug’ — (dS)iuy? (ul);dq" }
1

* Interactions ofby ~ (6,1, —1/3) = (®2);;, where(®s);; = (P2);;:
Ly DYy (d9) <1>£ (u) + Yaqr ®2qr
Ly D Yy 5,107 (457))" ) + Ya{410°*10% + 1029107 } (45 1) e peins
Ly 2 2Y£(d9);(ul); (1)1 4+ 8 (Y0 — Vo) dy 1y Doy
Lo %Y;b (V5 V) (dS )i (uf)) i)
2
_ 42 1.4
+ Interactions of3 ~ (3,3, —1/3) = {(#3 )", (¢5 *)", (¢5 °)'}:
Ly D YéQLq);T),lL +Yiqr P3qL
Ly D 2Y3 5,100 (455)% + 8Y3 10109 (45 1) 5 € jrary

.4 . 2 . . 1
Ly 2 25 {eady' (05 )] — vam' (93 )1} + VIV {eawn’ + vady'} (05 7) 1+

! 2 S
+4(Y — Vi) g u? (3 ) Feiji — da'dp? (05 2 ) Feijit + AV2(Y — Y%V do wp? (3 *)Fesjin

o 1 o . .. .
L35~ — Y5 (v -ve) (eadblucjudk + vaupidddg® + equpidiug® + Vadb‘chudk) ik
®3
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« Interactions ofb, ~ (3,2,-7/6) = (gb;%i,qi%i)i
Ly DYy (u®)y <I>£ Ip +Yi(qr) ®a(e®)p
Ly D V35107 (455)%, + Y3 {10°7107455 e peiji + 2101077458 €605}
Ly > 0¥ ea(uf)i(0) ) — va)i(6; )T + AV — Y (eCuri (05 V)i + S (0 1))
it~ VB (=) (e (0o ' = 0o )
’
Interactions ofb; = (3,1,—1/3) = &5’
Ly D Yy {qr ®Ll, + () ®L (uC) 1} + Ya {qr ®5 qr, + (u€) @5 ()1}

Ly D Yo{5;107%(453)%, + 25,107 (457)%} + Ya{410°10%7 + 109107} (4511 )5 einicap

—Y4{210910°8 + 810° 1078} (45 H)’g%wkem

Ly D —2Y7(dS)i(u) ;0L €7 4 2y (eaubiq)},i - yadbicpgi> +8(Y™ — el (uf); @
1

Lito ~ o ¥iP (O = Y) ({eats’ = vady'ye€ (uS); — (d9);(u)jef (e

Interactions ofbg ~ (3,1,4/3) = @,
Ly D Yy (d) @) (e9) + Y (u€) B (u€) 1,
Ly D Y 5;10°%(45% )} 5 + 22 109105 (45 1) € jpeas
Ly > 2758 (d0)ie Bf — 4Vt — ¥ ()i (uf) ) By
£l Vi (5 - ) (@) f (a2 (0 e
6
Interactions offfy ~ (1,2,1/2) = (H,", HY):
Ly D> Y1 {(d°) H} g+ 1 H} e®} 4+ Y3 (u€) Hy q

Ly D 2Ya5, 10Ja(45* o + Y2Ba1077(453)% 4+ AY410°10% (455) €pmeas —

2V, 10910 (45 11) " €3 j1€0p + Y4 101710 (45 ) €;50¢ 3,

Ly 2 2Y5{(d)iuy (HF )T + (d)dy (HI)T} — 6Ys{eqe (H) + vaef (Hy )T}
—8(V — V) {(u)su" HY — (uf)idy' HY }
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- 10y representation -

* Interactions ob* ~ (1,1,1):
Ly D Y5l ot Iy,
Ly D 2Y55,5510%8

* Interactions ofi(s 5 ~ (3,2,1/6) = (A’ 5, A" ,):
3 3
Ly DYs (dc)L (5(372) Iy,
Ly D Y55,5,10% + Y5 5,5,10°

Ly > (3 = v {@)iendl s — ()’ 4 |

* Interactions oby ~ (3,1, —2/3):
Ly D Y5 (d9) o7 (d°)1
Ly D 2Y5 5,-5]-10“

Ly D (Y5 = Y2)(dS)i(dy)jorwe™

- 5 representation -

» Interactions ofl" ~ (3,1, —-1/3) = T"
Ly DYi{qr Tty + (d) TT ()} + Ya{qr T qr + (u®) T ()}
Ly D Y1{5,10%57 + 51075%} + Y3 { —4 10°*10/°T* + 10°° 109 T* 4+ 10710°°T*} €560
Ly D Y (vad — equp) T, — (dg)i(uf)); T} — 405" + Y3 {2l d) Theigy, — ef (uf ) T
Limg ~ # £ (4 Y5) {vadhel (uf); = eaupel (u§): = (d9)i(uf)jel (uf e + 2equlul deie

T
~2vadiuldbeg + 2(d9)i(uf)juldl(5}0] — 675])e* }
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* Interactions offf; ~ (1,2,1/2) = (H;", HY):
Ly > YVi{(dC) H ¢ + 1 HI €} + Y3 (uC) Hy g
Ly D Yi{5:105 5%, + 5a10%5 55} + Y3{2 1071050 ¢jjpeap + 21010775 ejpeap}

Ly O Y® <{(dac)iuf,+ua CVHD) + {eacl + (dC)sdi} (HD) )
HA(YEY + V) { (uf)sup HY — (uS)idy Hy }

D. Lagrangian of Zee-SU(5)

Definition of the covariant derivatives:

Du5 = 8u5 + igGUTAp5
D,5 = 9,5 —igcurAub
D,10 = 9,10 + iggur(A,10 + 104))
D, 24y = 8u24H + t9cUuT [A“, 24 ]
Dy(451)5° = 0,453 + igaur (Al (45m)3™ (AD)S, = (AD)5(451)5”)
Transformations of the representations involved in Ze¢5%U
5" — U5,
5 = 5,(U"),
107 — U 10°(UT)/,
10,5 — (U");"10a(U")",
24'; — U 245U,
457 — U 4522 (U™ (UT)e,.
In general,
WAL = U Uy - Wyl (U3 (U)o

where the superscript (subscript) refers to the fundaréméifundamental) representation.

The Lagrangian of the minimal renormalizable extensiondf3 is composed of the following terms:
L = Lyauge + Lfermions + Lscalars + Ly ukawas (VII.2)
where
. Loauge— —%TT{F‘“’FW} beingFl, = 8, Ay — By Ay, — igeurA, A,
* Ltermions= 572" D,,5 + $Tr{1077%i* D, 10},
* Lvukawa= 5 10{Y15}; + Y2(457)} + 1010(Y35y + Yad5) + Y555 104,

86



VIIl APPENDIX

© Localars = 3Tr{(D#24},)(D,245)} + Tr{(D*45},)(D,455)} + Tr{(D*105,)(D,104)} +
V (51,245,455, 105).

(Remark: the bar is means that the fermions are in the anti-fundamental reptatsen. The adjoint here
is written explicitly, i.e.1)40, just a question of notation), wheléis the scalar potential which explicitly
takes the following form:

V(5m,245,451,10) =V (55) + V(10y) + V(24g) + V(451) + V (5u,10g) + V (5, 245)+
+V(5g,45y) + V(10y,24) + V(10y,455) + V(245,455 )+
+ V(24H,45H, 5H) + V(45H, 10y, 5H) + V(5H, 245,451, 10H)

where
V(5m) = =555 + M (5°55),
V(10p) = —p3p10°°10% 5 + A2(10°7107%5)% + A310°710%,107° 105,
V(24p) = —pi3424%245 1+ 24(24%245 )2 4 0,24%24° 247+ \524%248 247240
2453 godio T MG godiy )7 a1 2875 240 2% o T A5 od oty 24 524 o,

V(45p) = —pisd5374577 + A (455745] )% + A7455°4550,455757) + A\g455745%0,457745%5

+ Ag453045:5 455745 %) + M\1g455 745345004558 + A1 4557 4575 45651+

+ A1pd55745 34550457 + A3455 7457455157
V(5m,105) = A145,5710%,1077 + a55%,10%75% + a%510%,55” + A155510%710%,57,
V(5u,24m) = a35,24%5" + A16555%247 2475 + \175,,24%247 57,
V(5u,451) = Msd5745] ;555° + Mod55 757457157 + Agg455745 15559,
V(10,245) = A110°7107,5247%524°, + a410°724]10% , + Ag210%724 724.0105,, + Ag310°724,]10%524°,,

Y

V(10,455) = Ag54557457710%5107° + A4557 107, 54557 10° +

Ao74557 1075104557 + Aps455745:5,107°105, + Aaod557 1075455107

V(24,45 ) = a24557 2474575 + Ago(4557457)24°.24% + X31453724°, 24457 + A324557247,24°. 4575+
334557 247:249,45%5 + N34455724%, 24, 457, + Ag54557247, 245,452,

V(245,455 551) = A3655247,455° + Xg757,247,24%34527 + \3557,24% 2475455 + h.c.
V (454,105, 55) = pd55°107,457 + h.c.

V (51,245,451, 105) = A39455724710% 35° + A1045275724°,10%5 + h.c.
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E. Scalar potential of the Zee-LR model

The most general renormalizable potential that can be eariet! with the field®; = ¢, &, = o, Hy,
Hpr andé™ which is invariant under left-right parity symmetry, whichplies

Hy + Hgp and®; < @], (VII1.3)
reads as

V=3 (H Hy + HLHp) + \g(HL Hp)? + (HLHR)?) + A\or(HL Hy) (H), Hp)
— (435 TH(DIB;) + AL TH (@] @) Tr(@8y) + A, Tr(®]@; 0] )
+ai(H} Hp + HyHR)Tr(®I®)) + bij(H} @@L Hy + HE 1 Hp) + c;(H] ©;Hp + Hy O Hy)
— 12675 + As(676T)  + d(H! Hy + HL,HR)™ 67 + ey Tr(®] ®,)6~ 6+
+ N(HFioy®; Hro™ — Hjiok ® HL6),
where

2V, _ (2 O N Y 1) @ (1) (D)
(H@)ij - (#cb)j% /\ijkk - /\jikk7 )‘ijkl - /\klz’j7 )‘ijkl - /\jillw
(2 _ @ _ (@) _ @ _ _ _
Akl = Nkt = Mg = Nk @i = @i, b = bji, ey = €ji
In this section we show the consistency of the theory by flietvéng that the limitvg > vy, v1, v9 (Since
we know thatMy,, > My, experimentally) is physical, i.e. minimizes the potentaid then by defo-
cussing in the limits < v1 since it corresponds to the scenario of the low-scale se@saave interested in.

For simplicity and w.l.0.g. we assume that bethandvs are negligible compared withy, andvg. In
this context a soft breaking of the symmetry in the doubledssrierm should be required in order avoid the
trivial extremumuv; = v9 = vg = vz, = 0. The extremum conditions lead to

oV v2 1
% = ’UL(U%)\H—I-?R)\LR—/L%) =0,
ov 02 !
% = ’UR(U%Z)\H—F?L)\LR—/L%) = 0.

We assume that the vacuum expectation values are given loyitpge pair of positive solutions:

\/4)\H,U% — 2ALRY

vy, 9
VAT — AR

\/ ANHPE, — 2ALRIT,

UR .
VA~ ALg

Thus, the above vevs for the Higgs doublets plus= v = 0 extremize the potential. Now we show that,
in this context, a positive definite mass matrix for the Higgs obtained, which in turn justifies that this
solution corresponds to a minimum of the potential.
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The CP-even Higgs masses are then given by

M ME 0 0 h9

1 M? 0 0 0 hY
L= hO hO 0 0 12 R ,
2 ( L R ¢1 ¢2) 0 0 M?z3 M?§4 ¢g
0 0 M3y Mg 9
with
M2 — 4/\H(2)\I;ﬂ2L _ZALRN%{) ’
ANy — Mg
2 2A\LR \/2>\H#%3 — ALRIZ \/2>\H#2L — ALRIS
12 — )
ANy = Nig
2 (a11 + a9 + ba2) (,U2 + u? )
2 LT HR 2 2
Mss = g + M -2 ((/%)11 + (:“<I>)22) )
2 2 (2a12 + b12) (l‘ZL + /‘%%) 2
M3, = —4(13),y
22y + A\Lr
2 (a11 + a2 + bi1) (13 + p%)
2 L THR 2 2
M, = -2 ((/%)11 + (:“<I>)22) :

2 g + ALR
The CP-odd Higgs masses are given by

1 M2, M3 AY
LDO= AO AO < 33 34> < 1> ,
SR ARV

with
iy = 2L L VLR 2 ()4 (4))
i, = 2 4
i = 2O NI (43,1 (),)

whereA? and A% are Nambu-Goldstone bosons eaten by the gauge bdsand Z ;..

The charged scalar masses are given by
5 w2 w2 -
c oo () (o
Lo ¢ 43) M%4 Mz214 Mgs o1 |
Mz Mis Mss/ \ o,
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with
33 2>\H i /\LR 6
2f2 \/2)\H/l%z — A\LRIZ \/2>\H#% — ALrI,
M2, =
34 ANy — N2 ’
2 —2f1 \/2/\11#%3 — ALrMZ \/2/\H#2L — LRI,
i D |
2 - Mg ((a11 4 ago + ba2)pi? + (a11 + aze + b11)pk) + 2Am ((a11 + aze + bin)pd + (a11 + ago + bao) %)
= W,
2 2
- ((/‘é)n + (:“<I>)22) )
M, = 2 (12),, — (2a12 + bi2) (1 + 1%)
15 ®/12 2 g + ALR ’
2. — Mg ((a11 + age + bi1)pd + (a11 + age + baz)p) + 22 ((ar1 + azz + ba2) 3 + (a11 + aze + b11)p%)
55 = — 2 2
Mg — Mg

- ((/‘gb)n + (:“é)m) )

whereh andhi; are the Nambu-Goldstone bosons eaten by the gauge bdgorend Wi .

Although the limitvy, v9 < v, vg WOrks as we can see from above, we are interested in the Separa
of v; andwv, and the parameter space whese— 0 in order to enjoy small Dirac neutrino masses.

V D —(13)i; TH(®] ;) + by (H} &0 Hp + H @ Hp) + ¢;(H & Hp + Hy O HL),
and assume for simplicitg2 )11 = (u2)22 = (13)12 =: p3 andby» = 0 we find

vrog (2c103 + 2 (=243 + bii(vi + %))

(v7 4 vR) (—2b2apg + b1 (=25 + ba2(v] + v})))
vrvg (2c203 + 1 (=263, + baa (v +v%)))

(v 4+ v}) (—2boapd + bri(—2p3 + bazo (vi +0%)))

v = —

)

Vo = —

We can infer that to separate andwv, with v, — 0 the scalar potential has to be in the regipig cg — 0
andce # 0. This can be seen more easily in the limit — 0 where we find

CoULVR
V1= e 9y
bgg(’uL + ’UR)
C1VLVR
Vo X

_bll(’l)% + ’U%) ’

and hence ifCQ/b22| > |Cl/b11| thenwv; > vy and fore; — 0 alsovy — 0.
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F. Feynman rules of the Zee-LR model

Feynman rules involved in the Zee mechanism:

Unbroken Phase

Broken Phase

+( =Y} P, - YiPg P2
(:J v ——< - o
7 =vPr-YPL
AN

=2(ALPL + ArPRr) .

<

N s

Feynman rules involved in the scatteriqpg — 56 :

qqy : —ieQi",

a2 : —i(Vy — A7y,

/

1z : =i(Vy — AL )",
eeZ : —i(Ve — A%y,
VAR iAZ, YoM,

NNZ i Al APym,
6707+ —ie(ps — pa)*,
070~ Z : —iaz(ps — pa)*,

6077« —iay (p3 — pa)*.

where

1 Q%L 2 1
Vi =-cosbw (grTs — 2 cos“Op | =+ T3 ) |,
2 qgr 3
49 = B ooy (%2 2
Z——icos w g—sm RtT4aL |,
L

1 1¢?
Vg, =5 cosOr <gRT3 - —ﬂ>,

3 9r
AqZ, = QTRT;), cos g,
e 1 92BL 9r
VZ/ = 500893 <9—R — 7)
AEZ, = —% cos Og,

91
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1 2
. A’él :Ag —200893 <gR %i),

2 gr
* ay = —gpgy sin Oy cos Og,
* a, = —gprsinbg.
wheree = gz, sin Oy = JLIBGrL andTs3 is theSU(2),/ isospin of the quark.

V91 9% +9%1 (97 +9%)

G. Dimensional regularization

Performing a Wick rotation , i.ex? — 20, the integral can be performed in the Euclidean space,

ddl 1 " ddl 1
/(27r)d GEVNE =) Z/ U CEYNG (VIIL.4)
and using d-dimensional generalized spherical coordinate d?l = 197 1dldS,
de o0 ld—l
N / 2n) /0 L TEENER (VIIL5)

Taking into account thaf dze™*" = /T,

d ~ .
(ﬁ)d = </ dme_z2> = /ddwe_zd:”? = /de/ dzzd—le=® = </ de> %/ d(x2)(x2)§—le—x2
0 0
(VIIL.6)
where the chain’s ruld(z?) = 2zdr was used. By identifying the gamma function, which is defiaed

= [ d?) () eV,
(vVm)d = (/ de> I'(d/2), (VIIL.7)

so that[ dQ2; = ( g /2) Applying this result to the above integral,

(VII1.8)

4] 1
/0 (2m)d (12 + A)" d/2 \/—/ l2 + A)

focusing in the remaining integral, we can do a couple of gkarof variables in order to write it in an
adequate way. First, by using again the chain’s rule in tgi& i.e. di*> = 2idl we get

00 ddl 1 B 1 00 (12)%_1
/0 (2m)d (12 4+ A 5/0 dlzma (VI11.9)

and then performing the following change of variakfes

12+A)

I n—d/2—1pq _ evdj2—1
= 5A /dgg (1—¢) (VII1.10)
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by identifying the following definition of the beta functipn

1
/0 degeI(1—¢)P ! = % (VII1.11)

we are done with the integral over Putting altogether, the final result for the d-dimensidntdgral reads
as

d —1\ T'(n — d n—¢
/ it 1 _ (hmule—g) (1T (VIIL.12)
(2m)d (€2 — A (47m)4/2  T(n) A
Proceeding analogously, the following d-dimensionalgréés in Minkowski space7d] can be obtained:
d 2 1YL 4T (n — d _ 1 n—2—1
/ ¢t £ (C)adln 5 1) (1T (VII1.13)
(2m)d (2 — A)n (4m)4/2 2 I'(n) A
d wpv _1\n1; ;v T _Q_l n—9-1
/ i o I i U () M (VIIL.14)
(2m)d (02 — A)n (4m)d/2 2 I'(n) A

Concretely, for Eq. (VIII.12) and = 2, i.e.

d 1 7 d -
/ (2m)d (12 — A)2 - (47T)cl/2F <n - _> A2, (VII1.15)

which, by redefiningl = 4 — ¢, reads as,

_ i L) <i>2. (VII1.16)

(47’(’)2 (471')% A

Since we are interested in the limit— 0, i.e.d — 4, we can expand the powers eby taking into account
that x¢ = e-°9%) = 1 4 eLog() + O(€?) in the following way,

7 (5)=2-7+00

. (471)% =1+ %Log(élw) + O(é?),

e ATh=1- %Log(A) +0(e?),

where~ is the Euler-Mascheroni constant, ~ 0.5772. Applying the above expansions, the integral
(VI11.16) reads as,

- (2 _Log <%> oyt O(e)> , (ViIL17)

where we truncated the result at ordasincee — 0. Notice that we have a dimensionful logarithm. We may
solve that by performing the following trick: let us add amitnary scale,ug, called the renormalization
scale, in the following way,

- <§ ~Log (ﬁ) at O(e)> , (ViIl.18)

R

sinceu = 1 + ¢/2Log(u?) + O(€?), so that now our integral looks much nicer.
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H. Amplitudes and decay widths of the gauge boson decays io.¢the frame

fa(p2)

V;t (pl)

f3(p3)
FIG. 24: Gauge boson decay into fermions.

The probability amplitude for the process shown in Fig. 2Ahdppen is given by

4 2 . .
5 1 = 5 [ () + 2EEEPLE ) (a2 4 L)~ a1V~ v )]
spins 14

whereMy, refers to the mass of a general spin-1 massive gauge Bosandm. andmg refers to the mass
of the fermions of momenturp, andps, respectively (see Fig. 24). THg  and Ay refers to the vector

and axial component of the Feynman riiig f respectively (see section of Feynman rules).

Now let us analyze the kinematics at the center of mass frahweyn by Fig. 25. In the center of mass

A

14

fa < ® > /3

FIG. 25: Diagram of the decay of a heavy gauge boson into twoifas in the center of mass frame.

frame one can define the momenta according to the figure as
péL = (MA7 07 07 0)7
pg = (p*v 07 07 _p*)7
Py = (p*,0,0,p").
After applying energy-momentum conservation,

1

2 p9) = & (VE — (3 )

(p1-p2) = Ma\/p*2+m3,
(p1-p3) = May/p*2?+ m3,

where

Jmd = m3)? — M (2(m3 +m3) - M3)
P = 2M 4 '
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Using the above relations, the amplitude in the center okrfrasne read as

(m3 —m3

471 2
> IMP = 3 {5 <2M\2/ — (m3 +m3) — T)> (W l? + [Av[?) + 4mams (Vi [* = [Av*) | -
|4

spins

So, in the case of thB/;; boson, sincéVy |2 = |Ay|? =, the above expression simplifies to

(m% m3)2

_ 2
P(W,{LM — fafs) = (Qg gR,L> 2M§/g — (m3 4+ m3) —

whereQ?, = 2[

For theZ' case we can also do some simplifications simge= m3 = m, so that

STIMP =2 [(ME - mB) (VWP +1Av?) + 4mF([V * — [Av )] .

spins

The decay rate for any two-body decay in the center of massgfia given by

= 2M2/Zwy doQ.

spins

Thus,

2\2

{ <2M (m2 + 2)—M>(W 2+ |Av?)+
v — Mg T3 1% Vv

My

1
127 M3

+ dmoms (Vi — [Av|?)] \/(m§ —m3)? — MZ(2(m3 +m3) — M).

LV, = fafs) =

Again, by considering the corresponding simplificationstte casedV; and Z' mentioned above, the
decay widths read as

e 1
NZ = []) = 5op [(MZ +3m3)|Vy |2 + (M —5mf)VAz\] /M, — am?,
Z/

- 1 1 2 (m3 —m3)?
TwvE . _ IM2Z . — (m2 2y (M 3
( R.Lu f2f3) 127TM5V+ <2\/§9R,L> W;{L (m2 + TfL3) MI%VJr
R,L R,L

L

%ma w2 = agg, (2m3 4 - 2a3 )

M

+
WR,L
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