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GENERAL INTRODUCTION




CHAPTER 1

The brain is estimated to be composed of 86 billion neurons (Azevedo et al., 2009), and together they orchestrate
our thoughts, perception and behaviour. In particular, language is a remarkable and unique capacity that humans
possess, an ability that showcases the impressive functions and capabilities of the brain. When it comes to
comprehending language, the complexity of this process is often overshadowed by the apparent ease with which
we read or listen. Consider how quickly and effortlessly you are able to derive meaning from a new sentence —
words arranged in a combination that you have not previously seen or heard. Just how does your brain allow you
to go from seeing scribbles on a page or listening to the vibrations of another person’s vocal chords to

understanding the phrase “It is raining outside”?



GENERAL INTRODUCTION

1.1 Neuronal oscillations as a means to study brain function in the context

of language processing

The study of neuronal oscillatory activity (also referred to as oscillations) has been useful in studying the properties
and functions of the brain, and how the brain underlies behaviour. Over two decades of research has shown that
the modulation of oscillatory activity relates to a wide range of processes such as attention, memory, motor
preparation and awareness (e.g., Jensen, Kaiser, & Lachaux, 2007; Klimesch, Freunberger, & Sauseng, 2010;
Klimesch, 2012; Lega, Jacobs, & Kahana, 2012; Schoffelen, Oostenveld, & Fries, 2005; Schoffelen, Poort,
Oostenveld, & Fries, 2011; Schoffelen, Oostenveld, & Fries, 2008; Staudigl & Hanslmayr, 2013; van Ede, de Lange,
Jensen, & Maris, 2011). Language processing is a higher order cognitive domain which draws on many other (lower
level) domains such as vision, audition, attention and memory. As such, it involves a neural network distributed
across the brain, consisting of multiple regions involved in supporting these specialized subprocesses. Yet, the
precise nature of these individual neural regions and how they interact together are still not well understood. One
way to study this would be to investigate the dynamics in neural oscillatory activity, which reflects local changes in
ongoing brain activity. As there are but few studies on oscillations in the context of language, this thesis embodies
the endeavour to use neuronal oscillations to illuminate the neurobiological mechanisms involved in sentence

processing, as a small window into how the brain works.

Language processing occurs at multiple levels, and a common division is made between the single word level and
the sentence level. The abundance of language research focuses on processing below the sentence level (Hagoort
& Indefrey, 2014), as evidenced by many models on, and research performed at, the lexical and sublexical level
(Gaskell & Marslen-Wilson, 1997; Hickok & Poeppel, 2007; Kujala, Vartiainen, Laaksonen, & Salmelin, 2011;
McQueen, Cutler, & Norris, 2006; Norris, 1994; Papoutsi, Stamatakis, Griffiths, Marslen-Wilson, & Tyler, 2011;
Tyler & Cutler, 2009). With most research focusing on the processing of individual words, in order to obtain the full
picture on language processing, we need to further our efforts in understanding how words are processed at the
sentence level. The goal of this thesis is to use neuronal oscillations as an indicator of brain activity during

sentence processing, and to address 4 diverse aspects of sentence processing, one in each of the content chapters:

1. Islow frequency oscillatory-speech entrainment a robust and reliable process in speech (in the form of
sentences) perception?

2. Do oscillations really underlie entrainment, or might it be evoked-activity?

3. When reading, how does the sentence context influence the processing of individual words?

4. Canthe CNTNAP2 gene account for individual differences in reading sentences?



CHAPTER 1

The data collected for this thesis, belongs to the largest multimodal imaging study on language processing — which
we refer to as the Mother of all Unification Studies (MOUS). This study encompasses 204 participants who
participated in two scanning sessions — one with Magnetoencephalography (MEG), and the other with functional
Magnetic Resonance Imaging (fMRI) — while reading or listening to strings of words. In addition, a behavioural
session was done to assess memory capacity and intelligence, and saliva was collected for genetic analysis. This
thesis describes analysis results obtained from the MEG data that | acquired over a period of 32 months, with a

focus on oscillatory activity in both the auditory and visual modalities.

To set the background for the experimental questions in this thesis, | will begin with an introduction to neuronal
oscillations — how they arise and act as an index of neuronal activity. Then, | will elaborate on the characteristics of
oscillations, their importance in helping us to understand the brain, and how they are measured. Subsequently, |
will provide a brief background on the current state of our knowledge on the neurobiological infrastructure of
language processing, as well as an overview of the methods used in the thesis to quantify neuronal oscillatory
activity. The last section will outline how each subsequent chapter was designed to answer one of the 4 questions

of this thesis.

1.2 Briefintroduction to oscillatory neural activity

At the core of all brain processes is ‘communication’ — the coding and transmission of information between
neurons. Neuronal oscillatory activity, measured at the level of the whole brain using Magnetoencephalography
(MEG), provides a macroscopic, non-invasive perspective on neuronal activity and communication between groups
of neurons (Hamalainen, Hari, Imoniemi, Knuutila, & Lounasmaa, 1993)1. Oscillatory activity is present at various
different frequencies and commonly divided into the following frequency bands: delta (1 — 3 Hz), theta (4 — 7 Hz),
alpha (8 — 12 Hz), beta (13 — 30 Hz) and gamma (30 Hz and higher). These frequencies can occur in parallel, which
suggests that neuronal groups which are active at different rates can occur simultaneously. Together, these
dynamic patterns of interaction between neuronal groups are thought to provide a flexible manner for processing

information (Fries, 2005, 2015; Varela, Lachaux, Rodriguez, & Martinerie, 2001).

Oscillations, as picked up in the MEG (see next section for details), reflect rhythmic, synchronized synaptic input
received by groups of pyramidal neurons. | will explain this briefly, and begin by introducing that at the core of
neural information transmission is the electrochemical gradient that exists across the cell membrane of the neuron.

This gradient produces a membrane potential i.e. a difference in voltage between the inside and outside of the cell.

! The MEG signal can also be quantified in terms of event-related fields. These are averaged responses in the time
domain that are strictly time-locked to events (Makeig, Debener, Onton, & Delorme, 2004; Tallon-baudry &
Bertrand, 1999).

10



GENERAL INTRODUCTION

When the membrane potential of a neuron depolarizes (goes from a resting value of -70mV to -55mV) the neuron
produces an action potential (taking the membrane potential to 40 mV) which is propagated along its axon (Fig. 1).
At the end of the axon, this electric signal results in the release of neurotransmitters into the synaptic cleft. These
neurotransmitters then bind to the receptors at the dendrites of the postsynaptic neuron, which causes a change

in the membrane potential, producing a postsynaptic potential (PSP) (Fig. 1).
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receptors
ion channel
e o o/
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Soma Action Potential) ® e 9 ® | Postsynaptic potemial)
(Cell body) o
o 1,°
lons
LX)
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<
Axon Terminals <_
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Fig. 1. Left, Pyramidal neuron. These neurons are found throughout the cerebral cortex and are the source of
brain activity measured by MEG. Postsynaptic potentials are received at the dendrites. If a sufficient number of
excitatory postsynaptic potentials are received, the neuron depolarizes and an action potential (nerve impulse) is
propagate along the axon (in the direction indicate by the blue arrow) to the axon terminals. Right, Synaptic Cleft -
signal (information) transmission between neurons. In the presynaptic neuron the action potential arrives at the
axon terminal and leads to a vesicular release of neurotransmitters across the synaptic cleft. Neurotransmitters
diffuse across the cleft and bind to the receptors on the dendrite of the postsynaptic neuron. This causes the
opening of ion channels to allow an influx of (positive or negative) ions which leads to a postsynaptic potential.

PSPs can be inhibitory (IPSP), which lower the membrane potential, or excitatory (EPSP), which raise the
membrane potential. Furthermore, PSPs are graded potentials, and can be combined spatially (if two PSPs occur
close to each other) or temporally (close in time, one after another). If a sufficient amount of EPSPs are received
(relative to IPSPs) this will lead to an action potential. When input arrives in a rhythmic pattern to a neuron, this
causes a rhythmic sequence of PSPs. This rhythmic fluctuation in the membrane potential which indicates the

neuron’s excitability — its likelihood to produce an action potential —is what the oscillatory signal reflects. Thus,

11
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oscillations measure the rhythmic input in groups of pyramidal neurons, which is an outcome of a series of

excitatory and inhibitory signals between the interaction of pyramidal neurons and interneurons’.

Aside from the cortex, the thalamus also plays a role in the generation, sustention, and adaptation of neuronal
oscillations (Pulvermiiller, 1996; Sherman, 2005, 2007; Steriade, 1999, 2006; Wang, 2010). This is possible via the
afferent neurons connecting the thalamus and the cortex, known as the thalamo-cortico-thalamic loop. Early sleep
studies on oscillations suggested that slow oscillations (< 1 Hz) are generated intracortically, but fast oscillations
(20 — 60 Hz) are governed by corticothalamic interactions (Steriade, 1999, 2006). More recently, several
mechanisms have been proposed on how alpha, theta and beta oscillations are generated via corticothalamic
interactions (Hindriks & Putten, 2013; Ketz, Jensen, & Reilly, 2015; Rennie, Robinson, & Wright, 2002; Robinson et
al., 2006), while other suggest that beta and gamma oscillations are generated intracortically, and only thereafter

supported by thalamic input (Steriade, 2006).

In sum, MEG-derived oscillations provide a whole brain perspective on the emergent rhythmic patterns of activity,
that result from local and long-range connections between neurons that are generated by the cortex and thalamus
together. As oscillations capture how the firing activity of one group of neurons affects another, oscillations are
argued to index the high degree of temporal control in brain activity. In turn, this had led to the proposal that
information is encoded, transferred and integrated as function of neuronal firing patterns (Engel, Fries, & Singer,
2001; Fries, 2005, 2015; Varela et al., 2001). In support, oscillations have been implicated in various cognitive
processes like perception, motor preparation and control, memory, and attention (Bonnefond & Jensen, 2012;
Hoogenboom, Schoffelen, Oostenveld, Parkes, & Fries, 2006; Laaksonen, Kujala, Hultén, Liljestrom, & Salmelin,

2012; Sauseng, Griesmayr, Freunberger, & Klimesch, 2010; Schoffelen et al., 2005, 2011).

Magnetoencephalography (MEG) is a safe and non-invasive technique that measures the activity of synchronized
neuronal populations. Using a set of analysis procedures the characteristics of oscillatory activity (frequency,
power and phase) from the signal can be extracted.This technique picks up the magnetic fields generated from the
postsynaptic potential (PSP) of pyramidal neurons (Hamaldinen et al., 1993). When a PSP occurs at the apical
dendrites, this causes a current to flow from the apical dendrites to the soma of the neuron, also known as the
primary current. Due to charge conservation, to complete the current loop, there is a volume (secondary) current
that goes from the apical dendrites to the soma, outside the cell (Gloor, 1985). According to Faraday’s law each of

these currents produces a magnetic field which is perpendicular to its current.

% In the neocortex about 70 — 80% of the neurons are pyramidal neurons while 20 — 30% are interneurons. Most
interneurons are inhibitory — they inhibit pyramidal neurons — and they come in variety of structure and
configurations. The small amount of interneurons which are excitatory bare a resemblance to pyramidal neurons.
For more details see Markram et al., 2004.

12
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MEG is predominantly sensitive to the
current from pyramidal neurons in
the sulci because their dendrites are
spatially aligned and perpendicular
(tangentially orientated) to the
cortical surface. With this orientation,
the magnetic fields caused by the
primary and volume currents do not
cancel out, and can therefore be
measured (Nunez & Silberstein, 2000;

Nunez, 1986). In comparison the MEG

is less sensitive to neurons in the gyri

Fig 2. Schematic diagram of the generation of a brain signal.

Left, Synchronized postsynaptic potentials from aligned pyramidal neu-

orientation) to the cortical surface rons will generate an electric current (red = primary, blue = volume) that
can be measured extracranially. Right, These electric currents generate

(Cuffin & Cohen, 1979; Hamaéliinen et a magnetic field that can be measured with MEG.

which are parallel (have a radial

al., 1993).

The PSP of a single pyramidal neuron is very small.
When 80,000 to 100,000 neurons synchronously
receive input and produce PSPs, this cumulative signal
is strong enough to be measured. As the magnetic
fields from the brain are very small (around 10™ Tesla,
the earth’s magnetic field is 10'5), to be sensitive to
these fields, the MEG system contains sensors (known
as superconducting quantum interferences devices)
that operate under very low temperatures (about -
269 °C). These sensors are assembled in an array to
form a helmet, which allows the magnetic signals to be
sampled across surface of the brain. Furthermore, to
prevent interference from other stronger magnetic
fields, the MEG system is situated within a

magnetically shielded room (Cohen, 1972; Hamaldinen

etal., 1993).

Fig 3. MEG system. Participant sits in (adjustable)
chair. Visual stimuli is presented on the screen and
auditory stimuli via ear tubes (not shown in figure).

13



CHAPTER 1

To study how the brain responds and processes information, we make use of the three characteristics of
oscillations (Fig. 2). First, the frequency defines the number of oscillatory cycles per second; the higher the number
of cycles, the higher the frequency. Second, the amplitude, or more commonly power (amplitude squared),
describes the amount of energy in the oscillation, how strongly it is expressed. The third is phase, which describes

the momentary location in an oscillatory cycle in degrees (or radians), relative to the origin of the oscillation.

8 cycles=8Hz
1 cycle
Phase
| | I 1 v T Vv T v 1 v 1 \ I\ T
0°  180° 360° L
2
=
S
<
0 Time (s) 1

Fig 4. Features of an oscillation. Frequency, measured in Hertz, is the number of cycles per
second in an oscillation. Amplitude is the fluctuation of the oscillation relative to its zero
point, and describes the amount of energy in an oscillation. Phase is the momentary loca-
tion in the oscillation, relative to its origin (0°).

Power is used to quantify synchronous activity of neurons within a local area (a defined patch of cortex of about 1
cm). Relative to an event (such as pressing a button or reading a word) a change in the strength of synchronicity
can be observed. These changes are referred to as event-related desynchronization (ERD; Pfurtscheller & Aranibar,
1977) which is a relative decrease in a power, or an event-related synchronization (ERS; Pfurtscheller, 1992) which
is a relative increase in power. In general, an ERS in the alpha and beta band are associated with a decrease in
neural activity of a brain region, whereas in the gamma band it is associated with an increase in neural activity
(Jensen & Mazaheri, 2010; Klimesch, Doppelmayr, Pachinger, & Russegger, 1997; Osipova et al., 2006). For the
theta band, the relationship between the event-related synchronicity of neurons and overall local neural activity
remains equivocal. For certain frequency band, specific proposals on the role of (de)synchronization have also
been made. For instance, alpha oscillations (around 8 — 13 Hz) are proposed to inhibit neural regions not necessary
for the task at hand in order to decrease distraction and allow for optimal task performance. Beta oscillations

(around 13 — 30 Hz), most commonly observed in tasks involving motion (preparation) or attention, have been

14



GENERAL INTRODUCTION

proposed to reflect whether the current cognitive or sensorimotor state is (expected to be) maintained or changed
(Engel & Fries, 2010). These theories help to consolidate the many findings on oscillations, but they do not imply a
one-to-one relationship between a particular frequency band and a cognitive process. Rather, the temporal
nature of oscillatory changes relative to the task, the location(s) of the oscillation, and the presence of other
frequencies, are all factors that contribute to understanding the function of oscillations. In chapters 3 and 4 of this
thesis, | focus on measures of oscillatory power to understand how sentences are processed and whether

oscillations can capture individual differences in this process.

Phase is used to quantify the relationship between two rhythmic signals, and in the context of brain function,
phase can be used for two purposes. One is to quantify the coherence (degree of synchronization) in neural activity
between two, distinct (distal) neuronal populations, whereby coherence is proposed to reflect the communication
between regions (Fries, 2005, 2015). The other purpose is to determine whether neuronal oscillatory activity
entrains (adapts its rhythm by synchronizing) to the rhythmic input in the environment, and in turn how this
supports perception. Chapter 1 and 2 focus on measures of entrainment to investigate the perception of speech in
the form of sentences, and in Chapter 6 | propose the potential of using coherence between neural regions to

further the research in this thesis.

1.3 Neurobiology of language processing

Speech is a continuous stream of sounds, whereovertimethewordsarejoinedtogetherlikethis. In order to

understand speech, listeners first need to identify and segment individual words. Children and adults alike make
use of various cues in speech for segmentation such as the (rhythmic) stress information in syllables (e.g., Cutler,
Mehler, Norris, & Segui, 1992; Goyet, Schonen, & Nazzi, 2010; Roncaglia-denissen, Schmidt-Kassow, & Kotz, 2013;
Sebastian-Gallés, Dupoux, Segui, & Mehler, 1992; Vroomen, Tuomainen, & de Gelder, 1998), phonotactics (e.g.,
McQueen, 1998), and the transitional probability between syllables (e.g., Johnson & Tyler, 2010; Thompson &
Newport, 2007). To understand how the brain supports speech perception, neuroimaging studies have shown the
involvement of left inferior and middle frontal gyri and bilateral temporal lobes during perceptual and
segmentation tasks (e.g., Hickok & Poeppel, 2007; Hickok, 2001; McNealy, Mazziotta, & Dapretto, 2006, 2010).
Together, these studies provide ample evidence that syllables and phonemes are important tools for segmentation,

but it is unclear how units of speech are identified and tracked.

The last decade has seen the rise of a popular proposal that neuronal oscillations are suited to support the early
stages of auditory speech processing. As oscillations reflect the fluctuation in the excitability of neuronal

populations, the synchronization of neural activity to external stimuli has been propose to allow for optimal
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processing of external input. This process is referred to as entrainment of neural rhythms (Ding & Simon, 2014;

Giraud & Poeppel, 2012; Gross et al., 2013; Luo & Poeppel, 2007; Peelle & Davis, 2012; Poeppel, 2003).

The popularity of this idea is based on two premises. First, from an evolutionary perspective, the motor
(articulatory) and auditory perception systems should have evolved in a way such that the rhythms produced can
also be perceived (Giraud & Poeppel, 2012; Liberman & Mattingly, 1985; Liberman & Whalen, 2000). Second,
speech is quasi-rhythmic, whereby prosodic, syllabic and phonemic patterns occur in a relatively predictable
manner. From these premises, oscillations are proposed to synchronize with the rhythm of the speech envelope to
make sure that important information e.g., the boundaries between syllables and phonemes, are tracked and
sampled accurately, and within a time frame when neuronal populations are most suited (excited) for receiving

information.

Although the cortical entrainment hypothesis is appealing, many aspects remain controversial. One concern is
whether entrainment is driven predominantly by the acoustic cues e.g., the onset of a syllable or is it also
modulated by top-down cognitive functions such as prediction and attention. Another question is the functional
role of entrainment: Does it detect temporal features like speech edges (e.g., word onsets), discretize speech into
syllables, or does it perhaps recombine already parsed speech features into meaningful segments (Ding & Simon,
2014)? Moreover, what are the neurobiological processes that give rise to entrainment? Are neuronal oscillations
involved in the actual segmentation, or do they simply reflect the underlying process of doing so? And, of course,
to challenge the core of the proposal, are we looking at true oscillatory activity, or are we merely observing a
frequency domain representation of a tight temporal summation of evoked potentials in response to edges in the

speech signal? In chapters 2 and 3, | further investigated the nature of neural entrainment to speech.

When reading or listening to a sentence (in the visual or auditory domain), we perceive words one at a time. To
understand a sentence, we need to retrieve our knowledge of each word from long term memory, maintain the
perceived words in short term memory while we perceive the following ones, and to assemble the words into a
meaningful whole (Hagoort, 2003, 2005, 2013). In parallel are other processes like attention and prediction to
ensure that words are correctly perceived, retrieved, and that based on the context (earlier words in a sentence)

we can apply certain constraints on what we expect the next word to be.

The majority of our knowledge on the neurobiological infrastructure of processing and combining words into a
sentence comes from studies on functional Magnetic Resonance Imaging (fMRI) and event-related potentials.

From the fMRI literature, there is a general agreement that left frontal, left temporal, and left inferior parietal
regions are important for sentence processing (Friederici, 2012; Hagoort & Indefrey, 2014; Hagoort, 2013; Menenti,
Petersson, Scheeringa, & Hagoort, 2009; Price, 2010; Snijders, 2010; Snijders et al., 2009; Tyler & Marslen-Wilson,

2008). In particular, sentence processing consistently involves left inferior frontal regions, and left superior and
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GENERAL INTRODUCTION

middle temporal regions, and the transfer of information between these regions likely involves one or more of the
ventral and dorsal tracts that connect them (Friederici, 2012; Hagoort & Indefrey, 2014; Hagoort, 2013; Hickok &
Poeppel, 2007). Less is known about the role of the right hemisphere and language processing. There is some
evidence that right inferior frontal gyrus plays a role in integrating semantic information in discourse (Menenti et
al., 2009), and more generally, across various language tasks, right (and left) frontal and parietal regions are
associated with executive functions during language such as executive control and attention (Corbetta & Shulman,
2002; Duncan, 2010; Fedorenko, Duncan, & Kanwisher, 2013; Niendam et al., 2012; Vigneau et al., 2011).
Importantly, the role and contribution of each region during sentence processing depends on the type of sentence,
and the conditions being compared; for instance, whether it is a simple sentence compared to a complex sentence
or a baseline with no language stimuli (Fedorenko & Thompson-Schill, 2014). Furthermore, the contribution of
each region during sentence processing is determined by its interaction with other regions that form part of the
network (Hagoort, 2013). Thus, the current challenge lies in characterizing the activity in each region, and how it

relates to activity in other regions, during sentence processing.

The language studies that use event-related potentials (or their MEG counterpart: event-related fields) have
captured many time-locked aspects of the neural activity involved in sentence processing. When reading a single
word, about 100 ms after word onset, processing begins with the analysis of visual word features (Tarkiainen,
Helenius, Hansen, Cornelissen, & Salmelin, 1999) Subsequently, lexico-semantic processing begins around 250 ms,
and is known to produce an event-related response that peaks around 400 ms (Kutas & Federmeier, 2011). This
peak is known as the N400 in electroencephalography (EEG) and N400m in MEG, and has been instrumental in

demonstrating that the brain is sensitive to the (semantic) context of a word.

Not all neural activity is characterized by time-locked changes to an event (e.g., a word). Furthermore, as sentence
processing occurs over time, dynamic changes to neural activity over time cannot be captured with event-related
potentials/fields. Rather, the nature of oscillations is better suited to reflect these types of modulation in neural
activity. Although there are many studies on oscillations most have not been on language processes; rather, they
focused on sensorimotor, visual and memory processes. For instance, theta and gamma oscillations have been
consistently associated with memory processing (for a review, see Nyhus & Curran, 2010). Amongst the studies
done on sentence processing using oscillations there is no consensus on the functional roles of these oscillations.
Some have suggest that syntactic processing involves beta and alpha oscillations (Bastiaansen, Magyari, & Hagoort,
2010; Davidson & Indefrey, 2007; Kielar, Panamsky, Links, Kira, & Meltzer, Jed, 2015), while semantic processing
involves gamma oscillations (Bastiaansen & Hagoort, 2015; Bastiaansen, Magyari, & Hagoort, 2010; Hald,
Bastiaansen, & Hagoort, 2006). However, these interpretations are too specific — they pertain only to language
processing, and do not attempt to relate how oscillations, like those in the beta and gamma oscillations, are
robustly observed during sensorimotor and visual processing (Ede & Maris, 2013; Engel & Fries, 2010; Gross et al.,

2013; Muthukumaraswamy & Singh, 2013; Tan, Gross, & Uhlhaas, 2016). In part, the specificity of these
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CHAPTER 1

interpretations could have been because most of these studies only looked at a few frequency bands. In sum,
results on the oscillatory dynamics on sentence processing are in their early days. More investigations on a wider
range of oscillatory frequencies during language processing are required, and it may well be necessary to perform
these studies in mind of, and related the oscillatory findings to those in other domains of cognition for a coherent,
meaningful and parsimonious explanation of the functional role of oscillations. The role of oscillations in sentence

processing is addressed in chapters 3 and 4 of this thesis.

1.4 Individual differences in the language system

Our genome is a sequence of over 3 billion nucleotide base pairs (adenine with thymine and cytosine with guanine),
and together with the environment influences all of human biology. In particular, in the context of this thesis,
genetics co-determines the structure and function of the brain, and thus eventually thought and behavior. Humans
and chimpanzees evolved from the same ancestor, and share about 98% of their DNA (The Chimpanzee

Sequencing and Analysis Consortium, 2005) making us alike in many ways. Yet, some portion of the genetic
difference between us and chimps accounts for the human ability to communicate and use language. Our ability to
learn thousands of words, map their sounds and symbols to distinct meanings, as well as perceive and create

complex messages is unparalleled.

Researchers in molecular biology have begun to unravel the mysteries of the human genetic sequence and
determine which genes influence language and communication ( for an introduction to language and genetics see
Dediu, 2015; for a review on language and genetics see Fisher & Vernes, 2015). Seminal work by Lai, Fisher, Hurst,
Vargha-khadem, & Monaco (2001) discovered the first piece of evidence for a genetic basis to language —
disruption in the FOXP2 (Forkhead box P2) gene resulted in a severe developmental disorder with a strong
disruption in speech and language (developmental verbal dyspraxia). Subsequently, other genes have been
implicated in language and communication, which include but are not limited to CNTNAP2, DCDC2, ROBO1,
KIAAO319/THEM/TTRAP (e.g., Bates et al., 2011; Carrion-Castillo, Franke, & Fisher, 2013; Fisher & Scharff, 2009;
Hannula-jouppi et al., 2005; Marino et al., 2013; Meng et al., 2005; Rice, Smith, & Gayan, 2009).

Within the field of molecular genetics, discoveries were initially made by searching for an association between
molecular mutations and disrupted social, communicative or language behavior i.e. observable traits, also referred
to as phenotypes. More recently, there has been a growing interest in using indirectly observable traits, referred to
as endophenotypes or biological markers, depending on whether heritability criteria are fulfilled (Gottesman &
Gould, 2003). This includes measure of cognitive processes like memory and reading (e.g., nonword repetition
tasks) as well as measures of neural activity. Neural measures are considered as a path that bridges genes with
behavior; they are the consequence of genetic factors which are biologically closer than phenotypes (Gottesman &

Gould, 2003).
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The influence of genes on neural structure is visible, as evidenced by a higher degree of similarity in neuroanatomy
between individuals with a higher genetic affinity (Peper, Brouwer, Boomsma, Kahn, & Pol, 2007; Thompson et al.,
2001). However, given the complex genetic network and dynamic neural network involved in language and
communication, much work remains to demonstrate reliable, observable functional differences in the brain that

can be explained by genetic variance. In chapter 4, | use oscillations to study variance in the language system.

1.5 Methods used in this thesis

The MEG signal is recorded in the time domain, i.e. it is stored as a set of amplitude values evolving over time. In
order to quantify oscillatory activity, which is conveniently done in the frequency domain, a Fourier transform is
applied to the MEG signal. This signal processing technique is known as Spectral Analysis. The Fourier transform of
the time domain signal produces a signal as a function of frequency. The frequencies are defined as a finite set of

sine and cosine waves each with their respective phase and amplitude (Fourier coefficients).

The result of the Fourier transform serves as a basis to derive frequency specific power (energy) and is taken to
reflect the strength of the synchronous activity within a local group of neurons. For each segment of data a power
estimate is calculated and power estimates are then averaged across trials to improve the signal to noise ratio; this
is known as a time-frequency analysis. Coherence, which makes use of the phase information, quantifies the
degree to which two signals are in a consistent phase relationship over a defined period of time. Coherence is a
normalized value that falls between 0 (no phase relationship, i.e. the phase difference between two signals are
random) and 1 (a stable phase relationship). The presence of coherence is taken to reflect a functional relationship

between signals.

The MEG signal measured at the scalp reflects a superposition of the magnetic fields caused by electric activity of
multiple sources in the brain, and source reconstruction techniques need to be applied to deduce the sources of

the measured signal.

In this thesis, | used the source reconstruction method known as Dynamic Imaging of Coherent Sources (DICS)
(Gross et al., 2001), a beamforming approach that makes use of adaptive spatial filtering to identify the neural
generators of the MEG effects measured at the scalp. This method assumes that there is no correlation (i.e.
orthogonality) between the time courses of source activity, but unlike other methods makes no assumptions on
the number of sources or their spatial distribution. Rather, the main feature of beamforming is to independently

estimate the activity of each source.

In practice, beamforming divides the brain into an equal spaced 3 dimensional grid (I used 5798 grid points which

were 8mm apart), or vertices (a set of points) that describe the cortical sheet (I used 8196 vertices). Each grid
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point or vertex marks a source in the brain or a location on the cortical surface. For each of these locations, a
spatial filter is constructed, and used to estimate the activity of a source at that location. The activity at each
source is a weighted, linear combination of all sensor signals, following the unit-gain constraint which seeks to

reduce the variance of the activity at each location (Gross et al., 2001).

1.6 Outline of this thesis

Neuronal oscillations are considered to support brain function and cognition. The perception and comprehension
of sentences is a complex process, and our knowledge on this matter could benefit from further investigation using
oscillations as a measure of dynamic changes in brain activity. Thus, the main goal of this thesis is to use
oscillations to investigate how different aspects of sentence processing are orchestrated in the brain. These
aspects can be divided into two stages of sentence processing: perception of speech or orthographic input and

comprehension of sentences.

So how do neural regions support the perception of speech in the form of sentences? Neural entrainment is
considered as a manner for tracking and segmenting speech. In Chapter 2 | asked whether cortical entrainment to
speech is a robust and reliable phenomenon at both low frequencies (delta and theta) and high frequencies
(gamma). Individual differences have been observed in various aspects of language processing and proven to be
insightful in understanding the brain and the language system (Dubois & Adolphs, 2016; Mahowald & Fedorenko,
2016; Woodard, Pozzan, & Trueswell, 2016). Therefore, in this chapter | also investigated individual differences in
cortical entrainment. In Chapter 3, | tested the basic assumption behind cortical entrainment, on whether it
reflects true oscillations or whether it is the frequency domain representation of a summation of evoked potentials
in response to speech edges. To address this question, | sought for empirical evidence for both possibilities, and

discussed future investigations along this line of work.

Within the topic of sentence comprehension | explored 2 processes: how individual words are processed in a
sentence (as opposed to individually, in the absence of a meaningful context), and how this process is affected by
an incremental context as the sentence unfolds. In Chapter 4, to address these questions, | first focused on the
modulation of oscillations in the theta, alpha, beta and gamma band in response to the reading of words (one-by-
one) in a sentence. Then, | examined whether this modulation depended on the degree to which the sentence
context was informative by comparing words early in a sentence to those late in a sentence. In Chapter 5, |
extended these findings and investigate whether the individual variability in oscillations during sentence
processing can be explained by genetic variation in the common variant rs7794745 of the CNTNAP2 gene. Finally,
in Chapter 6, | discussed the broader implications of the findings in this thesis, speculate on the direction and
potential of neuronal oscillations for our understanding of the brain, and propose future investigations on the

neurobiology of language.
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CHAPTER 2

2.1 Abstract

Cortical oscillations have been considered to be instrumental for the tracking and segmentation of continuous
speech. Earlier work has suggested that delta, theta and gamma oscillations can entrain to the phase of the speech
rhythm. Here, we used magnetoencephalography, and employed a large sample of 102 participants together with
a broad set of stimuli to investigate entrainment of neuronal oscillations to speech. In replication of previous
studies we observed entrainment of delta and theta oscillatory activity by the speech envelope, but in contrast to
previous work we did not observe gamma entrainment. For the first time in speech entrainment studies, we
demonstrate individual differences for (i) the peak frequency of entrainment, and (ii) for hemispheric lateralization
of the low frequency entrainment. We argue that the former supports the involvement of intrinsic oscillations in
entrainment, and that the latter is evidence against the Asymmetric Sampling Time Theory of a default right-
hemispheric bias for processing signals on a slow time scale. We conclude that even though low frequency
entrainment to speech is a robust phenomenon, the characteristics of the entrainment vary across individuals, and
this variation is important for understanding the underlying neural mechanisms of entrainment, as well as, its

functional significance.
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2.2 Introduction

Human speech represents one of the most complex auditory signals that are perceived, containing information at
multiple temporal scales that needs to be processed for comprehension. The difficulty in speech perception also
lies in its continuous and incremental nature which requires the listener to integrate current input with previous,
partially processed input. And yet, we listen to speech with great ease. How is the brain able to keep up with this
task? Focusing on the early stages of auditory processing, the brain is required to parse the input into relevant
temporal segments, which can then be further processed by the neural system for language, and integrated into
context. Ultimately, this cascade of processing operations results in comprehension. A popular perspective on
early neural auditory processing is that neuronal oscillations play a mechanistic role in the processing and

prediction of temporally structured perceptual information.

Neuronal oscillations reflect cyclic fluctuations in the excitability of neuronal populations, and certain phases
within each cycle are considered optimal for processing input from the environment (Buzsaki & Draguhn, 2004;
Schroeder & Lakatos, 2009; Schroeder, Wilson, Radman, Scharfman, & Lakatos, 2010; Van Rullen & Koch, 2003).
Upon presentation of a periodic external signal, alignment of a neuronal oscillation to the signals’ rhythm allows
for periodic occurrence of high levels of neuronal excitability to correspond with the events in the signal. This
synchronization of rhythms is referred to as entrainment, and facilitates optimal sampling in discrete time
windows. It allows the information in the signal to be divided into meaningful chunks, which can then be processed
and understood. Subsequently, this information can be used to predict the upcoming signal, whereby higher order
regions provide top-down feedback to facilitate or inhibit entrainment of oscillations to the signal. Direct evidence
for these entrainment mechanisms have been shown in both monkeys and humans whereby the entrainment of
oscillations with basic, rhythmic auditory or visual stimuli can shape perception (Busch, Dubois, & VanRullen,
2009; de Graaf et al., 2013; Lakatos et al., 2005; Lakatos, Chen, O’Connell, Mills, & Schroeder, 2007; Lakatos,
Karmos, Mehta, Ulbert, & Schroeder, 2008; Romei, Gross, & Thut, 2010; Spaak, de Lange, & Jensen, 2014).

Evidence for an instrumental role of oscillatory entrainment to speech processing is more tentative. This is partially
because speech is complex, and difficult to manipulate in comparison to the basic stimuli in the aforementioned
studies (e.g., circular sine-wave gratings presented at a specific frequency, flashes of light, or Gaussian noise
bursts). Another reason is that speech rhythmicity is quasi-periodic (i.e. less regular than strictly periodic signals),
which makes entrainment more difficult. To rise to the challenge of understanding speech perception, several
theories have been proposed on the role of neuronal oscillations in speech perception (e.g., Ghitza & Greenberg,
2009; Ghitza, 2011; Giraud & Poeppel, 2012; Howard & Poeppel, 2010; Peelle, 2012; Poeppel, 2003; Shamma,
Elhilali, & Micheyl, 2011). For instance, Giraud & Poeppel (2012) proposed that the spike train input to auditory

cortex (which captures the energy fluctuations of the speech signal) influences neuronal excitability: the neurons in
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primary auditory cortex adjust (reset) the phase of their excitability rhythm which allows them to entrain to the

rhythmic regularities of the speech signal.

As the linguistic information in speech occurs at different rates in a quasi-regular manner, these theories assume
that neuronal oscillations at frequencies that roughly correspond to these rates are suited for parsing and
decoding speech. On average, prosody occurs at a rate of about 1 — 3 Hz, syllables at about 4 — 7 Hz, and
phonemes at about 30 — 50 Hz. Accordingly, slow oscillations, delta and theta sample speech at the prosodic and
syllabic rate, respectively, while fast oscillations in the gamma band (around 30 Hz and beyond) facilitate the
sampling of phonemic information. In addition, it has been suggested that sampling rates are thought to be
hierarchically embedded, with theta as the dominant sampling rhythm, and with coordinated sampling at the delta
and gamma frequencies (Giraud & Poeppel, 2012; Gross et al., 2013). A related issue to sampling speech at
multiple time scales is whether it is supported by a division of labour between the hemispheres as proposed in the
Asymmetric Sampling Time Model by Poeppel (2003) and further elaborated by Giraud & Poeppel (2012). In this
model, the left auditory cortex is biased towards sampling signals at fast time scales, while the right auditory
cortex is biased to sample at slower time scales (for support see Boemio et al., 2005; Giraud et al., 2007; Morillon
et al., 2010; Shtyrov, Kujala, Palva, Imoniemi, & Naatdanen, 2000; for a counter argument see Mcgettigan & Scott,

2012).

Empirical studies have provided support for the role of delta and theta bands in entrainment (e.g., Abrams, Nicol,
Zecker, & Kraus, 2008; Bourguignon, De Tiege, de Beeck, et al., 2013; Cogan & Poeppel, 2011; Gross et al., 2013;
Luo, Liu, & Poeppel, 2010; Luo & Poeppel, 2007; Molinaro, Barraza, & Carreiras, 2013; Peelle, Gross, & Davis, 2013),
and mainly theta entrainment has been associated with speech intelligibility (Ahissar et al., 2001; Luo & Poeppel,
2007; Peelle et al., 2013). To date, only one study has demonstrated involvement of the gamma band (Gross et al.,
2013). These authors used a 7 minute story to study entrainment of oscillatory activity to speech and found

gamma phase-amplitude coupling to the speech envelope, alongside with phase-phase coupling of delta and theta
oscillations to speech. In addition, they showed that ‘edges’ in the speech signal (corresponding to word and
syllable onsets) were associated with oscillatory phase resetting in the theta band, a mechanism thought to
support/maintain entrainment. They further demonstrated that directly following a speech edge there was an

increase in intra-cortical oscillatory cross-frequency coupling between delta, theta and gamma frequencies.

However, there have been some limitations in previous studies. First, most had a relatively small sample size
(ranging from 10 to 22 participants). Second, most used simple language stimuli in small quantities (1,3,4, or 10
short sentences, Abrams et al., 2008; Ahissar et al., 2001; Cogan & Poeppel, 2011; Luo & Poeppel, 2007), with a
few using a wider variety of sentence structures in the form of a continuous text (Bourguignon, De Tiége, de Beeck,
et al., 2013; Gross et al., 2013; Molinaro et al., 2013). These previous studies found support for the involvement of

delta, theta, and/or gamma are involved in entrainment. Moreover, some studies showed that entrainment was
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stronger for the regular (forward) speech condition than a control or contrast condition (e.g., reversed speech,
noise-vocoded speech). These studies thus speculated that entrainment not only reflects a bottom-up, passive
process fully determined by the temporal characteristics and cues in the speech signal, but also involves a top-
down component that predicts the upcoming word (Gross et al., 2013; Peelle et al., 2013). The conclusions and

predictions from these earlier empirical studies have strong implications for speech perception mechanisms.

To provide further empirical evidence for, and to advance our understanding of, entrainment to speech an
independent replication of these earlier findings with a larger sample and a larger variation in the stimuli set is
necessary. In the current study, we sought to replicate the previous findings of entrainment whilst addressing the
aforementioned shortcomings. In the current study, we used data from an unprecedented sample of 102
participants to address neural oscillatory entrainment to the speech envelope. We measured brain activity with
magnetoencephalography (MEG) while participants listened to sentences. We quantified the relationship between
neuronal oscillations and the envelope of the speech signal using coherence. Participants were presented with 120
sentences. We ensured the use of a diverse set of sentences which varied in complexity and structure. Sentences
had an average length of 4.2 s. Based on previous studies, we analyzed entrainment between 0.5 to 50 Hz to

include the delta (0.5 — 3.5 Hz), theta (4 — 7 Hz), alpha (8 — 12 Hz), beta (13 — 30 Hz), and gamma (30 — 50 Hz) bands.

The study of variation allows for (i) the identification of whether the general effect at the group level is a true
effect, or just a result of averaging, (ii) an explanation for differences in speech perception, and (iii) testing and
revision of theories. Importantly, in addition to replicating previous work, a second goal of our study was to seize
the opportunity to quantify individual differences in neural oscillatory entrainment of speech, given our large

sample size.

We found support for entrainment at low but not high frequencies. Moreover, we were able to quantify and

observe a rather large individual variability in entrainment, both in terms of strength and in terms of lateralization.

2.3 Methods

A total of 102 native Dutch speakers (51 males), with an age range of 18 to 33 years (mean of 22 years),
participated in the experiment. These participants formed part of the MOUS study (Mother of all Unification
Studies; N = 204), and all participated in an fMRI and a MEG session. Half of these participants completed both
sessions where they read the stimuli, and the other half listened to recordings of the stimuli. The current study
pertains to participants from the MEG session in the auditory modality. All participants were right-handed, had
normal hearing, normal or corrected-to-normal vision, and reported no history of neurological, developmental or

K

language deficits. The study was approved by the local ethics committee (CMO — the local “Committee on
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Research Involving Human Participants” in the Arnhem-Nijmegen region) and followed the guidelines of the

Helsinki declaration.

The stimuli consisted of 360 sentences and their word list counterparts. The sentences varied between 9 and 15
words in length, of which half contained an embedded clause and half did not. The stimulus material was recorded
by a native female Dutch speaker in a sound-proof recording booth. The speaker read the stimuli in a natural
manner: the sentences were read at a regular pace with an average duration of 4.2 s (min: 2.8 s, max: 6.0 s), and
the word lists were read with a brief pause between words, averaging 7.7 s (min: 5.5 s, max: 11.1 s). Subsequently,

all stimuli were equalized to the same amplitude, and an onset and offset ramp of 10 ms was applied.

The current study is only concerned with the sentences (see table 1 for an example). The word lists were not a
suitable control condition because there was a temporal gap between each word, in contrast to the sentences
which consisted of continuous speech. These low-level differences in the temporal properties and rhythmic
structure (clearer speech edges in word lists than in sentences) meant that any differences in entrainment

between the sentences and word lists would be severely confounded by a difference in duration between words.

Sentence

Bij de opening van de nieuwe sporthal kregen de talrijke bezoekers een consumptie

At the opening of the new sports hall received the many visitors a (free) drink

Table 1. Exemplar sentence in Dutch, and literal English translation.

We divided the sentences into 6 groups of 60 sentences. Using a Latin square design we created 6 sets of stimuli,
each consisting of 2 groups (i.e. 120 sentences). Participants were exposed to one of the 6 sets. Participants
assigned the same set had sentences presented in a different (randomized) order. In the experiment, the stimuli
were presented in a mini block design, and alternated between a sentence block (containing 5 sentences) and a
word list block (containing 5 word lists), for a total of 24 blocks. The first mini block (sentences or word lists) was
randomized across participants.

At the beginning of each block, the block type was announced for 1500 ms: zinnen (sentences) or woorden (words),
followed by a 2000 ms blank screen. At the beginning of each trial a fixation cross was presented for a jittered

duration between 1200 — 2200 ms. Subsequently, the auditory signal was presented for each trial (sentence or
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word list), and the fixation cross remained on the screen until the auditory signal was completed. Within each

block, the inter-trial interval was a blank screen with a jittered duration between 1200 — 2200 ms.

In order to check for compliance, 10% of the trials were randomly followed by a yes/no question about the content
of the previous sentence/word list. Half of the questions on the sentences addressed sentence comprehension (e.g.
Did grandma eat a pancake?). The other half of the sentences, and the questions following the word lists
addressed a content word (e.g. Was a music instrument named?). Participants answered the question by pressing

a button for ‘Yes’/ ‘No’ with their left index and middle fingers, respectively. For both question types, half of the

trials had a yes-response as the correct answer.

All stimuli were presented using Presentation software Version 16.0, Neurobehavioral Systems, Inc). Speech
stimuli were presented binaurally via MEG-compatible tubes. The questions were presented in black mono-spaced
font, on a gray background. To reduce eye movements during listening, subjects were instructed to focus on a
fixation cross. These visual stimuli were presented with an LCD projector (with a vertical refresh rate of 60 Hz)
situated outside the MEG, and projected via mirrors onto the center of the screen inside the MEG room, within a

visual angle of 4 degrees.

Prior to performing the sentence listening task, we adjusted the hearing level for each subject. To ensure a
sufficient cortical auditory response, the minimal auditory threshold was determined, and subsequently all
auditory stimuli were presented at 50 dB above the minimum threshold. For task familiarization purposes

participants completed a practice task (using a separate set of stimuli from the actual task).

MEG data were collected with a 275 axial gradiometer system (CTF). The signals were digitized at a sampling
frequency of 1200 Hz (the cutoff frequency of the analog anti-aliasing low pass filter was 300 Hz). Three coils were
attached to the participant’s head (nasion, left and right ear canals) to determine the position of the head relative
to the MEG-sensors. Throughout the measurement the head position was continuously monitored using custom
software (Stolk, Todorovic, Schoffelen, & Oostenveld, 2013). During breaks the participant was allowed to
reposition if needed. Participants were able to maintain a head position within 5 mm of their original position.
Three bipolar Ag/AgCl electrode pairs were used to measure the horizontal and vertical electro-oculogram, and the

electro-cardiogram.

All analyses were done with custom written Matlab scripts and FieldTrip (Oostenveld, Fries, Maris, & Schoffelen,

2011).
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Physiological artifacts (eye movements and muscle contractions) and superconducting quantum interference
device (SQUID) jumps were identified using a semi-automatic artifact identification procedure
(http://www.fieldtriptoolbox.org/tutorial/automatic_artifact_rejection), followed by visual inspection. Data
segments that contained artifacts were not subjected to further analysis. Across subjects, an average 80% of trials

were retained after rejection.

The envelope of each speech signal was constructed as the sum of the Hilbert envelopes of 10 distinct bandpass
filtered frequency bands of the original auditory signal (as per Gross et al. 2013). Subsequently, each envelope
signal was downsampled to 1200 Hz, and temporally aligned to the corresponding MEG data. The MEG signal was
initially epoched into the individual sentences, demeaned, and the power line interference was removed using a
band stop filter (finite impulse response window sinc filter) between 49 to 51 Hz. Subsequently, the MEG signal
and speech signal were downsampled to 300 Hz, and cut into 2 s long epochs (with a 50% overlap to reduce bias in
the coherence estimate) which produced a frequency resolution of 0.5 Hz. To facilitate the combination of MEG
topographies across subjects, the data was transformed to a synthetic horizontal and vertical planar gradient

representation using interpolation.

Sensor level coherence was computed between low frequency oscillations (delta, theta, alpha and beta) and the
speech envelope, as well as, the phase of the gamma band envelope and the speech envelope. The latter involved
two additional processing steps prior to the spectral analysis: the application of a band pass filter to the MEG data
to extract the gamma band activity between 30 to 50 Hz which was followed by the absolute of the Hilbert

transform to obtain the amplitude envelope. This was done separately for each planar gradient.

To quantify entrainment of the MEG signal to the speech envelope we calculated coherence. To do this, we first
computed the power spectra for each signal, and the cross-spectra between the speech signal and brain signal, for
each frequency. To do this, each epoch was tapered (using multiple tapered versions of the epoch) to achieve a
spectral smoothing of +2 Hz. Subsequently each tapered epoch was Fourier-transformed and the cross- and

power-spectra were calculated.

Sa(f) = Falf) % Fu(f)* (1)

F, denotes the Fourier-transformed of the signal a (a particular MEG channel or the speech envelope) at frequency
£, while * represents the complex conjugate. The cross spectrum was obtained by multiplying the Fourier-spectra

of one signal (e.g., from an MEG channel) with the conjugate of the Fourier-spectra of another signal (e.g., speech).
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When a = b, then the Fourier-spectra of one signal is multiplied with its own conjugate which produces the power

spectrum. Coherence Coh,, was then calculated as follows:

Sab

Cohyp = |-——"—=
o VSaa*Sbp

()

In this formula, the power spectra and cross spectrum are averaged across trials. Coherence values range from 0 to
1, with 0 indicating no consistent phase relationship between signals, and 1 indicates a fully consistent phase
difference between signals. Finally, the coherence values of the horizontal and vertical gradients were recombined

by taking the average of the two gradients.

Visual inspection of the sensor level data indicated that there was considerable variability across participants for
the frequencies at which coherence peaked, see Fig. 1. To optimize the sensitivity of our analysis, we identified
individual peak frequencies for each participant at the sensor level. These individually selected peaks were
subsequently used for source level analysis. For the gamma band, as effects in this range are usually broadband,
we did not select a peak frequency but instead opted for a broad bandwidth between 30 — 50 Hz. This range was
motivated by previous entrainment studies (Giraud & Poeppel, 2012; Gross et al., 2013; Luo & Poeppel, 2007;
Poeppel, 2003).

For each participant the peak detection process was as follows: a peak detection algorithm was used to identify,
for each channel, the frequency bins that showed a distinct peak in the coherence spectrum with a coherence
value larger than 0.02. This yielded a binary vector (as a function of frequency), with a 1 indicating a peak, for each

channel. Next, these binary vectors were summed across channels yielding a spectrum of
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peak counts across channels. The assumption here was the higher the peak count, the more reliable the peak. This
vector was then multiplied to a second vector containing the standardized coherence across frequencies. This
accounted for variance in coherence strength. The weighted vector was then smoothed (boxcar of 2 samples) and
a second peak detection with a threshold of 2 was performed to identify the peak frequencies across the sensor
array. Comparison of the estimated peak frequency with visual identification of the peak frequency for 10 subjects

determined this peak detection process to be adequate.

For source reconstruction purposes, we coregistered the anatomical MRI to the MEG-sensors. This was achieved
by manual alignment of two reconstructions of the head surface. A digitized head shape, consisting of
approximately 500 points across the scalp, was obtained with a Polhemus device (a 3D digitizer from Fastrak,
Polhemus Inc. Colchester, VA, USA). The second head shape (at the brain-skull boundary) was obtained by

segmenting the participant’s T1-weighted anatomical MRI image.

Subsequently, the aligned anatomical image was used to create a volume conduction model based on a single
shell description (Nolte, 2003) of the inner surface of the skull, using the segmentation function in SPM8. Source
reconstruction was performed on a set of 8196 dipole locations distributed across the cortical sheet. Freesurfer 5.1
(Dale, Fischl, & Sereno, 1999) was used to create a high-resolution description of the cortical surface. Next, these
cortical surfaces was surface-registered to a template mesh using the Caret Software package (Van Essen et al.,
2001), and subsequently downsampled from 168,342 dipoles per hemisphere to 4098 dipoles. The surface
registration procedure resulted in individual cortical sheets that are topologically equivalent across participants (i.e.
a particular topological point in the cortical sheet of one participant correspond to the same particular point in all
other participants). In addition, all topological points could be related to a cortical atlas (the Conte 69 atlas,Van
Essen, Glasser, Dierker, Harwell, & Coalson, 2012) and thus were labeled and assigned to an anatomical region e.g.,
left inferior frontal and left superior parietal regions. The benefits of using this cortical surface were that it is (a)
comparable across participants, (b) contains an equal number of vertices on each hemisphere, and (c) that each
vertex has a contralateral homolog which facilitated the subsequent comparison of activity between hemispheres

in the lateralization analysis.

We computed coherence at the source level using a frequency domain beamformer (DICS; Gross et al., 2001). The
sensor level cross-spectrum in combination with the forward solution was used to compute a set of spatial filters,
one filter for each dipole location on the cortical sheet. The sensor level Fourier-transformed tapered data were
then projected through the filters to produce source level Fourier coefficients. In the next step, the coherence

between the speech envelope and the estimated activity at the dipole locations was computed in a manner similar
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to that at the sensor level. As a result, the MEG signal is denoted by dipole activity estimated at a particular grid

point instead of activity at a particular channel.

We were interested in whether the phase of the gamma band envelope entrained to the phase of the speech
envelope. We computed the data covariance-matrix (at the sensor level) which was used to obtain a time domain
spatial filter (LCMV beamformer, Van Veen, Van Drongelen, Yuchtman, & Suzuki, 1997). We then projected the
bandpass filtered Fourier-data through the spatial filter, applied a Hilbert transform and took the absolute value.
This produced estimates of the gamma band envelope at each dipole location. Finally, we computed coherence
between the gamma band envelope and the speech signal, in a manner similar to that shown in the source analysis

for coherence in low frequencies.

We did not statistically assess the level of coherence between oscillations and sentences because we did not have
a suitable control condition. As explained in the methods section, our word list condition had fundamentally
different acoustic properties than the continuous speech in the sentences, which would render any statistical
differences uninterpretable due to this confound. As this study formed part of a larger study, with predefined
conditions it was not possible to provide participants with a third condition such as reverse or vocoded speech.
Nevertheless, we are confident that our coherence results reflect entrainment because the effects are localized to

auditory cortex, and because we see clear peak frequencies in the single subject level data (see results).

For the theta and delta bands, we determined whether coherence was stronger in one hemisphere than the other
by performing statistical inference using a non-parametric permutation test together with a clustering method to
address multiple comparisons (Maris & Oostenveld, 2007). We used the dependent samples t-statistic to quantify
each sample (frequency by space data point): the difference in entrainment between each left hemisphere dipole
location and its right-sided homologue. Samples that exceeded the uncorrected significance level of 1% were
clustered according to adjacency (in space). For each cluster, the cluster-level t-statistic was calculated by summing
the t-statistics across the individual elements. Next, to test the observed t-statistic, a reference distribution was
computed. This distribution was created by permuting (randomly exchanging) data between dipoles in the left and
right hemisphere and then calculating the maximal positive and negative cluster-level t-statistic for each permuted
data set. Finally, the observed t-statistic was tested against the reference distribution. The observed t-statistic was
considered significant if it was located beyond the determined threshold, on the negative or positive end of the

reference distribution. The statistical threshold is specified in the section of each analysis below.
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2.4 Results

The mean percentage of correct answers for the questions that proceeded a sentence was 86.8% (SD = 9.9%). This

suggested that all participants were attentive and listened to the materials properly.

We computed coherence between neuronal oscillations and speech for four different frequency bands: delta (0.5 —
3 Hz), theta (4 — 7 Hz), alpha (8 — 12 Hz) and beta (13 — 30 Hz). Phase coupling between the neuronal oscillations

and speech envelope was observed in the delta and theta bands in temporal-parietal sensors, a spatial distribution
that is characteristic of a response in auditory regions. This topography is evident at both the group level and single

subject level results (see Fig. 1). Phase coupling was not observed in the alpha or beta band.

Within each frequency band, we were also interested in the variability of the frequency showing the strongest
coherence (peak frequency). Using a peak detection algorithm we found individual differences in peak frequency
for each frequency band, as displayed in Fig. 2. We exploited this individual difference in the source analysis by
only including participants with a peak frequency in the sensor analysis, and only using their peak frequency for
source estimation. For the delta and theta bands we did not detect a peak for all 102 participants, 88 participants
had a peak in the delta band and 91 participants had a peak in the theta band. The main reason our algorithm did
not detect a peak in a small number of the participants was because there were too few channels (under 10%)
with a clear peak in the theta band (see Peak frequency selection under Methods). This led to extremely low
standardized peak values that did not surpass the peak detection threshold. Lowering the threshold revealed a
peak for 3 out of 10 participants. Importantly, the lack of peaks was not because the peak fell on boundary of the
defined theta window (4 — 7 Hz), since relaxing the boundaries to 3.5 — 7.5 Hz did not lead to the detection of

peaks.
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Fig. 2. A, B, Distribution of coherence peak frequency for delta and theta entrainment. Participants
were exposed to different stimulus sets. Only participants with a peak frequency are included in the
historgrams. 88 individuals had a clear delta peak in the coherence spectrum, while 91 individuals
had a clear theta peak in the coherence. A, Distribution of peak frequencies across all subjects B,
Distribution of peak frequency for subjects of each stimulus set. All sets demonstrate a wide distri-
bution in peak frequency, even though all sets contain the same averaged power spectra (i.e.
speech envelope). C, Average power spectra for each stimulus set. Dotted lines mark the peak in
the power spectra at 3 Hz for delta and 5 Hz for theta.
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There is some empirical evidence that the envelope of gamma oscillations entrains to the low-frequency phase of
the speech envelope. To verify this in our data, we computed coherence from between the phase of the gamma
envelope (30 — 50 Hz) of the neural signals and the phase of the speech envelope. We found no meaningful spatial

pattern of coherence between the phase of the gamma envelope and phase of the speech envelope (Fig. 1B).

Exemplar
Participant 1

Exemplar
Participant 2

Exemplar
Participant 3

Exemplar
Participant 4

Fig. 3 Top, Brain maps depict the surface representation of beamformed coherence.
A, Coherence values between the speech envelope and neural oscillations for the
left and right hemisphere. B, Statistical maps of lateralized coherence (Left — Right)
in t-values, cold colors represent stronger coherence on the right. C,Statistical maps
masked for significance (p < 0.025). Bottom, Brain maps depict the surface
representation of beamformed coherence in 4 representative subjects for the delta
band and theta band.
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We also computed the coherence between the neuronal sources of oscillations and the speech signal. Fig. 3 (top)
depicts the group level source coherence estimates and statistical inference for delta and theta. We did not source
localize the alpha and beta band because there was no clear topography or peaks in the coherence spectrum at
the sensor level. Coherence between speech and the delta and theta oscillations localized to superior temporal
cortex (the activity in inferior motor cortex is due to spatial blur). This location is in line with primary auditory
cortex. The spatial maps suggest that the peak location for delta oscillations is more posterior in bilateral temporal
cortex, whereas it is more anterior for theta oscillations. This analysis demonstrated that the phase of low
frequency delta and theta neuronal oscillations entrain to the phase of the speech envelope in primary auditory

cortex.

It has been suggested that (the auditory cortex in) each hemisphere has a bias in tracking a specific speech rhythm
(Giraud & Poeppel, 2012; Poeppel, 2003), with a preferential role for the right hemisphere in the theta and delta
frequencies. We performed a statistical comparison between the coherence values of the left and right
homologous cortical regions, separately for the delta and theta band because they showed clear, strong
entrainment. Our results at the group-level showed that even though both delta and theta oscillations entrain to
speech in both hemispheres, only theta oscillations showed stronger entrainment on the right than left auditory
cortex (p = 0.0035) (Fig. 3). We also quantified individual variation in lateralization, and found a similar number of
left- and right-lateralized individuals for entrainment in both the delta and theta band (Fig. 4). For the delta band,
55% (48/88) of the individuals were right-lateralized, and the standardized mean right-, and left lateralized values
were 0.36 and 0.36, respectively. For the theta band, a slightly higher percentage of individuals were right-
lateralized (56%; 51/91) and there was a larger difference between the normalized mean right-lateralized value
(0.50) and left-lateralized value (0.32) which explains why only the theta but not delta band showed a significant

bias for right hemisphere entrainment at the group level.
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Fig. 4 Bar graph of individual lateralization indices in superior temporal cortex.
For each participant the lateralization index (L-R)/(L+R) was computed for each
homologous pair of vertices on the cortical sheet. Bars indicate the mean
lateralization index of 80 vertices in superior temporal gyrus (these 80 vertices
had the highest coherence in left and right superior temporal cortex combined).
In the delta band (N = 88) 55% of participants were right lateralized, while in the
theta band (N = 91) 56% of participants right lateralized.
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2.5 Discussion

Entrainment — the frequency-specific phase synchronization of cortical oscillatory activity to the envelope of the
auditory input signal — has been proposed to provide an initial temporal parsing mechanism of the relevant
linguistic structures needed for speech processing. In the current study, using a larger population than before (N =
102), we clearly replicated entrainment of neuronal oscillations in the delta and theta frequency bands. We also
presented novel findings of considerable individual variability in the peak frequency for entrainment and the

preferred laterality of the entrainment.

We found entrainment to the speech envelope for delta (0.5 — 3 Hz) and theta (4 — 7 Hz) oscillations. The
topographical distribution at the sensor level was characteristic of auditory responses — bilateral temporal sensors
showed the highest amount of entrainment, and source estimates localized to bilateral primary auditory cortex
and posterior superior temporal regions. This is consistent with our knowledge that auditory cortices are the first
cortical areas to respond to speech input, and that the posterior superior temporal lobes are consistently involved
in speech processing (for a review see Hickok & Poeppel, 2000). Furthermore, for these two frequencies, we
defined clear spectral peaks in the coherence spectrum at the single subject level, demonstrating the robustness

and reliability of entrainment (discussed in detail below).

Most studies have compared the entrainment of meaningful, regular sentences to a contrast (or control) condition
to demonstrate that entrainment is not simply due to acoustic properties but the meaning (intelligibility) of the
sentences. Furthermore, studies using a contrast condition have demonstrated entrainment between speech and
higher-order areas, mainly frontal regions (Gross et al., 2013; Molinaro, Lizarazu, Lallier, Bourguignon, & Carreiras,
2016; Park, Ince, Thut, Gross, & Schyns, 2015). Choices of contrast conditions include noise-vocoded, reversed
speech, and baseline coherence between auditory signals and resting state MEG (Gross et al., 2013; Molinaro et al.,
2013; Peelle et al., 2013). In the current study, our word list condition (created by scrambling the words in a
sentence) did not suffice as a control condition because of low-level acoustic differences to the sentence condition
(see Methods). Nevertheless, given the clear spectral peaks and spatial topography we argue that our results of

entrainment in the delta and theta band are meaningful and convincing.

Our findings replicate previous studies of low frequency entrainment (Abrams et al., 2008; Ahissar et al., 2001;
Bourguignon, De Tiege, De Beeck, et al., 2013; Luo & Poeppel, 2007; Peelle et al., 2013). The importance of low
frequency oscillations for perception is also supported by the association between theta entrainment and speech
intelligibility (e.g., Doelling, Arnal, Ghitza, & Poeppel, 2014; Peelle et al., 2013) and the observation that the
removal of speech spectral modulations below 4 Hz (using a modulation transfer function) greatly impairs speech
comprehension (Elliott & Theunissen, 2009). Together, this suggests that low frequency entrainment is a robust

and reliable phenomenon.
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We did not replicate the earlier finding of phase-amplitude coupling between the envelope of the gamma
oscillations (30 — 50 Hz) and the speech envelope. Several studies have been performed on entrainment (Luo et al.,
2010; Luo & Poeppel, 2007; Peelle et al., 2013), but only one has demonstrated evidence for gamma oscillations
coupling to speech (Gross et al., 2013). Modulation of the gamma band by speech has also been shown by other
studies but only in terms of oscillatory power (Ding, Melloni, Zhang, Tian, & Poeppel, 2016; Nourski et al., 2009).
On this basis, entrainment of the gamma envelope to speech may not be a reliable phenomenon. Alternatively,
certain stimuli, methods or task designs may be required to measure the oscillatory response in the gamma band.
Gross et al., (2013) found coupling between the phase of the gamma envelope and the speech envelope using
mutual information. As this measure, unlike coherence, can measure non-linear relationships between signals, this
might be why we did not capture the relationship between gamma and speech. A second, possible, explanation
might pertain to the high individual variability in the peak frequency (and amplitude) of gamma band activity. For
instance, in the visual system, variation in peak frequency has been observed between about 40 — 90 Hz
(Hoogenboom et al., 2006; Suresh Muthukumaraswamy, Edden, Jones, Swettenham, & Singh, 2009; Suresh
Muthukumaraswamy, Singh, Swettenham, & Jones, 2010; van Pelt, Boomsma, & Fries, 2012). With this variation,
our definition of the gamma band between 30 — 50 Hz (based on previous entrainment and speech literature) may
have hindered our finding of gamma to speech coupling. Since we did not find gamma entrainment we could not
replicate the other analyses from Gross et al. (2013): (i) whether lateralization exists in the gamma band and (ii)
whether a hierarchical relationship between neuronal oscillations exists, as indicated by cross-frequency coupling
between the gamma band and theta or delta bands. As of now, there remains a lack of evidence for gamma

entrainment.

Until now, individual variation in oscillatory entrainment to speech has not been quantified even though it has the
potential to provide further insight on the characteristics of entrainment that are not obvious with group average
data. Here, for the first time, we show that both delta and theta entrainment vary across individuals in two

aspects: the peak frequency of entrainment, as well as the degree and extent of lateralization of entrainment.

We defined the delta range between 0.5 to 3 Hz (in 0.5 Hz increments) and the theta range between 4 to 7 Hz (also
in 0.5 Hz increments), and in both ranges we observed peaks at all frequencies (Fig. 2A). For delta, 2.5 Hz was the
most common peak frequency, and for theta it was 7 Hz. As participants received one of the six sets of stimuli (see
Methods), we wanted to ensure that differences in low-level stimulus properties between sets was not the cause
of the variation in peak frequency. First, we inspected the peak frequencies within each set, and noted that the
variation was maintained in each set (Fig. 2B). Second, we calculated the set-specific power spectra of the stimulus

envelopes to inspect the dominant frequency of each set-specific speech envelopes. We observed a strong overlap
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in power between the speech envelopes of each set. As shown in the power spectra (Fig. 2C), 5 out of the 6 sets
had a peak at 3 Hz for the delta band and at 5 Hz for the theta band. Since these sets of stimuli had similar energy
profiles (envelopes), this suggested that the variation in peak frequency within each set was not due to properties

of the speech signal.

There has been a recent rise in popularity on the theory that entrainment is a result of the phase-resetting of
ongoing oscillations. This theory assumes that the nature of oscillations are suited to track the rhythm of speech,
and segregate speech into smaller chunks for processing (Ghitza, 2011; Giraud & Poeppel, 2012; Giraud et al.,
2007; Poeppel, 2003). At the core of this proposal, oscillations track speech by adjusting their rhythm (phase) to
match the rhythm of the speech signal (determined predominantly by the sharp edges of syllable/word onsets).
Building on this proposal, we provide a tentative explanation of the observed variability in peak frequency of
entrainment. The exact rhythm of the oscillations depends on the neural environment (e.g. balance between
excitatory and inhibitory connections, distribution and expression of ion channels etc.), which are subject to
interindividual differences. This variability could explain our observed variability in the peak frequency of
entrainment. If entrainment was merely driven by the speech rhythm, then we would have expected all
participants to have an oscillatory peak frequency that matched the predominant rhythm of the speech signal (i.e.
at 3 and 5 Hz). In this manner, we speculate that entrainment is not simply a response to the speech rhythm but

also influenced by factors intrinsic to the brain.

There is however, an alternative explanation for entrainment based on the superposition hypothesis drawn from
early studies on auditory steady state responses (e.g.,Bohérquez & Ozdamar, 2008; Capilla, Pazo-Alvarez, Darriba,
Campo, & Gross, 2011; Galambos, Makeig, & Talmachoff, 1981; Hari, Hamaldinen, & Joutsiniemi, 1989). Specifically,
the phenonmenon of entrainment could well be the result of a series of overlapping transient (event-related-like)
responses to sharp rises in the envelope of the speech signal. In such a scenario, intrinsic ongoing oscillations are
irrelevant, and the estimated entrainment would be just the frequency domain representation of the cross-
correlation function between the brain’s and the speech envelope’s impulse response functions. In the case of the
current study, evoked-responses will also have occurred in response to edges in the speech signal, and when
quantified in the frequency domain might have produced activity that highly resembles oscillations in the theta
band. Given interindividual variability in brain structure and function, our results on the variability in the peak
frequency of theta entrainment could also be explained by variability in the transient response, expressed in the

frequency domain.

To address which of these two theories holds more merit, we propose further investigations that build on our
current findings of peak frequency variability. First, one could seek evidence for oscillations underlying
entrainment by showing that in auditory regions, the individual frequency peaks of the on-going oscillatory activity
in the absence of auditory input, for instance as identified during resting-state recordings, would correlate with the

individual frequency peaks identified during auditory stimulation. This would demonstrate that oscillations are
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influenced by properties of the neural environment, and that in the presence of a stimulus (i.e. speech) will

modulate its rhythm to the stimulus. Second, one could quantify the evoked responses to the edges in the speech
signal and determine the variability of these responses in the frequency domain in terms of peak frequency in the
power spectra. A correlation between the peak frequency in theta power of the transient responses and the peak

frequency of entrainment across participants would be evidence for transient responses underlying entrainment.

Multiple studies have shown entrainment at the delta, theta, and (infrequently at the) gamma band, providing
much evidence that the brain is sensitive to information occurring at multiple time scales in the speech signal.
However, evidence for the AST theory (Giraud & Poeppel, 2012; Poeppel, 2003) — that that left and right auditory
cortex have a different temporal sensitivity profile, with right auditory cortex for slow rhythms and left for fast,
remains equivocal. There is little evidence for rightward asymmetry in entrainment for slow rhythms, and even less
evidence for leftward asymmetry for fast rhythms(Bourguignon, De Tiege, de Beeck, et al., 2013; Gross et al., 2013;
Molinaro et al., 2013). Furthermore, Mcgettigan & Scott (2012) argue for several weakness in theories on

asymmetrical speech perception.

In the current study, we found an almost equal division of left- and right-lateralized individuals for delta and theta
entrainment (Fig. 4). Moreover, the degree of lateralization varied across individuals. This suggests that theories on
asymmetrical speech perception need revision. The fact that we found a significant right-lateralization for theta
entrainment at the group level was because on average, right-lateralized subjects had a higher normalized
lateralization value (0.50) than left-lateralized individuals (0.31). In comparison, for the delta entrainment, the
average normalized lateralization values were similar between left-lateralized (0.36) and right-lateralized
individuals (0.36). Given the individual variation, we were also interested in whether hemisphere of lateralization
in the delta band was related to the hemisphere of lateralization in the theta band. We post-hoc quantified this
relationship using the McNemar’s Test and found no significant effect (X* = 0.26, p = 0.87). This test suggested that
there is insufficient evidence for an association between hemisphere of lateralization and frequency band.
Altogether, our findings on lateralization are evidence against the AST theory that the right auditory cortex is
biased for processing slow time scales (Giraud & Poeppel, 2012; Poeppel, 2003). Rather, we argue that there exists
a hemispheric bias for slow time scales in the delta and theta band, but importantly, this bias is individually

determined, and not with the right hemisphere as the default.

Previous studies that explicitly tested the AST theory have not used measures of oscillatory phase. The initial effort
by Boemio et al. (2005) operationalized sensitivity to a specific temporal rate (in speech) as stronger activation i.e.
an increase in the hemodynamic response. In support of the theory, they found bilateral primary auditory cortices
to be sensitive to slow and fast time scales, and a lateralized sensitivity for slow time scales in right superior

temporal regions (Boemio et al., 2005). Maintaining the same definition of sensitivity, evidence of oscillations
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supporting the AST theory was then demonstrated: a positive correlation between delta/theta power and the
hemodynamic response in the right hemisphere, and a positive correlation between gamma power and the

hemodynamic response in the left hemisphere (Giraud et al., 2007).

Importantly, the definition of sensitivity to temporal rate has evolved (or an alternative definition has become
more popular), and is now operationalized as oscillations following the temporal rates in speech, i.e. oscillations
are the underlying mechanism to auditory cortex being sensitive to speech rhythms. Under this new definition, the
findings on oscillatory power, although valuable, do not truly demonstrate that oscillations in left and right
auditory cortex preferentially follow fast and slow rhythms, respectively. This is because an increase in power
demonstrates either (i) an increase in local synchrony between neurons within a focal region, or (ii) no change in
local synchrony but stronger firing. These changes indicate that the brain responds to the speech input, but does
not indicate that auditory cortex is following, i.e. truly sensitive to the rhythm in the speech. To demonstrate
tracking between signals, one needs to quantify the degree to which one signal has a constant phase relationship
to another signal. If the relationship is relatively constant, then this is evidence for one signal following the other.
Measures of phase synchrony indicate whether oscillatory processes are in sync, in other words, whether neuronal
oscillations follow the quasi-rhythmic events in the speech signal. A change in power has no direct bearings on (a
change in) the phase relationship between two processes. Accordingly, previous studies looking at whether the
brain is sensitive to the speech by means of rhythm tracking (regardless of lateralization) have used measures of
phase synchrony such as Coherence, Phase-locking value, and Mutual Information (e.g., Bourguignon, De Tiege, De
Beeck, et al., 2013; Joachim Gross et al., 2013; Luo & Poeppel, 2007; Peelle et al., 2013). Logically, to determine if
this sensitivity differs between hemispheres, one should continue to use phase information. Consequently, in the
current study we used coherence to quantify entrainment, and lateralization of coherence to determine the
lateralization of entrainment. The use of power to quantify lateralization would not have provided definitive

evidence against or for lateralization of entrainment.

2.6 Conclusion

Entrainment of cortical oscillations to speech has received increasing attention in the field of speech perception.
Here, we performed a replication study on entrainment while improving on the stimuli and sample size used
relative to previous studies. To date, our study with 102 participants is the largest, most powered MEG study done
on entrainment. We quantified entrainment in terms of phase coupling between oscillations and the speech signal,
in a wide range of frequencies from delta to gamma. We replicated entrainment in the low frequencies, but did
not observe gamma entrainment. Importantly, for the first time in the field of entrainment, we showed individual
differences in entrainment. The variation in peak frequency of entrainment is suggestive of the endogenous nature
of the frequency at which oscillations entrain to speech, while the variation in the hemisphere to which low
frequency entrainment lateralizes is evidence against a strict right-hemisphere bias for processing signals on a slow

time scale. In summary, our findings shine new light on the oscillatory entrainment to speech. They motivate
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further investigation and revision of theories on neural entrainment to speech, and are a statement to the

impressive speed at which the human auditory cortex responds and processes speech.

45






A QUEST ON WHETHER OSCILLATIONS
OR EVOKED FIELDS UNDERLIE
NEURAL ENTRAINMENT TO SPEECH




CHAPTER 3

3.1 Abstract

A prominent hypothesis on what gives rise to the neural entrainment to speech is the phase alignment of
oscillations to the speech envelope. Here, we argue that independent of intrinsic oscillations, it is the temporal
superposition of evoked responses to salient edges in the speech envelope that give rise to entrainment. We
recorded MEG during rest and during a speech listening task, and sought to provide evidence for or against both
hypotheses by correlating the variation found in entrainment with the variation in intrinsic oscillations during rest,
and with the variation in evoked fields during a listening task. In addition we created a surrogate MEG data set as a
proof of principle for the superposition hypothesis. We found no significant correlations, and therefore no
empirical evidence for either hypothesis but with our surrogate dataset we demonstrate the strong likelihood that

the interaction between auditory evoked responses and speech edges can give rise to entrainment.
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3.2 Introduction

Natural speech is a complex, continuous signal with information embedded at multiple temporal scales —on
average phonemes occur every 25 — 40 ms, syllables every 125 — 250 ms, and words/phrases every 300 — 500 ms.
To digest and comprehend this information, a series of brain processes are involved in parsing, extracting and
combining various units of speech. The neural response to speech can be captured using
Magnetoencephalography (MEG) and electroencephalography (EEG). One particularly robust phenomenon is the
entrainment of neuronal oscillations in the theta band (around 4 — 7 Hz) to the speech signal, putatively resulting
from frequency-specific phase alignment of neural activity with the sharp edges in the speech signal. The
consistent observation of theta band entrainment, across a variety of speech stimuli and experimental
manipulations, as well as its association with speech intelligibility (e.g., Abrams, Nicol, Zecker, & Kraus, 2008;
Bourguignon, De Tiege, de Beeck, et al., 2013; Cogan & Poeppel, 2011; Gross et al., 2013; Luo, Liu, & Poeppel,
2010; Luo & Poeppel, 2007; Molinaro, Barraza, & Carreiras, 2013; Peelle, Gross, & Davis, 2013) suggests that theta
entrainment is more than a useful neural marker for investigating how the brain processes speech. In particular,

frequency-specific entrainment has been hypothesized to mechanistically facilitate the processing of speech.

Many speech entrainment theories advocate that entrainment is a result of the phase alignment of intrinsic
neuronal oscillations to the speech signal (Ghitza, 2011; Giraud & Poeppel, 2012; Goswami, 2011; Poeppel, 2003).
Oscillations reflect cyclic fluctuations in the excitability of neuronal populations, and high phases of excitation
within each cycle are optimal for processing input from the environment (e.g., Buzsaki & Draguhn, 2004; Schroeder
& Lakatos, 2009; Schroeder, Wilson, Radman, Scharfman, & Lakatos, 2010; Van Rullen & Koch, 2003). The speech
signal itself is quasi-rhythmic, alternating between phases of high and low information content. The envelope of
the speech signal captures these linguistics fluctuations, and had a stable, quasi-periodic rhythm around 4 — 8 Hz,
which makes it well suited for entrainment. Thus, the alignment of the high and low excitatory phase in oscillations
to the high and low information content in the envelope, respectively, is argued to allow information to be
optimally received and gated by the brain (e.g., Henry & Obleser, 2012; Schroeder & Lakatos, 2009). The alignment
itself is argued to be triggered by salient changes, also referred to as edges, in the speech signal. The idea is that
these edges occur at more or less regular intervals, in close temporal proximity, for a sufficient duration which

allows entrainment to build up over time, given favourable input (e.g., Giraud & Poeppel, 2012)

While the oscillations perspective holds merit, we argue that an alternative explanation for the entrainment may
suffice. This proposal draws from investigations of steady-state visual responses. In this field, it has been a long-
standing debate whether or not the steady-state response is a neural response that is qualitatively different from
just a series of transient responses. Over the past decades, various studies have addressed the so-called

superposition hypothesis (e.g., Bohérquez & Ozdamar, 2008; Capilla et al., 2011; Galambos et al., 1981; Hari et al.,

49



CHAPTER 3

1989), which aimed at parsimoniously explaining the observed data in terms of overlapping transient responses.
We advocate the idea that a continuous series of partially overlapping transient auditory responses to salient
speech edges may result in signals that show ‘entrainment’. In this scenario, ongoing oscillations do not play a role;
rather, the estimated entrainment is simply the frequency domain representation of the relationship between the
transient brain responses and the temporal characteristics of salient edges in the speech envelope. Below, we
draw from basic signal processing and linear systems theory to explain our proposal. Subsequently, we present a

set of tests done to evaluate both proposals on the nature of entrainment.
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Fig. 1. Speech waveform (green) with envelope (blue). A spoken sentence (top) and a spoken word lists (below)

from the stimuli used in this study are shown here. A transcription of each speech signal is shown in italic font and
the onset of each word is marked with a black line.

By means of Fourier analysis, the speech signal can be decomposed into sinusoids (sine waves and cosine waves)
of various frequencies, each with its own amplitude modulation over time. These sinusoids embody the acoustic
properties of the various types of information in the speech signal such as phonemes, syllables, phrases, and
intonation. Phonemic information (e.g., fricatives) is predominantly found in the high, broadband frequencies of
the speech signal (Monson, Hunter, Lotto, Story, & Obleser, 2014; Vitela, Monson, & Lotto, 2015), whereas
information regarding syllables and intonation are found the lower frequencies (Peelle & Davis, 2012). These

amplitude modulations are captured in the temporal envelope of the speech signal (Fig. 1).
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The speech envelope contains edges, which are sharp rises in amplitude, and in turn these edges trigger transient,
evoked responses in the auditory cortex. In signal processing terms, in the temporal domain, these edges reflect
impulses that impact the brain. Specifically, in response to the edges, the brain produces fast, transient signals
referred to as impulse response functions. When a series of neural transients occur, this is referred to as an impulse
train. In the case of speech, because it is a quasi-rhythmic signal, the speech edges occur at a quasi-rhythmic rate
i.e. at reasonably regular intervals. These speech edges will thus produce impulse response functions in the
auditory cortex (quantified as evoked potentials or evoked fields). As words are spoken quickly, one after another,
the profile of these impulse responses functions will overlap and mimic a continuous quasi-periodic signal. In other
words, if we consider the brain to be a linear system, the response of the brain can then be predicted in a
straightforward way by means of a convolution of the impulse train with the impulse response function of the

brain.

The average rate at which syllables occur in speech is about 125 — 250 ms, which translates to about 4 — 8 Hz in the
frequency domain. Since syllable-related amplitude modulations are prominent in the speech envelope (Drullman,
Festen, & Plomp, 1994; Ghitza, Giraud, & Poeppel, 2013; Greenberg, Carvey, Hitchcock, & Chang, 2003), and the
onset of syllables form a subset of the edges in the speech envelope, this means that the average duration
between auditory impulse response functions is likely to be driven by the syllable rate, producing a impulse train

with a rhythm around 4 — 8 Hz.

Signals (like those representing speech and brain activity) are recorded in the time domain, but the relationship
between times series in terms of rhythmic components are often quantified in the frequency domain. Indeed,
most studies on entrainment have calculated the cross-correlation between the neural signal and the speech signal
in the frequency domain (using measures like coherence, phase-locking value, and mutual information on band-
limited signals). As they found correlations in the delta, theta, and gamma band, they concluded this to be
evidence for intrinsic, ongoing oscillations giving rising to entrainment. Here, we argue that independent of
oscillations, sequences of transient auditory evoked responses to speech edges that occur close in time will
overlap, and thereby produce a pseudo-periodic signal that highly resemble oscillations. Thus, in fact the
interaction between auditory evoked responses and the temporal sequence of edges in the speech envelope may
be the cause of entrainment. As mentioned above, the concatenation and partial superposition of impulse
response functions produces a signal that may mimic the profile of a true oscillation, and notably may show
frequency-specific consistent phase relationships with the speech envelope signal. Thus, the phenomenon
underlying the observed entrainment (as quantified as frequency-resolved coherence between the speech
envelope and the neural signal) does not necessarily require the presence of intrinsic ongoing oscillatory activity
‘responding’ to the incoming speech signal. In the current study, we performed a series of tests to further
determine whether the intrinsic oscillations hypothesis or the superposition of evoked responses hypothesis holds

more merit.
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In an earlier study (Chapter 2), we observed individual variability in the theta peak frequency of entrainment (as
quantified by coherence) to spoken sentences. Here, we hypothesize that if intrinsic neuronal oscillations are
necessary for the observed entrainment, then the variation in peak frequency should be inherent to the oscillatory
dynamics of the neural system, and visible in different situations as well. Notably, for all participants reported in
chapter 2, we had also obtained resting state measurements; thus, in the current chapter we set out to investigate
the relationship between the peak frequency of intrinsic theta band activity during the resting-state, and the peak
frequency of the entrainment. Studies by Giraud and colleagues (Giraud et al., 2007; Morillon et al., 2010; Morillon,
Liégeois-Chauvel, Arnal, Bénar, & Giraud, 2012) have shown evidence for theta (and gamma) oscillations during
rest. These oscillations were particularly prominent in auditory regions and correlated with resting state fMRI
BOLD measures (Giraud et al., 2007; Morillon et al., 2010). The authors interpreted the results as evidence that
oscillations work as an endogenous system for sampling speech. As such, one goal of the current study was to

provide further evidence for this hypothesis.

On the other hand, if the observed entrainment results from the superposition of auditory evoked responses to
speech edges, we would expect the variability in peak frequency of the entrainment to be related to variability in
the evoked responses. To assess this relationship, we quantified the evoked responses to speech edges, and
subsequently computed their power spectra, and assessed whether peak frequency in these power spectra
covaried with the peak frequency of the entrainment, across individuals. In addition, we created surrogate MEG
data by convolving an estimate of the brain’s impulse response to speech edges with a data-derived temporal
sequence of impulses. Our aim was to establish a high similarity between real MEG data and surrogate data. This
serves as a proof of principle that evoked responses may provide a parsimonious explanation for the observed
entrainment. In sum, this study compared the observed entrainment to speech (measured as coherence between
the brain signals and the speech envelope of spoken sentences) with measures of resting state power, evoked field
power (to spoken sentences), and simulated coherence (between surrogate brain and speech signals) to determine

the necessity of assuming that intrinsic oscillations are a prerequisite for the observed entrainment.

3.3 Methods

A total of 102 native Dutch speakers (51 males), with an age range of 18 to 33 years (mean of 22 years),
participated in the experiment. These participants formed part of the MOUS study (Mother of all Unification
Studies; N = 204), and all participated in an fMRI and a MEG session. Half of these participants completed both
sessions where they read the stimuli, and the other half listened to recordings of the stimuli. The current study
pertains to participants from the MEG session in the auditory modality. All participants were right-handed, had

normal hearing, normal or corrected-to-normal vision, and reported no history of neurological, developmental or
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language deficits. The study was approved by the local ethics committee (CMO — the local “Committee on
Research Involving Human Participants” in the Arnhem-Nijmegen region) and followed the guidelines of the

Helsinki declaration.

The stimuli consisted of 360 sentences and their word list counterparts. The sentences varied between 9 and 15
words in length, of which half contained an embedded clause and half did not. The stimulus material was recorded
by a native female Dutch speaker in a sound-proof recording booth. The speaker read the stimuli in a natural
manner: the sentences were read at a regular pace with an average duration of 4.2 s (min: 2.8 s, max: 6.0 s), and
the word lists were read with a brief pause between words, averaging 7.7 s (min: 5.5 s, max: 11.1 s). Subsequently,

all stimuli were equalized to the same amplitude, and an onset and offset ramp of 10 ms was applied.

Sentence Word list
Bij de opening van de nieuwe sporthal kregen sporthal bij van talrijke opening een de de
de talrijke bezoekers een consumptie kregen consumptie bezoekers nieuwe de

At the opening of the new sports hall received sports hall at from many opening a the the

the many visitors a (free) drink received (free) drink visitors new the

Table 1. Exemplar sentence and word list in Dutch, and literal English translation.

All stimuli were presented using Presentation software Version 16.0, Neurobehavioral Systems, Inc).

Visual stimuli were presented with an LCD projector (with a vertical refresh rate of 60 Hz) situated outside the
MEG, and projected via mirrors onto the center of the screen inside the MEG room, within a visual angle of 4
degrees. During the resting state session and speech session, to reduce eye movements, participants were
instructed to focus on a fixation cross. Specific to the speech session, questions were presented in black mono-
spaced font, on a gray background. The auditory stimuli were presented only in the speech session (sentences and

word lists), binaurally via MEG-compatible tubes.

Resting State session
Each MEG session began with an eyes-open resting state recording for 5 minutes.

Speech session
We divided the sentences into 6 groups of 60 sentences. Using a Latin square design we created 6 sets of stimuli,

each consisting of 2 groups (i.e. 120 sentences). Participants were exposed to one of the 6 sets. Participants
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assigned the same set had sentences presented in a different (randomized) order. In the experiment, the stimuli
were presented in a mini block design, and alternated between a sentence block (containing 5 sentences) and a
word list block (containing 5 word lists), for a total of 24 blocks. The first mini block (sentences or word lists) was
randomized across participants.

At the beginning of each block, the block type was announced for 1500 ms: zinnen (sentences) or woorden (words),
followed by a 2000 ms blank screen. At the beginning of each trial a fixation cross was presented for a jittered
duration between 1200 — 2200 ms. Subsequently, the auditory signal was presented for each trial (sentence or
word list), and the fixation cross remained on the screen until the auditory signal was completed. Within each

block, the inter-trial interval was a blank screen with a jittered duration between 1200 — 2200 ms.

In order to check for compliance, 10% of the trials were randomly followed by a yes/no question about the content
of the previous sentence/word list. Half of the questions on the sentences addressed sentence comprehension (e.g.
Did grandma eat a pancake?). The other half of the sentences, and the questions following the word lists
addressed a content word (e.g. Was a music instrument named?). Participants answered the question by pressing

a button for ‘Yes’/ ‘No’ with their left index and middle fingers, respectively. For both question types, half of the

trials had a yes-response as the correct answer.

Prior to performing the sentence listening task, we adjusted the hearing level for each subject. To ensure a
sufficient cortical auditory response, the minimal auditory threshold was determined, and subsequently all
auditory stimuli were presented at 50 dB above the minimum threshold. For task familiarization purposes

participants completed a practice task (using a separate set of stimuli from the actual task).

MEG data were collected with a 275 axial gradiometer system (CTF). The signals were digitized at a sampling
frequency of 1200 Hz (the cutoff frequency of the analog anti-aliasing low pass filter was 300 Hz). Three coils were
attached to the participant’s head (nasion, left and right ear canals) to determine the position of the head relative
to the MEG-sensors. Throughout the measurement the head position was continuously monitored using custom
software (Stolk et al., 2013). During breaks the participant was allowed to reposition if needed. Participants were
able to maintain a head position within 5 mm of their original position. Three bipolar Ag/AgCl electrode pairs were

used to measure the horizontal and vertical electro-oculogram, and the electro-cardiogram.

All analyses were done with custom written Matlab scripts and FieldTrip (Oostenveld et al., 2011).

The analysis for both the resting state and speech data began with the same processing step of artifact detection.
Physiological artifacts (eye movements and muscle contractions) and superconducting quantum interference

device (SQUID) jumps were identified using a semi-automatic artifact identification procedure
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(http://www.fieldtriptoolbox.org/tutorial/automatic_artifact_rejection), followed by visual inspection. Data
segments that contained artifacts were not subjected to further analysis. After rejection, the average percentage
of data retained was 85% for the resting state data and 80% for the speech session. Data collected in the speech
session was subsequently analyzed in 2 ways: For coherence between the MEG data during the speech session and
the speech envelope, and for the frequency domain representation of the evoked fields in the form of a power

spectrum.

From the speech session, we quantified coherence between oscillations in the frequency domain and the speech
envelope, and the frequency domain representation of the evoked response. All analysis steps for calculating

coherence was performed in an earlier study (see Chapter 2) but repeated here for ease of reading.

The envelope of each speech signal was constructed from the original audio files (sampled at 44 kHz) as the sum of
the Hilbert envelopes of 10 distinct bandpass filtered frequency bands of the original auditory signal (as per Gross
et al. 2013). Subsequently, each envelope signal was downsampled to 1200 Hz, and temporally aligned to the
corresponding MEG data. The MEG signal was initially epoched into the individual sentences, demeaned, and the
power line interference was removed using a band stop filter (finite impulse response window sinc filter) between
49 to 51 Hz. Subsequently, the MEG signal and speech signal were downsampled to 300 Hz, and cut into 2 s long
epochs (with a 50% overlap) which produced a frequency resolution of 0.5 Hz. To facilitate the combination of
MEG topographies across subjects, the data was transformed to a synthetic horizontal and vertical planar gradient
representation using spatial interpolation. Subsequently, sensor level coherence was computed between brain

signals and the speech envelope.

To quantify entrainment of the MEG signal to the speech envelope we calculated coherence. To do this, we first
computed the power spectrum for each signal, and the cross spectrum between the speech signal and brain
signals. To do this, each epoch was tapered (using multiple tapered versions of the epoch) to achieve a spectral
smoothing of +2 Hz. Subsequently each tapered epoch was Fourier-transformed and the cross- and power-spectra

were calculated.

Sav(f) = Falf) % Fu(f)* (1)

F, denotes the Fourier-transform of the signal a (a particular MEG channel or the speech envelope) at frequency f,
while * represents the complex conjugate. The cross spectrum was obtained by multiplying the Fourier-spectrum
of one signal (e.g., from an MEG channel) with the conjugate of the Fourier-spectrum of another signal (e.g.,
speech). When a = b, then the Fourier-spectrum of one signal is multiplied with its own conjugate which produces

the power spectrum. Coherence Coh,, was then calculated as follows:
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In this formula, the power spectrum and cross spectrum reflect the average across trials. Coherence values range
from 0 to 1, with 0 indicating no consistent phase relationship between signals, and 1 indicates a fully consistent

phase difference between signals.

The resting state data was high pass filtered at 0.5 Hz, downsampled to 200 Hz and then cut into 2 s long epochs
(with 50% overlap). Power spectra typically demonstrate a fall-off that is proportional to 1/f, with the exception of
alpha band oscillations (8- 12 Hz), which are prominent during rest. This 1/f characteristic is typically dealt with in
experimental situations by computing a contrast between 2 conditions, or comparing against a baseline. This
allows for peaks in the power spectrum to become more pronounced. As we aimed to detect peaks in the theta
band (4 — 7 Hz) of the resting state power spectra, where no control condition is possible, band-limited features
could be buried within the 1/f noise and be undetected. To solve this, we made use of temporal pre-whitening,
which aims to make the power spectra ‘white’ by flattening the 1/f profile as a function of frequency, which in turn
makes the band-limited peaks stand out. To achieve this, for each epoch, we applied a univariate autoregressive
model (order = 1) to the signal. While the low order model does not fit the data well, it is able to capture the
salient aspect of the temporal structure in signal which is the 1/f profile. Subsequently, the modeled time series is

subtracted from the data and results in the residuals which are used in the subsequent step.

Prior to computing the power spectrum, each epoch was zero-padded to 2 seconds because one sample of data
was lost due to the multivariate autoregressive model applied during pre-whitening. Then, a set of multitapers

(Mitra & Pesaran, 1999) were applied to achieve +1 Hz from 1 to 12 Hz, and the Fourier transform applied.

To obtain the evoked responses the MEG signal was epoched into individual sentences, artifactual segments were
removed, and a band pass filter (finite impulse response window sinc filter) between 1 and 40 Hz was applied.

Then, both the MEG signal and the speech envelope were downsampled to 300 Hz.

To determine the evoked fields that occur in response to the speech edges, we identified the speech edges from
the speech envelope signals, which we quantified as upward going ramps. To do this we computed the temporal
derivative of the speech envelopes, to which we applied boxcar smoothing (with 5 samples) and normalization (Z-

scoring). Subsequently, we applied a peak detection algorithm with a threshold of 1) which produced a set of
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indices that marked the location (time points) of the edges in the speech envelope. Finally, the MEG signals were

epoched according to the identified edges, and averaged in order to produce the evoked fields to the speech edges.

The power spectrum were calculated only from the MEG sensors overlying the temporal lobes (68 sensors) as the
auditory response is usually most prominent in these sensors. A zero-padding of 2 seconds was applied to have all
epochs at the same length in duration, and the linear trend was removed. Then, the Fourier transform was applied

using a Hanning taper for each integer frequency from 0 to 20 Hz.

In a previous study (see Chapter 2) we observed considerable variability across participants for the frequencies at
which peaks occurred. In the current study, we sought to identify whether the variation previously found across
participants would also be present in the power spectrum of oscillations during MEG resting state, or in the power
spectrum of the auditory evoked responses. Evidence for this variation in the former would be support for
oscillations giving rise to entrainment, and evidence for the latter would be support for evoked fields giving rise to

entrainment.

For each participant the same peak detection process was used for the coherence spectrum and the two sets of
power spectra. First, a peak detection algorithm was used to identify, for each channel, the frequency bins that
showed a distinct peak in the spectrum. For the coherence spectrum, the threshold was set at 0.02, while for the
power spectrum of the resting state and evoked fields the threshold was set at 0. This yielded a binary vector (as a
function of frequency), with a 1 indicating a peak, for each channel. Next, these binary vectors were summed
across channels yielding a single vector with a spectrum of peak counts across channels. The assumption here was
the higher the peak count, the more reliable the peak, since it showed up as a peak in a larger number of sensors.
Then, this vector was multiplied to a second vector containing the standardized coherence/power across
frequencies. This accounted for variance in strength of coherence/power. The weighted vector was then smoothed
(boxcar of 2 samples). Finally, a second peak detection on this vector was performed to identify the peak
frequencies across the sensor array. For both the coherence and resting state power spectrum, a threshold was set
to 2, while for the evoked field power spectrum a threshold was set at 0. Comparison of the estimated peak
frequency with visual identification of the peak frequency for 10 subjects determined this peak detection process

to be adequate.

Thresholds used for the first and second round of peak detection of each spectrum were optimized to fit the data.
For the coherence spectrum, the threshold at the first round was set to 0.02, and in the second round to 2. For the
resting state power spectrum, the threshold at the first round was set to 0, and the second round to 2. For the
evoked field power spectrum, the threshold at the first and second rounds were set to 0. For all three analyses,

peak detection was performed between (and including) 4 to 7 Hz, at 0.5 Hz steps, and across all MEG channels.
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To demonstrate that auditory evoked fields may explain the observed entrainment we constructed surrogate data
and performed a coherence analysis, similar to the entrainment analysis of the real data. This was done as follows.
First, we calculated the evoked fields in response to the edges of the spoken word lists, in the same manner as we
did for the spoken sentences (see Evoked Fields section above). Then, these evoked fields were convolved with an
impulse train (a vector containing only zeros and ones, with a ‘1’ defining the occurrence of a speech edge) created
from the estimated distribution of edge intervals from the spoken sentence data, producing surrogate MEG and
speech envelope data. Next, we added pink noise (with a 1/f profile) to the surrogate MEG data, to better mimic
the original MEG data. Finally, we computed coherence between the surrogate MEG and speech envelope data, a

measure we refer to as ‘surrogate coherence’.

We were interested in whether there would be a covariation between the peaks in the coherence spectrum (used
to quantify entrainment of the supposed neuronal oscillations to speech) with the peaks in the power spectrum of
resting state oscillations, in the power spectrum of evoked fields, or the coherence spectrum from the surrogate
data (surrogate coherence). To assess this we performed the Pearson’s correlation across subjects between the
peak frequencies obtained from the coherence spectrum and the peak frequencies obtained from each of the

power spectrum.

3.4 Results

In a previous study (see Chapter 2) we quantified the entrainment of neuronal oscillations to the speech envelope
using the coherence coefficient. We observed phase coupling between oscillations and speech in the theta band
(4 — 7 Hz). At the single subject level, the peak in the theta band is clearly discernible and has a spatial distribution
which is maximal over temporal-parietal sensors, which is characteristic of a response in auditory regions (Fig. 2).
Across all participants (N = 102), we observed a peak frequency in 91 participants, and the peaks varied between 4
— 7 Hz, with 7 Hz being the most common (Fig. 2). In the current study, we hypothesized that if entrainment result
from intrinsic oscillations, then the characteristics should be similar between the coherence coefficient and resting
state power. Alternatively, if entrainment arises from evoked responses, then we expect similar characteristics
between the coherence coefficient and evoked field power. That is, one of these measures (resting state power or
evoked field power) would have a topography and interindividual variability in peak frequency that is similar to

that shown for the coherence coefficient.
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Fig. 2 Topoplots in the theta band (4 - 7 Hz) and spectra for measures of coherence and power for 4 exemplar participants. Spec-
tra are chosen from the average of the top 10 strongest sensors across all sensors above temporal lobes. Coherence is calculat-
ed between oscillations and the speech envelope of spoken sentences. Resting state oscillatory power is calculated from an
eyes-open resting state session of 5 minutes. Evoked fields are auditory evoked fields to the speech edges in spoken sentences.
Surrogate coherence was calculated from the surrogate MEG dataset created by convolving evoked fields to edges in spoken
word lists with an impulse train of the estimate distribution of edges intervals from spoken sentences. Bottom, Histogram of peak
frequencies in the theta band for coherence and power measures.

Resting state power spectrum

We computed the power spectrum for oscillations during MEG resting state. To facilitate the detection of theta
peaks in oscillatory power, we pre-whitened the MEG signal prior to computing the Fourier Transform. Figure 3
shows the effect of the pre-whitening step for a few example participants. As expected, the pre-whitening reduced
the 1/f profile, and resulted in a relatively more prominent peak in the alpha range. Yet, there was no clear
indication that the pre-whitening facilitated the more reliable extraction of a peak in the theta range. Note that
not all participants had a peak in the theta band, as seen in Fig. 3, the theta peak is more prominent in participant
3 than participant 2, while participant 1 does not appear to have one. Across all participants, we extracted a theta
peak in 88 participants, where the frequency varied across participants, with 7 Hz was the most common peak.
Given the differences between resting state power and the coherence coefficient in spatial distribution and

spectral profile, we were unlikely to observe a significant covariance between measures. Indeed, using the
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pearson’s correlation we found no significant relationship between the peak frequencies of the measures (r = -0.02,

p = 0.88) (Fig. 4).
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Fig. 3 Power spectra without and with pre-whitening in 3 exemplary participants. Across participants is a degree of variation,
but in general the pre-whitening step reduced the 1/f characteristic in the power spectra which in turn improved the clarity of the
peak in the theta band (4 - 7 Hz).

Evoked fields power spectrum

We identified the evoked fields associated with the speech (onset) edges in the time domain (Supp. Fig. 1), and
quantified them in the frequency domain by calculating the power spectrum of the evoked fields. As shown in Fig.
2, we observed peaks in the theta band, but also in many of the other nearby frequencies. We found a theta peak
in all 102 participants, and again, the peak frequency varied between 4 to 7 Hz, with 7 Hz being the most common
peak. The spatial distribution of the theta peak was found to vary across participants, some had a maximal
distribution in temporal (and occipital) channels while others had a maximal distribution in central sensors. The
differences between the coherence coefficient and the evoked potential power suggested that there was unlikely
covariation between the peak frequencies of these two measures. Indeed, using a Pearson’s correlation to assess

covariance we found no significant relationship (r = -0.07, p = 0.5) (Fig. 4).
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As another approach to try to demonstrate that evoked responses can give rise to entrainment we calculated a

coherence coefficient from a surrogate MEG dataset created by concatenating the evoked fields to the speech

edges in spoken word lists, referred to as surrogate coherence. As shown in Fig. 2, at the single subject level, the

spatial distribution of surrogate coherence between 4 — 7 Hz was maximal over temporal-parietal sensors,

resembling that of original coherence. Also, the theta peaks in the surrogate coherence spectra are clearly

displayed at the single subject level, and in some participants have a similar spectral profile to the original

coherence spectra (see participant 2 and 4 in Fig. 2). To further assess the relationship between simulated

coherence and original coherence we quantified the covariance in peak frequencies between the two measures

with the Pearson’s correlation. Although we found a positive correlation it was non-significant (r =0.12, p = 0.27)

(Fig. 4).
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Fig. 4 Scatterplots depicting the correlation across individ-
uals of the peak frequencies in the coherence spectra with
the peak frequencies in the resting state power spectra,
evoked potential power spectra, and simulated coherence
spectra. Overlapping data points are presented with a jitter
in order to visualize all data points. Regression line is
depicted as a gray line. The number of data points differ for
each correlation because not all participants had a peak in
each measure: coherence - resting state correlation has N
=78, coherence - evoked potential correlation has N = 91,
coherence - simulated coherence has N = 88. None of the
correlations are significant (p < 0.025).
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3.5 Discussion

The entrainment of intrinsic neuronal oscillations to speech is popularly considered as a means for the brain to
track and parse spoken language (Ghitza, 2011; Giraud & Poeppel, 2012; Giraud et al., 2007; Goswami, 2011;
Morillon & Schroeder, 2015; Poeppel, 2003). Many theories advocate that the phase-resetting of oscillations to the
quasi-periodic edges in speech aligns oscillations to that of speech. As oscillations reflect the temporal fluctuation
of excitability in neuronal populations, oscillatory alignment is argued by these theories to allow the brain to
selectively track and amplify relevant information in speech. In the current study, we sought to provide evidence in
favour of or against the hypothesis that intrinsic neuronal oscillations are a necessary prerequisite for the observed
entrainment. We did so by quantifying the relationship between the original coherence (between brain signals and

the speech envelope) with resting state oscillations and auditory evoked activity, and performing a data simulation.

We hypothesized that if entrainment arises from intrinsic oscillations, then the individual variability in peak
frequency of speech-brain coherence would correlate with the variability in peak frequency power from the resting
state session. We extracted theta peaks from the resting state power spectrum but they did not have a similar
spectral distribution or spectral profile that resembled the coherence peaks, (Fig. 2) nor was there a correlation
between the peak frequencies of the two measures. Thus, we did not have convincing evidence for the hypothesis

that intrinsic oscillations give rise to entrainment.

One reason for a lack of correlation could be because we could not adequately detect theta peaks despite the use
of pre-whitening to decrease the 1/f profile and better extract the theta band activity. Of the 88 participants that
had a theta peak, not all peaks were distinct. In addition, when we performed the peak detection a second time,
using a broader definition of the theta band (4 — 8 Hz, instead of 4 — 7 Hz) we noticed that 40 of the participants
now, instead, had a peak at 8 Hz. This suggests that some theta activity was simply from activity in the alpha band,
which is next to the theta band and has a prominent presence (higher power). The necessity to distinguish theta
from alpha activity is further highlighted in a recent study by Keitel and Gross (2016). They showed that listening to
speech, compared to at rest, leads to an increase in delta and theta oscillatory power, and a disappearance of
alpha activity. As alpha activity is not consistently present in both rest and task, if part of the theta activity in our
study is due to alpha activity, then this could partially explain the lack of correlation. To improve the detection of
theta band activity, it would be worthwhile to consider the joint-decorrelation method from de Cheveigne and
colleages (Cheveigné & Arzounian, 2015; Cheveigné & Parra, 2014). This method is optimized to deal with
situations of non-optimal signal-to-noise ratio by exploiting information on how the data is correlated between
channels in order to suppress noise (activity outside the limited bandwidth of interest), and thereby extracting

band-limited activity.
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At a conceptual level, if intrinsic oscillations are involved in entrainment, temporally inhibiting these oscillations
should reduce entrainment. Several studies have demonstrated the field of cortical stimulation techniques (such as
transcranial magnetic stimulation, transcranial direct current stimulation, and transcranial alternating current
stimulation) to ‘inhibit’, ‘enhance’, or ‘entrain rhythms’ and produce behavioural consequences (Kanai et al., 2008;
Wolfgang Klimesch, Sauseng, & Gerloff, 2003; Marshall, Helgadéttir, Molle, & Born, 2006) but we are still in the
early days of brain stimulation research. The precise nature of the effects of cortical stimulation is not yet well
understood. For instance, we know that cortical stimulation pulses can produce oscillatory-like rhythms in the
brain (e.g., Herring, Thut, Jensen, & Bergmann, 2015; Marshall, Helgadéttir, Mélle, & Born, 2006), and there is
evidence that TMS produce oscillations that have the same neural origin as intrinsic oscillations (Herring et al.,
2015). However, to make use of brain stimulation to inhibit entrainment, we first need to address the following
questions: (i) How and where do the oscillations in entrainment come about (assuming they are oscillations)? (ii)
What is being inhibited (how does inhibition occur neurobiologically) with cortical stimulation and what is its
extent of influence in the brain? (iii) Can we use to (ii) to address (i)? Should we be able to tackle these questions,

then can we can attempt to use brain stimulation to address the role of oscillations in speech entrainment

An alternative explanation for the observed entrainment is the superposition of auditory evoked activity that
occurs in response to edges in the speech envelope. This could be investigated by exploration of the spectra of the
evoked fields. Again, we did not find a correlation between variability in peak frequency of the power spectrum of
the evoked fields with the variability in peak frequency of coherence. As with the resting state power results, theta
activity of the evoked field power did not have a spatial distribution or spectral profile similar to that for coherence.
Furthermore, as in the resting state results, by relaxing the peak detection boundary to 4 to 8 Hz, we found that 35
of the 102 participants now had a peak at 8 Hz, suggesting that a subset of the theta peaks were due to alpha
power leakage. However, the lack of evidence for an interaction between evoked field power and coherence may
not be surprising from a signal processing perspective. The measure of coherence results from the interaction
between the speech envelope and the brain signal, and makes use of phase information whereas the evoked fields
were quantified on their own (not with their interaction to the speech envelope) and makes use of power
information. To better relate the coherence measure, which was quantified as a frequency-domain cross-
correlation between the speech envelope and the brain signal, one approach is to also perform a frequency-
domain cross-correlation between the auditory evoked fields and the speech envelope. The approach used in the
surrogate coherence is of a similar note, where we concatenate the evoked fields into a continuous brain signal

and used it to perform a cross-correlation with the speech signal.

As a proof of principle that evoked fields may provide a parsimonious explanation for the observed entrainment

we calculated surrogate coherence. Here, we temporally concatenated auditory evoked fields to edges in the
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spoken word list, and then convolved it with the inter-edge interval from the spoken sentences to create a
surrogate MEG dataset. In support of the superposition hypothesis, the coherence of this surrogate dataset
produced a similar spatial topography (and in some participants, a similar spectral profile) as the original
coherence measure. Albeit non-significant, we also found a positive correlation between simulated coherence and
original coherence. This finding suggests that the observation of entrainment does not need to assume the

presence of intrinsic oscillations.

Based on our simulated findings, we consider the possibility of how having superimposed evoked responses
underlying entrainment influences current theories on entrainment. The first issue is that these theories consider
speech edges as an important factor that drives entrainment. For instance, in their model, Giraud & Poeppel (2012)
proposed that speech edges cause oscillations to phase-reset and thereby align to the speech envelope for
accurate parsing. In support of this Doelling, Arnal, Ghitza, & Poeppel (2014) demonstrated that the removal of
speech edges at the syllabic rate reduced entrainment in the delta — theta bands, while the artificial reinsertion of
edges restored entrainment. Crucially, our advocacy for the superposition of evoked responses maintains the
importance of speech edges. But instead of eliciting phase-reset, we argue that these speech edges elicit evoked
responses. With speech edges occurring at a reasonable pace and at a close temporal distance, this leads to a
sequences of transient auditory evoked responses which overlap in time, producing a pseudo-periodic signal that
highly resemble oscillations. As such, when quantifying the brain signal in relationship to the speech signal in the

frequency domain, this produces a clear measure of entrainment.

A second issue is that of speech intelligibility. Several studies have found that entrainment has been associated
with speech intelligibility in several studies (Ahissar et al., 2001; Drullman et al., 1994; Ghitza, 2011; Nourski et al.,
2009; Peelle & Davis, 2012; Peelle et al., 2013) but there is an ongoing debate as to whether a decrease in phase-
locking leads to acoustic cues leads to lower intelligibility, or whether less intelligible (i.e. a decrease in linguistic
cues) leads to lower intelligibility. Recently, there has been more evidence that acoustic cues drive entrainment.
Howard & Poeppel (2010) showed that phase-information from reversed speech was just as accurate at speech
discrimination as was the phase-information from regular sentences. Furthermore, it has been shown that both
intelligible speech and unintelligible speech (reversed speech, noise-vocoded speech) can elicit entrainment
(Ahissar et al., 2001; Howard & Poeppel, 2010; H. Luo & Poeppel, 2007; Millman, Johnson, & Prendergast, 2015;
Park et al., 2015; Peelle et al., 2013). Although one could argue that intelligible speech might elicit stronger
entrainment than unintelligible speech, that has been found in some studies (Doelling et al., 2014; H. Luo &
Poeppel, 2007; Park et al., 2015; Peelle et al., 2013) but not others (Howard & Poeppel, 2010; Millman et al., 2015;
Zoefel & VanRullen, 2016). In support of the acoustic cues hypothesis, our surrogate coherence results lend
further support to the idea that entrainment is driven by acoustic cues — edges in the speech envelope —in the

absence of linguistic information such as meaningful syntactic or semantic structure.
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3.6 Conclusion

The comprehension of spoken language requires rapid processing of the auditory signal. In the current study we
focused on the robust phenomenon of entrainment whereby neural activity is able to adapt to the rhythm of
speech to facilitate speech perception. Here, we investigated whether the entrainment requires intrinsic
oscillations, as proposed by many models, or whether a superposition of evoked responses is sufficient to observe
entrainment. Although unable to provide empirical evidence, using a simulated MEG dataset, we demonstrated
that evoked responses to edges in the speech signal are a plausible candidate for giving rise to entrainment.
Further investigation on how evoked responses interact with the speech signal will be important for understanding

spoken language processing.
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CHAPTER 4

4.1 Abstract

We used magnetoencephalography (MEG) to explore the spatio-temporal dynamics of neuronal oscillations
associated with sentence processing, in 102 participants. We quantified changes in oscillatory power as the
sentence unfolded, and in response to individual words in the sentence. For words early in a sentence compared
to those late in the same sentence, we observed differences in left temporal and frontal areas, and bilateral frontal
and right parietal regions for the theta, alpha, and beta frequency bands. The neural response to words in a
sentence differed from the response to words in scrambled sentences in left-lateralized theta, alpha, beta, and
gamma. The theta band effects suggest that a sentential context facilitates lexical retrieval, and that this
facilitation is stronger for words late in the sentence. Effects in the alpha and beta band may reflect the unification
of semantic and syntactic information, and are suggestive of easier unification late in a sentence. The gamma
oscillations are indicative of predicting the upcoming word during sentence processing. In conclusion, changes in
oscillatory neuronal activity capture aspects of sentence processing. Our results support earlier claims that
language (sentence) processing recruits areas distributed across both hemispheres, and extends beyond the

classical language regions.
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4.2 Introduction

How are you reading this sentence? Conceptually, the reader needs to retrieve and understand the meaning of
individual lexical items (words), and combine these items to derive an interpretation spanning its entirety. The
latter process is referred to as unification (Hagoort, 2003, 2005, 2013). At the neural level, the fast and incremental
nature of sentence processing likely involves multiple brain regions. Yet, we know little about how the brain
orchestrates sentence processing because the majority of neuroimaging studies on language processing have
focused on the single word level. Of the studies that focused on sentence processing, most used syntactic or
semantic anomalies as an experimental manipulation. Considering daily language exposure, this questions the
ecologically validity of such stimuli. Moreover, although the experimental designs were well controlled, these
studies related neural responses only to specific critical events within a sentence. Consequently, the processing of
each word in a sentence, and how it is affected by an incremental context, has not been studied in detail. In the
current study, we address these two aspects of sentence processing using natural sentences. We focused on the
modulation of neuronal oscillations in response to individual words in the context of a sentence, and examined

how this modulation changed as the sentence unfolded.

Oscillatory neural activity

When studying electrophysiological signals, spectral analysis techniques are aimed at quantifying frequency

specific neural activity. These techniques were initially used to study rhythmic activity during visual processing, or
low-level motor behavior, and then gained popularity in the 2000s to study higher order cognition, such as
language (Hari & Salmelin, 2012). Beyond capturing the transient response to external events, estimates of
frequency specific activity reflect oscillatory neural activity that is not necessarily time- or phase-locked to an event,
as opposed to event-related averages. Thus it may provide a different but complimentary perspective on how the
brain orchestrates language (including sentence) processing. Furthermore, this technique allows us to investigate

the relationship between aspects of sentence processing and the spatio-temporal dynamics of oscillatory activity.

The power of oscillatory activity has been observed to be modulated in many cognitive tasks. These modulations
are typically described as relative decreases (event-related desynchronization, ERD; Pfurtscheller & Aranibar, 1977)
or relative increases (event-related sychronization, ERS; Pfurtscheller, 1992). Depending on the frequency band,
such power changes may indicate either activation or deactivation of a brain region. An ERD in the gamma band
(>40 Hz) reflects a reduction in processing in underlying cortical regions, but would reflect increased processing
when observed in the alpha (8-12 Hz) or beta (13—30 Hz) bands (Jensen & Mazaheri, 2010; W Klimesch et al., 1997;
Osipova et al., 2006). For the theta frequencies, however, it is equivocal as to whether an ERD reflects activation or
deactivation. Oscillatory neural activity can be productively studied using MEG. This method has good spatial
resolution and excellent temporal resolution (in the order of milliseconds), which enables it to capture rapid (tens

of milliseconds) changes associated with cognitive processes in the brain.
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Both ERS and ERD have been observed in studies concerned with sentence processing, but most studies analyzed
the data on the sensor-level which provided poor spatial localization of the effects, and most of them focused on a
single word (that produced a grammatical violation) in the sentence (e.g., Bastiaansen, Magyari, & Hagoort, 2009;
Davidson & Indefrey, 2007). Across these studies, different frequency bands have been associated with different
functional explanations. The theta and alpha bands, for example, have been associated with the lexical-semantic
retrieval of words (Bastiaansen, van der Linden, Ter Keurs, Dijkstra, & Hagoort, 2005; Klimesch et al., 1997). Beta
and gamma band ERS has been suggested to reflect unification of the semantic and syntactic information in
sentences, respectively (Bastiaansen & Hagoort, 2015; Bastiaansen, Magyari, & Hagoort, 2009; Hald, Bastiaansen,
& Hagoort, 2006). The alpha and beta bands have also been demonstrated to be involved in syntactic processing
(Bastiaansen et al., 2010; Davidson & Indefrey, 2007; Kielar et al., 2015). Overall, these results, whilst suggestive,
highlight the need for further study of oscillations in sentence processing, specifically to study multiple frequency

bands in one dataset, and to understand their relation to each other.

In sentence processing, words are retrieved from memory and combined into an interpretation of the larger
phrase, regulated by semantic and grammatical constraints (Hagoort, 2013). A recent fMRI meta-analysis revealed
consistent involvement of the left inferior frontal gyrus (BA 45 and BA 47), left middle temporal gyrus (MTG), and
left superior temporal gyrus in sentence processing (Hagoort & Indefrey, 2014). The Memory, Unification, and
Control (MUC) model of sentence processing also focuses on these areas (Hagoort, 2003, 2005, 2013). It proposes
that the left temporal cortex and angular gyrus are implicated in word retrieval from memory, while unification
(maintenance and integration of words) involves the left inferior frontal cortex. Furthermore, as the sentence
unfolds, a predictive context results from the interaction between these areas, and this context facilitates the
processing of upcoming words. Previous oscillatory studies on sentence processing have, to our knowledge, been
restricted to the sensor level. It is therefore unclear whether oscillations localize to similar brain regions as found
in event-related M/EEG and fMRI studies. The current study, presenting a thorough source-level analysis of

oscillatory activity during sentence processing, addresses this shortcoming.

In the present study we investigated oscillatory power changes during sentence processing. We obtained MEG
data while participants read sentences. As a control condition, participants also read lists of words (created by
scrambling sentences). Our study focused on exploring which neural areas, at which frequencies are involved in
sentence processing. We analyzed the spatio-temporal dynamics of the oscillatory activity by using a beamformer
in the frequency domain. This allowed us to better quantify the spatial aspects of the effects, and to improve on

the previous studies that could only report results at the sensor-level.

To obtain a complete picture of oscillations at various frequencies, we investigated five frequency bands: theta,

alpha, beta, low gamma, and high gamma. We chose to divide the gamma band because previous studies have
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shown a distinction between low gamma (around 30 to 60 Hz) and high gamma (above 80 Hz); the precise
frequencies for low and high gamma differ between cortical regions and the cognitive task (Crone, Miglioretti,
Gordon, & Lesser, 1998; Dalal et al., 2008; Hauck, Lorenz, & Engel, 2007). Furthermore, previous sentence
processing studies have only shown effects at around 40—60 Hz, and we were interested in whether effects in
higher frequencies were also present. In the current study, we investigated two aspects of sentence processing:
The word analysis sought to reveal how single words are integrated into a representation of the entire sentence,

and the context analysis assessed the effect of the incremental context on single word processing.

In order to investigate the oscillatory response to single words within the context of a sentence, we analyzed the
responses to each of the single words in a sentence and contrasted them to single words in a random order (word
list). Sentences have a structured and meaningful context — semantic and syntactic information that goes beyond
the level of the individual words. Word lists on the other hand have no structure and only a weak overarching
semantic context (because each word list was created by scrambling a sentence). We hypothesized the sentence
context to have a facilitatory effect, since the syntactic and semantic information in preceding words constrain the
possibilities of the upcoming word both syntactically and semantically. The effect of the context may be observed
in memory retrieval, unification, and prediction (Hagoort & Poeppel, 2013). The sentence context should make
memory retrieval easier for sentences than word lists, and because previous studies associated theta power with
memory retrieval (Bastiaansen et al., 2005; Hagoort, 2013), we expected differences between the conditions in
this frequency band. Since the prediction of the upcoming word within a context has been associated with gamma
ERS (Wang, Zhu, & Bastiaansen, 2012), we expected to observe this pattern for sentences but not word lists.
Finally, the alpha, beta and gamma bands have been implicated in unification (e.g., Bastiaansen & Hagoort, 2015;
Bastiaansen et al., 2009; Hald et al., 2006); therefore, we expected differences between sentences and word lists

in one or more of these frequencies.

To analyze how the unfolding sentence context affects oscillatory activity over time we quantified the modulation
of the oscillatory response between words at early and late positions in a sentence. This provides a view of the
long term changes in power as the sentence progresses. As the sentence unfolds, memory should become taxed
because more words need to be retained for unification. As ERS in the theta band has been associated with
memory maintenance, we expected an increase in theta power for words in late versus early positions in the
sentence. An incremental context can also impose more constraints on how words are being combined, which
could facilitate unification as the sentence unfolds. Changes in power across a sentence but not a word list have
previously been associated with the beta and gamma bands (Bastiaansen et al., 2010; Hald et al., 2006). Effects in
these frequency bands are suggested to reflect unification. Therefore, we hypothesized that a change in beta

and/or gamma oscillations would also be observed as the sentence unfolded.
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4.3 Methods

A total of 102 native Dutch speakers (51 males), with an age range of 18 to 33 years (mean of 22 years),
participated in the experiment. These participants formed part of a larger study — MOUS (Mother of all Unification
Studies; N = 204), where all participants took part in an fMRI and a MEG session. Half of these participants
completed both sessions where they read the stimuli, and the other half listened to recordings of the stimuli. The
current paper pertains to participants from the MEG session in the visual modality. All participants were right-
handed, had normal or corrected-to-normal vision, and reported no history of neurological, developmental or
language deficits. The study was approved by the local ethics committee (CMO — the local “Committee on
Research Involving Human Participants” in the Arnhem-Nijmegen region) and followed the guidelines of the

Helsinki declaration. Participants received monetary compensation for the participation.

The stimuli consisted of 180 sentences and their word list counterparts (see Table 1 for an example). All sentences

varied between 9 and 15 words in length.

Sentence Word list
Bij de opening van de nieuwe sporthal kregen sporthal bij van talrijke opening een de de
de talrijke bezoekers een consumptie kregen consumptie bezoekers nieuwe de

At the opening of the new sports hall received sports hall at from many opening a the the

the many visitors a (free) drink received (free) drink visitors new the

Table 1. Exemplar sentence and word list in Dutch, and literal English translation.

The word lists were created from the sentences by scrambling the words so that no more than two consecutive
words formed a coherent fragment. The same words in both conditions limited the difference between conditions
to sentential semantics and syntax as opposed to lexical differences in orthography, phonology, and word meaning.
Each participant saw each stimulus in either the sentence or the word list condition, but not in both. Across

participants, each stimulus was presented the same number of times in the sentence and in the word list condition.

All stimuli were presented with an LCD projector (with a vertical refresh rate of 60 Hz) situated outside the MEG

measurement room, and projected via mirrors onto the screen inside the MEG room. All stimuli were presented at
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the center of the screen within a visual angle of 4 degrees, in a black mono-spaced font, on a gray background

using Presentation software (Version 16.0, Neurobehavioral Systems, Inc).

The stimuli were divided into three subsets, such that each participant saw 2/3 of the stimulus set in the MEG
session (120 trials of each condition); and 1/3 in the fMRI session that will not be further discussed in this paper.
Participants presented with the same subset saw the stimuli in a different (randomized) order. In the experiment,
the stimuli were presented in a mini block design, and alternated between a sentence block (containing 5
sentences) and a word list block (containing 5 word lists), for a total of 24 blocks. The first mini block (sentences or
word lists) was randomized across participants. In addition, for sentences, the first word began with a capital letter

and the last word ended with a full stop.

At the beginning of each block, the block type was announced for 1500 ms: zinnen (sentences) or woorden (words),
followed by a 2000 ms blank screen. At the beginning of each trial a fixation cross was presented for a jittered
duration between 1200 and 2200 ms. Then, the words for each trial (sentence or word list) were presented one at
a time. Each word was separated by a blank screen for 300 ms.

The presentation time of each word was varied in order to allow for a ‘naturalistic’ reading experience, and to
avoid a strict entrainment of ongoing activity to fixed interstimulus intervals. For any given sentence (or word list)
the variable duration of a single word was a function of the following quantities: (i) the total duration of the audio-
version of the sentence/word list (audiodur), (ii) the number of words in the sentence (nwords), (iii) the number of
letters per word (nletters), and (iv) the total number of letters in the sentence (sumnletters). Specifically, the
duration (in ms) of a single word was defined as: (nletters/sumnletters)*(audiodur+2000-150*nwords). The
minimum duration of short words was set to 300 ms irrespective of the relative weighting described by the
formula. In practice, however, the exact presentation times of the words slightly deviated from those obtained
from the above formula. This was due to the fact that the presentation timing was dictated by the refresh rate of
the projector (60 Hz). As a consequence, the actual presentation time was lengthened by a duration between 0
and 33 ms. The median duration of a single word on the screen was 434 ms (range 300-1344 ms). Taking into
account the 300 ms gap between the words, the median duration of a whole sentence/word list was 8.3 s (range
6.2-12 s). Within each block, the inter-trial interval was a blank screen with a jittered duration between 1200-2200

ms.

In order to check for compliance, 10% of the trials (n = 12) were randomly followed by a yes/no question about the
content of the previous sentence/word list. Half of the questions on the sentences addressed sentence
comprehension (e.g. Did grandma eat a pancake?). The other half of the sentences, and the questions following
the word lists addressed a content word (e.g. Was a music instrument mentioned?). Participants answered the
question by pressing a button for ‘Yes’/ ‘No’ with their left index and middle fingers, respectively. For both

question types, half of the trials required a yes-response. The experiment began with participants reading written
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instructions for the task. The experimenter clarified any questions from the participant. Then, for familiarization
purposes, participants completed a practice task (using a separate set of stimuli from the actual task).

Subsequently they performed the actual task as described above.

MEG data were collected with a 275 axial gradiometer system (CTF) at the Donders Centre for Cognitive
Neuroimaging in Nijmegen, The Netherlands. The signals were digitized at a sampling frequency of 1200 Hz (the
cutoff frequency of the analog anti-aliasing low pass filter was 300 Hz). Three coils were attached to the
participant’s head (nasion, left and right ear canals) to determine the position of the head relative to the MEG-
sensors. Throughout the measurement the head position was continuously monitored using custom software
(Stolk et al., 2013). During breaks the participant was allowed to reposition to the original position if needed.
Participants were able to maintain a head position within 5 mm of their original position. Three bipolar Ag/AgCl

electrode pairs were used to measure the horizontal and vertical electro-oculogram, and the electro-cardiogram.

All analyses were done with custom written Matlab scripts and FieldTrip, an open source toolbox for EEG and MEG

data analyses (Oostenveld et al., 2011).

Electrocardiogram artifacts were estimated using denoising source separation (DSS, Sarela & Valpola, 2005),
identified based on their topography and subtracted from the data. Physiological artifacts (eye movements and
muscle contractions) and jump artifacts in the SQUIDs (superconducting quantum interference device) were
identified using a semi-automatic artifact identification procedure
(http://www.fieldtriptoolbox.org/tutorial/automatic_artifact_rejection), followed by visual inspection. Data
segments that contained artifacts were excluded from further analysis. Next the power line interference at 50 Hz
and its harmonics at 100 and 150 Hz were estimated and subtracted from the data (for details see Schoffelen,

Oostenveld, & Fries, 2005). Finally, the data were downsampled to a sampling frequency of 300 Hz.

We used a frequency domain beamformer (DICS; Gross et al., 2001) to reconstruct the sources of the oscillatory
responses. First, for each time window and frequency band the sensor-level cross-spectral density matrix was
computed across all conditions. The frequency bands were selected based on earlier studies. For the low
frequencies, they were centered at the following frequencies (with effective spectral bandwidth in brackets): 5 Hz
(3.75-6.25 Hz) for theta, 10 Hz (8.75—-11.25 Hz) for alpha, and 16 Hz (14-18 Hz) for beta. Here, each discrete
frequency designates the centre frequency of a band-limited frequency bin, and this centre frequency
encompasses the average signal power across the frequency range in that bin, referred to as the effective

bandwidth. This bandwidth is dictated by the combination of the chosen window length and tapering scheme. The
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theta and alpha band were analyzed in 50 ms time steps from -100-500 ms (around word onset at Oms) using a
sliding time window of 400 ms in combination with a Hanning taper, which produced an effective bandwidth of 2.5
Hz (which is 1.25 Hz around the defined centre frequencies). Beta was also analyzed in 50 ms time steps from -
150-500 ms, but with a 250 ms time window in combination with a Hanning taper, which produced an effective
bandwidth of 4 Hz. The higher frequencies, were a priori defined as 36 — 76 Hz (low gamma), and 76 — 108 Hz (high
gamma), and thus encompassed spectral estimates across multiple frequency bins. We analyzed them at 50 ms
time steps, at 4 Hz steps, between -150-500 ms. Here we used a 250 ms time window in combination with

multitapers (Mitra & Pesaran, 1999), which achieved an effective bandwidth of 16 Hz.

The sensor-level cross-spectral density matrix was then used in combination with the forward solution to compute
a set of spatial filters to obtain an estimate of the activity for dipoles placed on a volumetric grid with ~8 mm
spacing (see below). The spatial filters assumed a fixed orientation of the underlying dipoles, defined by means of a
singular value decomposition of the dipole cross-spectral density, taking the orientation along the first singular
vector to explain the maximum amount of variance. The activity (power) was estimated for each condition of

interest.

For source reconstruction purposes, we coregistered the anatomical MRI to the MEG-sensors. This was achieved
by manual alignment of two reconstructions of the head surface. A digitized head shape was obtained with a
Polhemus device (a 3D digitizer from Fastrak, Polhemus Inc. Colchester, VA, USA). This consisted of approximately
500 points across the scalp and was used to reference the location of MEG sensors relative to the head (and the
fiducials). The second head shape was created from the participant’s T1-weighted anatomical MRI image.
Subsequently, the aligned anatomical image was used to create (i) a volume conduction model based on a single
shell description (Nolte, 2003) of the inner surface of the skull, using the segmentation function in SPMS, (ii) a set
of spatial normalization parameters to bring each participant’s brain into a normalized volumetric space, using
SPMS, and (iii) a description of the cortical surface, using Freesurfer 5.1 (Dale et al., 1999). The spatial
normalization parameters were used to create individual volumetric grids which in turn were used for a
beamformer source reconstruction of the oscillatory responses. A template volumetric grid with a resolution of 8

mm was warped into individual brain space, using the inverse of the normalization parameters.

The frequency bands selected for source analysis were also used for statistical inference. For each frequency band,
statistical inference was done for a selected set of time windows (indicated below in each analysis) using a non-
parametric permutation test together with a clustering method (Maris & Oostenveld, 2007), to correct for multiple

comparisons.
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For the observed data, a dependent samples t-statistic for the difference between the conditions was computed
for each sample (space-frequency-time point). For each of the lower frequencies, this yielded a single 3-
dimensional volumetric map of t-values for each of the time windows tested. For the gamma range this yielded 4-
dimensional volumetric maps of t-values (three spatial dimensions + frequency). Samples that exceeded the
uncorrected significance level of 1% were clustered according to adjacency (in the spatial domain for theta, alpha,
and beta, and in the spatial and frequency domain for the gamma band). For each cluster, the cluster-level t-
statistic was calculated by summing the t-statistics across the individual elements. Next, to test the observed t-
statistic, a reference distribution was computed. This distribution was created by permuting (randomly exchanging)
data between the conditions, and then calculating the maximal positive and negative cluster-level t-statistic for
each permuted data set. Finally, the observed t-statistic was tested against the reference distribution. The
observed t-statistic was considered significant if it was located beyond the determined threshold, on the negative
or positive end of the reference distribution. The statistical threshold is specified in the section of each analysis

below (2.7.1, and 2.7.2).

To address the multiple tests performed across 3 time windows and 5 frequency bands we applied a conservative
Bonferroni correction to the critical threshold to infer statistical significance from the p-values. The details on this
correction are provided below in each analysis section. For visualization, the thresholded volumetric images were
interpolated onto the cortical sheet extracted from the MNI template brain, exported as a cifti-file and displayed

using the workbench software package (Marcus et al., 2011).

To compare the condition specific (sentences or word lists) response to individual words, for each condition, we
first subtracted the estimated power in the period preceding word onset (baseline) from the power following word
onset. Changes in oscillatory activity in response to a single word require time to develop, and probably more than
100 ms to become apparent. Therefore, the choice of a pre-word baseline allowed us to study word-induced
changes in frequency specific activity, above and beyond the ongoing nature of oscillations. Furthermore, it
mitigated the possible effect of a block design producing different pre-window activity for each condition. For the
alpha and theta bands, we used a baseline estimate centered at -100 ms. For the beta and gamma bands, the
baseline estimate was an average of two time windows centered at -150 and -100 ms. As a consequence, the
estimated power at these time windows included a short duration of data following word onset (up to 100 ms for
the theta band, and up to 25 ms for all other frequencies). We did not use an earlier time window e.g., -200 ms,
because this would potentially include transient oscillatory activity from the previous word. To study the neural
response to each word we chose three time windows following word onset: centered at 250, 350 and 450 ms,
referred to as the first, second, and third time window, respectively. We excluded the initial 250 ms because
previous studies have suggested that this is the time window of visual processes (Dehaene, Le Clec’H, Poline, Le

Bihan, & Cohen, 2002; Tarkiainen, Helenius, Hansen, Cornelissen, & Salmelin, 1999) while the majority of higher
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order processes, which are the main focus of our interest, such as lexical and context effects, occur later in time
(e.g.,Vartiainen, Parviainen, & Salmelin, 2009). As visual inspection of the oscillatory power time courses (Fig. 1)
revealed variations in differences between conditions across time windows, we chose to statistically test the data

for each time separately.

To address how words are processed in a sentence, we compared words embedded in a sentence to words
embedded in a word list. For each participant, we analyzed the averaged single-word response (power) for each
condition. The number of epochs available for averaging was different across conditions, due to artifact rejection.
To avoid effects due to differences in signal to noise ratio, we equalized the number of epochs across conditions
for each participant. For each of the 3 time windows and 5 frequency bands we performed a separate test. In our
tests we applied a conservative Bonferroni correction, and used a corrected critical p-value of 0.0017 (0.025/15,

for a two-sided test).

In this analysis, we were interested in the change in neural activity as the sentence unfolded. To do this, we
quantified the difference in the neural response to late versus early words in a sentence, and in a word list. We
accounted for non-specific variability in overall power values across participants by subtracting a condition
averaged estimate of the power preceding word onset from each of the condition-specific power following word
onset, for each participant. Note that the subtraction of the same ‘baseline’ will yield the same average difference
across participants, in comparison to contrasting the raw power values. As in the word analysis, for the context

analysis we chose the same time windows following word onset (centered at 250, 350 and 450 ms) for analysis.

The statistical analysis here addressed the effect of an incremental context on word processing. We assessed the
neural activity during word processing as a function of word position across a sentence. We extracted the early
words (2,3, and 4™ word position) and the late words (n-2", n-3", and n-4" word position; where n is the total
number of words in a sentence/word list) in both sentences and word lists, resulting in four conditions (sentence-
early, SE; sentence-late, SL; word list-early, WE; and word list-late, WL). To control for lexical frequency we used a
stratification approach. First, the lexical frequency value for each word was determined, using the SUBTLEX-NL
database of Dutch word frequencies (Keuleers, Brysbaert, & New, 2010), and log transformed. Then, for each
condition, a histogram of log transformed lexical frequencies was created, using 10 bins. For each of the bins we
determined the minimum number of contributing trials across conditions. Subsequently, trials were randomly
removed from each bin of each condition to meet the minimum which produced the same number of trials per bin
per condition. This yielded about 200 trials per condition. Subsequently, we calculated an average power for each

condition.

To test for significance, we first determined whether there was an interaction between word position (late vs.

early) and sentence type (sentence vs. word lists): ([SL-SE] — [WL-WE]), at each of the five frequency bands. To
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correct for doing multiple tests, we applied a Bonferroni corrected threshold of p < 0.005. For frequencies showing
a significant interaction, we performed a second statistical test for each condition: SL-SE and WL-WE, to determine
an effect of late vs. early context within each condition. Here, we visually inspected the power time courses, and
found a consistent power difference between conditions over time (Fig. 2). Therefore, we chose to perform one
test for each frequency, across all time windows. In addition, to determine whether the late vs. early context
effect was specific to sentences, we performed post-hoc tests comparing SL - WL and SE — WE. Here, we selected
an individual grid point for each region that showed the most prominent, significant difference for the SL — SE
contrast. We selected grid points from (i) spatially distinct regions, and (ii) regions involved in language processing.
In the case where similar regions were activated in both hemispheres, as indicated by visual inspection of
homologous grid points, we chose the grid point from the hemisphere that showed a stronger effect. All grid

points are indicated with black circles in Fig. 2.

4.4 Results

The mean percentage of correct answers for questions that followed a sentence or word list was 81.1% (SD = 6.7%).
Performance was significantly higher for sentence questions on a main content word (M = 84.2%, SD = 11.6%) than
for a word list question (M = 78.4%, SD = 9.6%; t10: = 5.75, p < 0.001). Potentially, the difference in performance
was because sentences are easier to process than word lists. Nevertheless, with all participants performing well
above chance in both cases, they were attentive and processed the language materials. Note that there was no
difference between the sentence comprehension questions (M = 83%, SD = 11.7%) and the sentence content word

questions (tp;=-1.2, p =0.4).

In the word analysis we compared whether individual words in a meaningful and structured context were
processed differently from words in a word list. We observed significant differences between sentences (S) and
word lists (W) in the theta, alpha, beta, and gamma frequency bands in multiple brain regions, as show in Fig. 1.
The oscillatory power time courses (as a relative percent change to a baseline averaged over conditions; see Fig. 1)
suggests that for most frequencies the effect was driven by a difference in magnitude and not shape of the time
course, with the exception of left temporal theta. In general, differences between conditions resulted in an ERD for
frequencies below 40 Hz (except for left temporal theta), and an ERS for frequencies above 40 Hz. Here, we focus
on the statistically significant results, and will refer to the first (250 ms), second (350 ms), and third (450 ms) time
windows, relative to word onset. For an in depth description and visual depiction of the spatio-temporal evolution

of frequency specific power, the interested reader is directed to supplementary material 1.
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Significant differences were found in the bilateral occipital cortex, and left posterior temporal regions in all three
time windows (S < W; p = 0.0005, corrected for multiple comparisons). The left temporal region in the first time

window was also significant but only when uncorrected for multiple comparisons, (p = 0.005, S > W; Fig. 1).

Significant differences were found in all three time windows, in bilateral occipito-parietal, left frontal, and left

temporal regions (p = 0.0005, S < W; corrected for multiple comparisons).
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Figure 1 Word analysis results (words in a sentence vs. words in a word list) as brain maps (left panel) and time
courses (right panel). Left Brain maps depict the surface representation of beamformed frequency specific power
differences between conditions in t-values, for theta, alpha, beta and gamma bands. Light/dark blue colors reflect
lower power in sentences than word lists, and yellow/orange colors reflect higher power in sentences than word
lists. Brain maps are selected for different time points at each frequency, to best reflect the observed effects.
Significant results corrected for multiple comparisons across space (grid points) are marked with *, Significant
results after further correction for multiple comparisons across time windows and frequency bands are marked with
** Right Time courses reflect the percentage change in frequency specific power relative to baseline. The base-
line is the averaged baseline between the sentence and word list condition. The blue line is for sentences, and the
red line for word lists. Grey areas around the time course reflect the +/- 1 standard error of the mean. Time
windows shaded in green reflect significance after correction for multiple comparisons across space (equivalent to
*); time windows shaded in yellow are significant after further correction for muitiple comparisons across time
windows and frequency bands (equivalent to **).Time courses were chosen from spatially distinct cortical regions
that are (i) known to be involved in language processing and (ii) shown to have a statistically significant difference
between sentences and word lists. For frequencies in which homologous regions between hemispheres showed a
similar effect, time courses are portrayed for the left hemisphere. This was because visual inspection indicated
similar time courses for homologous grid points, and because the overall effects for this analysis were left hemi-
sphere dominant. Black circles on the brain map indicate the region of the chosen grid points.
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Significant differences were found in all three time windows, in left occipito-parietal cortex, left posterior temporal

areas, and left frontal cortex (p = 0.0005, S < W; corrected for multiple comparisons).

In the gamma band, effects were more left lateralized than in the lower frequency bands. Across time windows we
observed a posterior to anterior activation sweep (Fig. 1). Visual inspection revealed that low and high gamma
showed distinct spatio-temporal dynamics. The statistical test for low gamma (40 - 68 Hz) revealed a significant
difference only in the first time window in left occipital, left parietal, left motor, and left temporal regions (p =
0.001, S > W; corrected for multiple comparisons). In the subsequent time windows, the effect reduce in effect size
(p =0.008, S > W). The statistical test for high gamma (84 — 100 Hz) revealed a significant difference in left frontal

and temporal regions when uncorrected for multiple comparisons (p = 0.02, S > W).

The context analysis focused on how oscillatory activity changes as the sentence unfolds. The accumulation of
words in a sentence, but not a word list, should form a more meaningful and structured context to facilitate the
processing of each subsequent word. Here, we assessed whether there was a change in oscillatory power between
late and early words in a sentence, and compared this to the same contrast in word lists. Early words were the 2™
3'd, and 4th words in a sentence (or word list), and late words were the 4th, 3"’, and 2™ to last words in a sentence
(or word list). The interaction analysis [S(L-E) - W(L-E)] for theta, alpha, and beta was significant (p < 0.0083).
Therefore, for each condition, we compared late versus early words, within each condition (SL-SE, and WL-WE)
across all three time windows. In all three frequency bands, late words were significantly different from early
words (context effect) for sentences, and word lists, but the effects were stronger for sentences than word list (Fig.

2), details for each frequency are reported below (3.3.1 —3.3.3).

As a complementary test to the one above, we contrasted late words in sentences with those in word lists (SL — WL;
late word comparison), and contrasted early words in sentences with those in words lists (SE — WE; early word
comparison). This demonstrated that the difference between late and early words was predominant in sentences,
details reported below for each frequency (Fig. 2). A detailed description and depiction of the evolution of power
over time is available in the supplementary materials (Fig. S1b). Two alternative analyses for the context effects

are presented in the supplementary materials (see sentence progression analysis and adapted context analysis, Fig.

s2).

For sentences, we observed statistically significant context effects in bilateral frontal and right parietal regions (L >
E), as well as, in left anterior temporal regions (L < E; p = 0.005; corrected for multiple comparisons). In word lists,

the context effect was significant in areas similar to the context effect in sentences (p = 0.005; corrected for
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multiple comparisons). However, the spatial extent was limited, the difference in power was smaller, and the
difference remained constant across time. The test for SL-WL and SE-WE were only significant (p < 0.025) for the
late word comparison in grid points in right parietal and right frontal regions. However, in the left anterior

temporal region these effects were significant (p < 0.025) in both the early word and late word comparisons.

For sentences, we observed a significant difference in left temporal and inferior frontal regions (L < E; p = 0.005;
corrected for multiple comparisons), as well as, in bilateral frontal, right parietal and right temporal regions (L > E;
p = 0.005; corrected for multiple comparisons). For word lists, significant differences were observed in the left
temporal and bilateral occipito-parietal regions (L < E; p = 0.005; corrected for multiple comparisons), as well as,
right temporal and right frontal areas (L > E; p = 0.005; corrected for multiple comparisons). These differences
were spatially more focal than those in the sentence condition. The test for SL-WL and SE-WE were only significant
(p < 0.025) for the late word comparison in grid points in left occipital, left temporal, right parietal, and right

frontal regions.

For sentences, we observed a significant difference in bilateral frontal, right parietal and right temporal regions (L >
E; p = 0.005; corrected for multiple comparisons), as well as, in bilateral occipital regions (L < E; p = 0.005;
corrected for multiple comparisons). For word lists, bilateral occipital, parietal, and middle frontal regions were
significant for all time windows (p = 0.005; corrected for multiple comparisons). The test for SL-WL and SE-WE
were only significant (p < 0.025) for the late words comparison in grid points in left occipital, right parietal, and

right frontal regions.
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Fig. 2 A Context analysis (late words vs. early words) results as brain maps (left panel) and time courses (right panel). Left
Brain maps depict the surface representation of beamformed frequency specific power differences between conditions in
t-values for theta, alpha, beta and gamma bands. For each frequency band, the top brain map is the sentence context analy-
sis, and the lower brain map is the word list context analysis. Light/dark blue colors reflect lower power in sentences (late -
early words) than word lists (late - early) , and orange/yellow colors reflect higher power in sentences (late words — early
words) than word lists (late - early). Brain maps reflect a single time point that is representative of the difference between
conditions across all time points (because the difference between conditions does not differ greatly across time). Significant
results corrected for multiple comparisons across space (grid points) are marked with *. Significant results after further cor-
rection for multiple comparisons across time windows and frequency bands are marked with **. Right Time courses reflect
the percentage change in frequency specific power relative to the baseline period of early words, with early words in sentenc-
es in dark blue, and late words in sentences in light blue. Grey areas around the time course reflect +/- 1 standard error of
the mean. Time windows shaded in green reflect significance after correction for multiple comparisons across voxels space
(equivalent to *); time windows shaded in yellow are significant after further correction for multiple comaparisons across time
windows and frequency bands (equivalent to **). Time courses were chosen from spatially distinct cortical regions that are (i)
known to be involved in language processing, (ii) shown to have a statistically significant difference between conditions. For
frequencies in which homologous regions between hemispheres showed a similar effect we chose to portray time courses
from the right hemisphere. This is because visual inspection indicated similar time courses for homologous grid points, and
because the overall effects for this analysis were right hemisphere dominant. Black circles on the brain map indicate the
region of the chosen grid points. B Bar graphs depicting sentence early words vs. word list early words,and sentence late
words vs. word list late words. Error bars reflect +/-1 standard error of the mean.
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4.5 Discussion

In this study we investigated neuronal oscillatory activity during sentence processing with MEG. We used source
reconstruction techniques to quantify the spatio-temporal response in five well-established frequency bands. The
word analysis determined how individual words are processed in a sentence by comparing the oscillatory response
to words embedded in a sentence (i.e. within a syntactically and semantically meaningful context) to that of a
word list (which lacked a structured context). To determine the effect of an incremental context on sentence
processing, the context analysis quantified the changes in the word induced modulations of oscillatory activity at
different stages of the unfolding sentence. Here, we focused on the context effect (late versus early words) in
sentences, and compared it to the context effect in word lists as a control. We evaluated which regions and time-

frequency points showed significantly more or less activity in the sentence than word list context analysis.

The word analysis revealed effects of (a sentence) context on word processing in the theta, alpha, beta, and
gamma bands, predominantly in left hemisphere inferior frontal, temporal and parietal regions. The context
analysis captured effects of the incremental context in left temporal and occipito-temporal regions, and in right-
lateralized frontal and parietal regions in the theta, alpha, and beta bands. We consider the findings from these

two comparisons to be complimentary and will discuss them in light of each other.

Task-related modulations of oscillatory activity can occur in multiple frequency bands that vary in the direction of
the effect (ERS or ERD). This heterogeneity across frequency bands poses challenges to the interpretation of the
findings. Common practice in cognitive studies has been the attribution of a specific functional role to a specific
frequency band within the given experimental context. However, adopting such strict task-related functional
interpretations of particular frequencies might be too ambitious given that different types of rhythmic activity
occur in multiple brain regions, across multiple temporal and spatial scales. Moreover, these rhythms may not be
specific to any task. Here, we propose a set of explanations that account for the various effects by taking into
account the neural areas and frequencies of the observed effects, and previous studies that analyzed oscillations in

the context of language and non-language tasks.

In the theta band, we observed effects in the word and context analyses in left anterior temporal regions.

Stronger theta synchronization was present for sentences compared to word lists in the word analysis. Inspection
of the time course of theta activity suggests that this difference reflects a latency shift, with theta peaking earlier
in sentences (around 350 ms; word lists around 400 ms). We tested this latency shift post-hoc. This latency shift
was significant across subjects (Wilcoxon Signed-rank test, Z=-2.84, p = 0.004). The observation of this theta
synchronization soon after word onset (around 200 ms) for both sentences and word lists could indicate a
common, early process, most likely word retrieval. Since the theta peak is earlier for sentences than word lists, this

suggests a stronger facilitatory context effect on lexical retrieval for sentences compared to word lists.
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In the context analysis, for sentences and word lists, late words compared to early words were associated with a
decrease in theta power in left anterior temporal regions. We speculate that this lower theta activation is the
effect of an incrementally more informative context which increases the facilitatory effect on retrieval as the
sentence (or word list) unfolds. As each word list was created by scrambling a sentence, the words in a word list
also had an associative relation at the lexical level, which could provide an associative context for upcoming words,
and therefore a context facilitatory effect on retrieval. Importantly, because sentences are grammatical and
meaningful, they have stronger constraints and thus a higher predictive value for the upcoming word, which
results in a stronger context facilitatory effect for sentences than word lists. In line with our interpretation, many
previous studies have shown that left anterior temporal regions are associated with conceptual relations between
words at the lexical level (e.g., Mummery et al., 2000; Patterson, Nestor, & Rogers, 2007). Together, these findings
suggest that having a context allows for easier lexical retrieval, and when this context becomes more informative

(more preceding words in a sentence context) less cognitive resources are needed for lexical retrieval.

Our interpretation of theta band effects in left temporal regions as being associated with lexical retrieval is in line
with other oscillatory studies on memory. Memory retrieval (or attempted retrieval) has resulted in theta band
synchronization in response to language stimuli (single words, word in a sentence) and non-language stimuli (e.g.,
shapes and faces) with a widespread sensor-level topography (Bastiaansen, van Berkum, & Hagoort, 2002;

Klimesch et al., 2010; Klimesch, Freunberger, Sauseng, & Gruber, 2008; Mormann et al., 2005; Osipova et al., 2006).
At the source-level, an earlier study on memory retrieval localized effects to medial temporal, prefrontal and visual
areas (Guderian & Diizel, 2005), which is a partial overlap with our findings. The additional areas reported by this
earlier study could be due to the type of information being retrieved, since their study used faces and a

background scene, whereas we used words.

In bilateral frontal and right parietal regions, we also observed theta effects specific to the context analysis: theta
power was significantly higher for late words than early words in sentences. The spatial topography of our results
is similar to the frontal-parietal network associated with cognitive task demands (Chein, Moore, & Conway, 2011;
Fedorenko et al., 2013). Words late in the sentence are likely to increase task demand, since a more extended
context representation has to be maintained in memory. In line with previous studies, an increase in theta
synchronization in frontal and parietal sensors has been observed with an increase in working memory load (e.g.,
Cashdollar et al., 2009; Deiber et al., 2007; Jensen & Tesche, 2002). In addition, active maintenance of item(s)
increases theta synchrony between right frontal and parietal regions (Cashdollar et al., 2009; Deiber et al., 2007).
Support also comes from a language study that found an increase in theta power in right-centro parietal MEG
sensors as a sentence unfolded (Bastiaansen et al., 2010), which was thought to reflect the memory trace of the

unfolding sentence representation.

In bilateral occipito-temporal regions, we observed a theta effect in the word analysis. Theta power was

significantly lower in bilateral occipito-temporal regions for words in a sentence versus words in a word list. The

86



SENTENCE PROCESSING

difference begins around 100 ms, becomes larger and remains stable over time. Potentially, this reflects a
difference in visual word recognition between sentences and word lists. Specifically, the sentence context narrows
down certain aspects of the upcoming word (e.g., word category, semantics) which could modulate the response
in occipital regions to the incoming word. The neural mechanism underlying this modulation may be top-down
influences from higher to lower cortical regions. Studies on visual and motor processing have shown that neural
activity in response to a visual stimulus in occipital cortex can be directly modulated by activity from frontal and
parietal regions (Engel et al., 2001; Silvanto, Muggleton, Lavie, & Walsh, 2009; Taylor, Nobre, & Rushworth, 2007).
In one case, transcranial magnetic stimulation of the posterior parietal cortex led to an increase in primary visual
cortical excitability (Silvanto et al., 2009). We speculate that the larger desynchronization for words in a sentence
compared to words in a word list in occipito-temporal regions reflects facilitation and/or prediction from the
sentence context (activity in higher cortical regions) to specific word forms in occipito-temporal regions (e.g., the

Visual Word Form Area).

We observed a similar spatial topography and time course in the alpha and beta bands — a stronger
desynchronization in left-lateralized temporal, parietal, and frontal areas for words in a sentence context
compared to words embedded in a word list. For both frequency bands, in temporo-parietal regions, the
difference begins around 150 ms, and is strongest around 350 ms, while in left frontal regions, the difference
begins around 150 ms, and becomes stronger over time. The similarity between these two frequency bands is
suggestive of a broadband desynchronization. A decrease in alpha/beta power is typically interpreted to reflect
more (an increase in) activation of the underlying neuronal population, while a power increase reflects less (a
decrease) in activation (Bastiaansen, Oostenveld, Jensen, & Hagoort, 2008; Jensen & Mazaheri, 2010; Klimesch et
al., 1997; Osipova et al., 2006). On this basis, the desynchronization effect indicates stronger neural activation for
sentences than word lists. This effect could reflect unification of the incoming word in sentences (but not in word
lists). The difference between sentences and word lists is in structure and sentence-level meaning (syntax and
semantics), and not orthography, phonology, word meaning, or morphology because the same words were used in
both conditions. Therefore, we are likely observing the unification of semantic and syntactic information.
Importantly, the difference between late and early words in a sentence is not due to a difference in lexical

frequency. We controlled for this using stratification methods.

A recent source-level MEG study observed a desynchronization between 8 and 30 Hz in bilateral occipital and
parietal regions and left posterior temporal regions, following a semantic, or a syntactic violation (Kielar et al.,
2015). In our study, reading a sentence also required processing of semantic and syntactic information, which

could explain the similarity of the spatio-temporal distribution between our studies. The study of Kielar et al. thus

87



CHAPTER 4

supports our interpretation that semantic and syntactic unification involves the alpha and beta bands — by stronger

recruitment of areas relevant for unification as indicated by the ERD in these frequency bands.

As the sentence unfolds the context imposes more constraints on what the upcoming word will be, which in turn

should facilitate unification. Here, we observed two context effects in the alpha and beta band.

First, a decrease in alpha and beta power (an increase in neural activation) for late words compared to early words
in left frontal, temporal, and bilateral occipital regions. We interpret these findings as a context facilitatory effect,
drawing inspiration from the MUC model (Hagoort, 2003, 2005, 2013). The model proposes that the lexical
information of a word is represented in the activation of (predominantly) left temporal regions. The activation
spreads to left frontal regions, which returns input to left temporal and parietal regions, and initiates a second
wave of activation. Continuous cycles of activity sent between these regions build the context of the unfolding
sentence. Applying this theory to our findings, the decrease in alpha and beta power as the sentence unfolds
reflects the build-up of a context in left temporal regions, which spreads to left frontal regions to facilitate
unification, and bilateral occipital regions to boost the activation (i.e. a power decrease) for recognizing certain
words (orthographic properties). Evidence of interaction between context (semantics) and word recognition is

found in several studies (e.g., Kim & Lai, 2012; Yap, Pexman, Wellsby, Hargreaves, & Huff, 2012).

The second effect was in bilateral (but clearly right dominant) frontal and right parietal regions — an alpha and beta
band power increase for late words compared to early words. These right-lateralized effects are absent from the
context analysis for word lists, which suggests that the right-lateralized effects in sentences are due to a change in
context (which is not present in word lists). The word analysis is a high-level linguistic contrast (sentence vs. word
list), and a lack of effect in this contrast in the right frontal and parietal regions further suggests that the
consequence of a differential context between late and early words does not strictly involve linguistic processes,
but might be due to a domain general, cognitive control process. On this basis, we speculate that the right-
lateralized frontal-parietal regions reflect a network of regions that are less involved (hence more power) in

unification late in a sentence when the context has a stronger facilitatory effect on unification.

In support of our interpretation, the spatial topography of our results is similar to the frontal-parietal network
associated with domain general cognitive demands, which is referred to as the cognitive control, executive control,
or multiple demand network (Corbetta & Shulman, 2002; Duncan, 2010; Fedorenko et al., 2013; Niendam et al.,
2012). For example, Fedorenko et al., demonstrated at the single subject- and group-level that this network is
activated when comparing difficult and easy versions of a task, independent of task type (non words vs. sentences,
and simple vs. difficult math, working memory, and interference tasks). Previous studies have often found this
frontal-parietal network to be bilateral (e.g., Duncan, 2010; Fedorenko et al., 2013). However, in certain tasks

attentional processes have been demonstrated to be present in language tasks, in the form of a right-lateralized
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fronto-parietal network (Cristescu, Devlin, & Nobre, 2006; Kristensen, Wang, Petersson, & Hagoort, 2012). On this
basis, we propose that with these effects we tapped into an attentional network that directs more resources to the
early than to the late words in a sentence, since early on in a sentence the context is weaker than towards the end

of a sentence.

In the word analysis, we observed an ERS for sentences compared to word lists at low and high gamma frequencies
(Fig. 1). Low gamma effects were in left occipital, left parietal, left motor and left temporal regions, while high
gamma effects were in left frontal and left temporal regions. Interestingly, we observed low gamma effects to be

earlier and located more posterior than late gamma effects (Fig. 1, right panel).

In a sentence, compared to a word list, the words form a meaningful and structured context which can be used to
predict the next upcoming word. A plausible interpretation for the gamma ERS is that it reflects a correct
prediction, i.e. a match between the predicted and observed word. As a correct prediction is only possible for
semantic and syntactically well-formed sentences, this interpretation can explain the reduced lower gamma ERS,
and the lack of high gamma ERS observed in word lists (Fig. 1, right panel). Our interpretation stems from
Herrmann, Munk, & Engel (2004) who proposed a model that explains gamma responses (ERS) in terms of a match
between bottom-up and top-down information. The sentences used in this study contained neither strong
ambiguities nor grammatical violations, and thus allowed for preceding words to be used to predict the upcoming
words — to narrow down the possibilities of various linguistic aspects of the upcoming word, such as, for instance,
animacy, word category, and tense. Further support for our interpretation comes from a study that explicitly
showed a gamma ERS (40-50 Hz) in left temporal and central sensors that was associated with words that had a
high cloze probability given the preceding context (sentence), but not with words that could grammatically
combine with the preceding sentence context and had a low cloze probability (Wang et al., 2012). Based on the
above interpretation, we would expect an effect in the context analysis for sentences — as the context becomes
stronger for late words, the match between the prediction and actual word has a higher probability of being
correct. A similar effect is also expected based on previous studies that showed an increase in gamma power
across grammatically correct sentences (albeit with EEG; Bastiaansen & Hagoort, 2015; Hald et al., 2006; Rommers,
Dijkstra, & Bastiaansen, 2013). In our study, we did observe a higher gamma power for late than early words in

sentences, but this was also the case in word lists (Fig. 1).

One general concern related to the interpretation of modulations in oscillatory activity is that the reported
differences could reflect differences in the spectral representation of the event-related activity, which may not be
strictly oscillatory in nature. This interpretational limit is particularly acute when the stimulus protocol leads to
transients in the signal that are time-locked to the onset of the stimuli, as was unavoidable in our study. Since the

transient event-related signal components typically contribute signal power in the frequency range up to about 20
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Hz, the above concern applies predominantly to the interpretation of frequency components up to the beta range.
To address this concern, we performed a set of control analyses, in which we computed our contrasts of interest
(for the theta, alpha and beta ranges) for the event-related average of the band-limited signals, and for the power
estimated after subtraction of the event-related average. The results of these analyses are shown in
supplementary materials Fig. S3 (a description is also provided in the supplementary materials), and provide
confirmatory evidence that the large majority of the results reported can be interpreted in terms of modulations in
oscillatory activity. One exception may be the context effect for the theta band in left temporal regions, which
shows a similar topography in the power and ERF contrasts (Fig. S3A). Yet, that does not exclude that we observed
a modulation in a band-limited (centered at 5 Hz) phase-locked oscillatory component, related to memory retrieval

processes.

Reviews of language studies demonstrate coordination and interaction between multiple brain areas during
language processing (Fedorenko & Thompson-Schill, 2014; Halgren et al., 2002; Price, 2010). The extent to which
specific regions are activated appears to be task dependent. High-level core language tasks, such as sentence
understanding, activate the dominant (left) hemisphere (Snijders et al., 2009; Xiang, Fonteijn, Norris, & Hagoort,
2010), whereas low-level tasks (e.g., orthographic and word sound analysis), and language tasks that involve non-
language specific components (e.g., attention, memory) have been shown to recruit bilateral fronto-parietal
regions (Bozic, Tyler, lves, Randall, & Marslen-Wilson, 2010; Fedorenko & Thompson-Schill, 2014). Our results are
in agreement with this distinction. The word analysis aimed to tap aspects of combinatoriality in language
(unification), and produced left hemisphere dominant results. In addition, the context analysis reflected changes in
cognitive demands whereby effects were found in bilateral (but right hemisphere dominant) frontal, temporal and

parietal regions.

4.6 Conclusion

To summarize, we investigated the spatial and temporal dynamics of neuronal oscillations during sentence reading.
We quantified the response to individual words in a sentence compared to a word list to determine the effects of
context. In sentences, we observed changes in oscillatory power at the theta, alpha, beta, and gamma frequencies.
We also quantified differences between words early versus later in a sentence to observe the changes in individual
words as the context strengthened. We observed changes in left and right hemispheres in the theta, alpha, and

gamma bands.

To the best of our knowledge, this is the first MEG source-localized sentence processing study that investigated
how individual (grammatical) words are processed, and how this is influenced by an unfolding sentence context.
Moreover, with 102 participants this is the largest, most powered MEG study of its kind. Source-localization

allowed us to conclude that oscillations localize to similar brain regions as those found in the fMRI literature: first,
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sentence (language) processing recruits a widely distributed network (Fedorenko & Thompson-Schill, 2014;
Friederici & Singer, 2015; Hagoort & Indefrey, 2014). Second, the presence of effects in left temporal and left
frontal regions suggests that within this widely distributed network these two regions are important in sentence
processing. This is also in agreement with the MUC model of sentence processing (Hagoort, 2003, 2005, 2013).
Third, involvement of the right frontal-parietal regions in sentence processing likely reflects engagement of the

domain general cognitive control network according to task demands at different points in a sentence.

In this study, we also made use of the temporal resolution in MEG. We demonstrated that unification processes
involved in reading a sentence begin around 200 ms when statistically comparing sentences with word lists.
Moreover, visual inspection of the oscillatory power time courses show that differentiation between the wave
forms for sentences and word lists occurs around 100 ms, which suggests that the semantic and syntactic context
effects can begin as early as 100 ms (see Fig. 1, e.g., in the left frontal region in the beta band, and left occipito-
parietal region in the lower gamma band). The early onset of language effects following the language stimuli is in
accordance with the abundance of MEG and EEG studies reporting language effects within the first 400 ms
following word onset (see Salmelin, 2007 for a review of MEG language studies at the single word level and

beyond).

We analyzed multiple frequencies and found that the theta, alpha, beta, and gamma bands are all involved in
sentence processing. This highlights the importance of studying multiple frequencies to provide a broader
perspective on which oscillations are and which are not involved in any given cognitive task. The observation of
oscillatory changes in multiple brain regions at several frequency bands suggests no simple mapping between a
specific region and function. Almost certainly, the effects in the different frequency bands have different functional
significance. The presence of effects in the frequency bands that we observed indicate that higher order language
processing (i.e. unification) depends on multiple networks, including memory networks in temporal cortex and
attentional networks in the right parieto-frontal network, in addition to the core language network in left
perisylvian cortex. The abundant effects in occipital areas, moreover, imply that higher order language processes
interact with the extraction of relevant information from the feedforward visual processing stream. The timing of
all these effects are a testimony of the exquisite speed at which the human brain is able to complete the complex
cascade of processes that are involved in extracting meaning from a series of orthographic scribbles entering

primary visual cortex.
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CHAPTER 5

5.1 Abstract

The search for language-related genes in combination with neuroimaging methods is a promising and growing
endeavour. Most studies have used fMRI in the clinical population. Here, we present one of the first studies to test
for associations between MEG-derived neuronal oscillations and a common CNTNAP2 polymorphism in healthy
individuals. Previous evidence favours the CNTNAP2 polymorphism rs7794745 over other polymorphisms, as it has
been associated with behavioural language difficulties, and with variation in neuroimaging measures during
language tasks in both clinical (e.g., Autism, Specific Language Impairment, Dyslexia) and healthy populations. We
genotyped a 102 individuals, and quantified their neural oscillatory activity when reading sentences compared to
reading word lists. Our results demonstrated that rs7794745 is associated with variability in theta oscillatory
power during sentence processing. Individuals with one or more T alleles (AT/TT) showed a larger effect size of
oscillatory theta power between sentences and word lists, in left inferior frontal gyrus, in comparison to individuals
with an AA genotype. Our study also supports the use of MEG and neuronal oscillations to discover neural

variability in the language network in relation to genetic variability.
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5.2 Introduction

The interaction between our genome and the environment influences the unique human ability of language.
Definitive evidence of a genetic basis for language was found 15 years ago in the FOXP2 gene. Studieson a 3
generation family (KE family) found that members with a single point mutation (G to A) in FOXP2 displayed severe
speech and language difficulties (Fisher, Vargha-Khadem, Watkins, Monaco, & Pembrey, Marcus, 1998; Lai et al.,
2001; Lai, Gerrelli, Monaco, Fisher, & Copp, 2003). Subsequently, evidence has steadily accumulated, with more
support for the influence of FOXP2 on speech and language phenotypes (Fisher & Scharff, 2009; Harold et al., 2006;
Macdermot et al., 2005; Nelson et al., 2013; Peter et al., 2011; Vernes et al., 2006). Several other genetic regions
and candidate genes that influence speech and language phenotypes have also been discovered, such as CNTNAP2,
DCDC2, ATPC2C,and DYX1 — DYX9 (Carrion-Castillo et al., 2013; Marcus & Fisher, 2003; Newbury, Fisher, & Monaco,
2010).

Brain-imaging genetics studies have begun to bridge the connection between genes and behavior by investigating
how genes influence the brain (in terms of structural and functional neural measures), and in turn how the brain
supports language-related cognition and behavior (e.g., Durston, Zeeuw, & Staal, 2009; Hariri, Drabant, &
Weinberger, 2006; Meda et al., 2008; Renvall et al., 2012; Scott-Van Zeeland et al., 2010). These neural measures
are considered as biological markers of language, and may be used as an endophenotype (not a directly observable
trait) if they meet certain criteria such as heritability and robustness (Gottesman & Gould, 2003). With brain-
imaging genetics being a young field, most studies have used (f)MRI, and few studies have been replicated;
therefore, there is an opportunity and necessity for development. To address this, the current study sought to
identify a new neurobiological marker by determining whether individual differences in neural oscillatory activity

during sentence processing can be explained by the variation in CNTNAP2, in a healthy population.

CNTNAP2 (contactin-associated protein-like 2), is a downregulated target of FOXP2®, which has garnered much
attention for influencing language and communication abilities (Fisher & Vernes, 2015; Vernes et al., 2007, 2008)
in clinical (Alarcén et al., 2008; Fletcher et al., 2010; Newbury et al., 2011; Peter et al., 2011; Strauss et al., 2006)
and healthy populations (Folia, Forkstam, Ingvar, Hagoort, & Petersson, 2011; Kos et al., 2012; Whalley et al., 2011;
Whitehouse, Bishop, Ang, Pennell, & Fisher, 2011). Strong evidence for the role of this gene in language and
communication comes from children with focal epilepsy. These children had a homozygous mutation in CNTNAP2
and demonstrated language regression, abnormal social behavior (e.g., aggression and hyperactivity), and
abnormal neural structure (in terms of the histology, organization and density of neurons) in lateral and medial

temporal regions (Strauss et al., 2006). Expression studies showed that in the early stages of development (17-22

*FOXP2is a transcription factor; it regulates the transcription of other genes by either reducing their expression
(down-regulation) or increasing their expression (up-regulation). Down-regulation means the targeted gene will
produce fewer products (proteins), while up-regulation leads to an increase in gene product. With CNTNAP2, its
expression is reduced by FOXP2.
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weeks of gestation) CNTNAP2 is highly expressed in frontal and temporal cortical regions (Abrahams et al., 2007;
Alarcén et al., 2008). These regions eventually form core areas of the neural network involved in high order
cognitive processes like language processing (and others like planning and decision making), lending further

support to the potential of CNTNAP2 influencing language and communication.

Currently, rs7794745, located in intron-2 of CNTNAP2, is one of the most frequently studied common variants (it
can have a nucleotide base of A or T). Within healthy populations, this variant has been associated with variability
in neural measures of sentence processing in a few studies (Folia et al., 2011; Kos et al., 2012; Whalley et al., 2011).
In a sentence completion task during a functional Magnetic Resonance Imaging (fMRI) scan, TT carriers showed a
larger Blood-oxygen-level dependent (BOLD) activation in right frontal and temporal regions, respectively, in
comparison to individuals with AT or AA genotype. When measuring event-related potentials, the reading of
syntactic anomalous sentences led to an anterior negativity potential prior to a P600 in T-carriers (AT/TT), and only
a P600 in the AA individuals. In yet another study, the processing of ambiguous sentences showed that variation in
rs7794745 was associated with a variation in neural activation (both BOLD activity and event-related potentials), in
frontal and temporal regions (Snijders, 2010). Together, these studies consistently suggest that genetic variation in

rs7794745 influences neural measures of sentence processing.

Oscillations are a measure of synchronized neural activity which is considered to play a role in the coordination
and transfer of information in the brain (Fries, 2005, 2015; Siegel, Donner, & Engel, 2012; Singer, 1999; Varela et
al., 2001). As molecular research has showed that CNTNAP2 affects neuronal structure and activity (Poliak et al.,
2003; Rodenas-Cuadrado, Ho, & Vernes, 2014; Vernes et al., 2008), the use of oscillations could therefore provide
a relatively more direct link between genetics, the brain and behavior, in comparison to the frequently used
(indirect) measures of the haemodynamic response (e.g., Belton, Salmond, Watkins, Vargha-khadem, & Gadian,
2003; Liégeois et al., 2003; Liu et al., 2009; Peter et al., 2011; Pinel et al., 2012; Silani et al., 2005; Watkins et al.,
2002). The modulation of oscillatory activity has been associated with various cognitive tasks, including sentence
processing (e.g., Bastiaansen et al., 2010; Kielar et al., 2015; Lam, Schoffelen, Uddén, Hultén, & Hagoort, 2016;
Wang et al., 2012).

Recently, we performed a thorough analysis of neural oscillatory activity during sentence processing in a dataset of
102 individuals, and demonstrated that the neural oscillatory responses at theta, alpha, beta and gamma
frequencies are modulated by the processing of sentences (Lam et al., 2016). In the current study, using the same
group of participants as before, we were interested in whether genetic factors underlie the interindividual

variability that we observed in neuronal oscillations during sentence processing.
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Given our limited sample size, at least in the light of genetic studies, we selected specific cortical regions and
frequencies, motivated by earlier findings on the neurobiological substrates of language processing. We focused
on the left inferior frontal gyrus (LIFG) and the left superior temporal gyrus (LSTG) for two reasons. First, in early
human (fetal) development CNTNAP2 expression is highly enriched in anterior neural regions, which subsequently
form the frontal and anterior temporal cortex (Abrahams et al., 2007; Alarcén et al., 2008). This suggests that
effects of CNTNAP2 in our selected regions would be strong. Second, these two regions have consistently been
found to be involved in sentence processing (Fedorenko, Duncan, & Kanwisher, 2012; Fedorenko & Thompson-
Schill, 2014; Friederici & Gierhan, 2013; Friederici, 2012; Hagoort & Indefrey, 2014; Hagoort, 2013; Snijders, 2010;
Snijders et al., 2009; Snijders, Petersson, & Hagoort, 2010). We adopted a step-wise approach for testing
frequency bands. We began with the theta band because at the group level (in our previous study) this activity in
this frequency band showed a significant difference (sentences vs. word lists) within our chosen regions. In
comparison, the other frequencies (alpha and beta) showed effects in other areas that overlapped but did not fully
include LIFG and LSTG (Lam et al., 2016). If a significant association was found at the theta band, we would

progress to test a subsequent frequency band.

In sum, the present study investigated the individual differences in oscillatory dynamics of sentence processing.
Here, we extracted brain activity that pertained to how individual words are processed and combined into a
meaningful sentence, while controlling for lower-level linguistic differences such as orthography, word length and
word frequency. To do this, we had participants sit in the MEG while they read sentences (word in a structured,
meaningful manner) and word lists (words in an unstructured manner, created by randomizing the order of words
in a sentence). Then, for each genetic group (T-carriers (TT/AT) and the AA group) we calculated the difference in
oscillatory power between these two conditions as a measure of sentence processing. Subsequently, to determine
whether individual differences in sentence processing are mediated by a common variant in CNTNAP2, we

contrasted the difference in oscillatory power between groups, in LIFG and LSTG.

5.3 Methods

A total of 102 native Dutch speakers (51 males), with an age range of 18 to 33 years (mean of 22 years),
participated in the experiment. These participants formed part of a larger study — MOUS (Mother of all Unification
Studies; N = 204), where all participants took part in an fMRI and a MEG session. Half of these participants
completed both sessions where they read the stimuli, and the other half listened to recordings of the stimuli. The
current paper pertains to participants from the MEG session in the visual modality. All participants were right-
handed, had normal or corrected-to-normal vision, and reported no history of neurological, developmental or

language deficits. The study was approved by the local ethics committee (CMO — the local “Committee on
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Research Involving Human Participants” in the Arnhem-Nijmegen region) and followed the guidelines of the

Helsinki declaration. Participants received monetary compensation for the participation.

The stimuli consisted of 180 sentences and their word list counterparts (see Table 1 for an example). All sentences

varied between 9 and 15 words in length.

Sentence Word list
Bij de opening van de nieuwe sporthal kregen sporthal bij van talrijke opening een de de
de talrijke bezoekers een consumptie kregen consumptie bezoekers nieuwe de

At the opening of the new sports hall received sports hall at from many opening a the the

the many visitors a (free) drink received (free) drink visitors new the

Table 1. Exemplar sentence and word list in Dutch, and literal English translation.

The word lists were created from the sentences by scrambling the words so that no more than two consecutive
words formed a coherent fragment. The same words in both conditions limited the difference between conditions
to sentential semantics and syntax as opposed to lexical differences in orthography, phonology, and word meaning.
Each participant saw each stimulus in either the sentence or the word list condition, but not in both. Across

participants, each stimulus was presented the same number of times in the sentence and in the word list condition.

All stimuli were presented with an LCD projector (with a vertical refresh rate of 60 Hz) situated outside the MEG
measurement room, and projected via mirrors onto the screen inside the MEG room. All stimuli were presented at
the center of the screen within a visual angle of 4 degrees, in a black mono-spaced font, on a gray background

using Presentation software (Version 16.0, Neurobehavioral Systems, Inc).

The stimuli were divided into three subsets, such that each participant saw 2/3 of the stimulus set in the MEG
session (120 trials of each condition); and 1/3 in the fMRI session that will not be further discussed in this paper.
Participants presented with the same subset saw the stimuli in a different (randomized) order. In the experiment,
the stimuli were presented in a mini block design, and alternated between a sentence block (containing 5
sentences) and a word list block (containing 5 word lists), for a total of 24 blocks. The first mini block (sentences or
word lists) was randomized across participants. In addition, for sentences, the first word began with a capital letter

and the last word ended with a full stop.
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At the beginning of each block, the block type was announced for 1500 ms: zinnen (sentences) or woorden (words),
followed by a 2000 ms blank screen. At the beginning of each trial a fixation cross was presented for a jittered
duration between 1200 and 2200 ms. Then, the words for each trial (sentence or word list) were presented one at
a time. Each word was separated by a blank screen for 300 ms.

The presentation time of each word was varied in order to allow for a ‘naturalistic’ reading experience, and to
avoid a strict entrainment of ongoing activity to fixed interstimulus intervals. For any given sentence (or word list)
the variable duration of a single word was a function of the following quantities: (i) the total duration of the audio-
version of the sentence/word list (audiodur), (ii) the number of words in the sentence (nwords), (iii) the number of
letters per word (nletters), and (iv) the total number of letters in the sentence (sumnletters). Specifically, the
duration (in ms) of a single word was defined as: (nletters/sumnletters)*(audiodur+2000-150*nwords). The
minimum duration of short words was set to 300 ms irrespective of the relative weighting described by the
formula. In practice, however, the exact presentation times of the words slightly deviated from those obtained
from the above formula. This was due to the fact that the presentation timing was dictated by the refresh rate of
the projector (60 Hz). As a consequence, the actual presentation time was lengthened by a duration between 0
and 33 ms. The median duration of a single word on the screen was 434 ms (range 300-1344 ms). Taking into
account the 300 ms gap between the words, the median duration of a whole sentence/word list was 8.3 s (range
6.2-12 s). Within each block, the inter-trial interval was a blank screen with a jittered duration between 1200-2200

ms.

In order to check for compliance, 10% of the trials (n = 12) were randomly followed by a yes/no question about the
content of the previous sentence/word list. Half of the questions on the sentences addressed sentence
comprehension (e.g. Did grandma eat a pancake?). The other half of the sentences, and the questions following
the word lists addressed a content word (e.g. Was a music instrument mentioned?). Participants answered the
question by pressing a button for ‘Yes’/ ‘No’ with their left index and middle fingers, respectively. For both
question types, half of the trials required a yes-response. The experiment began with participants reading written
instructions for the task. The experimenter clarified any questions from the participant. Then, for familiarization
purposes, participants completed a practice task (using a separate set of stimuli from the actual task).

Subsequently they performed the actual task as described above.

MEG data were collected with a 275 axial gradiometer system (CTF) at the Donders Centre for Cognitive
Neuroimaging in Nijmegen, The Netherlands. The signals were digitized at a sampling frequency of 1200 Hz (the
cutoff frequency of the analog anti-aliasing low pass filter was 300 Hz). Three coils were attached to the
participant’s head (nasion, left and right ear canals) to determine the position of the head relative to the MEG-
sensors. Throughout the measurement the head position was continuously monitored using custom software

(Stolk et al., 2013). During breaks the participant was allowed to reposition to the original position if needed.

99



CHAPTER 5

Participants were able to maintain a head position within 5 mm of their original position. Three bipolar Ag/AgCl

electrode pairs were used to measure the horizontal and vertical electro-oculogram, and the electro-cardiogram.

We collected saliva from participants using the DNA collection kits (OG-500) from DNA Genotek. For genotyping
we used the KASP assay technology (LGC Genomics) and a Bio-Rad CFX96 real-time PCR thermocycler. Each 10 pl
reaction contained 0.14 pl of 72X KASP primer mix, 5 ul of 2X KASP master mix with standard ROX concentration,
and 2 pl of genomic DNA (diluted at 20 ng/ul). Thermocycling was performed as follows: after an initial
denaturation of 15 min at 94°C, 10 cycles were run with 20 s denaturation at 94°C followed by 45 s of
annealing/elongation starting at 61°C and decreasing by 0.6°C per cycle, followed by 30 cycles with 10 s
denaturation at 94°C followed by 45 s of annealing/elongation at 55°C. If necessary, five further cycles were
performed using the same parameters as the final 30 cycles from the initial run. Genotypes were called using the
CFX96 Manager software (Bio-Rad). The assay was validated by Sanger sequencing of randomly-selected samples

of each genotype.

MEG data processing
All analyses were done with custom written Matlab scripts and FieldTrip, an open source toolbox for EEG and MEG

data analyses (Oostenveld et al., 2011).

Electrocardiogram artifacts were estimated using denoising source separation (DSS, Sarela & Valpola, 2005),
identified based on their topography and subtracted from the data. Physiological artifacts (eye movements and
muscle contractions) and jump artifacts in the SQUIDs (superconducting quantum interference device) were
identified using a semi-automatic artifact identification procedure
(http://www.fieldtriptoolbox.org/tutorial/automatic_artifact_rejection), followed by visual inspection. Data
segments that contained artifacts were excluded from further analysis. Next the power line interference at 50 Hz
and its harmonics at 100 and 150 Hz were estimated and subtracted from the data (for details see Schoffelen,

Oostenveld, & Fries, 2005). Finally, the data were downsampled to a sampling frequency of 300 Hz.

We used a frequency domain beamformer (DICS; Gross et al., 2001) to reconstruct the sources of the oscillatory
responses. First, for each time window and frequency band the sensor-level cross-spectral density matrix was
computed across all conditions. The frequency bands were selected based on earlier studies. For the low
frequencies, they were centered at the following frequencies (with effective spectral bandwidth in brackets): 5 Hz
(3.75 to 6.25 Hz) for theta, 10 Hz (8.75 to 11.25 Hz) for alpha, and 16 Hz (14 to 18 Hz) for beta. Here, each discrete
frequency designates the centre frequency of a band-limited frequency bin, and this centre frequency

encompasses the average signal power across the frequency range in that bin, referred to as the effective
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bandwidth. This bandwidth is dictated by the combination of the chosen window length and tapering scheme. The
theta and alpha band were analyzed in 50 ms time steps from -100 to 500 ms (around word onset at 0 ms) using a
sliding time window of 400 ms in combination with a Hanning taper, which produced an effective bandwidth of 2.5
Hz (which is 1.25 Hz around the defined centre frequencies). Beta was also analyzed in 50 ms time steps from -
150-500 ms, but with a 250 ms time window in combination with a Hanning taper, which produced an effective
bandwidth of 4 Hz. The higher frequencies, were a priori defined as 36 to 76 Hz (low gamma), and 76 to 108 Hz
(high gamma), and thus encompassed spectral estimates across multiple frequency bins. We analyzed them at 50
ms time steps, at 4 Hz steps, between -150 to 500 ms. Here we used a 250 ms time window in combination with

multitapers (Mitra & Pesaran, 1999), which achieved an effective bandwidth of 16 Hz.

The sensor-level cross-spectral density matrix was then used in combination with the forward solution to compute
a set of spatial filters to obtain an estimate of the activity for dipoles placed on a volumetric grid with ~8 mm
spacing (see below). The spatial filters assumed a fixed orientation of the underlying dipoles, defined by means of a
singular value decomposition of the dipole cross-spectral density, taking the orientation along the first singular
vector to explain the maximum amount of variance. The activity (power) was estimated for each condition of

interest.

For source reconstruction purposes, we coregistered the anatomical MRI to the MEG-sensors. This was achieved
by manual alignment of two reconstructions of the head surface. A digitized head shape, consisting of
approximately 500 points across the scalp, was obtained with a Polhemus device (Fastrak, Polhemus Inc.
Colchester, VA, USA). The other scalp surface was obtained by segmenting the participant’s T1-weighted

anatomical MRI image.

Subsequently, the aligned anatomical image was used to create a volume conduction model based on a single shell
description (Nolte, 2003) of the inner surface of the skull, using the segmentation function in SPM8. Source
reconstruction was performed on a set of 8196 dipole locations distributed across the cortical sheet. Freesurfer 5.1
(Dale et al., 1999) was used to create a high-resolution description of the cortical surface. Next, these cortical
surfaces were surface-registered to a template mesh using the Caret Software package (Van Essen et al., 2001),

and subsequently downsampled from about 150,000-200,000 dipoles per hemisphere to 4098 dipoles.

The surface registration procedure resulted in individual cortical sheets that were topologically equivalent across
participants (i.e. a particular topological point in the cortical sheet of one participant correspond to the same
particular point in all other participants). To define our regions-of-interest, we used a parcellation scheme, based
on a cortical atlas that maps out the Brodmann areas (the Conte69 atlas,Van Essen, Glasser, Dierker, Harwell, &
Coalson, 2012) whereby each topological point is labeled and assigned to an anatomical region, for a total of 86

regions (parcels). In these 86 parcels, the spatial division was relatively coarse. To achieve a finer division, we
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subparcellated the original atlas into 386 smaller parcels while maintaining the original boundaries between
Brodmann areas. Visualization of the parcellated cortical sheet was done with the Connectome Workbench

software (Marcus et al., 2011)

At the group level we found differences in oscillatory activity between sentences and word lists in LIFG and LSTG
(Lam et al., 2016). In the current study, we were interested in whether the individual differences in these areas
could be partially explained by differences in genotype. We refer the reader to t