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Abstract
Event-Related Potential (ERP) signals obtained from EEG
recordings are widely used for studying cognitive processes
in spoken language processing. The computation of ERPs in-
volves averaging over multiple participants and multiple stim-
uli. Especially with speech stimuli, which also evoke substan-
tial exogenous excitation, even averaging within conditions re-
sults in pooling many sources of variance. This raises questions
about the statistical processing needed to uncover reliable dif-
ferences between conditions. In this study we investigate dif-
ferences between ERPs when participants listened to full and
reduced pronunciations of verb forms in Dutch, in isolation
and in mid-sentence position. Conventional statistical analy-
sis uncovers some (but not all) differences between full and re-
duced forms in isolation, but not in mid-sentence position. In
this paper, we show that linear mixed models (lmer) and gen-
eralized additive models (gam), which are able to account for
participant- and stimulus-related variance may uncover more ef-
fects than conventional statistical models. However, depending
on the complexity of the data, lmer and gam models may not be
able to fit the data closely enough to warrant blind interpretation
of the summary output. We discuss opportunities and threats of
these approaches to analyzing ERP signals.
Index Terms: ERP based on EEG, reduced vs. unreduced
speech, statistical analysis, generalized additive models

1. Introduction
Speech comprehension involves a complex sequence of pro-
cesses for accessing information at different levels of represen-
tation. To study listening comprehension, one should be able to
separate and account for the different cognitive processes that
are involved during the unfolding of an auditory stimulus. Be-
fore the advent of sophisticated neurophysiological experimen-
tal techniques, studies on speech processing were mainly re-
stricted to collecting button presses (i.e., that reflect response la-
tencies or accuracy judgements) to isolated words or sentences.
These experimental techniques provide output measures that are
the sum of multiple cognitive (stimulus-related and stimulus-
unrelated) processes that affect the processing of a stimulus.
For instance, a response latency for a given stimulus not only in-
cludes the time it takes to actually process the stimulus, but also
the decision about the response to be given, the motor planning
and execution (pressing a specific button). This makes most
behavioral experimental techniques unsuitable to study the pro-
cessing of a stimulus proper, because they cannot separate the
individual cognitive processes. Moreover, output measures do
not capture the continuous nature of the speech signal and can-
not account for the time course of effects on the processing of
auditory stimuli (i.e., how different variables affect the process-
ing of a stimulus as the signal unfolds).

One way for studying the time course of auditory process-

ing is to use Event-Related Potentials (ERPSs). ERPs provide
a millisecond-to-millisecond record of the electrical changes
evoked by an ongoing stimulus. With this technique, one can
capture the continuous nature of the speech signal. However,
ERPs are averages over multiple responses, almost always of
multiple participants and/or multiple stimuli. Therefore, the av-
eraging process is (perhaps tacitly) based on the assumption that
the underlying processes are very similar in all participants and
all stimuli. These assumptions justify the use of repeated mea-
sure ANOVA techniques for comparing average amplitudes of
the ERP signals between experimental conditions. It is not un-
usual for those ANOVAs to fail to return significant differences
between conditions that researchers expected to differ substan-
tially. This has raised the question whether the assumptions un-
derlying ANOVA do indeed hold, and whether more advanced
analysis techniques can uncover effects that are not uncovered
by ANOVAs. This paper addresses this question on the basis of
an experiment aimed to investigate whether native listeners of
Dutch process full and reduced verb forms differently.

2. Description of the experiment
Right-handed undergraduate students passively listened to full
and reduced pronunciations of verb forms in three conditions:
the words presented in isolation (N = 31, mean age = 21.3, sd
age = 2.7), the words in mid-sentence (N = 28, mean age = 20.8,
sd age = 2.0) and in sentence-final position (N = 27, mean age =
21.7, sd age = 1.8) [1, 2]. In this paper we only discuss the first
two conditions. Stimuli were presented over Sennheiser HD215
headphones using the Presentation software (Neurobehavioural
Systems, www.neurobs.com). Participants were instructed to
attentively listen and were told that they would get questions
about the words and sentences they were about to hear. The
goal of the experiment was to test whether full forms have an
advantage over reduced forms in all conditions. That advantage
should show up in differences between two ERP components,
an N100 related to acoustic processing and an N400 related to
semantic integration.

2.1. Stimulus materials

We selected 80 Dutch verb forms starting with the unstressed
prefixes be- (/b@/, e.g., bevallen /b@’val@/, ’to give birth’), ge-
(/x@/, e.g., genieten /x@’ni:t@/, ’to enjoy’), or ver- (/v@r/, e.g.,
vertellen /v@r’tEl@/, ’to tell’). When pronounced in their full
forms, these prefixes all contain a schwa. We only selected
those verb forms whose second syllable start with a consonant.
Out of the 80 verb forms, 31 with ver-, 31 with be- and 18 with
ge-. In addition, we selected 120 filler verb forms in order to
make the stimuli better represent the Dutch lexicon, which con-
tains many verb forms that do not start with one of the three
prefixes.

In mid-sentence position, the verb forms were the main
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verb in 30 sentences (e.g., De bewoners bereiden de open dag
voor, ’The inhabitants prepare the open day’); were preceded
by an auxiliary verb in 26 sentences (e.g., Hij wil alles verde-
len over zijn kleinkinderen ’He wants everything to divide over
his grandchildren’,) or were part of the subject in 24 sentences
(e.g., Het jongetje genezen was voor deze arts niet moeilijk ’The
boy curing was for this doctor not hard’). The different syntac-
tic functions ensure that our results do not depend on a specific
syntactic construction. The target verb form was always pre-
ceded by four syllables. The words to be presented in isolation
were segmented from sentence-final position. These forms were
always preceded by an auxiliary. For all sentences, sentence ac-
cent was never on the target verb form or the preceding syllable.
The semantic context up until the target verb form was kept as
neutral as possible.

Sentences were recorded by a male native speaker of Dutch
three times: Once without specific instructions, once with the
instruction to pronounce all verb forms in full, and once with
the instruction to pronounce the verb forms without the prefixal
schwas. For the filler sentences, there was no specific instruc-
tion. In the sentences that the speaker produced without having
received any instructions (i.e., the ’carrier’ sentence), prefixal
schwa was present in 68.4% of the verb forms and absent or
unclear in the 31.6% of the verb forms that occurred in mid-
sentence position, and present in 52.5% and absent or unclear
in 47.5% of the verb forms of the carrier sentences that were
used for the words to be presented in isolation.

The reduced and unreduced verb forms were spliced out of
their original sentences and were pasted into the carrier sen-
tence (in mid-sentence position) or presented in isolation. This
was done to make sure that the reduced and unreduced sen-
tences only differed with respect to the realization of the target
verb form. The spliced reduced and full verb forms had a mean
schwa duration of 3 ms and 42 ms in mid-sentence, and of 0 ms
and 43 ms in isolation, respectively. The mean durations of the
entire word were 430 ms for the reduced forms and 495 ms for
the full forms in mid-sentence position, and 739 ms and 782 ms
in isolation, respectively.

2.1.1. Data acquisition

The EEG signal was recorded with 26 active electrodes
mounted in an elastic cap (Acticap). Electrode positions were
a subset of the international 10− 20 system, consisting of four
midline electrodes (Fz, Cz, Pz, and Oz) and 22 lateral electrodes
(Fp1/Fp2, F3/F4, F7/F8, FC1/FC2, FC5/FC6, C3/C4, T7/T8,
CP1/CP2, CP5/CP6, P3/P4, and P7/P8). Moreover, an elec-
trode was placed on each of the mastoids and each electrode was
referenced online to the left mastoid. The electro-oculogram
(EOG) was recorded by two vertical electrodes placed above
and below the right eye and by two horizontal electrodes with a
right to left canthal montage.

Electrode impedance was kept below 5kΩ. The EEG and
EOG signals were amplified (band pass = 0.02 − 100 Hz), and
digitized with a sampling frequency of 500 Hz. Before data
analysis, the signal was re-referenced to the average of the left
and right mastoids and digitally filtered with a high cut-off fil-
ter of 30 Hz. Next, the continuous EEG was segmented into
stimulus-time-locked epochs, starting from 200 ms before tar-
get word onset up to 800 ms after onset. Ocular artifacts were
identified and removed with independent component analysis
(ICA). After ICA, single trials that still contained artifacts were
removed by a semi-automatic rejection routine. The period of
200 ms preceding the target word onset was used for baseline

correction.
In this paper we confine ourselves to analyzing a single

EEG signal, viz. Cz.

3. Isolated Words
Behavioral studies have shown that, at least in isolation, full
forms benefit from a processing advantage over reduced forms
(e.g. [3]). The ERP data from the isolated words for electrode
Cz are shown in Figure 1. The green curve in the upper panel
of Figure 1 shows the result of a sample-by-sample t−test on
the average ERP signals from the full and reduced words. In a
way, this corresponds to an ANOVA on very narrow bins, each
containing a single sample (c.f. [4]). From the lower panel of
Figure 1 it can be seen that there is a small processing advantage
for full forms presented in isolation. More negative N100 am-
plitudes were observed for reduced forms (full red lines) relative
to full forms (full blue lines). As speakers do not typically re-
duce words when uttered in isolation, the reduced forms could
have been unexpected and, as a consequence, attracted more
attention. A more negative N100 might also indicate speech
segmentation problems[5], because absence of schwa in some
reduced forms resulted in consonant clusters that only occur
cross-word. However, as can be seen from the green curve in
the upper panel of Figure 1, the amplitude difference between
the ERPs for the full and reduced forms did not approached sig-
nificance in the N100 region.

The green curve in the upper panel of Figure 1 suggests
that the amplitudes of the ERP for the full and reduced forms
differ significantly in the time interval from 300 to 400 ms. We
interpret this as a difference in N400 peak latency for reduced
and full forms, with a later N400 peak for reduced forms com-
pared to full forms. As the N400 indexes lexical-semantic ac-
tivation [6], this suggests that the activation of semantic rep-
resentations is delayed for reduced forms. This is in line with
behavioral findings that suggest that it takes more time to acti-
vate the semantic network for reduced forms [7].

For reduced forms, the N400 was preceded by a small
negative peak around 270 ms, which was present at all cen-
tral, fronto-central and centro-partietal sites and absent or less
pronounced for full forms. We consider this peak to be the
N250 [8], which might reflect a lexical selection process that
occurs at the interface of lexical form and contextual meaning.
Based on the incoming acoustic input, potentially matching lex-
ical candidates are activated (e.g., [9]). [8] argue that an N250
effect would arise if contextual specifications do not support the
activation of a lexical candidate, relative to a situation in which
form-based activation is supported by the specifications of the
context. The fact that words tend not to be reduced when they
are pronounced in isolation therefore explains the finding that
only reduced and not full forms generated a (clear) N250.

In sum, the ERP data seem to confirm a processing advan-
tage for full forms presented in isolation. While a conventional
ANOVA confirmed the expected difference related to the N400
component, it failed to uncover the – also expected – N100 com-
ponent.

3.1. Linear Mixed Effects Models

The failure to find a significant N100 effect may be due to sev-
eral different causes. Maybe the most obvious cause is the true
absence of an effect, which would suggest that full and reduced
versions of the verbs heard as words spoken in isolation are
equally likely and equally natural in normal speech. However,
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Figure 1: Event-related potentials (ERPs) to full forms and re-
duced forms presented in isolation for electrode Cz. Negativity
is plotted upwards. Top panel: by-sample t-tests. X-axis repre-
sents time in ms. For details, see text.

we cannot exclude the possibility that there is some effect, but
that it is obscured by pooling multiple sources of variance.

One way for investigating the contributions of several
sources of variance is to replace ANOVA by a linear mixed
effects model. For that purpose we used the R-package
lme4 [10]. We started with a fairly simple model:

m0 lmer ← lmer(amplitude ∼ type fac + type2 fac+
word dur + time + (1|subject fac)+

(1|stimulus fac), data = dat)[−1mm]

The output of that model is summarized in Table 1. The pre-
dictor type fac corresponds to the planned difference between
full and reduced forms; the predictor type2 fac has the three
levels be-, ge-, ver-. We included time as a predictor, to prevent
the model from collapsing all samples. We included subject
and stimulus as random factors, because we aimed to remove
as much participant- and stimulus-related variance as possible.
From Table 1 it can be seen that the factor full/reduced is sig-
nificant, as are the duration of the stimulus words and the fac-
tor time. However, from the summary output it is not possible
to know in what time interval the ERP amplitudes of the full
and reduced forms differ significantly. We hoped to be able to
glance that information from the predictions of the model of the
amplitude of the ERPs of the individual stimuli. The averages
of these predictions are shown by the dotted lines in the lower
panel of Figure 1. However, these approximations turn out to be
straight lines. Using hindsight, this does not come as a surprise:
ERP signals are not linear functions of time, and as a result a
strictly linear model cannot achieve close approximations.

An analysis without the factor word dur returns only ver-
and time as significant. We believe that this is due to the fact

Table 1: Summary of the m0 lmer model.

Estimate Std. Error t value
(Intercept) -1.6022229 0.6161846 -2.60
type fac2 0.5055082 0.0508597 9.94
type2 fac2 -0.0402940 0.4675198 -0.09
type2 fac3 0.9116503 0.3964945 2.30
word dur 0.0079978 0.0005186 15.42
time -0.0116187 0.0001587 -73.23

Table 2: Partial summary of the m2 lmer model.

Estimate Std. Error t value
(Intercept) -5.335e+00 6.427e-01 -8.30
type2 fac2 4.663e-02 4.762e-01 0.10
type2 fac3 9.478e-01 4.039e-01 2.35
word dur 8.363e-03 5.110e-04 16.37
type fac2 5.835e-01 3.797e-01 1.54
...

...
...

...

that the model must have at least basic information information
about the temporal structure of the acoustic stimuli to be able to
account for possible time shifts in the neural processes related
to different stimulus durations.

3.1.1. Adding time as a non-linear predictor

The lmer() function in R offers the possibility of adding
higher-order polynomial functions of predictor variables to the
model. Because we have seen that ERP amplitude is not a linear
function of time, we experimented with adding polynomials of
time with increasing order. Table 2 shows a small part of the
output of model m2 lmer.

m2 lmer ← lmer(amplitude ∼ type2 fac + word dur
+type fac ∗ poly(time2, 7) + (1 + type fac|subject fac)

+(1|stimulus fac), data = dat)

It can be seen that the factor type fac is no longer signifi-
cant in its own right. However, many of its interactions with
polynomials of time are highly significant (not shown).

The dash-dot lines in the lower panel of Figure 1 show the
approximation of the average ERP signals for full and reduced
versions of the verb forms obtained with the model m2 lmer.
The black curve in the upper panel shows the p values from
sample-by-sample t-tests for the difference between the approx-
imated ERP signals. It can be seen that the model suggests that
the amplitudes of the ERP signals pertaining to the full and re-
duced words differ significantly in several long, connected time
intervals. However, from the lower panel of Figure 1 is is evi-
dent that the approximated ERP signals do not fit the raw signals
very well. Maybe it should not come as a surprise that the ap-
proximations of the model do not reproduce the high-frequency
oscillations in the raw averages; also, it is not clear whether
these oscillations correspond to relevant cognitive processes.
However, it is alarming that the approximation of the reduced
ERP does not reproduce the N250 component, to which we did
assign a cognitive interpretation. This raises questions about the
validity of model m2 lmer.

3.2. Generalized Additive Models

Adding polynomials of the predictor time to an lmer() model
is a kludge, if only because predictions outside the time in-
terval in the analysis will very likely be completely wrong.
The recently introduced family of Generalized Additive Models
(GAM) offers an attractive alternative, by replacing polynomi-
als by regression splines (see [11] for an introduction to GAM
analysis). GAM determines a linear and/or non-linear equation
that strikes a balance between over-fitting and overgeneralizing
a set of data through a process called penalized iteratively re-
weighted least squares. The algorithm separates the parametric
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from the nonparametric part of the fit, and fits the parametric
part using weighted linear least squares.

[12, 13] applied GAMs to analyze EEG signals, using the
R-package mgcv [14]. We used the same software to obtain the
GAM model gam2.

gam2← bam(amplitude ∼ type fac + type2 fac
+s(worddur) + s(time, by = typefac, k = 50)

+ti(time, schwadur) + s(subjectfac, bs = ”re”)
+s(stimulusfac, bs = ”re”), data = dat,

samfrac = 0.1, gc.level = 2, correlation = corAR1())

The approximations of the raw ERP signals obtained with this
model are shown as dashed lines in the lower panel of Figure 1.
If the dashed lines are extremely difficult to distinguish from
the full lines, that is because the approximation with gam2 is
close to perfect. That is not to say that the approximations of
individual EEG signals is very good. gam2 only accounts for
slightly less than 10% of the total variance in the data.

The p-values of a sample-by-sample t-test on the approxi-
mated signals again shows substantial connected time intervals
in which the ERP signals of the full and reduced words, with at
least part of the participant- and item-related variance removed,
differ significantly. Specifically, in the GAM analysis the dif-
ference in the N100 region appears to be significant. Because
of the close approximation of the average ERP signals by the
GAM model we trust that here the p-values are meaningful.

4. Mid-sentence data
In [2] it was found that in mid-sentence position conventional
ANOVAs did not discover differences between the ERP signals
of full and reduced forms. This finding was explained by the
fact that in mid-sentence position reduced pronunciations are at
least as natural as full forms. However, it is worthwhile inves-
tigating whether significant differences can be found if part of
the subject- and item-related variance is removed. The results of
an lmer() and a gam model are shown in Figure 2. The full
green line in the top panel confirms that t-tests do not detect
significant differences in the raw ERPs.

The sample-by-sample t-tests on the approximations by the
lmer and gam models suggest that the full and reduced ERP
signals differ significantly over several connected time intervals.
However, from the lower panel in Figure 2 it is evident that both
model approximations differ considerably from the raw aver-
ages of the full and reduced ERP signals. It can be argued that
these averages are so complex (have so many local minima and
maxima) that both models fail to capture the structure if any-
in the data. The adjusted R2 of the gam2 model applied to the
mid-sentence is only 4.6%. It seems that the EEG signals corre-
sponding to the words in mid-sentence position contain a sub-
stantial amount of variance that is not related to the predictors
used in the model. A probable source is the exogenous excita-
tion due to the speech preceding the interval under analysis.

Heeding the lessons learned from the analyzes of the iso-
lated word data, we refrain from interpreting the differences that
are significant according to the lmer and gam models. Only
the interval around 150 ms after the onset of the crucial word,
where the analysis of the raw signals approaches significance,
is likely to be meaningful. The larger negative-going amplitude
of the full forms suggests that in mid-sentence position reduced
forms are more likely.

In [15] it is recommended to evaluate the quality of gam
models by analyzing the autocorrelation in the prediction error.
Although this may work well when predicting time series of
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Figure 2: Event-related potentials (ERPs) to full forms and re-
duced forms presented in mid-sentence position for electrode
Cz. Negativity is plotted upwards. Top panel: by-sample t-tests.
For details, see text.

reaction times, which are indeed characterized by a first-order
auto-regressive process that should -and can- be accounted for
by a linear mixed effects model [16, 17], the situation with EEG
signals is very different. Figures 1 and 2 show that the aver-
age ERP signals related to full and reduced pronunciations are
much more complex than a first-order auto-regressive process.
Especially for the mid-sentence data there is a need for addi-
tional processing to remove the exogenous excitations. The au-
tocorrelation that is naturally present in EEG signals can only
be removed by a model that accurately predicts all individual
signals. No linear model with the predictors that we have avail-
able can be expected to accomplish this. We plan to investigate
whether the linear deconvolution approach proposed in [18, 19]
can remove enough exogenous excitation from the EEG signals
to yield average ERP signals that come closer to a sequence of
established ERP components.

5. Conclusions
In this paper we investigated several statistical procedures for
analyzing EEG/ERP signals. We want to use such models to re-
duce the subject- and item-dependent variance sources that may
obscure true differences between conditions, such as listening
to full and reduced pronunciations of words. We found that lin-
ear models can only begin to approximate EEG signals if time
can be included as a non-linear predictor. In lmer models this
can be accomplished by introducing poly(time, n), where
n specifies the order of the polynomial. Although such lmer
models suggested that there are substantial connected time in-
tervals where full and reduced pronunciations differ, we con-
cluded that the fit of the model to the data was not good enough
to be able to interpret the results. For the isolated words the
gam model did obtain a very close approximation. However,
the mid-sentence signals appear to contain so much variation
that is not related to the predictors that even a gam model fit is
not good enough.
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