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Abstract 

A key challenge for cognitive neuroscience is to decipher the 
representational schemes of the brain. A recent class of decoding 
algorithms for fMRI data, stimulus-feature-based encoding 
models, is becoming increasingly popular for inferring the 
dimensions of neural representational spaces from stimulus-
feature spaces. We argue that such inferences are not always valid, 
because decoding can occur even if the neural representational 
space and the stimulus-feature space use different representational 
schemes. This can happen when there is a systematic mapping 
between them. In a simulation, we successfully decoded the binary 
representation of numbers from their decimal features. Since 
binary and decimal number systems use different representations, 
we cannot conclude that the binary representation encodes decimal 
features. The same argument applies to the decoding of neural 
patterns from stimulus-feature spaces and we urge caution in 
inferring the nature of the neural code from such methods. We 
discuss ways to overcome these inferential limitations. 

Introduction 
A key challenge for cognitive neuroscience is to decipher the 
representational schemes of the brain, to understand the neural 
code that underlies the encoding and representation of sensory, 
motor, spatial, emotional, semantic and other types of 
information. To address these issues researchers often employ 
neuroimaging techniques like functional magnetic resonance 
imaging (fMRI), which measures the blood oxygenation level-
dependent (BOLD) activation in the brain that is elicited when 
participants engage with different stimuli. A common 
assumption has been that the underlying neural representation of 
each stimulus has measurable but complex effects on the BOLD 
activation patterns. In order to understand what those patterns of 
activity can tell us about how the brain processes and represents 
information, researchers have used various analytical tools such 
as univariate subtraction methods, multivariate pattern (MVP) 
classification, representational similarity analysis (RSA) and, 
recently, explicit stimulus-feature-based encoding and decoding 
models (for reviews, see Davis & Poldrack, 2013, Haxby, 
Connolly, & Guntupalli, 2014, or Naselaris, Kay, Nishimoto, & 
Gallant, 2011). Despite their differences, these methods aim to 
quantify how changes in task conditions and the properties of the 
stimuli relate to changes in BOLD activation and vice versa. 
Where these methods differ is in how they achieve that mapping 
and in what inferences they allow us to draw. 

In this article, we review some of the known inferential 
limitations of existing fMRI analysis methods and we highlight 
a previously unrecognized issue in interpreting results from 
stimulus-feature-based encoding and decoding models. The 
latter are steadily becoming the de facto gold standard for 
investigating neural representational spaces (Haxby et al. 2014, 
Naselaris & Kay, 2015). 

Univariate vs. multivariate analysis 
Before the advent of the more advanced techniques we review 
below, the main fMRI analysis tool was based on comparing 
how activity in a single voxel or averaged activity in a 
contiguous area of voxels differs between task conditions or 
stimuli. These univariate subtraction methods have been 
informative about the relative engagement of certain brain areas 
in specific tasks. Unfortunately, the coarse nature of this method 
precludes fine-grained inferences about the underlying 
representational content and computations that give rise to the 
observed BOLD signal. By ignoring the possibility that 
information might be represented in a distributed manner across 
voxels, the assumptions underlying univariate subtraction 
methods limit their use in understanding neural representations. 
In addition, these methods cannot tell us whether changes in 
activation are due to representational preferences, processing 
differences, or attentional variation among conditions 
(Coutanche, 2013). 

In contrast, multivoxel pattern analysis (MVPA) techniques 
have attempted to overcome this limitation by looking at how 
various categories of stimuli or task conditions lead to 
differences (i.e. MVP classification) or similarities (i.e.  RSA) in 
distributed patterns of activity over multiple voxels. These 
methods have become popular because they allow researchers to 
study neural representational spaces with increasing sensitivity 
and resolution. For example, a seminal study by Haxby et al. 
(2001) found that visual object categories can be classified based 
on the pattern of activation that their exemplars elicited in the 
ventral temporal cortex. The classification was successful 
despite the lack of overall activation differences in that region. 
Similar methods have been used to show that concepts have 
language-invariant representations in the anterior temporal lobe 
(Correia et al., 2014), that very similar visual scenes can be 
discriminated in the hippocampus (Bonnici et al., 2012) and that 
during their retrieval from memory, the shape, color and identity 
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of visual objects can be differentially decoded across several 
cortical areas (Coutanche & Thompson-Schill, 2015).  

Despite early enthusiasm that MVPA methods could be used 
to understand the structure of the neural code and the nature of 
the underlying representations (Norman, Polyn, Detre, & Haxby, 
2006), conventional MVP classification and RSA techniques 
share one of the same fundamental inferential limitations of 
univariate methods. Successful classification or careful 
inspection of confusions/similarity matrices can indicate that 
some relevant information about the stimulus class is present in 
the population of analyzed voxels, but it cannot identify exactly 
what that information is, or how it is represented and organized 
(Naselaris & Kay, 2015; Poldrack, 2011; Tong & Pratte, 2012). 
Because neural data is correlational, many different properties of 
the stimuli might lead to successful classification of the stimulus 
category, the task condition, or the brain state in question. For 
example, successfully categorizing whether a word represents an 
animate or an inanimate object does not necessarily mean that 
the region of interest encodes that category distinction. There are 
many differences between animate and inanimate objects, such 
as differences in their sensory and functional features (Farah & 
McClelland, 1991) that could be responsible for the successful 
classification. 

Another limitation of conventional MVP classifiers is that 
they cannot generalize and predict behavioral responses to novel 
types of stimuli or task conditions. To understand why, we can 
conceptualize classifiers in terms of types and tokens. An MVP 
classifier is usually trained on stimuli that are tokens from 
several types. For example, the stimuli tokens might be different 
category exemplars, and the classifier is trained to predict the 
type of category to which they belong. Alternatively, the tokens 
might be multiple presentations of the same word in different 
modalities or languages and the types are the unique words 
themselves. In the first case, the classifier can only be used to 
predict category membership of words that belong to one of the 
categories on which it was trained. In the second case even 
though the classifier could be used to predict exemplars in novel 
languages or modalities, it is again restricted only to exemplars 
of the words on which it was trained in the first place. In general, 
while the tokens being tested might be novel, they will be 
potentially decoded only if they are exemplars of a type that has 
already been trained on.  

For example, if one trains a classifier to predict the color of 
objects and trains it on yellow and orange objects (Coutanche & 
Thompson-Schill, 2015), one will not be able to predict the color 
of novel objects that are green. This methodological limitation is 
important - just as understanding how the decimal system 
represents numbers allows people to understand and manipulate 
numbers they have never seen before, a complete understanding 
of any neural representational system should allow researchers 
to use the neural pattern associated with novel stimuli to predict 
their identity, even if those stimuli are not exemplars of the types 
on which a particular model was trained on. 

 
 

Stimulus-feature-based encoding models 
To overcome this limitation many researchers are turning to a 
novel analysis method that is known by a few different names – 
voxelwise modelling (Naselaris & Kay, 2015), stimulus-model 
based encoding and decoding (Haxby et al., 2014), voxel-based 
encoding and decoding models (Naselaris et al., 2011), and 
forward models (Brouwer & Heeger, 2009; Fernandino, 
Humphries, Conant, Seidenberg, & Binder, 2016). This 
approach can decode the identity of novel types of stimuli from 
neural activity by predicting activity not for the stimuli 
themselves, but for a set of simpler features into which they can 
be decomposed. In a seminal study, Mitchell et al. (2008) 
predicted the neural activity associated with individual novel 
words based only on the activation of other words. To achieve 
that, they decomposed each word into a vector of weights on 25 
sensory-motor semantic features (verbs such as “eat”, “taste”, 
“run”, “fear”, etc.). The weights were estimated from co-
occurrence statistics of the word with each verb feature in a large 
corpus. They trained a classifier to predict the neural activity 
associated with each constituent feature of a training set of 
words, which resulted in separate neural activation maps for 
each feature. Neural activity for novel test words was then 
predicted highly accurately as a linear combination of the 
semantic feature activation maps weighted by the association of 
the word with each feature. Based on these results, Mitchell et 
al. (2008) concluded that the neural representation of concrete 
nouns might be based on sensory-motor features. 

Similar approaches have been used to predict the neural 
response to novel natural images using Gabor filter features 
(Kay, Naselaris, Prenger, & Gallant, 2008), to novel colors based 
on color tuning curve features (Brouwer & Heeger, 2009), to 
novel music clips based on acoustic timbre features (Casey, 
Thompson, Kang, Raizada, & Wheatley, 2012), to natural 
sounds based on frequency, spectral and temporal modulations 
(Santoro et al., 2014), to novel faces based on a PCA 
decomposition of face features (Lee & Kuhl, 2016), to novel 
words based on subjective sensory-motor ratings (Fernandino et 
al., 2016). The motivating question behind the majority of these 
studies has been about the nature of the representations used by 
the brain in encoding the experimental stimuli, and the results 
have been used to argue that the neural representation is based 
on the constituent features of the stimuli used in the model. 

To summarize, stimulus-feature encoding models generally 
use the following analysis procedure: 1) Specify a set of features 
and dimensions that hypothetically underlie the representation of 
a stimulus set in brain. 2) Decompose a set of stimuli into vectors 
of weights for each feature. 3) Select a region of interest (ROI) 
in the brain from which to analyze neural activation. 4) Train a 
model to predict activity in each voxel for a training set of 
stimuli, using the weights of their features as predictors. 5) 
Derive activation pattern maps (e.g. regression coefficients) 
associated with each feature. 6) Predict neural activity in the ROI 
for novel stimuli, based on their feature weights and the 
activation pattern maps for each feature. 7) Compare predicted 
neural activity for each novel stimulus with their observed neural 
activity and derive a measure of fit and accuracy. In essence, 
stimulus-feature-based encoding models attempt to map a 
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stimulus feature representational space, where each feature is a 
separate dimension, and each stimulus is a point in that space, to 
a neural activation space, where each voxel is a separate 
dimension, and the activation pattern elicited by each stimulus is 
a point in that space. 

What can we infer about neural representations? 
What can a successful mapping between a stimulus feature space 
and a neural activation space tell us about the nature of the 
representation used by the brain? A common inference in these 
studies has been that if you can predict the identity of novel 
stimuli based on that mapping, then the neural representation is 
likely based on the feature set used by the model. Put formally, 
the inferential claim goes as follows:  

1) We can represent certain stimuli as a combination of 
lower-level features 

2) We can show that it is possible to predict the neural pattern 
caused by a novel stimulus in brain area A from an 
encoding model based on these features 

3) Therefore, brain area A encodes those features and uses a 
representational scheme based on them.  

This claim has been made to different degrees both in 
theoretical and methodological papers reviewing the 
approach (e.g., Haxby et al., 2014; Naselaris & Kay, 2015; 
Naselaris et al., 2011; Norman et al., 2006; Tong & Pratte, 
2012), as well as in empirical studies that use it to address 
representational questions (Fernandino et al., 2016; Kay et 
al., 2008; Mitchell et al., 2008; Santoro et al., 2014; although 
some are more cautionary, e.g. Lee & Kuhl, 2016). If this 
inference is valid, then encoding models could be an 
extremely powerful tool for understanding the nature of 
neural representations. 

A useful illustrative example of this inference in practice 
comes from a recent study by Fernandino et al. (2016). The 
authors wanted to understand how conceptual information is 
represented in a set of higher-order non-modality-specific brain 
regions in General Semantic Network (Binder, Desai, Graves, & 
Conant, 2009). An encoding model based on subjective ratings 
for 5 sensory-motor features of training words (“color”, 
“motion”, “sound”, “shape”, “action”) was used to predict 
activation patterns related to novel individual words. The model 
successfully predicted above chance the brain activity patterns 
for concrete words in the semantic network regions (61% mean 
accuracy), but not in a set of control regions associated with 
visual word form processing. Based on this finding, Fernandino 
et al. (2016) suggested that “the brain represents concepts as 
multimodal combinations of sensory and motor representations” 
and that “heteromodal areas involved in semantic processing 
encode information about the relative importance of different 
sensory-motor attributes of concepts, possibly by storing 
particular combinations of sensory and motor features”. 

 

                                                           
1 this problem is similar, but not identical, to the problem of 
reverse inference (Poldrack, 2006) 
2 Whereas a minor degree of systematicity does seem to exist 

Here lies the problem – this inference is not formally valid. 
We need to consider what the data would have looked like if the 
underlying neural representation was actually different (Mahon, 
2015). In this example, the successful decoding of conceptual 
identity in the GSN based on an encoding model of sensory-
motor features does not necessitate the representational format 
in the GSN to be sensory-motor in nature. The results might be 
obtained even if the GSN uses amodal representations, as long 
as there is a non-arbitrary mapping between representations in 
the GSN and sensory-motor features. To illustrate, let us 
hypothetically assume that the GSN literally encodes word co-
occurrence statistics. As co-occurrence statistics correlate with 
sensory-motor feature ratings, it would be possible to predict 
GSN activity patterns based on these features, even if they are 
not driving the activity patterns. In contrast, successful decoding 
would be impossible if the mapping between the GSN 
representations and sensory-motor features was arbitrary. Thus, 
Fernandino et al.'s (2016) results constitute evidence against the 
possibility that conceptual representations in heteromodal areas 
bear an arbitrary relation to sensory-motor features, as has been 
argued by some proponents of symbolic systems (Fodor & 
Pylyshyn, 1988), but should not be taken as conclusive evidence 
that the GSN encodes multimodal sensory-motor information. 

This issue is not limited to the specific study discussed above. 
To put the claim more generally, we argue that information in 
one representational system might be decoded based on features 
from another, even if they use different representational 
schemes, as long as there is at least a partially systematic 
mapping between them. Specifically, while such encoding 
models should be able to predict the neural activation from the 
features of a stimulus if the brain uses a representational scheme 
based on those features, the reverse is not guaranteed1. A 
successful prediction can also occur when the stimulus feature 
space is systematically related to the features that underlie the 
neural representational scheme. However, that relationship need 
not be one of equivalence. There are at least three ways in which 
mappings between representational systems can be made and 
successful prediction can occur in two of those cases. 

Types of mappings 
Arbitrary mappings between representations. First, items 
from two representational systems might be related in an entirely 
arbitrary way. For example, the meaning of words is mostly 
unrelated to their orthographic features2, and the geographic 
locations of countries are not predictive of their names, etc. More 
generally, consider two unordered sets of items, ܣ =
,ଵܣ} ,ଶܣ … , ܤ ௡} andܣ = ,ଵܤ} ,ଶܤ … ,  ௡}. An arbitrary mappingܤ
between these two sets exists when the mapping from a specific 
item in set A to a corresponding item in set B is unrelated to the 
mappings between the remaining items in the sets. In the context 
of encoding models and the brain, decoding of novel items from 
one set would be impossible based on a feature model from the 
other set, if these two sets are arbitrarily related.  

in this domain (e.g., Monaghan et al., 2014), word meanings 
cannot be systematically predicted based on their 
orthography and vice versa. 
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Sets that use the same representational format. In contrast, a 
successful prediction can occur if the two sets use the same 
representational format. Consider the set of multi-digit numbers 
in the decimal system, ܣ = {10,11, … ,427, … }, and the set of 
10 digits in the decimal system, ܤ = {0,1,2,3,4,5,6,7,8,9,10}. 
These sets use the same representational format to represent 
quantities (the decimal system), and there is a systematic linear 
mapping from the features (the digits), to the multi-digit 
numbers, such that: 

݀௡݀௡ିଵ … ݀ଵ݀଴ =  ෍(݀௜ × 10௜)

௡

௜ୀ଴

 

3491 = 3 × 1000 + 4 × 100 + 9 × 10 + 1 × 1 

When we have such systematic mappings between systems 
that use the same representational format, knowing the mapping 
function allows us to decompose any item from set A as a 
combination of features from set B. An example of such a 
mapping would be Fernandino et al.’s (2016) suggestion that the 
general semantic network encodes multimodal combinations of 
sensory-motor features by integrating information from 
modality-specific sensory-motor areas. If this were true, then 
you could predict the neural pattern of novel items from their 
featural representations, which is what that study found as well. 

Sets that use different but systematically related 
representational formats. However, there is an alternative, 
which would also allow you to make a successful prediction 
from encoding models. Two sets can use different 
representational schemes, while maintaining a systematic 
mapping between themselves that allows us to predict the 
mapping of any one pair of items from knowledge of the 
mapping function. Within the context of conceptual 
representations in the brain, higher-level heteromodal areas 
might use a representational code that is different from the one 
used by sensory-motor cortices, but there might be a systematic 
mapping between representations in each system3. 

For a simplified example, consider the relation between the 
decimal and the binary systems for representing numeric values. 
A binary represented value can be transformed into a decimal 
number by applying the following formula: 

 

                                                           
3What makes representational codes different is a 

surprisingly difficult question to answer. Due to space 

൫݀௡݀௡ିଵ … ݀଴൯
ଶ

→  ൭෍(݀௜ × 2௜

௡

௜ୀ଴

)൱
ଵ଴

 

10011ଶ → 1 × 2ସ + 0 × 2ଷ + 0 × 2ଶ + 1 × 2ଵ + 1 × 2଴

= 16ଵ଴ + 2ଵ଴ + 1ଵ଴ = 19ଵ଴ 

Clearly, there is a systematic but non-linear mapping between 
the decimal and the binary system, and yet, these two systems 
use different codes to represent numbers. If our argument is 
correct then it should be possible to predict the binary 
representation of a number based on a decimal feature encoding 
model. Below we present a simulation that achieves this by 
applying the encoding model approach often used in 
neuroimaging studies. Within the simulation, binary vectors are 
analogous to voxel activation patterns, and the encoding model 
is based on decimal representations (Table 1). 

Simulation: Decoding binary representations 
with a decimal feature encoding model 

As detailed previously, encoding models predict stimulus 
identity from brain activation by modelling the relationship 
between the constituent features of the training stimuli and their 
corresponding BOLD activation in a group of voxels. Then they 
use that relationship to estimate the expected neural activation 
patterns for novel test items based on their feature 
representations. The predicted activation pattern for each 
stimulus is compared to the observed patterns for all test stimuli. 
For the following simulation, let us consider the numbers from 
0 to 99 999 as our stimulus set. They can be decomposed into 5-
dimensional feature vectors where each feature is a decimal digit 
(e.g., 3497 can be decomposed as [0 3 4 9 7]. These features can 
be considered analogous to the 5 sensory-motor relevance 
ratings of words used by Fernandino et al. (2016) or to the co-
occurrence statistics with sensory-motor verbs used by Mitchell 
et al. (2008). Further, let us consider the binary representation 
numbers as 17-dimensional vectors (e.g. [0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 1 1 0 1 1 0 1 0 1 0 0 1], to be analogous to the 
BOLD activation pattern in a set of 17 voxels in an ROI under 
investigation. The correspondence between these patterns and 
actual neuroimaging studies using this approach is demonstrated 
in Table 1. 

We trained an encoding model to predict the binary activation 
pattern for a given number, based on its 5-dimensional decimal 

limitations we will briefly cover this issue in the general 
discussion, but a more in-depth treatment is needed 

Table 1 Examples of studies that use feature encoding models  

Source Item Features Response vector 

Mitchell et al., (2008) Concrete words (dog) Co-occurrence statistics with 
25 sensory-motor verbs 

Pattern of activation in all cortical 
voxels 

Fernandino et al., (2016) Concrete words (dog) 5 sensory-motor relevance 
ratings 

Pattern of activation in the GSN 
(Binder et al., 2009) 

Current simulation Numbers (3497) 5 decimal digits [0 3 4 9 7] 17 binary digits [0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 1 1 0 1 1 0 1 0 1 0 0 1] 
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feature representation. The modelling followed 4 steps: 1) 
splitting the stimuli into a training (90%) and a test (10%) set, 2) 
fitting multiple linear regression models on the training set with 
the 17 binary features as response variables, and the 5 decimal 
features as predictors, 3) calculating predicted activation pattern 
(predicted maps, PMs) for each test item from its decimal 
features and the multivariate regression model, 4) comparing the 
PMs with the actual binary patterns for all test items (observed 
maps, OMs). In the comparison stage, we computed the 
Euclidean distance between each PM and the OMs for all test 
items, and we calculated the percentile rank of the similarity 
between the PM and the OM of each item. For example, if the 
PM for the number 29782 were most similar to OM for that 
number, then the percentile rank for it would be 10 000/10 000 
= 1. However, if it were more similar to the OMs of 1 000 other 
items, then its percentile rank would be 9 000/10 000 = 0.9. 

The encoding model was successful in decoding the binary 
representation of untrained items based only on their decimal 
features. The prediction accuracy of the linear regression model 
was 0.7 (SD = 0.24) and a wilcoxon signed rank test showed that 
it was above chance (p < .0001). Since by definition binary and 
decimal number systems use different representational formats, 
we cannot conclude that the representation of binary numbers 
encodes decimal features. By analogy, the successful decoding 
of patterns of neural activation based on a stimulus feature space, 
cannot be used to infer that the brain encodes information about 
these features or that its neural representational space is 
organized along the dimensions of that feature space. 

Discussion 
Stimulus-feature based encoding models (Haxby et al., 2014, 

Naselaris et al., 2011) are a powerful new tool for studying how 
the constituent features of stimuli relate to the neural activation 
patterns elicited by these stimuli. They represent a significant 
methodological advance over more traditional MVPA methods 
because they allow us to predict neural activation for novel items 
and because they can be used to decode the identity of such items 
from neural data alone. While this is an impressive feat and an 
incredibly useful tool, we have to be cautious in interpreting 
what such successes mean for our understanding of the 
representational system of the brain. Both theorists (e.g., Haxby 
et al., 2014; Naselaris & Kay, 2015; Naselaris et al., 2011; 
Norman et al., 2006; Tong & Pratte, 2012) and practitioners (e.g. 
Fernandino et al., 2016; Kay et al., 2008; Mitchell et al., 2008; 
Santoro et al., 2014) have suggested that we can infer that the 
brain uses a certain set of features to encode information, if we 
can successfully decode the activity of novel items from such 
features. However, as we have argued here, this inference is not 
formally valid. Successful decoding might be the result of a 
systematic relationship between the representational system of 
the brain and the stimulus feature set, even if those utilize 
different representational schemes. 

How do we know whether two representational systems are 
truly different? It could be argued that in our example, both 

                                                           
4 in fact, because of that linear one-to-one relationship, 

replicating our simulation with these two examples leads to 

binary and decimal number systems share many properties, and 
that they are merely different implementations of the same 
fundamental representation. For example, both systems use the 
position of a digit to encode its magnitude, and as a result, all 
arithmetic procedures that can be performed with decimal 
numbers can be applied to binary numbers as well. We propose 
that the key issue in determining whether two representations are 
the same is whether you can establish a one-to-one mapping 
relation between features at different levels of representation in 
each system. For example, if you substitute each decimal digit 
with a unique letter, the resulting system would appear different 
from the decimal system only on the surface, but the relation 
between multi-digit numbers and their features would be the 
same in both cases4 In contrast, decimal and binary features have 
a qualitatively different relation to the numbers they represent. 
Despite this, binary representations can be decoded based on 
decimal features, illustrating the inferential problem of encoding 
models we address here.  

It is important to clarify that the “one-to-one” mapping is an 
abstract requirement. We are not claiming that to establish 
representational equivalence between the brain and a certain set 
of features that it is necessary to find a one-to-one mapping 
between the basic feature components of stimuli and activation 
in individual voxels or groups of voxels. The brain does not 
compute and represent information at the voxel level – voxel 
activations are the result of averaged activity over hundreds of 
thousands of neurons. The general lack of access to large-scale 
neural level activity in the living human brain makes it even 
more important to not only discover analytical tools that helps us 
relate voxel activation to possible representations, but also to 
understand the limitations of those tools and what they can and 
cannot tell us. 

An important question that naturally arises from the caveats 
we discussed is how one can maximize confidence in the 
outcome of a forward encoding model approach, or conversely, 
guard oneself against unjustified inferences. We propose that it 
is crucial to compare the performance of several possible 
encoding models. To that aim, it is not sufficient to use a 
"baseline model" that is unrelated to the domain of interest (i.e., 
compare a semantic feature model to a low-level visual word 
form model). Instead, one or several alternative representational 
models should be tested that are derived from competing 
theories (i.e., semantic model A vs. semantic model B). To 
illustrate, an elegant comparison of a sensory-based vs. non-
sensory-based semantic model was achieved by Anderson et al. 
(2015). These authors contrasted a visual model with a word co-
occurrence model to investigate which brain regions represent 
modality-specific visual features, and which do not (using 
differential correlation in RSA rather than an encoding model). 
The relative superiority of a particular model at predicting 
activation patterns in a brain region makes it more likely that the 
brain is using the representational scheme of the better 
performing model rather than the alternative. However, it is 
important to keep in mind that such comparisons only provide 

perfect decoding accuracy; compare that to the 0.7 decoding 
accuracy for the decimal-to-binary model 
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evidence for the relative likelihood of each model, but, due to the 
limitations discussed above, still do not allow us to infer that the 
winning model is the “true” model. 

For that reason, besides the assessment of relative model 
performance based on model comparison, a second crucial step 
is to evaluate absolute prediction performance. In particular, the 
observed decoding accuracy can be compared to the “noise 
ceiling”, or to the “upper limit of prediction accuracy” (Naselaris 
et al., 2011), reflecting the maximal performance that can be 
feasibly achieved given the noise present in the signal. The gap 
between the two can be thought of as the variance that is not 
explained by the current model, which should motivate and 
guide the search for an improved or alternative version of the 
model. Until such maximal performance is obtained, we should 
be careful in making strong representational inferences about the 
brain from the currently available analytic methods. 

Ultimately, many of these inferential caveats exist because 
fMRI data is correlational. Comparing alternative models and 
evaluating absolute prediction performance might eventually 
converge on the true underlying feature model, but this is not 
guaranteed. We propose that an even better way to test 
representational hypotheses might be to introduce experimental 
manipulations that affect the hypothesized representational 
dimensions. For example, one could prime participants to weight 
some features of the stimuli more than others. If that leads to 
changes in the performance of a classifier based on the primed 
features, this would constitute much stronger evidence that these 
features underlie the neural representational scheme in question. 
This proposal is logical but it has not been experimentally tested 
yet, and we look forward to seeing how it will fare in practice. 
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