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I. INTRODUCTION

Noncommutative (NC) field theory could play a special
role in the description of particle physics near the Planck
length λp =

√
G~/c3. This theory was the subject of in-

tense study during the last three decades and provided a
very interesting new class of quantum field theories with
intriguing and sometimes unexpected features. The idea
of noncommutativity of spacetime came from Snyder [1].
Its geometric analysis was given by Alain Connes [2]-[3].
The wide class of works on this subject and the physi-
cal implications such as the quantum Hall effect [4]-[5],
the string theory static solutions [6], the matrix model
or the 2D quantum gravitation theory [7]-[9] opened new
outlook on the study of physics. This made them partic-
ularly interesting and challenging for purposes of particle
physics model building.

However, the NC spacetime generalizes the ordinary
space by assuming the nonvanishing commutation rela-
tions between coordinates as [x̂µ, x̂ν ] = iθµν , where (θµν)
is skew-symmetric constant tensor. The operator algebra
of such NC spacetime can be represented by the algebra
of functions when the ordinary multiplication of functions
is replaced by the so-called Moyal star-product:

(f ? g)(x) = m
[

exp
[
θµν∂µ ⊗ ∂ν

]
(f ⊗ g)(x)

]
,

m(f ⊗ g) = f · g, f, g ∈ C∞(RD) (1)

(see [14] and references therein). Another noncommu-
tativity is described when the momentum components
become NC, i.e. [p̂µ, p̂ν ] = iθ̄µν , where (θ̄µν) is related
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to the magnetic field [10]. Several physical models were
studied in this NC spacetime, such as the model of har-
monic oscillator, the dynamics of the relativistic parti-
cles, and the scattering theory.

Recently, the Dirac and KG oscillators were studied in
curve spacetime by introducing the tedrad fields eµa , or,
equivalently, the metric gµν = eµae

ν
bη
ab, where η is the flat

spacetime metric [11]-[17]. These models were also imple-
mented in the topologycal defect background metric [15].
An important question that we address here in this pa-
per is the effects of noncommutativity on the dynamics of
the spin orbit particle. We show that the noncommuta-
tivity of the spacetime transforms the Minkowski metric
to the so-called cosmic string background. By giving the
solution of the oscillator dynamics using the Hamilton
equations of motion, we derive the corresponding defor-
mation of the spacetime metric, which depends on the
parameter θ and is similar to that describing a cosmic
string. As application, we are interested in relativistic
particles described by Dirac and Klein-Gordon (KG) os-
cillators. Several motivations lead to the study of these
two models. See [11]-[24] for more details.

The paper is organized as follows. In the section (II),
we provide the dynamics of a harmonic oscillator in NC
spacetime. We show how this noncommutativity modifies
the corresponding metric. In the section (III), we study
the eigen-energies of the Dirac oscillator in the back-
ground of cosmic string. The same question is pointed
out in the case of the KG oscillator. Section (IV) is de-
voted to concluding remarks.

II. OSCILLATOR QUANTUM DYNAMICS ON
NC SPACETIME

In this section, we study the quantum dynamics on NC
spacetime. Using the Hamilton equation of motion of the
coordinates system, we derive and solve the correspond-
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ing equations of motion. We show, by a novel approach,
how a NC oscillator can be solved in the commutative
spacetime, and how this may affect the spacetime geo-
metric properties such as the metric tensor. Two cases of
noncommutativity are considered. The case, when only
coordinates are NC, and the case where both coordinates
and momentums are NC.

A. Case of commutative momentum components

We consider the spacetime geometry described with
the NC coordinates xµ and momentums pµ, µ = 0, 1, 2, 3,
which satisfy the star-commutation relations :

[xµ, xν ]? = iθµν , [xµ, pν ]? = iδµν , [pµ, pν ]? = 0, (2)

in which, ~ := 1; ? denotes the Moyal star product. For
f, g ∈ C∞(R4 × R4) we write

f ? g = m
[
e(Pθ+P~)

]
, m(f ⊗ g) = f · g

Pθ =
iθµν

2

∂

∂xµ
⊗ ∂

∂xν
,

P~ =
i

2
δµν
( ∂

∂xµ
⊗ ∂

∂pν
− ∂

∂pµ
⊗ ∂

∂xν

)
. (3)

The matrix θµν is chosen to be

θµν =



0 θ0 θ0 θ0

−θ0 0 θ θ

−θ0 −θ 0 θ

−θ0 −θ −θ 0


, θ0, θ ∈ R (4)

For instance, setting θ0 = 0 means that the time does not
commute with the space coordinates and plays the role
of evolution parameter. For all smooth function of coor-
dinates and momentums f(x, p), we have the following
identities

[xµ, f(x, p)]? = iθµβ
∂f(x, p)

∂xβ
+ iδµβ

∂f(x, p)

∂pβ
,

[pµ, f(x, p)]? = −iδµβ ∂f(x, p)

∂xβ
. (5)

It is obvious that the NC coordinates are related to the
commutative coordinates by the followings transforma-
tions:

xµ → xµc −
θµν

2
pν,c, pµ → pµ,c, (6)

where the commutative variables satisfy the commuta-
tion relations [xµc , x

ν
c ]? = 0 and [xµc , pν,c]? = iδµν . Con-

sider the Hamiltonian system, with Hamiltonian H ∈
C2(R8,R), (x, p) ∈ R4 × R4. The Hamiltonian H does
not explicitly depend on the time x0

c . Using the Taylor
expansion we write:

H(x, p) =
|p|2c
2

+ V (xc)+

∞∑
n=1

(−1)n

n!

(θpc)
j1

2

(θpc)
j2

2
· · · (θpc)

jn

2

dnV (xc)

dxj1c dx
j2
c · · · dxjnc

,

(θpc)
j = θj`p`,c, j, ` = 1, 2, 3. (7)

The equations of the dynamics associated to the coordi-
nates and momentums with the Hamiltonian (7) are

dxµc
dx0

c

= i[xµc , H]?,
dpµc
dx0

c

= i[pµc , H]?. (8)

For any choice of potential V (x), the above equations
lead to a cumbersome system of nonlinear differential
equations, not easily to solve. In the case where V (xc)

is the harmonic oscillator potential, i.e. V (x) = M |xc|2
2 ,

the Hamiltonian H takes the form

H =
1

2
|pc|2 +

M

2

(
|xc|2 − θijxicpjc +

1

4
θijθikpj,cp

k
c

)
. (9)

We show in the sequel that the corresponding equations
of motion can be solved in this particular case. These
equations of motion are explicitly given by the following
system:

ẋ1
c = − 1

2Mθx2
c − 1

2Mθx3
c − (1 + Mθ2

2 )p1
c

− 1
4Mθ2p2

c + 1
4Mθ2p3

c

ẋ2
c = 1

2Mθx1
c − 1

2Mθx3
c − (1 + Mθ2

2 )p2
c

− 1
4Mθ2p1

c − 1
4Mθ2p3

c

ẋ3
c = 1

2Mθx1
c + 1

2Mθx2
c − (1 + Mθ2

2 )p3
c

+ 1
4Mθ2p1

c − 1
4Mθ2p2

c

ṗ1
c = Mx1

c − 1
2Mθp2

c − 1
2Mθp3

c

ṗ2
c = Mx2

c + 1
2Mθp1

c − 1
2Mθp3

c

ṗ3
c = Mx3

c + 1
2Mθp1

c + 1
2Mθp2

c

(10)

where “dot” means the first order derivative with respect
to the time x0

c := t. The system (10) can be solved, by
using the expansion series method, to yield the general
solutions:

xjc(t) =

∞∑
k=0

[
ajk(θt)k cos(

√
Mt) + bjk(θt)k sin(

√
Mt)

]
(11)

pjc(t) =

∞∑
k=0

[
cjk(θt)k cos(

√
Mt) + djk(θt)k sin(

√
Mt)

]
.(12)

Note that pjc = Mẋjc. Then the series ajk and bjk are

related to cjk and djk by the recursive relations{
cjk = (k + 1)Mθajk+1 +

√
M3bjk

djk = (k + 1)Mθbjk+1 −
√
M3ajk

. (13)

We consider the particular case in which we assume that
there exist the constants α0 and β0 such that{

α0b
j
k = (k + 1)Mθajk+1 +

√
M3bjk

β0a
j
k = (k + 1)Mθbjk+1 −

√
M3ajk

. (14)
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Then, the series ajk and bjk satisfy the two-term recursive
relations(

β0 +
√
M3
)
ajk −

(k + 1)(k + 2)M2θ2

α0 −
√
M3

ajk+2 = 0 (15)(
α0 −

√
M3
)
bjk −

(k + 1)(k + 2)M2θ2

β0 +
√
M3

bjk+2 = 0 (16)

the solutions of which are of the form:

ajk = Ωja
(−1)

k
2

k!

( (
√
M3 − α0)(

√
M3 + β0)

M2θ2

) k
2

, (17)

bjk = Ωjb
(−1)

k
2

k!

( (
√
M3 − α0)(

√
M3 + β0)

M2θ2

) k
2

, (18)

where Ωja,b are real constants. Letting η2 =
(
√
M3−α0)(

√
M3+β0)

M2 and α0 = β0 = ℘ transforms the ex-
pressions (11) and (12) into the following form:

• For
√
M3 > ℘

xjc(t) = Re
[
eitη(Ωja cos

√
Mt+ Ωjb sin

√
Mt)

]
= cos(tη)(Ωja cos

√
Mt+ Ωjb sin

√
Mt), (19)

pjc(t) = Re
[
℘eitη(Ωja cos

√
Mt+ Ωjb sin

√
Mt)

]
= ℘ cos(tη)(Ωja cos

√
Mt+ Ωjb sin

√
Mt). (20)

• For
√
M3 < ℘

xjc(t) = e−tη(Ωja cos
√
Mt+ Ωjb sin

√
Mt) (21)

pjc(t) = ℘e−tη(Ωja cos
√
Mt+ Ωjb sin

√
Mt). (22)

These expressions represent the solution of the noncom-
mutative oscillator in the commutative variables. They
do not depend on the deformation parameter θ, and
hence are not affected by the noncommutativity of the
spacetime.

Let us examine now how these solutions may modify
the geometry. Let gc and g are the metrics of ordinary
and NC spacetime, respectively. We assume that gc,µν :=
ηµν = diag(−1,+1,+1,+1). Then using (6), (19) and
(20) we get

g = ηµνdx
µdxν

= −dt2 +

3∑
j=1

(
dxjcdx

j
c +

℘2θjkθjl

4
dxk,cdxl,c

)
,(23)

which can explicitly be written in the matrix form as:

(gµν) =



−1 0 0 0

0 1 + ℘2θ2

2
℘2θ2

4 −℘
2θ2

4

0 ℘2θ2

4 1 + ℘2θ2

2
℘2θ2

4

0 −℘
2θ2

4
℘2θ2

4 1 + ℘2θ2

2


. (24)

In the diagonal form we get

gd = diag(−1, λ2
1, λ

2
2, λ

2
3), (25)

with eigenvalues

λ2
1 = 1, λ2

2 = 1 +
3θ2℘2

4
= λ2

3, (26)

and eigenvectors

u−1 = (1, 0, 0, 0), uλ1 = (0, 1,−1, 1),
uλ2 = (0,−1, 0, 1), uλ3 = (0, 1, 1, 0). (27)

Then the determinant of the metric g, denoted by g, is

det(g) = −
(

1 + 3θ2℘2

2 + 9θ4℘4

16

)
. In a compact form, we

get:

g = −dt2 +

3∑
j=1

a2
j (θ)(dx

j
c)

2, aj(θ) = λj , (28)

in which the parameters aj(θ) = λj , j = 1, 2, 3 play the
role of the scale factors.

B. Case of noncommutative momentum
components

Here we consider the quantum spacetime described
with the NC coordinates xµ and momentums pµ, µ =
0, 1, 2, 3, which satisfy the star-commutation relations :

[xµ, xν ]? = iθµν , [xµ, pν ]? = iκµν , [pµ, pν ]? = iθ̄µν , (29)

where the Moyal star product takes the form

f ? g = m
[

exp(Pθ + Pθ̄ + P~)
]

Pθ̄ =
iθ̄µν

2

∂

∂pµ
⊗ ∂

∂pν
. (30)

The skew symmetric matrix (θ̄) is chosen to be

θ̄µν =



0 θ̄0 θ̄0 θ̄0

−θ̄0 0 θ̄ θ̄

−θ̄0 −θ̄ 0 θ̄

−θ̄0 −θ̄ −θ̄ 0


, θ̄0, θ̄ ∈ R (31)

For instance, by choosing θ̄0 = 0, the NC coordinates are
related to the commutative coordinates by the relations:

xµ = xµc −
1

2
θµνpν,c, pµ = pµc +

1

2
θ̄µνxν,c, (32)

such that the following commutation relations hold:
[xµc , x

ν
c ]? = 0, [xµc , pν,c]? = iδµν , [pµc , p

ν
c ]? = 0. The ten-

sor κ takes the form:

κµν =
(

1 +
θθ̄

4

)
δµν . (33)
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Like (5) we get

[xµ, f(x, p)]? = iθµβ
∂f(x, p)

∂xβ
+ iδµβ

∂f(x, p)

∂pβ
,

[pµ, f(x, p)]? =
iθ̄µβ

2

∂f(x, p)

∂pβ
− iδµβ ∂f(x, p)

∂xβ
. (34)

Then the Hamiltonian of the NC harmonic oscillator can
be written as:

H =
1

2

(
|pc|2 + θ̄ijp

i
cx
j
c +

1

4
θ̄ij θ̄ikxj,cx

k
c

)
+

M

2

(
|xc|2 − θijxicpjc +

1

4
θijθikpj,cp

k
c

)
. (35)

This leads to the following sytem of equations of motion

ẋ1
c = − 1

2 (Mθ + θ̄)x2
c − 1

2 (Mθ + θ̄)x3
c

−(1 + Mθ2

2 )p1
c − 1

4Mθ2p2
c + 1

4Mθ2p3
c

ẋ2
c = 1

2 (Mθ + θ̄)x1
c − 1

2 (Mθ + θ̄)x3
c

−(1 + Mθ2

2 )p2
c − 1

4Mθ2p1
c − 1

4Mθ2p3
c

ẋ3
c = 1

2 (Mθ + θ̄)x1
c + 1

2 (Mθ + θ̄)x2
c

−(1 + Mθ2

2 )p3
c + 1

4Mθ2p1
c − 1

4Mθ2p2
c

ṗ1
c = − 1

2 (Mθ + θ̄)p2
c − 1

2 (Mθ + θ̄)p3
c

+(M + θ̄2

2 )x1
c + 1

4 θ̄
2x2
c − 1

4 θ̄
2x3
c

ṗ2
c = 1

2 (Mθ + θ̄)p1
c − 1

2 (Mθ + θ̄)p3
c

+(M + θ̄2

2 )x2
c + 1

4 θ̄
2x1
c + 1

4 θ̄
2x3
c

ṗ3
c = 1

2 (Mθ + θ̄)p1
c + 1

2 (Mθ + θ̄)p2
c

+(M + θ̄2

2 )x2
c − 1

4 θ̄
2x1
c + 1

4 θ̄
2x2
c

. (36)

After some algebra, and exploiting the expansion series
method, we obtain:

xjc(t) =

∞∑
k=0

∞∑
`=0

(θt+ θ̄t)k+`
[
ajk` cos(

√
Mt)

+ bjk` sin(
√
Mt)

]
(37)

pjc(t) =

∞∑
k=0

∞∑
`=0

(θt+ θ̄t)k+`
[
cjk` cos(

√
Mt)

+ djk` sin(
√
Mt)

]
. (38)

Now by setting pjc(t) = Mẋjc(t), we get the following
recursive relations:

cjkl =
M(θ + θ̄)(k + `+ 1)

2
(ajk+1,` + ajk,`+1) +

√
M3bjk`

djkl =
M(θ + θ̄)(k + `+ 1)

2
(bjk+1,` + bjk,`+1)−

√
M3ajk`

α0 and β0 are two constants such that cjk` = α0b
j
k` and

djk` = β0a
j
k`. We come to

(β0 +
√
M3)ajk` =

M2(θ + θ̄)2

4(α0 −
√
M3)

(k + `+ 1)(k + `+ 2)

× (ajk+2,` + 2ajk+1,`+1 + ajk,`+2) (39)

and

(α0 −
√
M3)bjk` =

M2(θ + θ̄)2

4(β0 +
√
M3)

(k + `+ 1)(k + `+ 2)

× (bjk+2,` + 2bjk+1,`+1 + bjk,`+2). (40)

The recursive relations (39) and (40) can be solved by

setting ajk` = ajk+` and bjk` = bjk+`. We then get the
solutions:

bjk = ajk = Ωjb,a
(−1)

k
2

k!

( (
√
M3 − α0)(

√
M3 + β0)

M2(θ + θ̄)2

) k
2

.(41)

The xjc(t) and pjc(t) are given by (19) ,(20),(21) and (22).
In the sequel, we perform some illustrations.

III. APPLICATIONS TO THE RELATIVISTIC
PARTICLES

A. The Dirac Oscillator

We derive equation governing the Dirac oscillator
in noncommutative space in the background of cosmic
string. The model is described in the cylinder coordi-
nates with the FLRW metric

ds2 = −dt2 + λ2
1(t)dr2 + λ2

2(t)α2r2dϕ2 + λ2
3(t)dz2, (42)

−∞ < (t, z) <∞, r ≥ 0 and 0 ≤ ϕ ≤ 2π. The parameter

α is related to the linear mass density M̃ of the string
by α = 1 − 4M̃ and belongs to the interval (0, 1], corre-
sponding to a deficit angle γ = 2π(1−α). We choose the
scale factors λ1(t), λ2(t) and λ3(t) to be now functions
of time and implicitly on θ. The particular case where
these three parameters λj are constant depending on θ
(see (28)) will be discussed hereafter. In accordance with
the metric (42) the tetrad eµa(x) such that gµν = eµae

ν
bη
ab

is chosen to be

[
eµa
]

=



1 0 0 0

0 cosϕ
λ1

sinϕ
λ1

0

0 − sinϕ
λ2αr

cosϕ
λ2αr

0

0 0 0 1
λ3


(43)

where the Greek indices is related to the curve space
indices and the Latin indices to the Minkowski space in-
dices. Remark that the tetrad (43) is not uniquely de-
fined. Any tetrad is related to (43) by the local Lorentz
transformation Λab as eµa(x) = Λba(x)eµb (x). The spinor
connection is defined by

Γµ = −1

8
ωcdµ
[
γc, γd

]
, (44)

ωabµ = eaνΓνµσe
σ
c η

bc − ηbceνc∂µeaν . (45)

γa are the Dirac matrices in Minkowski space and Γνµσ
is the Christoffel symbol. We also use the follow-
ing notations related to the curve cylindrical coordi-
nates: (µ, ν) = (t, r, ϕ, z) and (a, b) = (0, 1, 2, 3) for
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the Minkowki space. Using (43) we can show that
Γµ = (0,Γr,Γϕ,Γz), where

Γr = − λ̇1

2
γ0γ1 cosϕ− λ̇1

2
γ0γ2 sinϕ,

Γϕ =
λ̇2

2
αrγ0γ1 sinϕ− λ̇2

2
αrγ0γ2 cosϕ

−1

2
(1− λ2

λ1
α)γ1γ2,

Γz = − λ̇3

2
γ0γ3. (46)

In the above relation λ̇j = dλ
dt . The Dirac matices are

γµ = eµ` γ
`, explicitly writen as:

γt = γ0,

γr =
γ1

λ1
cosϕ+

γ2

λ1
sinϕ,

γz =
γ3

λ3
,

γϕ = − γ1

λ2αr
sinϕ+

γ2

λ2αr
cosϕ, (47)

where we take the standard Dirac matrix to be

γ0 =

 1 0

0 −1

 , γi =

 0 σi

−σi 0

 , i = 1, 2, 3.

σi are the Pauli matrices. The Dirac equation is the
Euler-Lagrange equation of motion of the action

S[ψ, ψ̄,Γ] =

∫ √
−g d4x ψ̄M̂ψ (48)

where g = det gµν = −λ2
1λ

2
2λ

2
3α

2r2 and

M̂ = iγµ(∇µ + Γµ)− iγrγ0Mωr −M. (49)

We get[
iγµ(∇µ + Γµ)− iγrγ0Mωr −M

]
ψ = 0. (50)

M is a mass of the Dirac particle, ψ is a spinor four-
components of the wave function; ∇µ is

∇µ = h−1
µ

∂

∂xµ
, gµν = h−2

µ ηµν . (51)

In general ∇µ given in (51) is not a Hermitian operator
and its components do not commute. So, the following
definition will be used:

∇µ(·) = |g|−1/4∂µ(|g|1/4·), (52)

such that, for gµν defined in (42) we find:

∇0 =
1

2

( λ̇1

λ1
+
λ̇2

λ2
+
λ̇3

λ3

)
+
∂

∂t
, (53)

∇r =
1

2r
+

∂

∂r
, (54)

∇ϕ =
∂

∂ϕ
, (55)

∇z =
∂

∂z
. (56)

These expressions mean that the wave equation ε0
nψ =

i∂tψ is modified as

εnψ = i∇0ψ = i
[1

2

( λ̇1

λ1
+
λ̇2

λ2
+
λ̇3

λ3

)
+
∂

∂t

]
ψ. (57)

In the case where λj , j = 1, 2, 3, are such that λ̇j/λj are
constants, the energy spectrum takes the form

εn = ε0
n +

i

2

( λ̇1

λ1
+
λ̇2

λ2
+
λ̇3

λ3

)
= ε0

n + ελn (58)

Now let us assume that λj , j = 1, 2, 3 are the constants
given in (26), and the particle moves in (x, y) plane.
Then, εn = ε0

n and ε0
n need to be computed. We use

the variables separation method in the Dirac equation
(50) as follows:

ψ(t, r, ϕ, z) = e−iε
0
nt

 ψ̃a(r, ϕ)

ψ̃b(r, ϕ)

 . (59)

The z dependence of the wave function is removed due
to the phase factor of the form eikz, in which k may
be vanished. Using (59) we come to the two following
differential equations:

iλ1

(
σ1 cosϕ+ σ2 sinϕ

)(
M − ε0

n

)
ψ̃A

+
[ ∂
∂r

+Mωr −
( λ1

2αλ2
− 1
)1

r
+
λ1

λ2

iσ3

αr

∂

∂ϕ

]
ψ̃B = 0

(60)

iλ1

(
σ1 cosϕ+ σ2 sinϕ

)(
M + ε0

n

)
ψ̃B

−
[ ∂
∂r
−Mωr −

( λ1

2αλ2
− 1
)1

r
+
λ1

λ2

iσ3

αr

∂

∂ϕ

]
ψ̃A = 0

(61)

Let us define the differential operators:

H1 =
[ d
dr

+Mωr +
λ1

λ2r

( 1

2α
+
mσ3

α
+
λ2

λ1

)]
×
[ d
dr
−Mωr − λ1

λ2r

( 1

2α
+
mσ3

α
− λ2

λ1

)]
, (62)

H2 =
[ d
dr

+Mωr − λ1

λ2r

( 1

2α
+
mσ3

α
− λ2

λ1

)]
×
[ d
dr
−Mωr +

λ1

λ2r

( 1

2α
+
mσ3

α
+
λ2

λ1

) ]
.(63)

By setting

εa = λ1

(
M − ε0

n), εb = λ1

(
M + ε0

n), (64)

ψ̃a(r, ϕ) = eimϕψ̃a(r), ψ̃b(r, ϕ) = eimϕψ̃b(r) (65)

we arrive at the eigenvalue problems

H1ψ̃a = εaεbψ̃a, H2ψ̃b = εaεbψ̃b. (66)

Now let us recast the spinors ψ̃a and ψ̃b as

ψ̃a =

 ψ̃a1

ψ̃a2

 , ψ̃b =

 ψ̃b1

ψ̃b2

 . (67)
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The functions ψ̃ai, i = 1, 2 and ψ̃bi, i = 1, 2 satisfy the
well known Laguere polynomial equation:

d2ψ̃l
dr2

+
2

r

dψ̃l
dr

+
(η2

r2
−M2ω2r2 + η0

)
ψ̃l(r) = 0, (68)

where l = a1, a2 or b1, b2, and η0, η2 are two constants
depending on l, given by η0 = −εaεb −Mω

(
1 + 1+2m

α
λ1

λ2

)
η2 = −λ

2
1

λ2
2

1+2m
2α

(
1+2m

2α − λ2

λ1

) l = a1 (69)

 η0 = −εaεb −Mω
(

1 + 1−2m
α

λ1

λ2

)
η2 = −λ

2
1

λ2
2

1−2m
2α

(
1−2m

2α − λ2

λ1

) l = a2 (70)

 η0 = −εaεb +Mω
(

1 + 1+2m
α

λ1

λ2

)
η2 = −λ

2
1

λ2
2

1+2m
2α

(
1+2m

2α − λ2

λ1

) l = b1 (71)

 η0 = −εaεb +Mω
(

1 + 1−2m
α

λ1

λ2

)
η2 = −λ

2
1

λ2
2

1−2m
2α

(
1−2m

2α − λ2

λ1

) l = b2 (72)

The general solution of equation (68) is given by

ψ̃l(r) =

√
(Mω)λ+ 1

2

πΩ(λ)
e−

1
2Mωr2rλ−

1
2Lλn(Mωr2) (73)

where

λ =
1

2

√
1− 4η2, (74)

n =
η0 − 2Mω −Mω

√
1− 4η2

4Mω
(75)

Ω(λ) =

∫ ∞
0

e−zzλ+βLλn(z)2dz, (76)

The eigenvalues ε0
n giving the energies of the model be-

come

• for |m| ≤ 1
2

(
λ2

λ1
α− 1

)
ε

0
n =

[
M2 + 4Mω

λ2
1

(n+ 1)
] 1

2

ε0
n =

[
M2 + 2Mω

λ2
1

(
2n+ 1− 1±2m

α
λ1

λ2

)] 1
2

, (77)

• for |m| ≥ 1
2

(
λ2

λ1
α− 1

)
ε

0
n =

[
M2 + 2Mω

λ2
1

(
2n+ 1 + 1±2m

α
λ1

λ2

)] 1
2

ε0
n =

[
M2 + 4Mωn

λ2
1

] 1
2

. (78)

Remark 1. Our analysis highlights a new degeneracy of
the energy spectrum for the different values of the pa-
rameter m. This result sheds light on the fact that the
spectrum (77) does not exist in the literature and should
be considered as a new feature caused by the bounds of

m. We have also shown that ε0n depends on the defor-
mation parameter θ or λj. We write ε0

n = ε0
n(θ). In the

commutative limit, in which λj = 1, or θ = 0, the expres-
sion (77) is not well defined. In this situation the energy
spectrum is given in (78). This corresponds to the results
computed in [11]-[18] (and references therein). Note that
the same analysis can be made in the case of non vanish-
ing electromagnetic fields solved in the commutative case
in [13].

B. The Klein-Gordon oscillator

This section aims at applying the method used in the
section (II) to the KG equation. Consider a scalar field Φ
written in the cylindrical coordinates as Φ = Φ(t, r, ϕ, z).
The KG oscillator is given by the following equation, (see
[22] for more details):

(�g −M2)Φ = 0, (79)

where the Dalembertian operator in the spacetime de-
fined with the metric (42) is

�g = (∇µ + Γµ +Mωrµ)(∇µ + Γµ −Mωrµ). (80)

The Einstein summation is applied in the cylindrical co-
ordiantes , with µ = (t, r, ϕ, z) and rµ = (0, r, 0, 0).

Suppose that the eigenvalues λj , j = 1, 2, 3 defined in
(42) are constants as expected in (26). By replacing the
relations (46) and (53) in the KG equation (79) we come
to the differential equation[ ∂2

∂t2
+O(r, ϕ, z) +M2

]
Φ = 0 (81)

where the operator O(r, ϕ, z) is

O(r, ϕ, z) = − 1

λ2
3

∂2

∂z2
− 1

λ2
1

( 1

2r
+

∂

∂r

)2

− 1

λ2
2α

2r2

[ ∂
∂ϕ
± i

2

(
1− λ2

λ1
α
)]2

+
3

2λ2
1

Mω +
M2ω2

λ2
1

r2 (82)

Equation (81) admits the variable separation as

Φ(t, r, ϕ, z) = e−iε
0
nt+ikz+imϕΦ̃(r), in which the radial

function Φ̃(r) satisfies the following equation:{ d2

dr2
+

1

r

d

dr
+
η̃2

r2
−M2ω2r2 + η̃0

}
Φ̃ = 0, (83)

where

η̃2 =
[1

4
+

λ2
1

λ2
2α

2

(
m± 1

2

(
1− λ2

λ1
α
))2]

η̃0 = −3

2
Mω − λ2

1

(
M2 − ε0 2

n

)
. (84)

The solution of this equation is given in (73). The energy
spectrum becomes

εn = ±

{
M2 +

1

λ2
1

[
4n+

3

2
Mω + 2 + 2

√
η̃2

} 1
2

.(85)
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The commutative limit corresponding to λj = 1, j =
1, 2, 3 is readily obtained.

IV. CONCLUDING REMARKS

In this paper we have investigated the dynamics of the
harmonic oscillator in NC spacetime. The differential
equation of motion deduced from this analysis has been
solved. The corresponding deformation of the spacetime
metric has been given. As application, the Dirac and
KG oscillators have been explicitly described in the back-
ground of cosmic string. We have proved that the Dirac
oscillator exibits a new degeneracy of the energy spec-
trum, unknown in the literature. The case of time de-
pendent eigenvalues λj(t) may be examined in the core
of forthcoming investigations.
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Appendix

Proof. of relation (11) and (12)
Consider the equation of motion (10), rewriten as:

dX

dt
= UX (86)

where X = (x1
c , x

2
c , x

3
c , p

1
c , p

2
c , p

3
c) and U is a matrix:

0 −Mθ
2

−Mθ
2

−(1 + Mθ2

2
) −Mθ2

4
Mθ2

4

Mθ
2

0 −Mθ
2

−Mθ2

4
−(1 + Mθ2

2
) −Mθ2

4

Mθ
2

Mθ
2

0 Mθ2

4
−Mθ2

4
−(1 + Mθ2

4
)

M 0 0 0 −Mθ
2

−Mθ
2

0 M 0 Mθ
2

0 −Mθ
2

0 0 M Mθ
2

Mθ
2

0



,

with characteristic polynomial

P (λ, θ) =
(
λ2 +M

) (
λ4 +M2 + λ2M

(
3θ2M + 2

))
.(87)

The eigenvalues and the eigenvectors of the above ma-
trix can be simply given. Then the exact solution of the
equation (10) can be given analytically. Because of the
size of the solutions which can be found with a computer
software, we give here an alternative way to approximate
the result as follows :

• All the eigenvalues can be separated into λ
(`)
+ and

λ
(`)
− , ` = 1, 2, 3, such that

λ
(`)
± = ±i

√
M ± u`(θ,M), (88)

where u`(θ, t) are functions depending on θ and M .
More precisely, the first order computation gives:

λ
(1)
± = ±i

√
M, (89)

λ
(2)
± = ±i

√
M ± iMθ

√
3

2
+O(θ2), (90)

λ
(3)
± = ±i

√
M ∓ iMθ

√
3

2
+O(θ2), (91)

corresponding to eigenvectors

v1 =
( i√

M
,− i√

M
,

i√
M
, 1,−1, 1

)
(92)

v2 =
(
− i√

M
,

i√
M
,− i√

M
, 1,−1, 1

)
(93)

v3 =
(
−
√
M

2M
(
√

3 + i),−
√
M

2M
(
√

3− i), i√
M
, (94)

1

2
(i
√

3− 1),
1

2
(i
√

3 + 1), 1
)

+ O(θ2) (95)

v4 =
(
−
√
M

2M
(
√

3− i),−
√
M

2M
(
√

3 + i),− i√
M
,(96)

−1

2
(i
√

3 + 1),−1

2
(i
√

3− 1), 1
)

+ O(θ2) (97)

v5 =
(√M

2M
(
√

3− i),
√
M

2M
(
√

3 + i),
i√
M
, (98)

−1

2
(i
√

3 + 1),−1

2
(i
√

3− 1), 1
)

+ O(θ2) (99)

v6 =
(−√M

2M
(
√

3 + i),

√
M

2M
(
√

3− i),− i√
M
,(100)

1

2
(i
√

3− 1),
1

2
(i
√

3 + 1), 1
)

+ O(θ2) (101)

The solution of the system (10) at the first order in
θ can simply be written as:

xjc = (aj1 + θtaj2) cos
√
Mt+ (bj1 + θtbj2) sin

√
Mt (102)

pjc = (cj1 + θtcj2) cos
√
Mt+ (dj1 + θtdj2) sin

√
Mt (103)

where aj1,2, b
j
1,2, c

j
1,2 and dj1,2 are real constants,

which depend on the mass parameter M . The same
procedure can be extended to higher order terms of
θ as follows:
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• Suppose that the eigenvalue λ are reduced to (89),
(90) and (91), i.e. u`(θ,M) ≡ C`θ.

C` =


0, ` = 0

± iM
√

3
2 , ` = 1

∓ iM
√

3
2 , ` = 2

(104)

The solution of (86) becomes

Xj =
∑
±

∑
`

rj`e
±u`(θ,M)te±i

√
Mt,

=
∑
±

∑
`

rj`e
±C`θte±i

√
Mt (105)

The constants rj` ∈ R are the components of the
vectors vj, j = 1, 2, · · · , 6, and depend on θ and

M . Setting Aj = rj`(e
C`θt + e−C

`θt) and Bj =

irj`(e
C`θt − e−C`θt) yields

Xj =
[
Aj cos(

√
Mt) + Bj sin(

√
Mt)

]
(106)

Using the Taylor expansion of the quantities Aj and
Bj , the solutions (11) and (12) are well satisfied.
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