TWO-POINT PROBLEM FOR SYSTEMS SATISFYING THE CONTROLLABILITY
CONDITION WITH LIE BRACKETS OF THE SECOND ORDER

V. V. Grushkovskaya' and A. L. Zuev?

We study a two-point control problem for systems linear in control. The class of problems under consid-
eration satisfies a controllability condition with Lie brackets up to the second order, inclusively. To solve
the problem. we use trigonometric polynomials whose coefficients are computed by expanding the solu-
tions into the Volterra series. The proposed method allows one to reduce the two-point control problem
to a system of algebraic equations. It is shown that this algebraic system has (locally) at least one real
solution, The proposed method for the construction of control functions is illustrated by several examples.

1. Introduction

The problem of planning of motions of nonholonomic mechanical systems occupies an important place in
the contemporary theory of control in connection with the nontrivial geometric properties of the trajectories and
applications to robotics. Despite a large number of works on the control of motion of nonholonomic systems,
the problem of constructive synthesis of control functions under sufficiently general assumptions about the vector
fields in the system remains open. In the present, work, we consider the most significant, from our point of view.
results obtained in this field.

Brockett solved the problem of optimal control with quadratic quality functional for a system in the canonical
form satisfying the rank condition with Lie brackets of the first order {2]. Murray and Sastry [14] extended this
result and represented a family of software controls in the form of combinations of sine curves for the solution of
two-point problems with one and several chains of integrators. A more general method was proposed by Sussmann
and Liu for a class of systems linear in control. For these systems, the control functions with large amplitudes
can be used for the solution of the problem of approximate tracking of the trajectories [16]. The sinunosoids with
large amplitudes were also used in the work [9] to find the time-periodic solutions of the problem of planning
of motion with bypassing the obstacles. A method aimed at the solution of the two-point control problem with
piecewise conslant controls was proposed in [12]. Functions of this kind are used both in nilpotent systems and
for the approximate control over the general classes of systems. In [6], the two-point control problem was solved
for several examples of systems linear in control with piecewise constant inputs. The sinusoidal and polynomial
control functions for systems with two chains of integrators and three inputs were constructed in [3]. The globally
convergent algorithms of motion planning were described in [5. 10]. Another method based on the use of the Lie
algebra and the generalized Campbell-Baker-Hausdorff-Dynkin formula was proposed in [7].

In the present work, we consider the systerus linear in control whose vector fields together with their Lie
brackets of the first and second orders satisfy the rank condition. To solve the two-point control problem, we use
the expansion of solutions of the system with trigonometric time-dependent controls in the Volterra series. This
representation enables us to compute the coefficients of control functions via the solution of the system of algebraic
equations. Note that a similar approach was considered in [8] for systems satisfying the condition of controllability
with Lie brackets of the first order.
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We now briefly describe the structure of the present work. In Section 2, we give the statement of the problem
and present some facts related to the representation of solutions in the form of Volterra series. The main result
concerning the construction of controls is formulated in Subsection 3.1 and proved in Subsection 3.2. In Section 4,
we consider some examples illustrating the obtained results. Some technical details can be found in the Appendix.

2. Auxiliary Constructions

2.1. Statement of the Problem. Consider a class of systems linear in control of the form

X = Zuifi(x). (hH

i=1

where x = (x,...,. ty)T € R is a state, u = (uy..... um)T € R™ is a control, and f; (x) are smooth mappings
from R” into R", m < n.
We pose the two-point control problem for system (1) in the following way:

Given initial x® € R" and final x' € R” states, it is necessary to find an admissible control u(t) € R™,
t € [0, ] that transfers system (1) from x° to x! for time e.

Assume that system (1) satisfies the condition of controllability with Lie brackets up to the second order,
inclusively, at a point x°, i.e.,

span { f; (x°). [f5+ fil(<2). [Ufiy- fu)s f13] (X)) = R™, (2)

iefl..... mty =Sy, (i.j2) €S> C{l,..., my?, (I,.I,.13) e S3C{1,..., my3, |82l + |S3| =n—m,

and
af; dfi
dfi(
are the Lie brackets of the vector fields f; and f;. Here and in what follows, —-)‘E—(ﬂ stands for the Jacobi matrix.

ax
Elements of the sets S, and S3 are ordered so that j; < j, for all (ji, j2) € Sz and [y < I, for (I1,l2,13) € S3.

2.2. Representation of Solutions in the Form of Volterra Series. 'We now expand the solution x (1) of sys-
tem (1) with initial condition x(0) = x® € R” in a Volterra series by assuming that the function u(¢) is continuous
fort € [0, €] (see [15]):

{

x0)=x"+Y" £ (xo)/ui(s)ds + ) a‘f}(f} fi(x)
i,j=1 ’

i=1 0

t T
[ [ woupapas
=0 0

t T 5
B (3fi(x) |
+ Zla—\( i f,(x)) fi1(x) . ///u,(r)uj(s)ul(p)dpdsdr+R(r). tef0,e]. (3
000

i.Jj.l=
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In representation (3), the function R(r) denotes the residual term , which is equal to zero for a class of nilpotent
systems. For systems of the general form, we get the following assertion on the estimation of the residual term:

Lemma 1. Let D C R" be a convex region and let the function x(t) € D, 0 <t < ¢, be a solution of svstemn
(1) with the initial condition x(0)=x° € D and control u € C[0, €]. If the vector fields fi(x),..., Jm (x) satisfy
the conditions

)(U'

I’
!T{\’},_£Vfl- H ()|} < M,
Il e

) 172
" 93 )\

3 ( ) ) <Ms, xeD. ijes.
dxg0xp0x;

k,p.z=1

with some positive constants My, M>, and M3, then the residual term in expansion (3) satisfies the Jollowing
inequality:

i‘? L i"ff”
24

[R(e)|| < (M7 + Mo(MoM3 + 4M M>) /n) t* + O(r°), )

where
My = max Hf,-(xo)ll and U = max [u;llz(e).
l<i<m 1<i<m

This result is proved by analogy with Lemma 2.2 in [8].
For the subsequent investigations, we represent relation (3) as follows:

x(t) =x +Zfl X /u (s)ds + = Z[fz fj //(llj(r)ll () —ui(nuj(s))dsdz

i=1 0
l m
t3 ZZ [Lfi. fi) A ( 0)/// (7 () (uj ()i (p) — ui($)u;(p))) dpdsd
i<jl=l
G(r) + R(1). (5)
The formula for G(7) is presented in the Appendix.

3. Solution of the Two-Point Control Problem

3.1. Construction of Control Functions. In order to solve the two-point control problem, we use the fol-
lowing family of trigonometric polynomials:

. 2n K 21K
ui(t) =a; + Z dagr (Siqcos ng‘"t—k&,sin%t)

(g.r)esS>
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nK <A B grs 2nKagrs . 2mK3grs
+ a cos —— " ¢ 4§ sin 29 ¢ 4§ sin — =975 ¢}
Z qrs ( iq ir c is -
(q.r.s)eS3

(6)
i €38, [E[O,E],

where a;, agr. and a4, are real parameters, Kyr, Kigr5. K2grs. and K34, are integers, € > 0, and §;; stands for
the Kronecker delta.

Assumption 1. Forany (q.r) € S2. (q.rr.5%) € S3.k = 1,2, 3, the conditions

3

4
ci1Kgr + chHqurksk =0, ¢eZ. 0< Z lci| < 3,
k=1

imply that (q1,r1.52) = (q2,r2.53) = (¢3.r3.83)and c; =0, ¢3 = c3 = —cq = 1.

By using formula (5) with controls (6), we obtain

12 2

T gl

i £

—= 4 791(0..\’0)

m 2
x(e) = x0 + EZf,’ (x°) a; + j—ﬂ Z il £i1(x%) K'.[-,-

=1 (1,J)ES>

+

g3 afi ([ FLALCY (A 05 AN | & ,
= e ————— + — Qa(a.x7)+ R(e), (D
1672 (i_lé% Ksiji K;f;‘! Kyijr 6 2

where €2 and 2, depend on the coefficients of functions (6) and the initial value x© (the explicit formulas are
presented in the Appendix).

Representation (7) and Lemma | now yield the main result of the present work:

Theorem 1. For given states x° € R" and x' € R” and time ¢ > 0, a control

u(t) = (i (). ... um@)7

of the form (6) with coefficients satisfving the system of equations

2
Zﬁ(\ )a,+— S Ui £ ” %Ql(a,x")

=1 (l J)eS>

C oy 4 [[.fé-.f}].,f}](-t”)_[_)‘;-.[_f}._f‘g]](..\:”))
tor (i,).1)€Ss Kaiji Kiji Kyiji

o3
+ I Qo(a. x% = x! = x°, (8)
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transfers system (1) from the initial position x(0) = x° into an R(g)-neighborhood of the point x1, where R(e)is

estimated by formula (4).
3.2. Solvability of the Algebraic System.  Although system (8) is quite cumbersome, it can be represented in

a more compact form by using the properties of the Kronecker delta in the formulas for Q; and €. In this section,
we prove that there exists at least one real solution of system (8):

_ T n
a = (ay..... Amoljify e @yl A r Sy -+ dgurpsy)’ € R”,

where & = [52] and 8 = [S3]. Following the approach proposed in [8], we define new variables by the formulas

- = . - - - T _ mon
a=A(ar ....am, a1y, ..., Aj 1, g riss.---. Aggrgsg) € R”,
where a; = €a; fori € 5,
23
: £ay
ai; = -
4Rk
for (j,!) € §3, and
3.3
(—i _ € aqrs
ars ]6?’[2.{\'3{_’,,-;

for (¢, r.s) € S3.
We now assume that

sign (Kj;) = sign (a;r)

for nonzero a;; and sign (Kj;) = 1fora j1 = 0. which guarantees that the definition of a; is correct.
We now rewrite system (8) in the form

([{fi,f,-l,fz] 0 [ﬂ,m,fz](x")])

Yafit+ Y aylfi I+ Yy K31 Kuiji
ij 1y

i=1 (i./)€SH (i,7.1)eS3
+ Q(a, x% = x! — x°. 9)
where
Q(d x% = 9,3, x°) + % Q,(a. x9).

We can show that the quantity 5(&, x%) is independent of the signs of K,r and contains no terms of the order of
smallness lower than 4 /3 with respect to @ as @ — 0. For each multiindex (g.7.5) € S3. we select an integer
K4rs such that the following matrix is nonsingular:
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[[fql . fr|]~ sz] (XO) [féh . [fr| ) sz]] (-\-0)

K3gir 5, Kigirs:
[[fas- fral fsa] (5°)  [fas: Ufrs fi5]] (+°) o
o K’3{fﬁl‘ﬁ.§'5 h—lq;{ rasa
where o = |§2| and B = [S3/|. Note that this choice of the parameters K4, is always possible due to the rank

condition (2). Thus, we can choose the integer values of | K4, |, K1grs. and K34,5 in agreement with Assumption 1.
Hence, for the solution & of system (9) with given x% ¢ R", the components of the solution of system (8) are

determined as follows:

.
ai =¢ ' for i€S,. a;; = 2¢ sign (dﬂ)\fn|Kj-l]|Ztﬂ| for (J,1) e Sy,

3 = / -
dgrs = 2271 \ynzK;_q”aq,s for (q,r,s) € Ss,

where K are positive for a;; > 0 and negative otherwise.
With the help of these transformations, the problem of solvability of system (8) is reduced to the investigation

of system (9).

Theorem 2. There exists r > 0 such that system (9) is solvable with respect to @ € R” for all x' € R"

satisfving the inequality | x! — x| < r.

R".

M

Proof. Let K4rs and (g.r,s) € S3 be chosen to guarantee that matrix (10) is nonsingular for all x
Multiplying both sides of system (9) by the matrix F ! (x?). we get ®(a) = 0. where

®@) =a+ F 1 (x0) (2 (@ x%) +x—x).
We now estimate the norm of the function ®(a) — a:
19G) ~al = |71 (+°) (@ @) + 50— )] = |F 0O (1 @x0)] + |20 - x']).
By virtue of the properties of $2(d. x°), there exists C(x®) > 0 such that
I1Q@. xO) < ce®la)*’?
foralla € R™ : |a|| < 1. Hence,
19@ —all < IF7 O (Ceal*’? + 1x° = x).

Assume that a number y € (0, 1) satisfies the inequality

p /3 -

LT CFT |
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Then there exists a number r > 0 such that
I F 1 (xY) (C(.ro)y4/3 + [|x0—x! ;I) <y.
This yields the estimate
|®(a) —all < |la| for ae8,=1{aecR":|a| =y}

In other words, the mappings ®(a) and W(d) = & are homotopic on the sphere Sy, and the rotation of the vector
field ®(a) on Sy is equal to 1. The principle of nonzero rotation [11] yields the existence of a vector @ € B, (0)
such that ®(q) = 0.

Theorem 2 implies the existence of a real solution @ € R" of system (8) for sufficiently close points x° and
x!. In what follows, we demonstrate the applicability of Theorem | on several examples for which the system of
algebraic equations (8) can be numerically solved.

4. Examples

4.1. Controlled System with Quadratic Vector Fields. Consider the two-point control problem for the fol-
lowing system:

,h = U],

X> = Uz, (1

X3 = x%ul —x,zuz,

where x € R3 and ¥ € R2. This system was considered in works [4, 17] as a model of motion of a plane solid
body with two oscillators. Here, we explicitly construct the controls v (¢) and u5(t) transferring system (11) from
zero to the point x! € R3. The vector fields for system (11) are as follows:

fi) = (1,0,x)T, £ =0.1,-xPT, A, 1) = (0,0,-2(x1 + x2))7

Let x® = 0 € R3. Then fi(x°) = f£o,(x°) = [f1, 2](x®) = 0. In other words, the Lie brackets of the first
order are insufficient in order that the rank condition of controllability be satisfied. Therefore, we also find the Lic
bracket of the second order:

(Lf1. £, fil(x) = (0.0.2)T.

Then the rank condition (2) holds with S = @ and S3 = {(1.2. 1)}.
In this case, controls (6) take the form

27 K3 2K,

£

‘ (12)

t + sin

2K
u(t) =ay +aiz (COS TR l‘) and us(t) = az + ajp sin

where the parameters Ky = K121. K2 = K2121. and K3 = K315 satisfy Assumption 1.
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Substituting (12) in relation (7), we get

xi(e) =eay. x2(e) = eas,
(13)

(¢) g3 ule N u]zzl a (4K, K3 + 3K, (Ks + K3))
X3lg) = — —
’ 22K, \ 4Ky | 4(Kx+ Ky \ k20T R

as
K\ K3

(2K2K;3 + K\(Ky + K3)2))

() + dn 2n°K
E—J—IELI,—%{-"—} (nKlz(alK3—azK2) +a2K>K3) + z

1
ayaz(ar—ay) | .

Note that all Lie brackets whose orders are higher than two are equal to zero, and the proposed representation
of solutions with the help of the Volterra series is exact. It is easy to see that, for given & > 0 and x(¢) € R? and
nonzero integers K, K3, and K3, the system of algebraic equations (13) has real solutions @1, az, and ajz;.

Let Ky = 2, K5 = 3, and K3 = 5. Then the following functions solve the two-point control problem for
x® = (0,0, O)T and x! = x(¢) for any ¢ > 0:

1 ~ N ~
X 121 4 . 10m X a2t . 6mr
M|{t]=—l+——(cos—r+sm——r 2 uz(r):—2+——51n—t.
€ e € e € € e
where @2 is a real root of the cubic equation
75x; —22x, 2(x2 421y
3 1 2 2 1 2 1 1
aiay — 5 a1 = —— 3 (20mx; + (15— 127m)x;) ai2:
8072

(rixd (v} = x}) =3x}) =0,

In Fig. 1, we present the plot of a solution x () of system (11) with x'=(,1, l)T fore = 1.

4.2. Rolling Disk. Consider the kinematic equations of a disk rolling along a plane without sliding (see,
e.g.. [13]):

X| = U COSX3, Xy = UysSInXxs,
(14)

,\"3=u2. ,\"4=u1,

where x = (.xl,xz,X3,X4)T e R* u = (u;, uz)T e R2,
For system (14), the following rank condition is satisfied:

span { f1(x). fa(x). [f1. 210 [ f1. fa]. fol(x)y = R* Vi e R,
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fxs(t)
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05
x,(r) 10 07 20

Fig. 1. Trajectory of system (11), (12) with the boundary conditions x(0) = (0, 0, O)T and x(1) = (0,0, l)T.

Here,
filx) = (cosx3.sinx3,0. )T and  fo(x) = (0,0.1,0)T.
Hence, §y = {1,2}, S = {(1,2)}. and S3 = {(1. 2, 2)}, and the control functions (6) take the form

K]z 211’K1
t + ayppcos

2
u1(t) = ay +azcos f,

(15)

) 2]‘[[(12 . 2JTK2 . 27[K3
Uz(t) = az + aqz sin t+ ajas | sin t + sin t].
£ £ £

Now let x0 € R4, xle ]R4, e>0,K;=2,K, =3, K3 =5, and |K12| =9, and let ay, a3, a», and a2
be real solutions of the equations

xll —x? = ea; cosxg —8211 sinxg —8312 cosxg,

x; —x2 = ea; sinx3 + 621y cos x§ — €31, sin x9,

x3—x3=¢eay, x}-x$=c¢a.

where

a122 u|('!|g” 4{11{.‘122 aids
JTK12 ZIIKQ 15m 2

I =—

L}
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O.I - 13-
0 T A T 1
4 2 04 0.3 2 024
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Fig. 2. Components of the solution of system (14): (a) (/. x1(1)); (b) (£, x2(1)); () (£,x3(1)); (d) (r, xa(1)).

2 A
Ié {1?22 9{:’%22{:’1 H[ggi:“fz 21!122&”2({1 U[QQGE Zﬂugu](!g
2 = 1z - - E -
24072 20072 1572K 12 15K 272 1672 157
9 2
a3, 3at,a; ai,az  di2a1daz ai2d;3 ara?

a 872K}, lﬁrrsz'z 87Kz 47K2 4n2Ky, 6

Then controls (15) transfer system (14) from x to x! for time &. In particular, for x® =(0.5.0.5.0.5.0.5)T,
x!' =(0,0,0,0), and ¢ = 1. the behavior of the solution of system (14) with

ui(t)y ~ =0.5—742cos 1871t —2.3sin 10n¢
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and
uy(t) = —0.5—7.42sin 18wt — 2.3(sin 6¢ + sin 107¢)

is shown in Fig. 2.

4.3. Rotational Motion of a Solid Body. Theorem | and Lemma 1 substantiate the possibility of application
of controls of the form (6) to the systems linear in control. We now show that the proposed approach can also be
extended to some systems affine in control. To illustrate the efficiency of application of trigonometric controls to
these systems, we consider the following well-known example of rotational motion of a solid body under the action
of two independent controlling momeats (see, e.g., [1, 18]):

X1 = Ayx2x3 + bruy + cruz,

X2 = Azx1X3 + bouy + cous, (16)

X3 = Aszxi1x2 + bauy + c3us,

where

X = (,\'l,xz.,r3)r e R?
is the vector of angular velocity of the solid body, u| and u» are controls, and A;, b;, ¢;, i = 1,2, 3, are real
parameters.

We now construct controls u and u; of the form (6) that transfer system (16) from x® = 0 into a small
neighborhood of the point x! € R3 for time &. We denote

So(x) = (Aixaxs, Aaxixs, Asxix)T. fix) = (b1.ba.b3)T. and  fo(x) = (c1.c2.03)T

and assume that

by ¢ Ai(cabs + c3by)
det{ by ¢ Aa(ci1b3 + c3by) 76 0.
bz c¢3 Asz(c1by + c2b1)

Then
cank { f1(x%), £2(x°). [ fo. A1]. A1l(x%)} = 3.

Representation (5) can be rewritten in the form

I t 2 r T s
=1 [w@dc+ f 0/ uz(t)dr+i.jzzl[[fo,ﬁ]-f}] 0/ 0/ 0/ wi (G (P)dpdsdt + R(). (1)

0
Let S; = {1,2}, §2 = &, and S5 = {(0. [, 2)}. By using the control functions

2nK;

£

u; = a; +asin t, =12, (18)
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and relation (17) for x' = x(e), we find

\’ll =cela1by + azey) + 2A1babs Iy + A1(bacs + bsea) 12 + 2a1c2¢3032

x22 = elarhy + azca) + 2A2b1b3l | + Az(brc3 + bacy) 12 + 2azxc1¢3152 (19)

xi = e(arhy + azcs) + 243biby I + As(bicy + bycy) 12 + 2a3c1c202

where

/ 3 ai2 n daid n 3a? 12
=6 | = = — . =12,
‘ 3 47K 16m2K2

apas a [ a an 3u?
L, =¢3 — =+ ——1.
2= ( 3 T an (K. + Kz) 872K, K;)

Computing the parameters in (18) as a real solution of system (19), we get the controls approximately trans-
ferring system (16) from zero to x! for time &.

As an example, we set Ay = —1/3, 4> = 1/2, A3
this case, the parameters of controls (18) have the form

1/5,by =cz =1, and by =b3 =c1 =c3=0.In

—sign (ex]xy +24x3). ex|x; # —24x],

Ky, =
I 1 sxllxé = —24x;.

=l S | 1

ay=¢ x;. day=¢ x;.

a = —(25)_17r(x11 + szzl) + (652)-1 (97r2£2 (xllz + lez) + 3072 |€X11X21 + 24x;|)

1/2
In Fig. 3, we present the plot of the solution of system (16) for x'=x(1) = (l. l,O)T.

4.4. Condition of Controllability with Lie Brackets of the High Order. The following example illustrates
one more possible direction of development of the proposed approach. Consider a system

(20)

x=(x;.x3) €eR?, uekR.

Let x = (0,0). Then

span { f1. [[[fo. /1. fil 1]} = R?
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x(1)-

04—

0.3

0.2+

0.1 -

=

-0.5 N as J -
-l
%(t)

Fig. 3. Trajectory of system (16) with control (18) for the boundary conditions x(0) = (0.0, 0) and x(1) = (1, 1. 0).

with fp = (xg. —xlxg)T and f; = (0. )T,
As in the previous examples, we now write the representation of the solution of system (20) in terms of the
Volterra series but with Lie brackets of the third order:

tr ts

¢ p
x(t) = fl(,\’o)fu(r)a’r + {[[fo, Al f1] f1](xo)////u(s)u(p)u(r)drdpdsdr + R(t). (21
0 0000

Let

wK
w(t) =a+bsin ——1, KeZ\{0) (22)

Then, for x! = x(€), relation (21) takes the form

- &,4
167 3K3

(47‘(3](3(13 + 4 (27!21(2 — 3) a’b + 9rKab* + 5b3) , ,\‘21 = ga.
Weset K = landa = e‘l,\‘zl and assume that b satisfies the cubic equation

4Q2m? — 3),\'212 b+ iln3(8x213 —4x}) _

0.
2 o4

9 x1
5p3 4 2242 4
£ £

Then control (22) approximately solves the two-point control problem for system (20) with the initial position
at zero. Thus, for x® = (0,0)7, x! = (.O)T . and ¢ = 0.1. we get the following control: u(t) ~ 10 +
79.54 sin 207z (Fig. 4).

This example demonstrates that the family of trigonometric polynomials (22) can also be used for the solution
of the two-point problem for the nonlinear system (20) (with good accuracy) in the case where it is necessary to
use Lie brackets of higher orders in order to guarantee the validity of the condition of controllability.
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Fig. 4. Trajectory of system (20) with controls (22).
S. Conclusions

In the present work, we study the two-point control problem for a class of systems linear in control and
satisfying the rank condition (2). As the key feature of our work, we can mention the reduction of the boundary-
value problem with control to a system of algebraic equations of the third order, which is formulated in Theorem 1.
To the best of our knowledge, no general results on the solvability of systems of this kind have been published up
to now. Thus, the theorem on local solvability (Theorem 2) is a novel result concerning the substantiation of the
applicability of trigonometric controls to the local problem of motion planning. Note that the proof of Theorem 2 is
based on the principle of nonzero rotation because the theorem of implicit function is not applicable in the analyzed
case. In addition, the proposed method requires no changes of variables for the transition to canonical forms, which
is convenient from the practical viewpoint. By an example of nilpotent system, we show that the proposed scheme
of control transfers the system exactly to the target point. In the general case, in order to estimate the errors, it is
necessary to consider the residual term of the Volterra series. The problem of errors of the method remains open

for subsequent investigations. Another possible extension of the method is connected with the use of high-order
Lie brackets and with the problem of motion planning with bypassing the obstacles.

Appendix.
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