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Figure 6. VPS4B upregulation is necessary and sufficient for impaired recycling endosome trafficking upon TDP-43 knockdown.

A Primary hippocampal neurons (DIV6+3) were transfected with either VPS4B or an empty vector control together with GFP-RAB11 to visualize recycling endosomes.
Neurons were imaged as in Fig 1 to analyze recycling endosome transport.

B, C Quantitative analysis of vesicle motility (B) and the number (C) from kymographs in (A) (n = 4).
D Primary hippocampal neurons (DIV6+3) were transfected with the indicated combinations of shRNA targeting TDP-43, VPS4B, and control together with GFP-RAB11

and imaged as in Fig 1.
E, F Quantitative analysis of vesicle motility (E) and the number (F) from kymographs in (D) (n = 3).

Data information: Mean � s.e.m., unpaired, two-tailed t-test (B, C) or one-way ANOVA (Tukey’s post-test) (E, F): *P < 0.05.
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B). Moreover, knockdown of TDP-43 in older neurons, when mature

dendritic spines are already established (DIV14+5), led to a similar

withering of the dendritic tree and significant spine loss

(Appendix Fig S4C–F). The remaining dendritic spines were signifi-

cantly thinner, indicative of reduced synaptic strength (Appendix

Fig S4G and H).

While treating control neurons with the ErbB4 ligand NRG1 for

two days enhanced the dendrite growth, NRG1 failed to promote

dendrite growth in TDP-43-knockdown neurons (Fig 9E and F),

suggesting that NRG1 signaling via ErbB4 is impaired. These effects

were fully mimicked by VPS4B overexpression (Fig EV5C and D). In

contrast, expression of ErbB4 in TDP-43-knockdown neurons led to

the complete rescue of the dendritic complexity although ErbB4

expression in the control cells only slightly enhanced branching

(Fig 9G and H). Similarly, ErbB4 expression was able to restore

dendrite branching in VPS4B-transfected neurons (Fig EV5E and F).

Thus, dendrite loss in TDP-43-knockdown neurons is at least

partially due to the impaired recycling of ErbB4 to the plasma

membrane caused by VPS4B upregulation.

Discussion

Loss of TDP-43 function is thought to be a major driver of neurode-

generation in FTLD and ALS patients with cytoplasmic TDP-43

aggregation, although the molecular mechanisms are poorly

understood. Our data establish TDP-43 as an important regulator of

recycling endosome dynamics by transcriptionally repressing the

CHMP2B-interacting protein VPS4B. Impaired trafficking of recy-

cling endosomes upon TDP-43 knockdown inhibits the cell surface

expression of ErbB4 and hence prevents the stimulation of dendrite

growth by its ligand NRG1. Thus, we directly link TDP-43 loss of

function toxicity to two genes with rare ALS/FTLD-causing

mutations, CHMP2B and ErbB4. This suggests a common pathway

leading to neurodegeneration by blocking trophic signaling through

the impaired dynamics of recycling endosomes.

Nuclear TDP-43 specifically controls dendritic trafficking of
recycling endosomes

We show that TDP-43 loss of function impairs the trafficking of

GFP-RAB11-positive recycling endosomes in the dendrites without

affecting the RAB4- and RAB5-positive endosome pools or mito-

chondria using live imaging in neurons. Impaired recycling of

fluorescently labeled transferrin despite the normal initial internal-

ization in TDP-43-knockdown neurons largely excludes confounding

effects of ectopic GFP-RAB11 expression on endosome dynamics.

Importantly, TDP-43 knockdown in iPSC-derived human neurons

also impaired recycling endosome motility, further strengthening

the relevance of this pathway for human pathophysiology. We

discovered that altered endosomal dynamics upon TDP-43 knock-

down is due to upregulation of VPS4B, an ESCRT-III disassembly

factor. TDP-43 knockdown resulted in a significant dendrite loss

that was phenocopied by the expression of VPS4B or dominant-

negative RAB11, suggesting that endosome recycling is critical for

dendrite development. We also observed a pronounced loss of

dendritic spines in TDP-43-knockdown cells, which might be

explained by the loss of synaptic receptors. Interestingly, acute

chemical inactivation of RAB11 in neurons inhibits the surface

delivery of AMPA receptors (Esteves da Silva et al, 2015).

Moreover, we noticed slightly increased motility of lysosomes,

which might relate to the autophagosome–lysosome fusion prob-

lems observed in TDP-43-knockdown cell lines recently (Xia et al,

2015). Chronic dysfunction of the cellular degradation system is

thought to promote TDP-43 aggregation (Filimonenko et al, 2007;

Tashiro et al, 2012), but further lysosomal dysfunction due to

nuclear clearance of TDP-43 might fuel a vicious cycle.

TDP-43 regulates the ESCRT factor VPS4B

To uncover the molecular mechanism of recycling endosome stal-

ling, we analyzed the whole proteome of TDP-43-knockdown

neurons using label-free quantitative proteomics. Among the dif-

ferentially expressed proteins, we focused on VPS4B, because it

had been linked to endosomal dynamics previously (Stuchell-

Brereton et al, 2007; Du et al, 2013). VPS4B mRNA and protein

levels are threefold upregulated in TDP-43-knockdown neurons

from rats and humans. Enhanced VPS4B promoter activity upon

TDP-43 knockdown suggests the transcriptional regulation of

VPS4B by TDP-43. Chromatin immunoprecipitation shows that

TDP-43 directly binds to a GT-rich region in the VPS4B promoter

region in rat primary neurons and human brain, as shown before

for TAR-DNA motif of HIV1 (Ou et al, 1995). Overexpression of

VPS4B in neurons inhibits recycling endosome transport similar

◀ Figure 7. TDP-43 knockdown reduces surface expression and the activity of ErbB4 and FGFR1.

A Primary hippocampal neurons (DIV6+4) were transduced with shRNA targeting TDP-43 (shTDP) or control (shCtrl) and surface expression levels of glycoproteins
were analyzed by metabolic labeling followed by surface biotinylation and subsequent streptavidin purification. Volcano plot depicts proteins that are significantly
(P < 0.01, t-test, Benjamini–Hochberg, FDR: 0.05) decreased or increased on the cell surface in three independent experiments with two technical replicates. For full
dataset, see Table EV2.

B–E Primary cortical neurons (DIV6+5) were transduced with shCtrl or shTDP. Neurons were treated with the ErbB4 ligand NRG1 (10 nM) or FGFR1 ligand FGF1 (10 ng/
ml) for 10 min right before cell lysis. Immunoblots with the indicated antibodies (B, D). Quantification of total and phospho-ERBB4 (Y1056) and total and phospho-
FGFR1 (Y654) using densitometry of three to seven biological replicates (C, E).

F Primary hippocampal neurons (DIV6+4) were transduced with shTDP or shCtrl. Gene expression was analyzed by quantitative RT-PCR normalized to the
housekeeping genes YWHAZ and GAPDH (n = 3)

G Hippocampal neurons were transfected with ErbB4 containing a luminal HA-tag (HA/T-ErbB4) and shCtrl or shTDP (DIV9+3). Surface HA/T-ErbB4 was stained in
living cells and intracellular HA/T-ErbB4 was stained after fixation and permeabilization with HA antibodies. Scale bar represents 50 lm.

H Quantification of HA/T-ErbB4 surface levels. At least 10 images per condition per experiment were analyzed in three independent experiments

Data information: Mean � s.e.m., unpaired, two-tailed t-test: *P < 0.05, **P < 0.01.
Source data are available online for this figure.
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to TDP-43 knockdown. Importantly, preventing VPS4B upregula-

tion using shRNA completely rescues recycling endosome motility

in TDP-43-knockdown neurons, strongly suggesting that VPS4B

upregulation is the major cause of the trafficking deficits upon

TDP-43 knockdown.

VPS4 controls normal endosomal trafficking and sorting and is

required for disassembly of the ESCRT-III complex (Yoshimori

et al, 2000; Jouvenet, 2012). Promoting ESCRT assembly by ALIX

overexpression also largely restored the trafficking deficits in

TDP-43-knockdown cells (Adell & Teis, 2011). VPS4B directly

interacts with the ALS-associated CHMP2B, another crucial part

of the ESCRT-III complex, and this interaction is blocked by ALS/

FTLD-causing mutations in CHMP2B (Skibinski et al, 2005;

Stuchell-Brereton et al, 2007; Han et al, 2012). Several other VPS

family members have been genetically linked to neurodegenera-

tive disorders, for example, VPS35 to Parkinson’s disease and the

VPS10 proteins SORL1 and SORCS1 to Alzheimer’s disease (Lane

et al, 2012). Thus, linking TDP-43 loss of function to VPS4B,

thus the ESCRT complex, and impaired recycling endosome

motility further highlights the role of vesicle trafficking in

neurodegeneration.

TDP-43 loss of function impairs cell surface expression of key
receptors for growth and guidance factors

The balance of endocytosis and recycling regulates the homeo-

stasis of adhesion molecules and receptors for neurotransmitters,

growth factors, and guidance cues (Goh & Sorkin, 2013). To iden-

tify the proteins most affected by impaired recycling endosome

dynamics in neurons, we analyzed the changes in the surface

proteome upon TDP-43 knockdown using proteomics (Kuhn et al,

2012). Reduced surface expression is likely due to the impaired

recycling, because TDP-43 knockdown has no apparent effect on

transferrin endocytosis or on trafficking of RAB5-positive early

endosomes. We found a highly significant reduction of 43

proteins on the surface, many of them known cargoes of recy-

cling endosomes, while only two surface proteins were signifi-

cantly upregulated. Among the proteins with reduced surface

expression upon TDP-43 knockdown, only two of ten tested

mRNAs were significantly downregulated, suggesting that the traf-

ficking effects are dominant.

More than half of the proteins with reduced surface expression

are involved in dendrite growth (e.g., ErbB4, FGFR1, EphB2) or

axonal guidance (e.g., Robo1, Unc5c/d, EphB2, TrkB). In flies,

TDP-43 knockout impairs the dendrite growth by a cell autonomous

mechanism (Lu et al, 2009). We found that TDP-43 knockdown in

rat primary neurons also leads to the loss of dendrites and dendritic

spines, thus potentially compromising synaptic transmission. We

focused on the receptor tyrosine kinase ErbB4, one of the most

downregulated proteins on the cell surface, because it had previ-

ously been linked to ALS through rare pathogenic mutations in its

kinase domain that inhibit response to its ligand NRG1 (Takahashi

et al, 2013). Although ErbB4 is predominantly expressed in

interneurons and motor neurons, the lower level of ErbB4
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A, B Primary hippocampal neurons (DIV6+3) were transfected with shCtrl or shTDP and ErbB4 containing an N-terminal HA epitope tag and followed by thrombin
cleavage site (HA/T-ErbB4). Surface HA/T-ErbB4 was stained in living cells and intracellular HA/T-ErbB4 was stained after fixation and permeabilization with two
different HA antibodies. After removing the HA signal of surface ErbB4 (0 min) using thrombin cleavage (5 min, 1 U/ml), membrane insertion of HA/T-ErbB4 was
measured at the indicated time points. The steady state (StSt) before thrombin cleavage is also depicted. At least 10 images per condition per experiment were
analyzed in three independent experiments. Scale bar represents 50 lm. Mean � s.e.m., unpaired, two-tailed t-test: *P < 0.05, **P < 0.01.
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C, D VPS4B transfection (DIV6+4) significantly reduces dendrite complexity: at 25 lm radius P < 0.05, from 37.5 to 75 lm P < 0.001, and from 87.5 to 100 lm P < 0.01.
E, F Two days after shRNA transfection, the neurons were treated with 1 nM NRG1-beta 1 (NRG1) or vehicle and analyzed at DIV6+5. shCtrl vs. shTDP: at 25 and
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expression in excitatory neurons is still crucial to regulate

dendritic spine morphology and synaptic plasticity (Li et al, 2007;

Cooper & Koleske, 2014). We observed an enhanced dendritic

branching upon NRG1 treatment in excitatory control neurons,

similar to previous findings (Gerecke et al, 2004; Krivosheya et al,

2008; Allison et al, 2011). In contrast, the stunted dendrite

growth in TDP-43-knockdown cells could not be stimulated by

NRG1 treatment, indicating that an impaired trafficking of

recycling endosomes blocks the NRG1/ErbB4 signaling axis.

Importantly, increasing ErbB4 levels in TDP-43-knockdown

neurons restored dendritic arborization to control conditions,

suggesting that reduced ErbB4 surface expression is a major cause

for the dendrite withering in our system. We could reproduce all

ErbB4-related findings also in VPS4B-overexpressing neurons,

strongly suggesting that VPS4B upregulation and its effect on

endosome trafficking directly inhibit receptor recycling upon

TDP-43 knockdown.

TDP-43 knockdown reduced surface expression of many other

receptors for growth and guidance cues and thus presumably has

more widespread effects on trophic signaling. Depending on cell

type and age, other plasma membrane proteins undergoing recy-

cling might be affected. For example, the reduced levels of CADM3

found in the CSF of ALS patients (Collins et al, 2015) could be

explained by the reduced cell surface expression (Fig 7A) and

subsequent shedding upon the loss of nuclear TDP-43. Additionally,

we found reduced mRNA expression and surface expression of the

hepatocyte growth factor (HGF) receptor c-Met. Interestingly,

muscle-derived HGF promotes the axon outgrowth and survival of

motoneurons during development via c-Met (Ebens et al, 1996) and

HGF/c-Met expression declines with disease progression in ALS

patients (Kato et al, 2003). Many of these signaling pathways have

been most extensively studied during development, but remain

essential in adulthood and might be even more critical upon injury

or neuronal damage. For example, FGF signaling is crucial for

motoneuron protection and survival after spinal cord injury (Teng

et al, 1999). Thus, the impaired activity of ErbB4, FGFR1, c-Met,

and other receptor tyrosine kinases may deprive neurons with

TDP-43 mislocalization and aggregation from crucial trophic support

leading to progressive neuron loss. Interestingly, the removal of

established TDP-43 aggregates and the subsequent restoration of

nuclear TDP-43 expression lead to functional reinnervation in an

inducible mouse model, further supporting a role of TDP-43 in

trophic signaling (Walker et al, 2015).

Clinical implications

Three lines of evidence support that an impaired endosomal recy-

cling occurs in ALS and FTLD patients. First, we observed the

reduced recycling endosome motility and VPS4B upregulation upon

TDP-43 knockdown in human iPSC-derived neurons. Second,

region-specific elevation of VPS4B in sections of ALS-TDP and

FTLD/ALS-TDP patients suggests that TDP-43 loss of function in

patients with TDP-43 aggregation invokes a similar mechanism as in

cultured neurons. Third, ALS patients have reduced transferrin

levels in serum and CSF (Brettschneider et al, 2008; Nadjar et al,

2012), a result we confirmed in our cohort of sporadic ALS patient

for the CSF-specific b2-transferrin. This finding can now be

explained by the impaired transferrin transport and recycling caused

by TDP-43 loss of function. Moreover, our findings could also

be relevant for Alzheimer’s disease, as TDP-43 aggregation and

nuclear clearance are found in up to 50% of cases (Davidson et al,

2011).

Our work establishes a connection between TDP-43, impaired

vesicle trafficking, and dendrite growth by controlling cell surface

expression of receptors crucial for neurite outgrowth and neuronal

survival. Impaired recycling of trophic receptors to the cell surface

due to nuclear clearance of TDP-43 and VPS4B upregulation in

patients may compromise neuronal repair and survival in ALS and

FTLD.

Materials and Methods

DNA constructs

Myc-tagged human TDP-43 wild type and the DNLS (97AAA)

mutant cDNA were expressed from pcDNA6 vector driven by CMV

promoter. Myc-tagged rat VPS4B, human HA/T-ErbB4 (HA-tag

followed by a thrombin cleavage site (LVPRGS) were inserted

directly after the signal sequence, cloned from Addgene plasmid

#29527, Yardena Samuels (Prickett et al, 2009)), and human ALIX

(subcloned from Addgene plasmid #21504, James Hurley (Lee et al,

2008)) cDNA was expressed from a lentivirus plasmid driven by

ubiquitin promoter (Orozco et al, 2012). shRNAs were cloned into

pSUPER (target sequences: rat TDP-43 #1 gtagatgtcttcattcccaaa, rat

TDP-43 #2 gctgatgggctgcgaacat, human TDP-43: gaaacacaagtgaaag

taa, rat VPS4B: ggtgcagatcagcgtgaca and luciferase control cgtacgcg

gaatacttcga). For lentiviral knockdown, the H1 promoter shRNA

expression cassette was subcloned into a lentiviral vector coexpress-

ing mCherry from human ubiquitin C promoter (Orozco et al,

2012). Human RAB4 (Addgene #54943, M. Davidson unpublished),

RAB5 (Lang et al, 2012), RAB7 and RAB11a wild type and S25N

(Addgene #12605, 12674, 12678, Richard Pagano (Choudhury et al,

2002)) were expressed from pEGFP-C1 vector. Mito-GFP contains

the mitochondrial targeting sequence of COX8. For the luciferase

reporter construct, genomic sequence 1 kb upstream of the

predicted TSS (http://www.cbs.dtu.dk/services/Promoter/) until

the start codon of rat VPS4B was cloned in upstream of Renilla

luciferase in the psiCheck2 vector (primers gatggatccctcccatac

actacaaggggaagctc and gatgctagctggtggagatccaaagggtccccta). All

constructs were verified by sequencing.

Lentivirus was produced by cotransfecting psPAX2, pVSV-G, and

the respective overexpression or knockdown constructs in

HEK293FT as described before (Schwenk et al, 2014). After harvest-

ing the supernatant, virus particles were concentrated by ultra-

centrifugation and resuspended in PBS.

Antibodies and reagents

Antibodies against TDP-43 (Sigma-Aldrich Cat# SAB4200006, Cosmo

Bio Co Cat# CAC-TIP-TD-P09), GFP (UC Davis/NIH NeuroMab Facil-

ity Cat# 73-132), b-actin (Sigma-Aldrich Cat# A5316), calnexin (Enzo

Life Sciences Cat# ADI-SPA-860-F), VPS4B (Sigma-Aldrich Cat# PA5-

30316 for IHC and Proteintech Group Cat# 17673-1-AP for

immunoblotting and immunofluorescence), ErbB4 (Santa Cruz

Biotechnology Cat# sc-283), phosphor-ErbB4-Y1056 (Santa Cruz
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Biotechnology Cat# sc-33040), FGFR1 (Novus Cat# NB600-1287),

phosphor-FGFR1-Y654 (Abcam Cat# ab59194), myc-tag (Santa Cruz

Biotechnology Cat# sc-40), HA-tag (Sigma-Aldrich Cat# H9658 and

Roche Cat# 3F10), anti-mouse and rabbit HRP-coupled secondary

antibodies and anti-mouse and rabbit Alexa-coupled secondary anti-

bodies (Life Technologies) are commercially available. TO-PRO 3

and transferrin-Alexa 555 were purchased from Life Technologies,

and DAPI and EZ-Link sulfo-NHS-LC biotin from Sigma-Aldrich.

b2-Transferrin protein levels from undiluted CSF samples derived

from sporadic ALS patients and controls were quantified using

a commercially available ELISA kit (www.mybiosource.com,

MBS923983) following the manufacturer’s instructions. Recombi-

nant NRG1 and FGF1 were purchased from R&D Systems.

Neuron cell culture and imaging

Hippocampal neurons were prepared from embryonic day 18 CD

rats (Charles River), cultivated in Neurobasal media (with 2% B27,

0.25% glutamine, 0.125% glutamate), and transduced with lenti-

virus or transfected with Lipofectamine 2000 as described before

(Schwenk et al, 2014). Immunoblotting and immunostaining were

performed as described previously (Schwenk et al, 2014). Images

were taken on Zeiss LSM 510 or 710 confocal laser scanning micro-

scopes using 40× (NA = 1.3) oil immersion objectives with 1 Airy

unit pinhole. Dendritic arborization was quantified manually by

Sholl analysis as described previously (Schwenk et al, 2014). In

each experiment, at least 30 neurons per condition were imaged and

quantified. Figures show the representative data from one of at least

three independent replicates with similar results. All image acquisi-

tion and quantification for morphological analyses were done blind

to the experimental conditions.

iPSC-derived human neurons were generated as described before

(Koch et al, 2009) and frozen in liquid nitrogen for long-term stor-

age. After thawing, neurons were plated on PDL-coated glass-

bottom dishes in HN media (DMEM/F12 and Neurobasal 1:1, 0.5%

N2, 1% B27, 0.1 % glucose, 2 lg/ml insulin, 10 ng/ml GDNF,

10 ng/ml BDNF, 10 lM Y-27632). Every two days half of the media

were exchanged. Neurons were transduced with lentivirus seven

days after thawing and imaged three days later.

Astrocyte feeder cells were prepared from embryonic day 18 CD

rats (Charles River) as described previously (Kaech & Banker,

2006), plated onto glass coverslips, and maintained in MEM supple-

mented with 0.6% glucose and 5% FBS till they reached 50–60%

confluency.

Live cell imaging

For vesicular motility analysis, images for time-lapse movies were

taken on a Zeiss Cell observer SD spinning-disk microscope with an

air-cooled Evolve 512 EMCCD camera at 5 Hz for 60 s (RAB11),

2 Hz for 150 s (RAB4, RAB5, mitochondria), or 1 Hz for 300 s

(RAB7) with an 63× oil immersion objective (NA = 1.4). During

image acquisition, neurons were kept in a climate chamber (37°C,

5% CO2). Unless noted otherwise, kymographs of vesicular move-

ment from at least four dendrite segments per cell and at least six

neurons per condition and experiment were generated and manually

analyzed using ImageJ software (Multiple Kymograph plugin by

J. Rietdorf and A. Seitz).

Transferrin recycling assay

The protocol for transferrin recycling assay was adapted (Moreau

et al, 2012). Neurons were transduced with the lentiviruses coex-

pressing shRNA and RFP. On day five, cells were starved in culture

media without B27 (30 min at 37°C and 5% CO2) prior to incuba-

tion with 50 lg/ml transferrin-Alexa-488 in complete culture media

for 20 min at 4°C. Subsequently, neurons were put back at 37°C and

5% CO2 for 20 min to allow transferrin internalization (pulse).

Afterward, the cells were washed three times, put back in complete

culture media (containing unlabeled transferrin as part of B27) for

0, 20, or 60 min (chase), and fixed (4% PFA, 4% sucrose) after

another wash with PBS. Transferrin-Alexa-488 was quantified from

confocal images by relating transferrin fluorescence signal to the cell

area, visualized by RFP expression (not shown in Fig 2), and

normalized to control transduced cells.

VPS4B promoter assay

A modified psiCHECK2-expressing Renilla luciferase from a 1-kb

VPS4B promoter fragment and firefly luciferase from the TK

promoter was cotransfected with control or TDP-43 constructs at a

40:60 ratio into HEK283FT cells using Lipofectamine 2000 (Life

Technologies). On day 3, luciferase activity was quantified using

Dual-Glo Luciferase Assay (Promega). Relative promoter activity

was determined by normalizing the ratio of Renilla luciferase and

firefly luciferase to the control vector and the effect on the original

psiCHECK2 vector. All experiments were performed in 96-well

plates with six replicates for each condition.

Chromatin immunoprecipitation (ChIP)

ChIP experiments in cortical neurons, HEK293 cells, and brain tissue

were performed using the MAGnify Chromatin Immunoprecipitation

System (Thermo Fisher Scientific) according to the manufacturer’s

instructions. Briefly, chromatin from 300,000 cells or 20 mg tissue

per ChIP reaction was crosslinked by 1 % formaldehyde and

sheared with a Branson WD200 sonifier (30% amplitude, 60% duty

cycle, 4× 30-s impulse, 60-s recovery) to an approximate size of

300–500 bp. Following cell lysis, protein was immunoprecipitated

using either rabbit polyclonal TDP-43 (Cosmo Bio, CAC-TIP-TD-

P09) or rabbit control antibody. After five washing steps, the cross-

link was reversed in immunoprecipitates and input samples

followed by proteinase K digestion. Afterward, DNA was isolated

and PCRs from input, control- and TDP-43-IP were performed

amplifying ~200-bp amplicons in the promoter region of VPS4B.

We detected binding with the following amplicons in rats

(gcagagggaaacagaaatta, ctagctctattcacacacac) and humans (gctcgttc

ccgcttgttc, tggtggctgcaaaccatag).

Surface staining and thrombin cleavage assay

The protocol for receptor surface quantification and thrombin

cleavage assay was adapted from Passafaro et al (2001). In brief,

hippocampal neurons (DIV7+4) were transfected with HA/T-ErbB4

and shTDP or shCtrl and incubated for 4 days. Cells were live-

labeled with rat anti-HA antibody for 1 h at 4°C to visualize

surface HA proteins, washed with cold Neurobasal media, and
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fixed for 8 min in 4% PFA. Afterward, fixed neurons were incu-

bated with mouse anti-HA to label intracellular receptors. The

neurons were washed in 20 mM phosphate buffer containing

0.5 M NaCl (pH 7.4), incubated in Alexa-labeled secondary anti-

bodies, and mounted. For the quantification of receptor recycling

to the plasma membrane, HA/T-ErbB4-transfected hippocampal

neurons were treated for 5 min with thrombin (Sigma-Aldrich;

1 U/ml), followed by three washing steps with warm Neurobasal.

Subsequently, the cells were returned to 37°C to allow for

membrane insertion of new receptors. Neurons were labeled as

described above either without thrombin treatment, or 0, 30, or

60 min after thrombin treatment. Images were taken with a Zeiss

LSM 710 confocal microscope.

Quantification of immunofluorescence images

Images were acquired on a Zeiss LSM 710 laser scanning confocal

microscope using the same settings during the whole experiment.

Fluorescence levels were quantified with ImageJ by using the back-

ground corrected total cell fluorescence. The total corrected cellular

fluorescence (TCCF) = integrated density – (area of selected

cell × mean fluorescence of background readings), was calculated

(McCloy et al, 2014). All image acquisition and quantification were

performed blinded to the experimental conditions.

RNA preparation and quantitative PCR

RNA was isolated using RNeasy Mini Kit with the optional DNase

digest step (Qiagen) following the manufacturer’s instructions.

cDNA was generated using the TaqMan MicroRNA Reverse Tran-

scription Kit (Applied Biosystems) with random hexamer primers

following the manufacturer’s instructions. RT-qPCR was performed

on CFX384-Real-Time system using SsoFast EvaGreen (Bio-Rad)

with a two-step protocol using the following primers: rat VPS4B

(primers ccaccatggcgtccacgaacac and tggccctgatgctttgcttggc), rat

TDP-43 (agtgttgggtctcccctggaaa, acagtcacaccatcgcccatct), rat

YWAHZ (tgagcagaagacggaaggtgctg, tctgatggggtgtgtcggctgc), and rat

GAPDH (ccgcatcttcttgtgcagtgcc, agactccacgacatactcagcacc). Amplifi-

cation of a single product was confirmed by melting curve analy-

sis. Relative mRNA abundance was quantified by the DDCT
method.

Human samples

Human CSF samples were provided by the MND-NET and the

German FTLD consortium. All patient tissues were provided by the

Neurobiobank Munich, Ludwig Maximilians University (LMU) of

Munich. All samples were collected and distributed according to the

guidelines of the local ethical committee.

Immunofluorescence of paraffin sections

Immunofluorescence was performed as previously described

(Mackenzie et al, 2013). In short, paraffin sections were dewaxed in

xylene and ethanol followed by microwaving in citrate buffer (pH

6). The VPS4B and TDP-43 antibodies were incubated overnight at

4°C, and the fluorescence-labeled secondary antibody 1 h at room

temperature. Nuclei were stained with DAPI for 15 min.

Statistical analysis

Statistical analysis was performed using GraphPad Prism software.

If sample size allowed, data were tested for normal distribution with

D’Agostino–Pearson omnibus normality test. If data points were not

normally distributed, a nonparametric test was used, when applica-

ble. To compare one variable in two independent groups, the

unpaired, two-sided t-test or Mann–Whitney U-test were used; in

cases with three or more independent groups, one-way ANOVA or

Kruskal–Wallis test were used. To compare groups using two vari-

ables, two-way ANOVA was applied. If necessary, tests were

corrected for multiple comparisons using the Bonferroni or Tukey

method owing to the applied test and the number of groups. A

P-value < 0.05 was considered significant. Statistical analysis of

proteomic data is described in detail below.

Whole proteome analysis by LC-MS/MS

Cells were lysed in SDS-containing buffer and subjected to tryptic

digestion as described previously (Hornburg et al, 2014). We

separated peptides on a HPLC (EASY-nLC 1000, Thermo Fisher

Scientific, Odense, Denmark) using 50-cm columns (75-lm inner

diameter) in-house packed with 1.9-lm C18 beads (Dr. Maisch

GmbH, Ammerbuch-Entringen, Germany). Peptides were loaded

in 0.5% formic acid (buffer A) and eluted within a 245-min gradi-

ent from 5% buffer B (80% acetonitrile, 0.5% formic acid) to

60% B at 250 nl/min. The column was heated to 50°C to reduce

backpressure. Our setup employed a hybrid quadrupole Orbitrap

mass spectrometer (Michalski et al, 2011) (Orbitrap Q Exactive,

Thermo Fisher Scientific) directly coupled to the HPLC via nano-

electrospray source. The survey scan (MS1, 300 to 1,650 m/z)

was performed at a resolution of 70,000 at m/z 200 and an ion

target value of 3E6. Up to the top 10 most intense features with a

charge state higher than one not picked previously (dynamic

exclusion window 30 s) were subjected to HCD fragmentation

(AGC target 1e5, isolation window 2.2 m/z) at a normalized colli-

sion energy of 25. Data were acquired using Xcalibur software

(Thermo Scientific).

Whole proteome raw data analysis and statistical analysis

We processed the raw data with MaxQuant (Cox & Mann, 2008)

(v. 1.4.1.6) and used the integrated search engine Andromeda

(Cox et al, 2011) to search MS/MS spectra against the rat

UniProtKB Fasta database (34,562 forward entries; version from

July 2015). The enzyme specificity was set to trypsin while allow-

ing up to two miscleavages and cleavage N-terminal to proline.

We set the minimum length of peptides to be considered for iden-

tification to seven amino acids assuming carbamidomethylation of

cysteine as fixed and methionine oxidation (M) as well as acetyla-

tion of N-termini as variable modifications. A false discovery rate

(FDR) cutoff of 1% was applied on both the peptide and protein

level.

We performed nonlinear retention time alignment of all

measured samples in MaxQuant, which allows us to transfer

peptide identifications in the absence of sequencing (MS1 only),

within a narrow retention time window of 1 min (“match

between runs”). We employed a library of 20 cortical rat neuron

The EMBO Journal Vol 35 | No 21 | 2016 ª 2016 The Authors

The EMBO Journal TDP-43 regulates trafficking of recycling endosomes Benjamin M Schwenk et al

2366

Published online: September 12, 2016 



proteomes as a library for matching. Protein intensities were

normalized with MaxQuant (MaxLFQ; Cox et al, 2014). We strin-

gently filtered our data requiring at least two peptide ratios for

protein quantification. In addition, common contaminants

(n = 247, included in MaxQuant software packages) as well as

proteins only identified with side modifications were strictly

excluded from the analysis. Furthermore, we removed any protein

group with less than two-third valid values for either control or

knockdown from the analysis. Remaining missing values were

imputed with a normal distribution (based on whole data distribu-

tion, width = 0.3, downshift = 1.8).

For statistical analysis, we employed Perseus, which is part of

the MaxQuant environment. To emphasize the strength of biological

differences, we employed a S0 correction of 0.1 in the statistical

analysis (Student’s t-test) (Tusher et al, 2001). The biological dif-

ference between TDP-43 knockdown and control was mild and we

had to choose a slightly less stringent multiple testing correction

(permutation-based FDR of 0.1 instead of 0.05) to determine the

most significant outliers for biological validation. To visualize global

trends in the dataset, we performed a 1D annotation enrichment

(Benjamini–Hochberg FDR cutoff of 0.05) based on the differences

in means. Significantly enriched annotations (KEGG name, GOMF

name, keyword, GOCC slim name) are depicted in table (1D annota-

tion enrichment). For biological follow-ups, we focused on proteins

with highest fold change.

Labeling of glycoproteins at the cell surface and mass
spectrometric analysis

The protocol was adapted from Kuhn et al (2012); 4.5 million

neurons in a 10-cm dish labeled for 48 h with 200 nM ManNAz

was washed twice with cold PBS. Afterward, 100 nM DBCO-

PEG12-biotin (Click Chemistry Tools) diluted in 2 ml PBS was

evenly distributed on the neurons and incubated at 4°C for 2 h.

Neurons were washed twice with PBS and then lysed in 5 ml

buffer (150 mM NaCl, 50 mM Tris, 2 mM EDTA, 1 % NP-40) per

dish. After centrifugation at 4,000 g, equal protein amounts of the

clarified lysate were loaded on a PolyPrep column with a strepta-

vidin bead bed (300 ll slurry). After binding of proteins, strepta-

vidin beads were washed three times with 10 ml PBS

supplemented with 1% SDS. To elute the biotinylated glycopro-

teins, streptavidin beads were boiled with urea sample buffer

containing 3 mM biotin.

Samples were analyzed twice using an Easy-NLC 1000 nano-

flow HPLC system II (Proxeon) connected to an LTQ-Velos

Orbitrap Pro (Thermo Fisher Scientific). Peptides were sepa-

rated by reverse-phase chromatography using in-house-made

30-cm columns (New Objective, FS360-75-8-N-S-C30) packed with

C18-AQ 2.4-lm resin (Dr Maisch GmbH, Part No. r124.aq). A

90-min gradient (5–40%) at a flow rate of 200 nl/min was used.

The measurement method consisted of an initial FTMS scan

recorded in profile mode with 30,000 m/z resolution, a mass

range from 300 to 2,000 m/z, and a target value of 1,000,000.

Subsequently, collision-induced dissociation (CID) fragmentation

was performed for the 15 most intense ions with an isolation

width of 2 Da in the ion trap. A target value of 10,000, enabled

charge state screening, a monoisotopic precursor selection, 35%

normalized collision energy, an activation time of 10 ms, wide

band activation, and a dynamic exclusion list with 30-s exclu-

sion time were applied.

Data from three independent experiments with two technical

replicates were analyzed with MaxQuant suite (version 1.5.3.12)

in combination with the Andromeda search algorithm as above.

First search, mass recalibration, and main search of tryptic

peptides were performed using a rat Uniprot database downloaded

on the 21 August 2012. Two missed cleavages were allowed.

Peptide as well as protein false discovery rate was set to 1%.

Mass accuracy was set to 20 ppm for the first search and 5 ppm

for the main search. Quantification was performed between the

respective control and TDP-43-knockdown condition on the basis

of unique and razor peptides. Missing values were imputed in

Perseus 1.5.16 following a standard distribution. P-values were

calculated from log2-transformed LFQ ratios using a heteroscedas-

tic, two-sided Student’s t-test. Proteins with a P-value of P ≤ 0.05

were considered as hits. To correct for multiple hypothesis testing,

the Benjamini–Hochberg post-test was applied with an adjusted

false discovery rate of 0.05.

Data availability

The mass spectrometry data have been deposited to the ProteomeX-

change Consortium via the PRIDE (Vizcaino et al, 2016) partner

repository [http://www.ebi.ac.uk/pride/] with the dataset identifier

PXD004756 (whole proteome) and PXD004744 (cell surface

proteome).

Expanded View for this article is available online.
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