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Abstract
We study howquantum and thermal noise affects synchronization of two optomechanical limit-cycle
oscillators. Classically, in the absence of noise, optomechanical systems tend to synchronize either in-
phase or anti-phase. Taking into account the fundamental quantumnoise, wefind a regimewhere
fluctuations drive transitions between these classical synchronization states.We investigate how this
‘mixed’ synchronization regime emerges from the noiseless systemby studying the classical-to-
quantum crossover andwe showhow the time scales of the transitions varywith the effective noise
strength. In addition, we compare the effects of thermal noise to the effects of quantumnoise.

1. Introduction

Thefield of cavity optomechanics deals with systemswhere light in an optical cavity couples tomechanical
motion [1]. Recent experimental progress allows tomove on from the investigation of a single optomechanical
system to several coupled optomechanical systems. There are already first experiments that involve a few
mechanical and opticalmodes [2–5], exploiting them forwavelength conversion, phonon lasing and efficient
cooling. Such few-mode optomechanical setups have been the subject of an increasing number of theoretical
proposals, on topics such as efficient state transfer [6], two-mode squeezing [7], back-action evading
measurements [8], entanglement [9–11] or Landau-Zener dynamics [12, 13].

Larger arraysmay be implemented using a variety of settings, such as coupled disks [14] (figure 1(b)) or
optomechanical crystal structures [15–20] (figure 1(d)). Optomechanical arrays have also attracted attention
froma theoretical point of view. They have been studied in the context of slowing light [21], Dirac physics [22],
reservoir engineering [23], artificialmagnetic fields for photons [24], heat transport [25], and topological phases
of sound and light [26]. Furthermore,multi-membrane systems [27–30]were studied theoretically, considering
for instance long-range interactions and dynamics.

Most notably, optomechanical arrays provide a platform to study synchronization ofmechanical oscillators.
This was initially pointed out in [31]. Synchronization is awell knownphenomenon inmany different branches
of science [32] and typically arises whenever there are stable limit-cycle oscillations. However, we note that
synchronization-like phenomena have been recently studied also in the context of linear oscillators dissipating
into a commonbath [33]. Optomechanical systems exhibit aHopf bifurcation and can be optically driven into
mechanical limit-cycle oscillations [34–37]. These self-oscillations have also been analyzed theoretically in the
quantum regime [38–40]. The theoretical description of the synchronization dynamics in optomechanical
arrays has initially focussed on the classical regime [31, 41].More recent insights into this regime include the
pattern formation of themechanical phase field in larger optomechanical arrays [42]. In the quantum regime, it
was found [43] that quantumnoise can drive a sharp nonequilibrium transition towards an unsynchronized
state in an extended array, even for optomechanical systemswith identical frequencies. Further general insights
into quantum synchronizationwere gained in amodel systemof one van-der-Pol oscillator coupled to an
external drive [44] or two coupled van-der-Pol oscillators [45], which can serve as a rough approximation to an
actual optomechanical system. A number ofmore recent works have explored quantum synchronization on
themore conceptual level [46], as well as in various other physical systems, such as e.g.trapped atoms and ions
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[47–50], qubits [51–53], and superconducting devices [54]. The relation of synchronization and correlations in
the quantum-to-classical transitionwas studied in a systemof coupled cavities containing a non-linearity [55].
Notably, it is still challenging to define a goodmeasure for quantum synchronization [49, 56, 57].

Only recently was synchronization of two nanomechanical oscillators in the classical regime demonstrated
experimentally. This has been achieved using optomechanical systemswith coupledmicro-disks [14]
(figure 1(b)), as well as in an experiment involving an optical racetrack cavity coupled to twomechanical
oscillators [58] (figure 1(c)), and also in a setup using nanoelectromechanical systems [59]. In a recent first step
towards larger arrays, up to seven optically coupledmicro-disks were used to demonstrate the expected phase
noise reduction due to synchronization [60]. This N1 phase noise reductionwith the number of coupled
systemsN is considered to be one of themain prospects of synchronized nanomechanical arrays. Indeed,
recognized from the very beginningwith the synchronization of pendulum clocks [61], synchronization has the
potential to improve time-keeping and frequency stability. Examples where different types of synchronization
have been applied or suggested for application are for frequency stabilization of high power lasers by coupling to
amore stable, low power laser [62] and for secure communication in connectionwith chaos [63]. For amore
complete overview and also themany applications to biology see e.g. [32, 64, 65].

In this workwe study the effects of quantumand thermal noise on the synchronization of two
optomechanical systems.We focus on a bistable synchronization regime that either exists already in the absence
of noise, or is induced by it. Bistabilities in quantum systems have been investigated before [69–71] and noise-
induced bistabilities are known in several other systems in biology and chemistry [66–68], as well as in physics
[72–74].Wefind and discuss noise-induced bistable behaviour now in the context of optomechanical
(quantum) synchronization.

Thismanuscript is organized as follows:We beginwith a brief review of classical synchronization in the
absence of noise, section 2. Then, we introduce ourmodel in section 3, explain ourmethods in section 4, and
state ourmain results in section 5.Wenote that both quantumand thermal noise lead to similar effects, but start
outwith the investigation of quantumnoise effects. Therefore, in section 6, we simulate the full quantum
behaviour of the system, in contrast to the previous investigation presented in [43].We find a regime of ‘mixed’
synchronizationwith two stable synchronization states, andwe explore its classical-to-quantum crossover in
section 7. In section 8, we give an overview of the different synchronization regimes. Finally, in section 9, we
discuss the effects of thermal noise as compared to quantumnoise. This is important to gauge the potential of
observing the quantumnoise effects discussed here in future experiments.

2. Brief review: classical synchronization of optomechanical oscillators

In this sectionwe briefly review the concepts of classical synchronization of optomechanical systems in the
absence of noise. This will set the stage for the discussion of our results on synchronization in the presence of
thermal and quantumnoise.

Awidely studiedmodel for synchronization is theKuramotomodel [75, 76], which describes a set of coupled
phase oscillators. Each phase oscillator has a phase if and an intrinsic frequency iw , and couples to the other
oscillators via the phase difference. For two oscillators, the two corresponding phase equations collapse into one
equation for the relative phase 2 1df f f= - ,

Figure 1. Synchronization of optomechanical oscillators. Schematics of the setupwe study (a) and possible experimental
implementations (b)-(d). (b)Micro-disk oscillators that support optical whispering gallerymodeswhich couple evanescently to each
other [14, 60], (c) optical racetrack resonator coupled to two nanomechanical oscillators [58], (d) optomechanical crystal structure
with two optomechanical cells in the vicinity of each other, allowing for optical andmechanical coupling [20].
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k sin . 12 1
˙ ( ) ( ) ( )df w w df= - -

The two oscillators are synchronized if their respective phase velocities become equal, 1 2
˙ ˙f f= , i.e. constdf = .

From equation (1) onefinds the synchronization threshold: the two oscillators are synchronized if the coupling k
exceeds the natural frequency difference, k 2 1∣ ∣ ∣ ∣w w> - . Following this condition, oscillators with identical
intrinsic frequencies iw are always synchronized. There is only a single stable value of df in the synchronized
regime. For k  +¥, this value approaches zero, 0df  , whereas df p for k  -¥.

Although synchronization appears in a large range of systemswhich are very different in terms of
microscopic parameters, their behaviour can often be captured by effective phase equations of the Kuramoto-
type [32, 76]. In the context of optomechanics, themechanicalmotion of a single optomechanical systemnear
theHopf bifurcation can be describedwith a phase and an amplitude equation [36]. Starting from these
equations, an effective Kuramoto-typemodel for coupled optomechanical systems has been derived [31]. This
model describes arrays of arbitrarymany optomechanical cells with arbitrary intrinsic frequencies. For two
oscillators, the phase equations of thismodel reduce, again, to a single equation for the phase difference

S S2 sin 4 sin 2 . 22 1 1 2
˙ ( ) ( ) ( ) ( )df w w df df= - - -

Here, S1 and S2 are effective parameters depending on themicroscopic parameters of the underlying
optomechanical systems [31, 43]. Note that the S1-termwas added to themodel only later [43], and accounts for
the change of the intrinsic frequencies iw with themechanical oscillation amplitude. Recently, the resulting full
Hopf-Kuramotomodel has been used to study pattern formation in 2D arrays of optomechanical systems [42].
In contrast to the original Kuramotomodel equation (1), the optomechanical Hopf-Kuramotomodel
equation (2) includes a term that involves sin 2( )df . Rewriting equation (2) in terms of an effective potential,

U˙ ( )df df= - ¢ [31], this term corresponds to the appearance of a secondminimumclose to df p= which can
co-exist with theminimumclose to 0df = . This allows optomechanical systems to synchronize not only in-
phase (0-synchronization), 0df  , but also anti-phase (π-synchronization), df p . For the effective
potential there are three different possibilities, depending on the parameters S1 and S2: (i) it has a single
minimumclose to 0df = which leads to 0-synchronization only, (ii) it has a singleminimumclose to df p=
which leads toπ-synchronization only, or (iii) bothminima appear simultaneously in the effective potential,
such that the initial conditions determinewhether 0- orπ-synchronization occurs. These three regimes are
schematically shown infigures 2(b) and (c) and discussed in section 3.

In general, for optomechanical arrays an effective potential for the phases if does not exist [42]. However, in
the case of two oscillators only, the system can be describedwith one degree of freedom, i.e.the relative phase
df, and an effective potential for df can always be constructed. Below, wemake use of the existence of this
effective potential to give an intuitive understanding of synchronization even in the presence of noise.

Figure 2.Threshold of self-sustained oscillations and synchronization in the absence of noise. (a) shows themechanical energy
(related to the limit-cycle amplitude) of an optomechanical system as a function of the laser drive La and the detuningΔ. The red line
indicates the threshold of self-oscillations, 0optG + G = . The green line separates a region of opticalmulti-stability, the dashedwhite
line indicates a regionwhere the self-oscillations show strong amplitudemodulation. (b) and (c) show schematic pictures of the
classical, noiseless synchronization regimes of two coupled optomechanical systems. In (b)weuse a smallmechanical coupling
K 0.051W = and differentmechanical resonance frequencies, 0.075dW = to give an overview about all possible synchronization
regimes. In (c)we use K 0.151W = and 0dW = instead, which significantly changes the phase diagram. The dashed linesmark
regions with evenmore complex behaviour, not necessarily showing synchronization. [Parameters:mechanical damping

0.0151G W = , optical damping 0.31k W = , optomechanical coupling g 0.30 1W = ]
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3.Model

Wenow introduce themodel that we investigate throughout the rest of thismanuscript.We study two
optomechanical systemswhich aremechanically coupled, seefigure 1(a). Our goal is to analyze the
synchronization behaviour in the presence of quantumand thermal noise. Each optomechanical system consists

of a driven opticalmode (ajˆ ) coupled to amechanicalmode (bĵ) via radiation pressure. In a frame rotating at the
laser drive frequency Lw , theHamiltonian of each optomechanical system is

H a a b b g a a b b a a . 3j j j j j j j j j L j j0
ˆ ˆ ˆ ˆ ˆ ˆ ˆ ( ˆ ˆ ) ( ˆ ˆ ) ( )† † † † †   a= - D + W - + + +

Here, L cw wD = - denotes the detuning from the cavity resonance cw ,Ω is the resonance frequency of the
mechanicalmode, g0 denotes the optomechanical single photon coupling strength, and La is the laser driving
strength. Note that the optical and themechanical systems experience damping at a rateκ and G, respectively,
and these are described by adding to theHamiltonian a system-bath coupling in the usualmanner:

H H Hj j j
full dissˆ ˆ ˆ( ) ( )

= + .
Driving a single optomechanical systemwith a blue-detuned laser causes self-oscillations of themechanical

resonatorwhen the optomechanically induced negative damping optG is larger than the intrinsic damping of the
oscillatorΓ [36]. Infigure 2(a)we show this threshold of self-oscillations. Throughout this workwe only
consider parameters such that the single optomechanical systems are above this threshold. Self-oscillations at

0D < occur due to the static optomechanical shift which leads to an effective blue detuning, i.e. 0effD > .
These limit-cycle oscillations, in the absence of noise, can effectively be described by afixed amplitude and a
phase and are treated as a prerequisite for synchronization throughout this work.We consider two self-
oscillating optomechanical systems that are coupledmechanically with strengthK, such that the total
Hamiltonian of the system (except for the dissipative part) reads

H H K b b b b . 4
j

jtot
1,2

1 1 2 2
ˆ ˆ ( ˆ ˆ )( ˆ ˆ ) ( )

† †
å= - + +

=

Experimentally, this coupling between themechanical oscillators can also bemediated by an optical coupling,
cf.figures 1(b)–(d). In recent experiments [14, 58, 60], a single joint opticalmodewas employed to couple the
mechanical oscillators. However, thismode served a dual purpose in creating the limit cycles via a blue-detuned
drive and providing the coupling. Using an additional, independently driven opticalmode for the coupling
would allow to tune the effective (optically induced) coupling independently from the laser drive used to create
the limit cycles.

In experiments, the typicalmode of operation is to have the two optomechanical oscillators at slightly
different intrinsicmechanical frequencies. These start out un-synchronized but can synchronize upon changing
some parameter (e.g. the laser drive strength, the detuning, or potentially the coupling). This is schematically
shown infigure 2(b), wherewe indicate the synchronization regimes in the absence of noise. In accordance to the
Hopf-Kuramotomodel, cf.section 2, there are unsynchronized regions and three different synchronization
regimes: (i) 0-synchronization, (ii)π-synchronization, and (iii) classical bistable synchronizationwhere the type
of synchronization depends on the initial conditions. Note that for different intrinsicmechanical frequencies,

02 1dW = W - W ¹ , the relative phase df is not exactly 0 orπ but only close to one of these values and varies
within the synchronization regime.

However, in the presence of noise it is already interesting to investigate the behaviour even for identical
frequencies. In particular, for large-scale optomechanical arrays of identical oscillators, it has been found that
there is a synchronization transition as a function of noise strength [43].Moreover, in the present article wewill
focus on noise-induced transitions between various synchronization states. The observation of this physics does
not rely onwhether there is an actual synchronization transition at lower values of the coupling. Therefore, in
most of our analysis, wewill focus on identical systems, i.e.we assume all the parameters to be equal in both
systems. Infigure 2(c)we schematically show the synchronization regimes for identical optomechanical systems
and for a largermechanical couplingK than infigure 2(b), but still in the absence of noise. It is important to note
that both themechanical detuning dW and the couplingKhave an influence on this diagram:Not synchronized
regions can become synchronized and synchronization regime borders are shifted.

Wewill comment on the dynamics of two coupled optomechanical oscillators with different frequencies in
section 8.
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4.Methods

In this workwe use Langevin equations and quantum jump trajectories to study the systemdescribed by
Hamiltonian (4) in the presence of (quantum)noise. Herewewant to briefly present both approaches and
discuss their respective advantages and problems.

Most of our results are computedwith semi-classical Langevin equations. They are obtained by first deriving
quantumLangevin equations fromHamiltonian(4) using input-output theory [88].We then adopt a semi-
classical approach by turning the quantumLangevin equations into classical Langevin equations for the complex
amplitudes ja and jb , where the noise termsmimic the quantum-mechanical zero-point fluctuations. This can
be understood as a variant of the ‘truncatedWigner approximation’. The semi-classical equations are:

g

g K

i
2

i i ,

i
2

i i . 5

L1 1 0 1 1 1 1in

1 1 0 1
2

2 1in

˙ ( )

˙ ∣ ∣ ( )⎜ ⎟

⎜ ⎟⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

*a
k

a a b b a ka

b b a b b

= D - + + - -

= - W +
G

+ + - G

The corresponding equations for the second optomechanical system can be obtained from equation (5) by
exchanging the indices 1 2⟷ . Here, tjin ( )a and tjin ( )b represent the optical andmechanical input noise, given
byGaussian stochastic processes. Since complex numbers commute, they obviously cannot correctly fulfill the
input-output quantumnoise correlators, a t a t 0j jin inˆ ( ) ˆ ( )†á ¢ ñ = and a t a t t tj jin inˆ ( ) ˆ ( ) ( )† dá ¢ ñ = - ¢ . Instead, jina
and jinb aremade tomimic quantumnoise by fulfilling t t t t t t 2j j j jin in in in( ) ( ) ( ) ( ) ( )* *a a a a dá ¢ ñ = á ¢ ñ = - ¢
(and likewise for jinb forT=0). This approach allows to study also large parameter ranges with relatively low
computational effort.

Deep in the quantum regime it is initially not clear that these semi-classical Langevin equations describe the
correct physical behaviour. In order to verify the qualitative effects observedwith Langevin equations, we also
present a few results obtainedwith quantum jump trajectories [77, 78], i.e.an ‘unraveling’ of the Lindblad
master equation. Applying thismethod, the fully quantum system is simulated on an appropriately truncated
Hilbert space. Notably, it allows toworkwithwave functions, in contrast to the formalismof the Lindblad
master equationwhich requires the use of densitymatrices. Hence, simulations of largerHilbert spaces become
feasible. In addition, quantum jump trajectories give access to additional observables, for instance the full
counting statistics. For these reasons, quantum jump trajectories have been applied inmany different contexts.
In thefield of quantum synchronization, suchmethods have been used to study synchronization of qubits [51].
In thefield of cavity optomechanics, they have been employed for instance to discussQNDmeasurements,
photon statistics and single photon optomechanics [79–82]. Anothermotivation is the recent experimental
detection of individual phonons in optomechanical systems [83]–a step towardsmonitoring full quantum jump
trajectories in experiments.

To explain this approach [77, 78], let us consider for amoment photon decay in cavity 1. The ‘unraveling’
discussed here corresponds to the physical setup of placing a single photon detector at the output port of the
cavity. At each time step td , the probability of a single photon to leak out of the cavity (at temperatureT= 0) is
given by p t a a1 1ˆ ˆ†kd= á ñ. In the case of a photon loss it is detected at the output port and thewave function is
updated t t a t1∣ ( ) ˆ ∣ ( )dY + ñ = Y ñ. If no photonwas lost to the environment, thewave function evolves in time

according to a (non-Hermitian)Hamiltonian that is obtained by adding a term a ai 2 1 1( ) ˆ ˆ† k- . This additional
term accounts for the information gained about the systemby not observing a photon [84]. In both cases the
state t t∣ ( )dY + ñhas to be normalized before proceeding to the next time step. The treatment of photon loss in
cavity 2 and of phonon lossesworks analogously. This simulation approach naturally accounts for quantum
fluctuations.

Although it would be favourable to use quantum jump trajectories throughout thewhole study, this
approach is only computationally feasible whenever the neededHilbert space remains sufficiently small. This
leads to severe limitations in the choice of parameters and especially gives no access to the full classical-to-
quantum crossover that is studied in section 7. In [38] it has been shown for a single optomechanical system that
semi-classical Langevin equations produce good agreementwith the full quantum theory. A systematic
comparison for two coupled optomechanical systems is not possible, since the number of requiredHilbert space
dimensions is squared as compared to the single optomechanical system.We comment on this in section 7.1 (see
figure 4(a) and the discussion below).

Note that quantum jump trajectories serve here as a numerical approach only. In experiments, single photon
and phonon detection is not necessary. Instead, themechanical oscillators could bemeasured using standard
homodyning techniques.
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5.Main results

In this sectionwe briefly state ourmain results, whichwill be discussed in the following sections.Most notably, it
is known even from the classical theory that two coupled optomechanical oscillators can be in either one of two
synchronization states (with a phase difference near 0 or nearπ).Wefind a regime of ‘mixed’ synchronization,
where transitions between 0- andπ-synchronization occur (section 6). These transitions are driven by (quantum
or thermal)noise and cannot be found in the classical, noiseless situation. The average residence times in the two
synchronization states can differ and their ratio varies with the systemparameters (section 7). Investigating the
classical-to-quantum transition, wefind thatmixed synchronization can evolve from twodifferent regimes in
the classical, noiseless limit: (i) there are already two stable synchronization states but in the absence of noise
there are no transitions, (ii) there is only one stable synchronization state and only the presence of noise leads to a
second stable solution. Although thefirst sections are devoted to the investigation of quantumnoise effects, we
note that wefind similar effects for thermal noise acting on themechanical resonator.However, quantitative
differences remain due to the different nature of the noise source (section 9).Wefind that quantumnoise effects
should dominate over thermal noise effects if the optomechanical cooperativity is sufficiently large, and a large
value of g0 is not necessarily required.

6.Multistable quantum synchronization

First, we start by analyzing two coupled optomechanical systems, seefigure 1(a), deep in the quantum regime.
Quantum jump trajectories are used to initially investigate the full quantumdynamics. In the following, we
consider a small-amplitude limit cycle and a large single-photon coupling strength, g 10 k = . This ensures that
quantumfluctuations can potentially have a large impact on the system’s dynamics. Furthermore, small photon
and phononnumbers are necessary to keep the numerical simulations tractable, since they determine the size of
the truncatedHilbert space.

To study synchronizationwe focus on the relative phase 2 1df f f= - between the optomechanical
oscillators. Classically, df allows to identify synchronization ( constdf = ) and distinguish the different
synchronization regimes (0- andπ-synchronization). To extract the relative phase at each time step of a

Figure 3.Multistability in optomechanical quantum synchronization.Distribution of the relative phase df in different
synchronization regimes, a typical sample of a corresponding quantum jump trajectory starting in the steady state, and a sketch of the
corresponding effective potential. (a) shows 0-synchronization, (b) showsπ-synchronization, and (c) showsmixed synchronization.
A rotatingwave approximation for themechanical coupling has been used.[Parameters: (a)mechanical coupling K 0.3W = ,
mechanical damping 0.015;G W = (b) K 0.15W = , 0.01;G W = (c) K 0.15W = , 0.015;G W = other parameters are: optical
damping 0.3k W = , laser driving strength 0.3La W = , optomechanical coupling g 10 k = , and optical detuning 0.15D W = .]
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quantum jump trajectory, we use that themotion of the uncoupled self-oscillators in the absence of noise can
effectively be described by b t b ej

i t ojˆ ( ) ∣ ∣ ( )á ñ » W f+ , with an initial randomphase ojf . Thus, the correlator

b b e1 2
iˆ ˆ†

á ñ ~ df- can be interpreted as ameasure for the relative phase df. Infigure 3we show the probability
density of the relative phase obtained from the distribution of df and a typical sample of the corresponding
phase trajectory.Wefind a 0-synchronized regime, figure 3(a), where the relative phase is predominantly close
to 0df = . Similarly, wefind aπ-synchronized regime, figure 3(b), for different parameters. As expected, noise
prevents perfect synchronization and thus the correspondingmaximum in the probability density has afinite
width. Likewise, the trajectories show fluctuations around either 0df = or df p= . These two synchronization
regimes have an analog in the classical, noiseless limit, see section 2. In addition, wefind another regimewhere
the probability density of the phase difference hasmaxima close to both 0df = and df p= , see figure 3(c). The
corresponding trajectory shows that in this regime transitions between the two synchronization states occur.We
call this regime ‘mixed’ synchronization. This is in contrast to the classical, noiseless result, where the system
does not change its synchronization statewith time, not even in the regime of bistable synchronization.

Similar to the classical, noiseless system [31]we can understand these results in terms of an effective potential
for the relative phase df. This is illustrated in the bottom rowoffigure 3. It offers an intuitive understanding of
our results. The noisemakes the phase fluctuate around the stable point(s)near 0df = (and) or df p= . In the
case ofmixed synchronization the effective potential has twominima, near 0df = and df p= , and quantum
noise drives transitions between those two states. The probability to be in either the 0- orπ-synchronized state is
given by the area of the correspondingmaximum in the probability density. It is associated to the depth of the
minimum in the effective phase potential. The ratio between the probabilities of the two states can assume
arbitrary values, depending on the parameters of the system.Note that the absence of two distinct peaks in the
probability density does not necessarilymean that the system explores the region around one synchronization
state only. In fact, sometimes the trajectories themselves can reveal short stretches of phase dynamics in the
vicinity of the other state.Nevertheless, if the fraction of time spent in that other state is short, a second peakwill
not be visible.

From this interpretation in terms of an effective potential, it is clear that the classical bistable
synchronization regimewhere two potentialminima already exist (but no transitions can occur), turns into a
mixed synchronization regime (showing transitions) in the presence of noise.However, our analysis in the
following section reveals thatmixed synchronization can also appear for parameters where classically there is
only a single stable synchronization state.

7. Classical-to-quantum crossover

At themoment, the single-photon coupling strength g0 is still comparatively small in almost all experiments. As
a consequence, quantum effects have only been observed in the linearized regimewhere onlyGaussian states are
produced. In themost promising cases [85, 86], g0 k can take values up to 10−2 and g0 W up to above 10−4.
Much larger values have been reported for experiments with cold atoms (up to around g 10 k ~ ) [87], but these
do not operate in the ‘good cavity limit’, i.e.one has k W in those experiments, precluding the observation of
single-photon strong coupling effects. Nevertheless, as experiments are approaching the single-photon strong
coupling regime, theywill gradually see increasingly strong effects of quantumfluctuations even in non-linear
dynamics. In this section, it is our aim to explore the crossover between the classical regime (small g0 k) and the
quantum regime (large g0 k)with respect to optomechanical quantum synchronization.Wewill focus our
investigationsmostly on themixed synchronization regimewhich is themost interesting one, as we can have
noise-induced transitions between the synchronization states. In this section, wewill disregard thermal noise,
i.e.we assume temperatureT=0, such that only quantumnoise is present. The ‘classical’ regimewe are
discussing here is therefore the noiseless limit of the classical equations ofmotion.Wewill later remark on the
effects of thermal noise (section 9).

To explore the classical-to-quantum crossover, wewant to effectively vary ÿwhilemaking sure to keep all the
classical predictions unchanged. Notably, the optomechanical coupling strength g xc0 w= ¶ ¶ depends on ÿ.
For the simplest case of a Fabry–Pérot cavity of length Lwith one static and onemovablemirror the
optomechanical coupling is g x L0c0 ZPF( ) w= ~ , where x m2ZPF = W denotes the zero-point

fluctuations of themechanical oscillator ofmassm. As discussed in [38], the ‘quantumparameter’ g0 k ~
can thus be varied to effectively change the quantumnoise strength. This implies that all classical (ÿ-
independent) parameters (k W, G W,D W, K W, g L0

2a W ) are kept fixedwhile g0 ismodified. To see that the
quantumparameter has indeed this anticipated effect, it is very helpful to rescale the amplitudes ja and jb ,
equations (5), such that they tend to awell-definedfinite value in the classical limit g 00 k  [38]. This can be
achieved by defining gj j0ã a= and gj j0b̃ b= .While 1

2∣ ∣a gives the number of photons (a ‘quantum-

mechanical’ quantity), the rescaled version g1
2

0
2

1
2

1
2∣ ˜ ∣ ∣ ∣ ∣ ∣a a a= ~ is proportional to the energy c 1

2∣ ∣w a
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inside the cavity (i.e. a classical quantity). A similar argument applies to jb̃ .With this rescaling, we find the
following equations:

K

i
2

i i ,

i
2

i i . 6

L1 1 1 1 1 1in

1 1 1
2

2 1in

˜̇ ˜ ˜ ( ˜ ˜ ) ˜ ˜

˜̇ ˜ ∣ ˜ ∣ ˜ ˜ ( )⎜ ⎟

⎜ ⎟⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

*a
k

a a b b a ka

b b a b b

= D - + + - -

= - W +
G

+ + - G

Here gL L0ã a= is the rescaled laser-driving amplitude that we keep fixedwhile varying g0. The important
observation here is that g0 has been completely eliminated from the equations and nowonly appears in the
strength of the quantumnoise: we nowhave t t g t t 2j jin in 0

2˜ ( ) ˜ ( ) ( )*a a dá ¢ ñ = - ¢ (and likewise for jinb̃ )which
indeed vanishes in the classical limit of g 00 ~  .

If we considermechanical thermal noise atfinite temperatureT (as discussed in section 9), we have
t t g n t t1 2j jin in 0

2
th

˜ ( ) ˜ ( ) ( ) ( )*b b dá ¢ ñ = + - ¢ . Here, nth denotes the thermal occupancy of the bath coupled to the

mechanical oscillator. The product g n n
0
2

th th~ becomes independent of ÿ in the classical limit k TB  W ,
where n k TBth » W and kB is Boltzmann’s constant. In summary, the rescaled equations (6)nicely showhow
an increase of g0 can indeed be viewed solely as an increase of the strength of ‘quantumnoise’ in our system.

Note that if g 00  wehave to increase the laser driving strength La to keep gL L0ã a= constant which
means that the total light energy circulating inside the optical cavity is constant. Due to 0  , this corresponds
to an increasing number of photons inside the cavity and thus increases drastically the size of theHilbert space
necessary for the full quantum simulation. Therefore, quantum jump trajectories are not suitable to explore the
full quantum-to-classical crossover andwe have to apply Langevin equations.

7.1. Synchronization as a function of quantumnoise strength
In all studies of synchronization, one needs to select suitable quantities thatmeasure the degree of
synchronization. In this context, it is important to note that for any finitenoisy system (subject to quantumand/
or thermal noise), there is no sharp synchronization transition and correspondingly no unambiguousmeasure
that displays nonanalytic behaviour at any parameter value. Before proceeding to our results, we summarize and
discuss the synchronizationmeasures adopted herewhich have to be combined to obtain a full picture: (i) the
probability density of df, (ii) the average phase factor e iá ñdf- , and (iii) individual trajectories.

The probability density of the relative phase df is eithermostly flat (no synchronization) or, as shown in
figure 3, centered predominantly around 0 orπ, or itmay have two peaks, according to the synchronization
regime. In the following, we aim to compress the information contained in the phase distribution into one

quantity and calculate the normalized correlator C b b b b b b e1 2 1 1 2 2
iˆ ˆ ˆ ˆ ˆ ˆ† † †

= á ñ á ñá ñ » á ñdf- . Its real value,
CRe cos[ ] df= á ñ, distinguishes the three different synchronization regimes: (i) cos 1dfá ñ » for

0-synchronization, (ii) cos 1dfá ñ » - forπ-synchronization, (iii) intermediate values of cos dfá ñ formixed
synchronization.However, thismeasure has its limitations:When df ismore or less evenly distributed (no
synchronization) cos 0dfá ñ » , this cannot be distinguished fromamixed synchronization situationwhere
almost equal time is spent in the 0- andπ-synchronized states. Furthermore, even in the absence of
synchronization (and even in the noiseless case) the phase dfmay spend an increased amount of time around
certain values. This leads to afinite value of cos dfá ñ, and similarly would also showup in the phase distribution.
A solution to this problem is to simultaneously look at a part of the corresponding trajectory, where
synchronization can easily be distinguished from anunsynchronized state. Instead, one could start to usemore

complicated correlators, e.g. b b b b e1 1 2 2
i2ˆ ˆ ˆ ˆ† †

á ñ ~ df- . This correlator allows to distinguish unsynchronized states
from synchronized states, but an additionalmeasure is needed to distinguish 0- fromπ-synchronization. Note
that the imaginary part of the above defined correlator, CIm sin[ ] df= á ñ, can be used aswell. However, in the
special case of identical optomechanical systems CIm 0[ ] » due to the symmetry of the system.

Infigure 4(a)we showhow cos dfá ñvaries as a function of the quantumparameter g0 k.We chose
parameters that lead to amixed synchronization regime for larger values of g0 k. In the deep quantum regime
(g 10 k  ) the probability P0 tofind the system in the 0-synchronized state is larger than the probability Pp to
find the phase aroundπ, such that cos 0dfá ñ > . Going towards smaller values of g0 k, the ratio P P0p

increases, such that eventually cos 0dfá ñ < . Finally, we should reach the classical (noiseless) limit, when
g 00 k  . It turns out that, for the parameters adopted here, the classical solution always ends up in theπ-
synchronized state, independent of initial conditions. This implies that there is only oneminimum in the
effective potential.We conclude that the systemhas turned from amixed synchronization regime into a purely
π-synchronized regime as the quantumparameter was reduced. This cannot be understood in the simple picture
of a noise-independent phase potential.Wewill discuss this kind of behaviour inmore detail later on
(section 7.3).
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Note that the calculations forfigure 4 have been performed using Langevin equations; although in the deep
quantum regime, two data points were also acquiredwith quantum jump trajectories (red triangles). They are
shifted as compared to the Langevin results, but show the same trend.We expect that the difference between the
Langevin and quantum jump results decreases for smaller quantumparameters g0 k, as it is the case for a single
optomechanical system [38]. Since smaller g0 k require a significantly largerHilbert space for the quantum
jump simulations, we cannot compute this for our coupled system. For large quantumparameter g 10 k ~ ,
qualitative differences between the full quantummodel and the Langevin equations have been already observed
in [38] aswell. Especially a shift of the detuningΔwas reported, that could be determined numerically also for
our system. Taking this detuning shift into account would improve the agreement of our results, although
differences remain.Here, we show the uncorrected outcomes of both approaches.

7.2. Residence times in themixed synchronization regime
Themeasure cos dfá ñquantifies the fraction of total time spent in 0-synchronized parts as compared to
π-synchronized parts. However, it does not provide any information about the rate of transitions between the
two synchronization states. Based on the effective potential picture, onemight expect the transition rates to be
determined by the barrier height and the noise strength. In particular, for larger effective noise strengths g0 k,
we expectmore frequent transitions. This behaviour is qualitatively visible infigures 4(b) and (c). However, as
concluded in the previous section, the potential picture is not sufficient to explain all observations. Thus, we now

Figure 4.Quantum-to-classical crossover. (a) Synchronizationmeasure as a function of the quantumparameter g0 k , using Langevin
equations (black line), classical (noiseless) Langevin equations (black circle, g 00 k = ), andwith quantum jumps (red triangles). (b)
and (c) show trajectories of the relative phase in the quantum regime g 10 k = (blue square) and for g 0.40 k = (green dot). Other
parameters are as infigure 3(c), a rotatingwave approximation has been used for themechanical coupling.

Figure 5.Residence times of synchronization states. (a) and (b) show the distribution of residence times in the 0-synchronized and
π-synchronized state. The yellow histogram shows the distribution for g 0.40 k = , the green histogramgives the result deeper in the
quantum regime, g 10 k = , for comparison. Note the different scale of the time axis in (a) and (b). The corresponding typical time
scale 0t or tp is obtained from a fit and is shown in (c) as a function of the quantumparameter g0 k . Results are obtained using
Langevin equations, with the following parameters: optical damping 0.3k W = , mechanical damping 0.015G W = , detuning

1 30D W = - , mechanical coupling K 0.15W = , g 0.09 constL0
2a W = = , and a rotating wave approximation for the

mechanical coupling term.
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turn to a quantitative analysis and discuss how the transition rates between 0- andπ-synchronized states (i.e. the
typical residence times t̄) change during the classical-to-quantum crossover.We extract the fluctuating
residence times from the phase trajectories and obtain their distribution. The results are shown infigures 5(a)
and (b) for the 0- andπ-synchronized states, for two different quantumparameters g0 k. In all cases the
probability densities decay exponentially with time, e ¯~ t t- , and the average residence time t̄ is obtained from a
fit to the distribution. The extracted average residence times 0t and tp for the two states are shown infigure 5(c)
as a function of the quantumparameter. Note that the ratio of residence times equals the ratio of probabilities,

P P0 0t t =p p. Nevertheless, the dependence of the times ,0t tp on g0 k reveals new information.
We have chosen parameters such that at g 10 k = both 0-synchronized andπ-synchronized parts have

almost equal average residence times. This corresponds to cos 0dfá ñ » and P P0 » p. Furthermore, in the
classical limit g 00 k = the system isπ-synchronized only.When the classical limit g 00 k  is approached, we
find that both 0t and tp increase. As expected, tp increasesmuch faster than 0t and eventually diverges for
g 00 k  , as the system gets trapped forever in theπ-state. In contrast, 0t increasesfirst when decreasing g0 k,
but then saturates at afinite level. Such a behaviour is unexpected based on the simple phase potential picture,
where afixed potential would imply diverging residence times for both states in the noiseless limit. The
behaviour observed here hinges on the fact that the synchronization regime switches from ‘mixed’ to ‘π’ as one
reduces the quantumparameter (i.e. reduces the quantumnoise). The observations would change significantly
for different parameters, where the system always stays in themixed regime, for any value g 00 k > . Then, one
expects the simple picture of a fixed phase potential to be approximately correct and both residence times to
diverge as the noise is becomingweaker.

7.3. Noise-induced synchronization bistability
In the previous sections we have explained that some basic features of the classical-to-quantum crossover, like
the increase of the residence timeswith decreasing quantumparameter, can be understood as effects of a
decreasing quantumnoise strength. The decrease of noise strength leads to less frequent transitions across an
energy barrier in the effective potential. However, wemade also less easily explained observations: (i) the reverse
in the order of 0t and tp as g0 is being reduced, (ii) the saturation of 0t at lownoise levels, (iii) the disappearance
of stable 0-synchronization (for the applied parameters) in the classical limit g 00 k = .Whereas (i) and (ii)
could originate frommore complicated potential shapes with a combination of broad and narrowminima, (iii)
suggests that the effective potential itself changes when the quantumparameter is varied. Infigure 6we show
how the distribution of df evolves as a function of g0 k. For very small values of g0 k, there is only a single peak
close to df p» , in accordancewith the single stable solution of the classical limit.While increasing the
quantumparameter, this peak isfirst broadened. The increasing quantumnoise strength allows the system to
exploremore of the effective potential around theminimum.A significant accumulation close to 0df »
appears only for rather large quantumparameters, signaling the appearance of a second stable solution, i.e.a
secondminimum in the effective potential at 0df » .

In addition to the above described appearance of a second stable solution, there are also parameter regions
where already in the classical regime the effective potential hasminima at both 0df = and df p= (classical
bistable synchronization). In this case quantumnoise naturally drives transitions between the two
synchronization states as soon as it is added to the description of the system. The number of observed transitions
then naturally depends on both the noise strength aswell as the potential shape.

Figure 6.Appearance of bistability. The distribution of the relative phase as a function of the quantumparameter g0 k . Parameters
are as infigure 5, butwithmechanical coupling K 0.1W = .
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8.Overview of synchronization regimes

In the previous sections we have shown examples of the different synchronization regimes in the presence of
quantumnoise and studied the properties ofmixed synchronization inmore detail. In the following, wemap out
the different synchronization regimes as a function of themechanical couplingK and the quantumparameter
g0 k. Furthermore, we also discuss the case of detunedmechanical oscillators.

Figure 7(a) shows the synchronizationmeasure cos dfá ñ for resonant oscillators.We have indicated the
synchronization regimes (which are not sharply delineated). For the applied parameters, wefind
0-synchronization for largemechanical couplingK in both the quantumand classical regime. In the classical,
noiseless limits cos 1dfá ñ  , indicating less fluctuations around the synchronization state. In contrast, at
smallermechanical coupling, we findmore complicated behaviour: there ismixed synchronization for
g 10 k ~ , while the classical limit g 00 k  selects either 0-or p- synchronization, depending on the
mechanical couplingK. The ‘pixelated’ region infigure 7(a) indicates that the system ismultistable even in the
classical limit. There, the residence times have become so large that the system is stuck in a random
synchronization state depending on initial conditions and the transient behaviour. Notably, the closer the
system is to a border of synchronization regimes in the classical limit (this can be seen infigure 7(a) for small
g0 kwhenK is varied), the smaller the noise strength (g0 k) that is needed to lead tomixed synchronization. As
an example, in the ‘middle’ of the classicallyπ-synchronized regime (at about K 0.11W » ) similarmixed
synchronization as compared to the system close to the regime border (K 0.151 W ) appears only for larger
values of the quantumparameter. An exception is of course the classically bistable regime, wheremixed
synchronization appears naturally as soon as there is noise. An interesting feature appears close to K 0.18W » ,
where themeasure cos dfá ñ shows a sharp dip in themiddle of a 0-synchronized region.We suspect a non-linear
resonance, since the oscillator trajectory xj(t) is no longer simply sinusoidal and period-doubling is observed. At
the same time, the oscillation amplitude increases. For larger values of themechanical couplingK, the
trajectories are simply sinusoidal again, with the same frequency as for coupling strengths below the feature.

Up to now,we have studied the ideal case of identicalmechanical oscillators.We now turn to the case where
themechanical oscillators have slightly different resonance frequencies, i.e. 02 1dW = W - W ¹ . This is a
typical situation in experiments, since fabrication inaccuracies lead to deviations between two systems.
Figure 7(b) shows how dW affects synchronization. Afinite dW corresponds to a tilted effective potential in the
classical, noiseless limit, where afinite threshold for synchronization appears [31]. This classical threshold is
indicated infigure 7(b)with a dashed line. Similar behaviour is visible for quantumparameters g 00 k > .
However, for large g0 k it is not possible to determine the onset of synchronization, because themeasure
cos dfá ñcannot distinguish between no synchronization andmixed synchronization. Instead, we now also have
to analyze the trajectories inmore detail, which revealmixed synchronization for sufficiently largemechanical
coupling. A significant deviation from the classical threshold cannot be observed at the given resolution.We
expect the threshold to slightly increase for larger quantumparameter g0 k. At the same time, however, the
threshold is also smeared out due to quantumnoise.

Here, we have chosen to show the dependence of the synchronization regimes on themechanical coupling
strengthK and the quantumparameter g0 k. Note that other parameters influence the synchronization type as
well. Infigure 2we have already seen that the laser driving strength La and the detuningΔ influence the classical

Figure 7. Synchronization regimes versusmechanical coupling and noise. Themeasure cos dfá ñas a function of the quantum
parameter g0 k (i.e. effective quantumnoise strength) and of themechanical coupling strength K 1W , for identical optomechanical
systems (a) and for systemswithmechanical frequency detuning 0.051 2 1 1( )dW W = W - W W = (b). In (c), we display the effects of
thermal noise nth. In that case, we show cos dfá ñas a function of couplingK and environmental thermal phonon number nth, with a
constant g 0.010 k = and for zero dW. The grey region in (a) and (b)was not simulated. The dashed line in (b) is the synchronization
threshold as observed in the classical, noiseless limit g 00 k = . Parameters are as infigure 5.
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synchronization regimes. Also themechanical dampingΓ can affect the observed synchronization,
cf.figures 3(b) and (c). However, first of all it already influences the limit cycles of individual optomechanical
systems bymodifying the threshold to self-sustained oscillations. In addition,Γ has an influence on the
mechanical noise strength. Note that, when changing these parameters, care has to be taken to remain on a stable
limit cycle for each optomechanical system.

9. Thermal noise

So far, we assumed zero temperature environments for both the optical and themechanicalmode. In this section
we investigate the effects of thermalmechanical noise on synchronization.

For our studywe use the Langevin equations (5)withmodifiedmechanical noise correlators to account for
the coupling of themechanical oscillators to afinite temperature bath, t t t tj j j jin in in in( ) ( ) ( ) ( )* *b b b bá ¢ ñ = á ¢ ñ=
n t t1 2th( ) ( )d+ - ¢ , where nth denotes the thermal occupancy of the bath.Hence, both quantumand thermal
noise are included. For optical frequencies in the visible spectrum the effective thermal occupation of the optical
bath is very small. Thus, the assumption of an optical bath at zero temperature is valid and the optical input noise
terms are notmodified.

Infigure 7(c)we show an overview of the synchronization regimes as a function of thermal noise nth. Here,
we chose a comparatively small quantumparameter g 0.010 k = in order to observemainly effects due to
thermal noise. For small nth the results are similar tofigure 7(a) at small g0 k. In both cases the influence of the
quantumor thermal noise is still weak. For increasing thermal noise strength nth, wefind qualitatively the same
behaviour as for increasing quantumnoise. However, quantitative differences appearwith increasing nth: Even
though amixed synchronization regime can develop for both quantum and thermal noise, the evolution of the
relative weight of both synchronization states is different.

In the following, wewant to estimate the critical thermal noise strength nth* at which thermal and quantum
noise should have a comparable effect. At lower temperatures, quantumnoisewill dominate. Themain source of
quantumfluctuations is the laser shot noise (for the parameters explored here). Thus, we estimate the effect of
optical quantum fluctuations on themechanical oscillator, with the (symmetrized) shot-noise spectrum
evaluated at themechanical resonance frequencyΩ [1, 89],

S
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2 2 2
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Weexpect similar effects fromquantum and thermal noise if the shot-noise spectrum at themechanical
resonance frequencyΩ becomes equal to the thermal force spectrum, S SFF FF

SN th( )W = . The thermal noise
spectrum at temperatures k TB  W is

S m k T2 , 8FF B
th ( )= G

whereT is the temperature of the thermalmechanical bath. Setting SFF
SN and SFF

th equal, we find (in the resolved
sideband regime k W atD » W ):

n k T 2, 9Bth ( )*  = W =

wherewe used the optomechanical cooperativity [1]
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á ñ

This approach suggests that observing quantumnoise phenomena does not necessarily require a large g0 k and
very low temperatures. Instead, if the cooperativity is sufficiently large (comparable to values that enable
ground-state cooling, nth > ), quantumnoise should dominate the behaviour of the system even in the
presence of thermal noise.

However, depending on parameters, we find large deviations from this simple expectation. In these cases, the
real shot noise spectrum is no longer well described by theweak-coupling expression of SFF

SN ( )W given above, and
the actual noise strengthmay have amuch larger value. Consequently, the transition between behaviour
dominated by quantumnoise vs.that dominated by thermal noise takes place atmuch larger values of nth* than
those predicted by equation (9). In other words, it should be even easier to observe quantumnoise in
optomechanical synchronization than the naive ansatz would lead one to expect.

Here, we don’t observe that quantumnoise can be exactlymapped to thermal noise. This is already evident
in the rescaled Langevin equations (6). Physically, the thermal force spectrum acting on themechanical
oscillator isflat in frequency, whereas the optical shot-noise spectrum is frequency dependent and is also
modified by the dynamics of the system.
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10. Conclusions

Wehave investigated the effects of quantum and thermal noise on two coupled optomechanical limit-cycle
oscillators. One usually expects that noise prevents strict synchronization, i.e.exact phase locking and a sharp
transition to synchronization.Herewe have shown thatfluctuations additionally drive transitions between 0-
andπ-synchronization, i.e.the two synchronization states that can appear in the absence of noise.We have
discussed the residence times of these states and observed a smooth crossover between different synchronization
regimes. Finally, we have compared the effects of quantumand thermal noise.We have argued that it should be
possible to experimentally reach the regimewhere quantumnoise dominates. This should happenwhen the
optomechanical cooperativity is large enough for ground state cooling.

For further investigations it would be useful to identify ameasure that can genuinely distinguish between an
unsynchronized regime and 0-,π- andmixed synchronization. Finally, it will be very interesting to extend the
insights obtained here to large optomechanical arrays.
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