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Noncommutative Dirac and Klein-Gordon oscillators in the background
of cosmic string: spectrum and dynamics
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From a study of an oscillator in a 4D NC spacetime, we establish the Hamilton equations of
motion. The formers are solved to give the oscillator position and momentum coordinates. These
coordinates are used to build a metric similar to that describing a cosmic string. On this basis,
Dirac and Klein-Gordon oscillators are investigated. Their spectrum and dynamics are analysed

giving rise to novel interesting properties.
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I. INTRODUCTION

Noncommutative (NC) field theory could play a special
role in the description of particle physics near the Planck
length A\, = \/Gh/c3. This theory was the subject of in-
tense study during the last three decades and provided a
very interesting new class of quantum field theories with
intriguing and sometimes unexpected features. The idea
of noncommutativity of spacetime came from Snyder [1].
Its geometric analysis was given by Alain Connes [2]-[3].
The wide class of works on this subject and the physi-
cal implications such as the quantum Hall effect [4]-[5],
the string theory static solutions [6], the matrix model
or the 2D quantum gravitation theory [7]-[9] opened new
outlook on the study of physics. This made them partic-
ularly interesting and challenging for purposes of particle
physics model building.

However, the NC spacetime generalizes the ordinary
space by assuming the nonvanishing commutation rela-
tions between coordinates as [£#, #¥] = i0"¥, where (6/")
is skew-symmetric constant tensor. The operator algebra
of such NC spacetime can be represented by the algebra
of functions when the ordinary multiplication of functions
is replaced by the so-called Moyal star-product:

(f*g)(@) =m|exp |00, 99, ] (f © 9)(a)]
m(f®g)=f-g. frg€ C*R") (1)

(see [14] and references therein). Another noncommu-
tativity is described when the momentum components

become NC, i.e. [py,py] = i0,,, where (0,,) is related
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to the magnetic field [10]. Several physical models were
studied in this NC spacetime, such as the model of har-
monic oscillator, the dynamics of the relativistic parti-
cles, and the scattering theory.

Recently, the Dirac and KG oscillators were studied in
curve spacetime by introducing the tedrad fields e, or,
equivalently, the metric gh” = e’;egn“b, where 7 is the flat
spacetime metric [11]-[17]. These models were also imple-
mented in the topologycal defect background metric [15].
An important question that we address here in this pa-
per is the effects of noncommutativity on the dynamics of
the spin orbit particle. We show that the noncommuta-
tivity of the spacetime transforms the Minkowski metric
to the so-called cosmic string background. By giving the
solution of the oscillator dynamics using the Hamilton
equations of motion, we derive the corresponding defor-
mation of the spacetime metric, which depends on the
parameter f and is similar to that describing a cosmic
string. As application, we are interested in relativistic
particles described by Dirac and Klein-Gordon (KG) os-
cillators. Several motivations lead to the study of these
two models. See [11]-[24] for more details.

The paper is organized as follows. In the section (II),
we provide the dynamics of a harmonic oscillator in NC
spacetime. We show how this noncommutativity modifies
the corresponding metric. In the section (III), we study
the eigen-energies of the Dirac oscillator in the back-
ground of cosmic string. The same question is pointed
out in the case of the KG oscillator. Section (IV) is de-
voted to concluding remarks.

II. OSCILLATOR QUANTUM DYNAMICS ON
NC SPACETIME

In this section, we study the quantum dynamics on NC
spacetime. Using the Hamilton equation of motion of the
coordinates system, we derive and solve the correspond-
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ing equations of motion. We show, by a novel approach,
how a NC oscillator can be solved in the commutative
spacetime, and how this may affect the spacetime geo-
metric properties such as the metric tensor. Two cases of
noncommutativity are considered. The case, when only
coordinates are NC, and the case where both coordinates
and momentums are NC.

A. Case of commutative momentum components

We consider the spacetime geometry described with
the NC coordinates z* and momentums p,, u = 0, 1,2, 3,
which satisfy the star-commutation relations :

[p;upu]* =0, (2)

in which, A := 1; *x denotes the Moyal star product. For
f,g9 € C®(R* x R*) we write

[1#7 xu]* =i, [l'uapu}* = zé,‘j,

fxg = m[ePFPI] m(feg) =fg
b _ 0" 0 d
O T9 gan T G’

_ w0 9 9 0
Pro= 30 (8x“®8p” apu®axv)' (3)

The matrix 0#" is chosen to be

0 6y 6y 69
6, 0 0 0
o* = ) 907 el (4)
-6y =60 0 0
6y —0 —6 0

For instance, setting #y = 0 means that the time does not
commute with the space coordinates and plays the role
of evolution parameter. For all smooth function of coor-
dinates and momentums f(z,p), we have the following
identities

N ) = 28
Gl = oo HED) )

It is obvious that the NC coordinates are related to the
commutative coordinates by the followings transforma-
tions:

(L

Pu,c,

at — xt —
2

Pu = Ppcs (6)
where the commutative variables satisfy the commuta-
tion relations [z, z¥], = 0 and [z!,p, ], = 4. Con-
sider the Hamiltonian system, with Hamiltonian H €
C?*(R%,R), (z,p) € R* x R*. The Hamiltonian H does
not explicitly depend on the time z¥. Using the Taylor
expansion we write:

Ipl2

H(z,p) = =5 + V() +

9pc ]1 (Ope ) ) (Qpc)j“ ' ng(QCC) '
— 2 2 dalrdal? - dalr’
(6p )J - eﬂmc, j 0 =1,2,3. (7)

Mg

The equations of the dynamics associated to the coordi-
nates and momentums with the Hamiltonian (7) are

daff . dpk
dx? = ilze, H], dx

= ilpt, Hl.. (8)

For any choice of potential V(z), the above equations
lead to a cumbersome system of nonlinear differential

equations, not easily to solve. In the case where V(x.)

2
is the harmonic oscillator potential, i.e. V(z) = %,

the Hamiltonian H takes the form
1 M A

= el + 5 (|l = biyainl + 569 0up;cpk). (9)

We show in the sequel that the corresponding equations

of motion can be solved in this particular case. These

equations of motion are explicitly given by the following
system:

L= —gMa? — JMox? — (1+ M)
—1MO%*p? + LM6?p?

#2 = MOzl — LMOx3 — (14 MO))2
—1MOp} — 1 M6*p}

¥ = 1Mozl + 1M6ox2 — (14 M8 (10)
+1M6?p} — 1 M6?p?

pc = Mz — ;Mp? — 3MOp}

pc = Ma? + 3 MOp; — 3 M0Op}

pd = Ma?+ S Mopl + L MOp?

where “dot” means the first order derivative with respect
to the time 20 := ¢t. The system (10) can be solved, by
using the expansion series method, to yield the general
solutions:

zi(t) = f: |k (60" cos(v/M1) + b(00)" sin(VA1)11)

Pty =3 [ci(&t)k cos(VMt) + di (6t)F sm(\/Mt)} (12)

ES
I
=3

Note that p/ = MaJ. Then the series a,~C and b] are
related to 07 and alJ by the recursive relations

cj,? =(k+

d), = (k+
We consider the particular case in which we assume that
there exist the constants ag and 3y such that

1)M0a,, | +V/M3b]

: . 13
1)MOb),, | — vV M3a), (13)

)MHCL,CJrl + VM3b]

Oéobj = (k‘ (14)
Boay, = (k + )Meb?cﬂ VM3,



Then, the series ai and bi satisfy the two-term recursive
relations

. 2092
(50 + \/W)ai G +0142(k—\k/]2\/%]3\/[ o aj, o =0 (15)

. 202
(a0 = V)1, - (k +ﬂlj(f 31?7)?4 =0 (16)

the solutions of which are of the form:

@ = (—1>’5(WM3—ao)<vM3+ﬁo>)é a7
k @ k! M?20? ’
, (—1)5 (/M3 — NAVE k
k! M?26?
where Qib are real constants. Letting 7?> =

( M3—oz3v)[(2 M3+50) and ag = Py = p transforms the ex-
pressions (11) and (12) into the following form:

e For VM3 > p

I (t) = Re [eit"(Qg cos VMt + Q] sin v Mt)}

= cos(tr])(Qgcos\/Mt—l—Q{)'sin\/Mt)7 (19)
pit) = Re[peit"(ﬂicos\/MtJrQisinth)]

= pcos(tn) (9 cos VMt + Q) sin VMt). (20)
e For VM3 < p

2i(t) = e QI cos VMt + Q] sin vV Mt) (21)
PL(t) = pe (I cos VMt + Q) sin VMt). (22)

These expressions represent the solution of the noncom-
mutative oscillator in the commutative variables. They
do not depend on the deformation parameter €, and
hence are not affected by the noncommutativity of the
spacetime.

Let us examine now how these solutions may modify
the geometry. Let g. and g are the metrics of ordinary
and NC spacetime, respectively. We assume that g. ., :=
N = diag(—1,+1,+1,41). Then using (6), (19) and
(20) we get

g = nNudz'dx”
3 2¢ikpil
= —dt* + Y (doddo] + ¥
+j:1 e 4

d(Ek’cdiEl’c) ,(23)

which can explicitly be written in the matrix form as:

-1 0 0 0
292 292 22
0 14 £9 p~0 _p9
() = T ol e
22 292 202
0 ©“0 1 + ©-0 ©-0
1 2 1
2202 2202 2202
0 fKT KT 1+ KT

In the diagonal form we get
g1 = diag(~1, 33, A3, A3), (25)
with eigenvalues

392@2

MN=1 \N=1+ =2, (26)

and eigenvectors

u_; = (1,0,0,0),
u)\z = (07_1a071)7

uy, = (07 17 71, 1)7
uy, = (0,1,1,0).  (27)

Then the determinant of the metric g, denoted by g, is
. 362 2 004 o4
det(g) = —(1 + =+ =&

o ) In a compact form, we
get:

3
g = —d® +) aj(0)(del)’, a;(0) =Xy, (28)

in which the parameters a;(8) = A;, j = 1,2,3 play the
role of the scale factors.

B. Case of noncommutative momentum
components

Here we consider the quantum spacetime described
with the NC coordinates z* and momentums p,, u =
0,1,2,3, which satisfy the star-commutation relations :

[$M7x”]* = 7;9“”) [xu7pl/}* = i"$57 [plmpl/]* = iéﬂlﬂ (29)
where the Moyal star product takes the form

fxg = rri[exp(Pg + P + Ph)]
0" 0 0
Py = 5 apn ® o (30)

The skew symmetric matrix () is chosen to be

0 90 9_0 g()

_ —6y 0 6 0 o

o = , 0o, 6ER (31)
—0y -0 0 60
—0y —0 —0 0

For instance, by choosing 8y = 0, the NC coordinates are
related to the commutative coordinates by the relations:

1
2

1-
ot =all — 0"p, ., P =ph+ 59’”%,0, (32)

such that the following commutation relations hold:
[z, x¥], = 0, [z8,pu.c]s = 108, [p¥,p%]. = 0. The ten-

co (&

sor k takes the form:

R = (1 + %é)aﬂ". (33)



Like (5) we get

[z f(x,p)]s = i R i o7
015 0 0
Sl = - OB s IED) )

Then the Hamiltonian of the NC harmonic oscillator can
be written as:

1 _
H = §<|pc|2+‘9¢jpﬂj+ ~0'9; kl’jcﬂf)

M
+ 5 <|517c|2 — Oyatpl + 19 jaikpj,cpc)- (35)
This leads to the following sytem of equations of motion
il =-3(MO+0)x?—L(M6+0)z?
_(1 + MTez)pl _ %MGQPQ 1M92 3
i =3(MO+0)xl — L(MO+ 0) 3
—(1 4 ME)p2 — M6pl — L M6}
2 =5 (MO+ )z + 5(M6 +0)a?
(1 + 7)1)(‘ 1M92 1 1M92 2 (36)
Pe = —*(Mﬁ +0)p? — *(MH + 9)19c
(M+ T)al + 16222 — 1623
pe (M0+9) Cfa(Mew‘)pi'
+(M + )a? + {02l + 6%
pi = 5(MO+0)p; + 5(M0+0)p?
- P z
+(M + & )22 - 10%2! + 10%22

After some algebra, and exploiting the expansion series
method, we obtain:

2i(t) = ZZ (0t + Gt)k+ {aiecos(\/l\?t)

k=0 ¢=0

+bM sin( \/7t ] (37)
pi(t) = ZZ“’“ 1)+ ], cos(v/ M)

k=0 £=0

+ dj, sin(VMY)) (38)

Now by setting pi(t)
recursive relations:

MO+ 0)(k+0+1)

= M#i(t), we get the following

Cu = 9 (ak+1 (+a, 1) FVM 3b,
MO+ (k+e+1), : —
dyy = B) (bgﬁl,l + biz,zH) - VM3a,

o and [y are two constants such that C{@e = aob %o and

di, ﬁoau We come to
30 M?%(0 +0)?
(Bo + VM3)aj, 74(a0_m)(k+€+1)(k+£+2)

X

(ak+2 0205 0t ee)  (39)
and

— M?(0 +6)?
(ao - Mg)bie = ( )

74(ﬁ0+m)(k+£+1)(k+€+2)

4

X (bi+2,z + 2bi+1,5+1 + b;c,2+2)‘ (40)

The recursive relations (39) and (40) can be solved by
setting aj, = akH and b, = bk+£ We then get the

solutions:

3 ((M — o) (VM? + By)

i i (5D 3
bk = a = Qb7a M2(0 + 5)2 ) (41)

k!

The zJ(t) and pl(t) are given by (19) ,(20),(21) and (22).
In the sequel, we perform some illustrations.

III. APPLICATIONS TO THE RELATIVISTIC
PARTICLES

A. The Dirac Oscillator

We derive equation governing the Dirac oscillator
in noncommutative space in the background of cosmic
string. The model is described in the cylinder coordi-
nates with the FLRW metric

ds® = —dt® + X2 (t)dr? + N3 (t)a2r?de® + Ni(t)d=?, (42)
—00 < (t,2z) < oo, > 0and 0 < ¢ < 27. The parameter
« is related to the linear mass density M of the string
by @ = 1 —4M and belongs to the interval (0, 1], corre-
sponding to a deficit angle v = 27(1 — «). We choose the
scale factors A1(t), A2(t) and As(t) to be now functions
of time and implicitly on 6. The particular case where
these three parameters \; are constant depending on 6
(see (28)) will be discussed hereafter. In accordance with
the metric (42) the tetrad e”(x) such that gh” = eteln
is chosen to be

0 e sime g
[el] = M M (43)

a
__sinp cose
0 Asar  dzar 0

0 0 0 +
where the Greek indices is related to the curve space
indices and the Latin indices to the Minkowski space in-
dices. Remark that the tetrad (43) is not uniquely de-
fined. Any tetrad is related to (43) by the local Lorentz
transformation A¢ as e/ (z) = Ab(x)el'(x). The spinor
connection is defined by

1
F,u = 8 # [’Yca’yd] (44)
G = Tl e (49)

v* are the Dirac matrices in Minkowski space and L'y,
is the Christoffel symbol. We also use the follow-
ing notations related to the curve cylindrical coordi-
nates: (u,v) = (¢,7,¢,2) and (a,b) = (0,1,2,3) for



the Minkowki space. Using (43) we can show that
r,=(0,1I,,T,I.), where

M

M .
r. = 5 1071 CO8 P — =072 SN P,

2 . 2
FLp = ?QT’VO’YI sm e — 7@7"")/0’}/2 COs ¢

1 Ao
(1= =
2( N ) 7172,
A
L. = —*23707& (46)

In the above relation )\7 = %. The Dirac matices are

= elfy*, explicitly writen as:

t _ .0
7 11’ v
vo= )\—lcosg0+/\—151ng0,
7= r
Az’
2
. 2 47
K )\2ar51n<p+)\2arcosnp, (47)

where we take the standard Dirac matrix to be

,i=1,2,3.

o' are the Pauli matrices. The Dirac equation is the
FEuler-Lagrange equation of motion of the action

St 0.1 = [ Vegda vty (18)
where g = det g" = —A22\3\2a2r? and
M =iy (V, +T,) —iy"y*Mwr — M. (49)

We get
[mﬂ(v“ +T,) — i7"y Mwr — M}w =0.  (50)

M is a mass of the Dirac particle, v is a spinor four-
components of the wave function; V, is

1 0
moQxr’
In general V,, given in (51) is not a Hermitian operator

and its components do not commute. So, the following
definition will be used:

V() = lgI™0ullg*), (52)
such that, for g"” defined in (42) we find:

V.=h g = h 2. (51)

j2

ol A A )
Vo = 2()\1 " )\3)+8t’ (53)
1 0
r = 5. a0 4
v 2r + or (54)
0
Vo = 55 (55)
V, = 4 (56)

%.

These expressions mean that the wave equation £2¢ =
1041 is modified as
Iy ol Ao A /.\3)
enth = Vv = i[5 (T + 0+ o)+

0

—|. 57

)V (6D

In the case where \;, j = 1,2, 3, are such that }\j/Aj are

constants, the energy spectrum takes the form

0 Z()\l /.\2 )\3) 0 A

€n, =€ —(—=+—=+=)=¢ € 58
Now let us assume that A;, j = 1,2, 3 are the constants

given in (26), and the particle moves in (z,y) plane.

Then, &, = 2 and €Y need to be computed. We use

the variables separation method in the Dirac equation

(50) as follows:

btz e [ PO )

wb(r’ (P)
The 2z dependence of the wave function is removed due
to the phase factor of the form e**?, in which k£ may

be vanished. Using (59) we come to the two following
differential equations:

A1 (01 cos p + o2 sin <p) (M — 52)1ZA

+[Q+Mu)r—( Al 1)1+/\1i03i}1;13:0

or 2a g ) )\725890
(60)
A1 (01 cos ¢ 4 o2 sin <p> (M + 5%)1’/;3
3 Al 1 )\1 i03 3 o
~lgr ~ Mo = (g )7+ ar ap)PA =
(61)
Let us define the differential operators:
)\1 1 ma3 A
H = |—+M — (= 22
! |:d’l”+ w +)\2’[“(20{ 043 )\1):|
d )\1 1 mao )\2
— — Mwr——(—+ — - — 62
% {dr " )\2r<2a+ o /\1)}’ (62)
d )\1 1 m03 )\2
Hy = |—F+Mwr——(—+4+——-—=
2 |:d’l”+ wr 27“(20[ 053 Al):|
d 1 1 mo )\2
X {—r _MWT+?(%+T+/\T) }(63)
By setting
ca=M(M—g,), & =M (M+ep), (64)

Ya(r, @) = €M Pha(r), du(r, ) = ey (r) (65)
we arrive at the eigenvalue problems
Hi Yo = catyta,  Hathy = cacithy. (66)

Now let us recast the spinors zza and lzb as

~ /(Zal ~ &bl
’(/Ja = 5 wb = . (67)

JaQ Jb2



The functions {/;m»,i = 1,2 and Jbi,i = 1,2 satisfy the
well known Laguere polynomial equation:

Py 2diy . (

2 o —
2 — M2 40 ) du(r) = 0, (68)

where | = al, a2 or bl, b2, and 79,
depending on [, given by

72 are two constants

Ny = —€q€p — Mw(1+ H‘jm i;)
l=al

_ _ Miom(1+2m _ A (69>
=73 "2 2 X1
o = —€acp — Mw(1+ 2 3’"?;)
2 l=a2 (70)
_ 11-2m (1-2m _ Az
= 73 2a ( 2a ,\1)

o = —E€a€h +MW<1 + 1-&-(3;?‘\2) I=b1 (71)

AT 142m (1+2m X

=73 2 2a 1
N = —¢ 5b+Mw(1+ 1= 2’”’\1)
¢ > =2 (12)
_ 11-2m (1-2m _ Ao
M =" 2a ( 2a /\1)

The general solution of equation (68) is given by

[N

ez Mur? Af*LA(er ) (73)

Jz (r) = (MW)A;

T\

where

1
/\:5\/174772, (74)

) —2Mw — MW\/]. —47]2
B 4AMw

Q) = /000 e F AP LA (2)2dz, (76)

(75)

The eigenvalues ¥ giving the energies of the model be-
come

o for |m| <1 (A a—l)

1
el = [MQ 4M“(n+1)}2
M L, ()
0 = [MQ 2Mw(2n+1 lijm%)}z
e for |m| > = (A a—l)
3
_ [MQ—i— 2]}\\42w(2n+1_|_ 1:|:5m%>:|
! (78)

1
0 _ |:M2 + 4l\<§)n:| 2

Remark 1. Our analysis highlights a new degeneracy of
the energy spectrum for the different values of the pa-
rameter m. This result sheds light on the fact that the
spectrum (77) does not exist in the literature and should
be considered as a new feature caused by the bounds of

m. We have also shown that € depends on the defor-
mation parameter 0 or ;. We write €9 = £9(0). In the
commutative limit, in which A\; =1, or 6 = 0, the expres-
sion (77) is not well defined. In this situation the energy
spectrum is given in (78). This corresponds to the results
computed in [11]-[18] (and references therein). Note that
the same analysis can be made in the case of non vanish-
ing electromagnetic fields solved in the commutative case
in [15].

B. The Klein-Gordon oscillator

This section aims at applying the method used in the
section (II) to the KG equation. Consider a scalar field ®
written in the cylindrical coordinates as ® = ®(t,r, ¢, z).
The KG oscillator is given by the following equation, (see
[22] for more details):

(O, — M*)® =0, (79)

where the Dalembertian operator in the spacetime de-
fined with the metric (42) is

Os = (V,+ T+ Mwr,)(VH+TH* — Mwr®).  (80)

The Einstein summation is applied in the cylindrical co-
ordiantes , with = (t,7, ¢, z) and Tu = (0,7,0,0).

Suppose that the eigenvalues \;, 7 =1,2,3 deﬁned in
(42) are constants as expected in (26). By replacing the
relations (46) and (53) in the KG equation (79) we come
to the differential equation

0? 9
@+O(r,¢,z)+M}¢—0 (81)
where the operator O(r, ¢, z) is
102 1,1 02
0 = —=
(ry 0, 2) A3 022 /\2 ( 5‘7’)
1 0 A2 2
£5(1-52)]
S Ma?r2? {&p A
3 M2w2 9
2/\2Mw+ v r (82)
Equation (81) admits the variable separation as

B(t,r,p,z) = e~iEnt+ikz+imed(p) in which the radial
function ®(r) satisfies the following equation:

2 1 .
{ d ’72 M2w7‘+ﬁo}<l>:0, (83)

dr? ' rdr
where
i = ﬁ+g;<mi2<1—ij )]
o = —§Mw—A§(M2—59L?). (84)

2

The solution of this equation is given in (73). The energy
spectrum becomes

1
1 3 ’
ey = {M2+)\2[4n+2Mw+2+2\/ﬁ2} .(85)



The commutative limit corresponding to A\; = 1,5 =
2,3 is readily obtained.

IV. CONCLUDING REMARKS

In this paper we have investigated the dynamics of the
harmonic oscillator in NC spacetime. The differential
equation of motion deduced from this analysis has been
solved. The corresponding deformation of the spacetime
metric has been given. As application, the Dirac and
KG oscillators have been explicitly described in the back-
ground of cosmic string. We have proved that the Dirac
oscillator exibits a new degeneracy of the energy spec-
trum, unknown in the literature. The case of time de-
pendent eigenvalues A;(f) may be examined in the core
of forthcoming investigations.
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Appendix

Proof. of relation (11) and (12)
Consider the equation of motion (10), rewriten as:

dX
—— _UX

where X = (21,22, 23, pL,p?,p?) and U is a matrix:

0 7# 7% —(1+ %92) 7]%492 M492
mée 0 _%9 _M492 —(1+ MT02) _M492
BN 0 MEL NP

)
M 0 0 0 — M6 — M6
0 M 0 Mo 0 — Mo
0o 0 M A6 o6 0

with characteristic polynomial
P(A,0) = (N + M) (\* + M? + X*M (30°M +2)) (87)

The eigenvalues and the eigenvectors of the above ma-
trix can be simply given. Then the exact solution of the
equation (10) can be given analytically. Because of the
size of the solutions which can be found with a computer
software, we give here an alternative way to approximate
the result as follows :

e All the eigenvalues can be separated into /\(f) and
)\(f), ¢=1,2,3, such that

AY = 4/ + W (0, M), (88)

where u‘(0,t) are functions depending on § and M.
More precisely, the first order computation gives:

AY = 4V, (89)
A = VAT j:zMe\[ o?),  (90)
AP = 4ivVM Fi 92‘[+0(92), (91)

corresponding to eigenvectors

vlz(\/iﬂ,—\/%,\/%,l,—m) (92)

sz(—\/iﬁ,\/%,—\/iﬁ,l,—l,l) (93)

Vg = (—g(ﬁ‘FZ),—

1

2

VM L
W(\/g—z)a Jii
(iv/3 — 1),%(i\/§+ D.1)+0@)  (99)

» (94)

va = (—g(ﬁ—i),—@(\/ﬁ—%i),— ZM,(96)
(f+1) _i(ﬁ‘l) 1) +0(6%)  (97)
vs = (gg(ﬁ—i),gg(\/ﬁﬂ),\/ﬂ, (98)

VB 1), (V- 1),1) + 0(6?) (99)

ve = ( r(\[Jrz)\/M

S (V3 —1i),— ,(100)

VM
1

SV3-1), 5(z'\/§+ 1), 1) 1062 (101)

The solution of the system (10) at the first order in
6 can simply be written as:

zl = (al + Otal) cos VMt + (b + 0tb}) sin v Mt (102)
Pl = (¢} + 0tch) cos VMt + (d] + 0td}) sin vV Mt (103)

where a]1 2 b1 0, Cl 2 and d1 5 are real constants,
which depend on the mass parameter M. The same
procedure can be extended to higher order terms of
0 as follows:



e Suppose that the eigenvalue A are reduced to (89),
(90) and (91), i.e. u®(6, M) = C*0.

0, =0
Cf=9q 43 g (104)
FIMVE g9
The solution of (86) becomes
i — J +u(0,M)t +iv/Mt
X! = zi:%:rge @.M)t ,
= ZZrZeiCzeteiimt (105)

= ¢

The constants 7 € R are the components of the

vectors vj, j = 1,2,---,6, and depend on 6 and
M. Setting A1 = 7J(eC0t 4 ¢=C"0) and BI =

id (oCE0t —Choty
iry (e —e ) yields

X7 = | A7 cos(VMt) + B sin(v/Mt) (106)

Using the Taylor expansion of the quantities A7 and
B’ the solutions (11) and (12) are well satisfied.
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