A Note on the Period Enforcer Algorithm for Self-Suspending Tasks

Jian-Jia Chen
TU Dortmund University, Germany
jian-jia.chen@cs.uni-dortmund.de

Björn B. Brandenburg
Max Planck Institute for Software Systems (MPI-SWS)
bbb@mpi-sws.org

Abstract

The period enforcer algorithm for self-suspending real-time tasks is a technique for suppressing the “back-to-back” scheduling penalty associated with deferred execution. Originally proposed in 1991, the algorithm has attracted renewed interest in recent years. This note revisits the algorithm in the light of recent developments in the analysis of self-suspending tasks, carefully re-examines and explains its underlying assumptions and limitations, and points out three observations that have not been made in the literature to date: (i) period enforcement is not strictly superior (compared to the base case without enforcement) as it can cause deadline misses in self-suspending task sets that are schedulable without enforcement; (ii) to match the assumptions underlying the analysis of the period enforcer, a schedulability analysis of self-suspending tasks subject to period enforcement requires a task set transformation for which no solution is known in the general case, and which is subject to exponential time complexity (with current techniques) in the limited case of a single self-suspending task; and (iii) the period enforcer algorithm is incompatible with all existing analyses of suspension-based locking protocols, and can in fact cause ever-increasing suspension times until a deadline is missed.

1 Introduction

When real-time tasks suspend themselves (due to blocking I/O, lock contention, etc.), they defer a part of their execution to be processed at a later time. A consequence of such deferred execution is a potential interference penalty for lower-priority tasks [1, 11, 16, 17, 24, 25, 30]. This penalty, which is maximized when a task defers the completion of one job just until the release of the next job, can manifest as response-time increases and thus may lead to deadline misses.

To avoid such detrimental effects, Rajkumar [26] proposed the period enforcer algorithm, a technique to control (or shape) the processor demand of self-suspending tasks on unprocessors and partitioned multiprocessors under preemptive fixed-priority scheduling. In a nutshell, the period enforcer algorithm artificially increases the length of certain suspensions whenever a task’s activation pattern carries the risk of inducing undue interference in lower-priority tasks.

The period enforcer algorithm is worth a second look for a number of reasons. First, in the words of Rajkumar, it “forces tasks to behave like ideal periodic tasks from the scheduling point of view with no associated scheduling penalties” [26], which is obviously highly desirable in many practical applications in which self-suspending tasks are inevitable (e.g., when offloading computations to co-processors such as GPUs or DSPs). Second, the later-proposed, but more widely-known release guard algorithm [31] uses a technique similar to period enforcement to control scheduling penalties due to release jitter in distributed systems. The period enforcer algorithm has also attracted renewed attention in recent years and has been discussed in several current works (e.g., [8, 10, 12, 15, 18, 21]), at times controversially [5]. And last but not least, the period enforcer algorithm plays a significant role in Rajkumar’s seminal book on real-time synchronization [27].

In this note, we revisit the period enforcer [26] to carefully re-examine and explain its underlying assumptions and limitations, and to point out potential misconceptions. The main contributions are three observations that, to the best of our knowledge, have not been previously reported in the literature on real-time systems:

1. period enforcement can be a cause of deadline misses in self-suspending task sets that are otherwise schedulable (Section 3).
2. to match the assumptions underlying the analysis of the period enforcer, a schedulability analysis of self-suspending tasks subject to period enforcement requires a task set transformation for which no solution is known in the general case, and which is subject to exponential time complexity (with current techniques) in the limited case of a single self-suspending task (Section 2); and

3. the period enforcer algorithm is incompatible with all existing analyses of suspension-based locking protocols, and can in fact cause ever-increasing suspension times until a deadline is missed (Section 5).

We introduce the needed background in Section 2, restate our contributions more precisely in Section 2.4, and then establish the three above observations in detail in Sections 3–5 before concluding in Section 6.

2 Preliminaries

The period enforcer algorithm [26] applies to self-suspending tasks on uniprocessors under fixed-priority scheduling, and hence by extension also to multiprocessors under partitioned fixed-priority scheduling (where tasks are statically assigned to processors and each processor is scheduled as a uniprocessor). In this section, we review the underlying task model (Section 2.1), introduce the period enforcer algorithm (Section 2.2), summarize its analysis (Section 2.3), and finally restate our observations in more precise terms (Section 2.4).

2.1 Task Models

Since the analysis of the period enforcer requires reasoning about different task models and their relationships, we carefully introduce and precisely define the relevant models in this section.

2.1.1 Periodic Tasks

The most basic and best understood task model is the periodic task model due to Liu and Layland [22]. In this model, each task \(\tau_i \) is characterized as a tuple \((C_i, T_i)\), where \(C_i \) denotes an upper bound on the total execution time of any job of \(\tau_i \) and \(T_i \) denotes the (exact) inter-arrival time (or period) of \(\tau_i \). Each such periodic task \(\tau_i \) releases a job at time 0, and periodically every \(T_i \) units thereafter. Each job must finish by the time the next arrives. Importantly, Liu and Layland assume both that the \(k^{th} \) job of \(\tau_i \) arrives exactly at time \((k - 1) \times T_i \), and that an incomplete job is always available for execution (i.e., jobs never block on I/O or locks).

A straightforward generalization of the periodic task model is to introduce an explicit relative deadline parameter \(D_i \). In this case, each task is represented by a three-tuple \((C_i, T_i, D_i)\), with the interpretation that every job of \(\tau_i \) must finish within \(D_i \) time units after its release. Task \(\tau_i \) is said to have an implicit deadline if \(D_i = T_i \), a constrained deadline if \(D_i \leq T_i \), and an arbitrary deadline otherwise. We primarily consider implicit deadlines in this note.

2.1.2 Sporadic Tasks

Mok [23] introduced the sporadic task model, a widely used generalization of the periodic task model in which each task \(\tau_i \) is still specified by a tuple \((C_i, T_i, D_i)\). However, the sporadic task model relaxes the inter-arrival constraint \(T_i \) to specify a minimum (rather than an exact) separation between jobs. In this interpretation, the first job is not necessarily released at time 0, and the exact release times of future jobs cannot be predicted, which is an appropriate modeling assumption for event-triggered tasks.

On uniprocessors, the relaxation from periodic to sporadic job arrivals does not introduce additional pessimism since any two jobs of a sporadic task \(\tau_i \) are known to be released at least \(T_i \) time units apart, the sporadic task model [23] still allows for schedulability analysis that is as accurate as Liu and Layland’s analysis of periodic tasks [22].

Mok retained the assumption that incomplete jobs are always ready for execution (i.e., no suspensions), and that jobs, once released, are immediately available for execution.

2.1.3 Release Jitter

The latter assumption — immediate availability for execution — is inappropriate in many practical systems (especially in networked systems) if events (e.g., messages) that trigger job releases can incur non-negligible delays (e.g., network congestion). Such delays in task activation can be accounted for by introducing a notion of release jitter. To this end, each task is represented by a four-tuple \((C_i, J_i, T_i, D_i)\), where the parameter \(J_i \) is a bound on the\(^1\) release jitter.

\(^1\)Assuming that all periodic tasks synchronously release a job at time zero.
maximum time that a job remains unavailable for execution after it should have started to run. Release jitter can be incorporated in both the periodic and the sporadic task models.

In the presence of release jitter, the terms “job arrival” and “job release,” which are often used interchangeably, take on distinct meanings: a job’s arrival time denotes the point in time when it actually becomes available for execution, whereas a job’s release time is the instant that is relevant for the (minimum) inter-arrival time constraint. Any job of task \(\tau_i \) arrives at most \(J_i \) time units after it is released.

Notably, non-zero release jitter does cause additional pessimism: in the worst case, two consecutive jobs of a task \(\tau_i \) can be separated by as little as \(T_i - J_i \) time units (if the earlier job incurs maximum release jitter and the successor job incurs none). As a result, a task may “carry in” some additional work into a given interval. Taking this effect into account, Audsley et al.\(^2\) developed a response-time analysis for sporadic and periodic constrained-deadline tasks subject to release jitter under preemptive fixed-priority scheduling.

However, even in the presence of release jitter, a key assumption remains that jobs do not self-suspend (e.g., wait for I/O\(^3\)). That is, Audsley et al.\(^1\) assume that, once a job has arrived, it continuously remains available for dispatching until it completes. This restriction is removed next.

2.1.4 Self-Suspending Tasks

When a job self-suspends, it becomes unavailable for execution until some external event occurs (e.g., a disk I/O operation completes, a network packet arrives, a co-processor signals completion, etc.). This has the effect of deferring (a part of) the job’s processing requirement until the time that it resumes from its suspension, which causes massive analytical difficulties.\(^1\)\(^9\)\(^11\)\(^16\)\(^17\)\(^24\)\(^26\)\(^29\)\(^30\).

To date, the real-time literature on self-suspensions has focused on two task models: the dynamic self-suspension model, which we discuss first, and the (multi-)segmented suspension model, which we discuss next in Section 2.1.5. Self-suspensions can arise in both periodic and sporadic tasks (i.e., both interpretations of the \(T_i \) parameter are possible). The observations that we make in this note apply equally to both periodic and sporadic tasks; for convenience, we focus primarily on periodic tasks.

The dynamic self-suspending task model characterizes each task \(\tau_i \) as a four-tuple \((C_i, S_i, T_i, D_i)\): the parameters \(C_i, T_i, \) and \(D_i \) have their usual meaning (i.e., as in the periodic and sporadic task models), and \(S_i \) denotes an upper bound on the total self-suspension time of any job of \(\tau_i \). The dynamic self-suspension model does not impose a bound on the maximum number of self-suspensions, nor does it make any assumptions as to where during a job’s execution self-suspensions occur. That is, how often a job defers its execution, when it does so, and how much of its execution it defers may vary unpredictably from job to job.

Allowing tasks to self-suspend can impose substantial scheduling penalties (an example is provided shortly in Section 2.2) and greatly complicates schedulability analysis (e.g., see \(^9\)\(^24\)\(^29\)). In particular, release jitter and self-suspensions are not interchangeable concepts and it is not safe \(^9\)\(^24\) to simply substitute \(J_i \) with \(S_i \) in Audsley et al.’s analysis\(^1\). (Nonetheless, under the dynamic suspension model, it is possible for jobs of self-suspending tasks to defer their entire execution requirement, so self-suspensions can be seen as a generalization of release jitter.)

The period enforcer algorithm aims to mitigate the negative effects of self-suspensions. However, for reasons that will be explained in Section 2.2, the period enforcer algorithm cannot be meaningfully combined with the dynamic suspension model. Instead, it requires the segmented suspension model, which we discuss next.

2.1.5 Segmented Self-Suspending Tasks

The (multi-)segmented self-suspending sporadic task model extends the four-tuple \((C_i, S_i, T_i, D_i)\) by characterizing each self-suspending task as a fixed, finite linear sequence of computation and suspension intervals. These intervals are represented as a tuple \((S_{i0}^0, C_i^1, S_i^1, C_i^2, S_i^2, ..., S_i^{m_i-1}, C_i^{m_i})\), which is composed of \(m_i \) computation segments separated by \(m_i \) suspension intervals.

The first self-suspension segment \(S_{i0}^0 \), prior to the first execution segment, is equivalent to release jitter (i.e., the parameter \(J_i \) in Section 2.1.3). However, in much of the literature on the segmented self-suspending task model, the segment \(S_{i0}^0 \) is assumed to be absent (i.e., \(S_{i0}^0 = 0 \)), such that there are only \(m_i - 1 \) suspension intervals (and jobs arrive jitter-free). Unless noted otherwise we adopt this convention.

We say that a segment arrives when it becomes available for execution. The first computation segment arrives immediately when the job is released (unless \(S_{i0}^0 \neq 0 \)); the second computation segment (if any) arrives when the job resumes from its first self-suspension.

The advantage of the dynamic model (Section 2.1.4) is that it is more flexible since it does not impose any assumptions on a task’s control flow. The advantage of the segmented model is that it allows for more accurate

\(^2\)Audsley et al.\(^1\) do present a response-time analysis that takes into account a limited form of suspensions due to semaphores (“blocking”). However, their analysis does not apply to general self-suspensions (i.e., the kind of self-suspensions targeted by the period enforcer algorithm) and is not relevant in the context of this paper.
We focus exclusively on preemptive fixed-priority scheduling in this note, as the period enforcer is explicitly designed for this setting. For simplicity, we assume that tasks are indexed in order of decreasing priority (i.e., τ_1 is the highest-priority task).

A key concept in the period enforcer’s runtime rules (discussed next) is the notion of a level-i busy interval, which is a maximal interval during which the processor executes only segments of tasks with priority i or higher.

Finally, Rajkumar’s original analysis [26] of the period enforcer is rooted in the concept of a task set transformation. In general, such a task set transformation is simply a function f that maps a given task set \mathcal{T} to a transformed task set $\mathcal{T}' = f(\mathcal{T})$ such that \mathcal{T}' is schedulable only if the original task set \mathcal{T} is schedulable, too. The basic idea is that such a transformation allows schedulability analysis by reduction: given a suitable transformation f, \mathcal{T} can be indirectly shown to be schedulable by computing $\mathcal{T}' = f(\mathcal{T})$ and establishing that \mathcal{T}' is schedulable.

Importantly, the tasks in \mathcal{T} and \mathcal{T}' do not have to be of the same task model, nor does the number of tasks have to remain the same (i.e., $|\mathcal{T}| \neq |\mathcal{T}'|$ is possible). Specifically, the task set transformation underlying the analysis of the period enforcer maps each multi-segmented self-suspending task $\tau_i \in \mathcal{T}$ to m_i, single-segmented self-suspending tasks in \mathcal{T}' (i.e., $|\mathcal{T}'| = \sum_{i} m_i$).

With these definitions in place, we can now introduce the period enforcer.

2.2 The Period Enforcer Algorithm

The period enforcer consists of two parts: a runtime rule that governs when each segment of a self-suspending task may be scheduled, and an (offline) analysis that may be used to assess the temporal correctness of a set of self-suspending tasks (Section 2.1.5) subject to period enforcement. Initially, we focus on the runtime rule (i.e., the actual period enforcer algorithm) and then review the corresponding original analysis thereafter in Section 2.3. We begin with a simple example that highlights the effect that the period enforcer is designed to control.

2.2.1 The Problem: Back-to-Back Execution

The scheduling penalty associated with self-suspending is maximized when a task defers the completion of one job just until the release of the next job. This effect is illustrated in Figure 1, which shows a case in which the self-suspension of the higher-priority task τ_2 from time 1 until time 5 results in a deadline miss of the lower-priority task τ_3 at time 15.

The root cause is increased interference due to the “back-to-back” execution effect [1, 16, 17, 25, 30]. In the example shown in Figure 1, two jobs of τ_2 execute in close succession (i.e., separated by less than a period) because the second job, released at time 10, self-suspended for a (much) shorter duration than the first job. Consequently, τ_3...
where $ET(\tau)$

The second segment of τ consists of a single computation segment ($C^1_2 = C^2_3 = 3$); task τ_2 consists of two computation and one suspension segment ($C^1_2 = 1, S^1_2 = 4, C^2_3 = 2$). Jobs of tasks τ_1 and τ_3 are released just as τ_2 resumes from its self-suspension at time 5. Without period enforcement, task τ_3 misses a deadline at time 15 because the second job of task τ_2 suspends only briefly (for one time unit rather than four).

2.2.2 The Period Enforcement Rule

The key idea underlying the period enforcer algorithm is to artificially delay the execution of computation segments of a self-suspending task τ's second segment (and the release of τ_1) starts a new level-2 busy interval at time 5 (just as without period enforcement as depicted in Figure 1). In this case, the segment is not immediately eligible to execute; however, due to the presence of a pending higher-priority job, τ_2 is not actually scheduled until time 8 (just as without period enforcement as depicted in Figure 1).

The second segment of the second job of τ_2 arrives at time $a^2_{2,2} = 12$. In this case, the segment is not immediately eligible to execute since

$$ET^2_{2,2} = \max (ET^2_{2,1} + T_2, \text{busy}(\tau_2, a^2_{2,2})) = \max(15 + 10, 12) = 15.$$

Hence, the execution of τ_2's second computation segment does not start until time $ET^2_{2,2} = 15$, which gives τ_3 sufficient time to finish before its deadline at time 15.

The examples in Figures 1 and 2 suggest an intuition for the benefits provided by period enforcement: computation segments of a self-suspending task τ_i are forced to execute at least T_i time units apart (hence the name), which ensures that it causes no more interference than a regular (non-self-suspending) sporadic task.

Figure 1: Example uniprocessor schedule (without period enforcement) of three tasks τ_1, τ_2, and τ_3 with periods $T_1 = T_2 = T_3 = 10$. Tasks τ_1 and τ_3 consist of a single computation segment ($C^1_1 = C^2_3 = 3$); task τ_2 consists of two computation and one suspension segment ($C^1_2 = 1, S^1_2 = 4, C^2_3 = 2$). Jobs of tasks τ_1 and τ_3 are released just as τ_2 resumes from its self-suspension at time 5. Without period enforcement, task τ_3 misses a deadline at time 15 because the second job of task τ_2 suspends only briefly (for one time unit rather than four).
2.2.4 Incompatibility with the Dynamic Self-Suspension Model

Before reviewing the classic analysis based on this intuition, we briefly comment on the difficulty of combining period enforcement with the dynamic self-suspension model (Section 2.1.4). In short, to be effective, the period enforcer fundamentally requires the segmented self-suspension model (Section 2.1.5) because it cannot cope with the unpredictable execution times between (the unpredictably many) self-suspensions that jobs may exhibit under the dynamic self-suspension model.

A simple example can explain why the period enforcer algorithm is not compatible with the dynamic self-suspending task model. Consider a trivial system that has only one task with a total execution time \(C_1 = 1\), a total self-suspension length \(S_1 = 1\), and a period and relative deadline of \(D_1 = T_1 = 2\). Suppose the first job of task \(\tau_1\) arrives at time 0, suspends itself for one time unit, and then executes for one time unit. Further suppose the second job of task \(\tau_1\) arrives at time 2, first executes for 0.5 time units, then suspends for 1 time unit, and finally executes for 0.5 time units. With the period enforcer algorithm in place, the second job of task \(\tau_1\) starts its execution at time 3, at which point it will clearly miss its deadline at time 4.

In this example, the problem is that the eligibility time of the first computation “segment” of the second job is determined by the self-suspension pattern of the first job, even though the first job deferred all of its execution, whereas the second job deferred only a part of its execution. Under the more restrictive segmented self-suspension model (Section 2.1.5), the pattern of self-suspension and computation times is statically fixed; such a mismatch is hence not possible.

Next, we revisit the original analysis of the period enforcer algorithm.

2.3 Classic Analysis of the Period Enforcer Algorithm

The central notation in Rajkumar’s analysis \([26]\) is a deferrable task, which matches our notion of segmented tasks, as already discussed in Section 2.1.5. Specifically, Rajkumar states that:

“With deferred execution, a task \(\tau_i\) can execute its \(C_i\) units of execution in discrete amounts \(C^1_i, C^2_i, \ldots\) with suspension in between \(C^j_i\) and \(C^{j+1}_i\).” \([26, \text{Section 3}]\)

Central to Rajkumar’s analysis \([26]\) is a task set transformation (recall Section 2.1.7) that splits each deferrable task with multiple segments (Section 2.1.5) into a corresponding number of single-segment deferrable tasks (Section 2.1.6). In the words of Rajkumar \([26, \text{Section 3}]\):

“Without any loss of generality, we shall assume that a task \(\tau_i\) can defer its entire execution time but not parts of it. That is, a task \(\tau_i\) executes for \(C_i\) units with no suspensions once it begins execution. Any task that does suspend after it executes for a while can be considered to be two or more tasks each with its own worst-case execution time. The only difference is that if a task \(\tau_i\) is split into two tasks \(\tau_i'\) followed by \(\tau_i''\), then \(\tau_i''\) has the same deadlines as \(\tau_i'\).”

In other words, the transformation can be understood as splitting each self-suspending task into a matching number of single-segment deferrable tasks (Section 2.1.6), which are equivalent to non-self-suspending sporadic tasks.
subject to release jitter (Section 2.1.3), which can be easily analyzed with classic fixed-priority response-time analysis [1]. To constitute an effective schedulability analysis, the transformation must ensure that, if the transformed set of single-segment deferrable tasks can be shown to be schedulable (e.g., with response-time analysis [1]), then the original set of multi-segment deferrable tasks is also schedulable under period enforcement.

To summarize, as illustrated in Figure 1, uncontrolled deferred execution can impose increased interference on lower-priority tasks because of the potential for “back-to-back” execution [1, 16, 17, 25, 30]. The purpose of the period enforcer algorithm is to reduce such penalties for lower-priority tasks without detrimentally affecting the schedulability of self-suspending, higher-priority tasks. The latter aspect — no detrimental effects for self-suspending tasks — is captured concisely by Theorem 5 in the original analysis of the period enforcer algorithm [26].

Theorem 5: A [single-segment] deferrable task that is schedulable under its worst-case conditions is also schedulable under the period enforcer algorithm [26].

The “worst-case conditions” mentioned in the theorem simply correspond to the case when (i) a job of a single-segment deferrable task defers its execution for the maximally allowed time \(S_0 \) (i.e., when it incurs maximal release jitter) and (ii) it incurs maximum higher-priority interference (i.e., when its start of execution coincides with a critical instant [22]).

2.4 Questions Answered in This Paper

Theorem 5 (in [26]) is a strong result: it implies that the period enforcer does not induce any deadline misses. This seemingly enables a powerful analysis approach: if the corresponding transformed set of single-segment deferrable tasks can be shown to be schedulable without period enforcement under fixed-priority scheduling using any applicable analysis (e.g., [1]), then the period enforcer algorithm also yields a correct schedule.

However, recall that, in the original analysis [26], deferrable tasks are assumed to defer their execution either completely or not at all (but not parts of it). It is hence important to realize that Theorem 5 in [26] applies only to the transformed set of single-segment deferrable tasks, and that it does not apply to the original set of multi-segmented self-suspending tasks.

This leads to the first question: *If the original set of segmented self-suspending tasks is schedulable without period enforcement, is it then also schedulable under period enforcement?* That is, can Theorem 5 (in [26]) be generalized to multi-segmented self-suspending tasks? In Section 3, we answer this question in the negative.

1. There exist sets of segmented self-suspending tasks that are schedulable under fixed-priority scheduling without any enforcement, but that are infeasible under period enforcement. This shows that Theorem 5 in [26] has to be used with care — it may be applied only in the context of the transformed single-segment deferrable task set, but not in the context of the original multi-segmented self-suspending task set.

 Therefore, to apply Theorem 5 to conclude that a set of segmented self-suspending task sets remains schedulable despite period enforcement, we first have to answer the task-set transformation question: *given a set of segmented self-suspending tasks \(T \), how do we obtain a corresponding set of single-segment deferrable tasks \(T' \) such that \(T' \) is schedulable (without period enforcement) only if \(T \) is schedulable (with period enforcement)?* That is, as discussed in Section 2.3, the classic analysis of the period enforcer [26] presumes that it is possible to convert a set of multi-segmented self-suspending tasks into a corresponding set of single-segment deferrable tasks, but it is left undefined in [26] how this central step should be accomplished. In Section 4, we make a pertinent observation.

2. How to derive a single-segment deferrable task set corresponding to a given set of multi-segmented self-suspending tasks is an open problem. Recent findings by Nelissen et al. [24] can be applied in a special case, but their method takes exponential time (even in the special case).

 Finally, we consider the use of the period enforcer in conjunction with suspension-based multiprocessor locking protocols for partitioned fixed-priority scheduling (such as the MPCP [14, 25] or the FMLP [2, 6]). While it is certainly tempting to apply period enforcement with the intention of avoiding the negative effects of deferred execution due to lock contention (as previously suggested elsewhere [13, 14, 27]), we ask: *does existing blocking analysis remain safe when combined with the period enforcer algorithm?* In Section 5, we show that this is not the case.

3. The period enforcer algorithm invalidates all existing blocking analyses for real-time semaphore protocols as there exist non-trivial feedback cycles between the period enforcer rules and blocking durations.
3 Period Enforcement Can Induce Deadline Misses

In this section, we demonstrate with an example that there exist sets of sporadic segmented self-suspending tasks that both (i) are schedulable without period enforcement and (ii) are not schedulable with period enforcement.

To this end, consider a task system consisting of 2 tasks. Let \(\tau_1 \) denote a sporadic task without self-suspensions and parameters \(C_1 = 2 \) and \(T_1 = D_1 = 10 \), and let \(\tau_2 \) denote a self-suspending task consisting of two segments with parameters \(C_2^1 = 1, S_1^2 = 6, C_2^2 = 1 \), and \(T_2 = D_2 = 11 \). Suppose that we use the rate-monotonic priority assignment, i.e., \(\tau_1 \) has higher priority than \(\tau_2 \). This task set is schedulable without any enforcement since at most one computation segment of a job of \(\tau_2 \) can be delayed by \(\tau_1 \):

- if the first segment of a job of \(\tau_2 \) is interfered with by \(\tau_1 \), then the second segment resumes at most after 9 time units after the release of the job and the response time of task \(\tau_2 \) is hence 10; otherwise,

- if the first segment of a job of \(\tau_2 \) is not interfered with by \(\tau_1 \), then the second segment resumes at most 7 time units after the release of the job and hence the response time of task \(\tau_2 \) is at most 10 even if the second segment is interfered with by \(\tau_1 \).

Figure 3 depicts an example schedule of the task set assuming periodic job arrivals.

Next, let us consider the same task set under control of the period enforcer algorithm, as defined in Section 2.2. Figure 4 shows the resulting schedule for a periodic release pattern. The first job of task \(\tau_2 \) (which arrives at time \(a_{1,2} = 0 \)) is executed as if there is no period enforcement since the definition \(ET^1_{2,0} = ET^2_{2,0} = -T_2 \) ensures that both segments are immediately eligible. Note that the first segment of \(\tau_2 \)’s first job is delayed due to interference from \(\tau_1 \). As a result, the second segment of \(\tau_2 \)’s first job does not resume until time \(a_{2,1} = 9 \). Thus, we have

\[
ET^1_{2,1} = \max (-T_2 + T_2, \ \text{busy}(\tau_2, 0)) = 0 \quad \text{and} \quad ET^2_{2,1} = \max (-T_2 + T_2, \ \text{busy}(\tau_2, 9)) = 9.
\]

In contrast to the first job, the second job of task \(\tau_2 \) (which is released at time 11) is affected by period enforcement. The first segment of the second job arrives at time \(a_{2,2} = 11 \), incurs interference for one time unit during \([11, 12)\), and suspends at time 13. The second segment of the second job hence resumes only at time \(a_{2,2} = 19 \). Thus, we have

\[
ET^1_{2,2} = \max (0 + 11, \ \text{busy}(\tau_2, 11)) = 11 \quad \text{and} \quad ET^2_{2,2} = \max (9 + 11, \ \text{busy}(\tau_2, 19)) = 20.
\]
According to the rules of the period enforcer algorithm, the processor therefore remains idle at time 19 because the segment is not eligible to execute until time \(ET_2 = 20 \). However, at time 20, the third job of \(\tau_1 \) is released. As a result, the second job of \(\tau_2 \) suffers from additional interference and misses its deadline at time 22.

This example shows that there exist sporadic segmented self-suspending task sets that (i) are schedulable under fixed-priority scheduling without any enforcement, but (ii) are not schedulable under the period enforcer algorithm.

One may consider to enrich the period enforcer with the following scheduling rule: when the processor becomes idle, a task immediately becomes eligible to execute regardless of its eligibility time. However, even with this extension, the above example remains valid by introducing one additional lower-priority task \(\tau_1 \) with execution time \(C_3 = 13 \) (to be executed from time 3 to time 9 and time 13 to time 20) and \(T_3 = D_3 = 100 \). With task \(\tau_3 \), the processor is always busy from time 0 to time 23 and consequently \(\tau_2 \) still misses its deadline at time 22.

Furthermore, the example also demonstrates that the conversion to single-segment deferrable tasks does incur a loss of generality since it introduces pessimism. In the context of the above example, if we convert the multi-segmented suspending task \(\tau_2 \) into two single-segment deferrable tasks, called \(\tau_2^2 \) and \(\tau_2^2 \), where task \(\tau_2^2 \) never defers its execution and task \(\tau_2^2 \) defers its execution by at most 9 time units, the resulting single-segment deferrable task set \(\{ \tau_1, \tau_2^2, \tau_2^2 \} \) is in fact not schedulable under the given priority assignment: if a job of \(\tau_1 \) coincides with the arrival of a job of \(\tau_2^2 \) after it has maximally deferred its execution, the job of \(\tau_2^2 \) has a response time of \(9 + 2 + 1 + 1 \) time units, which exceeds its relative deadline of 11 time units. This shows that any restriction to single-segment deferrable tasks — that is, assuming that “[w]ithout any loss of generality [. . .] a task \(\tau_1 \) can defer its entire execution time but not parts of it” [26] (recall Section 2.3) — does in fact come with a loss of generality.

4 Deriving a Corresponding Deferrable Task Set

To apply an analysis of the period enforcer based on Theorem 5 in [26], we first need to convert a given set of multi-segment self-suspending tasks into a corresponding set of single-segment deferrable tasks. This raises the question: how can we efficiently derive the corresponding set of single-segment deferrable tasks?

The original period enforcer proposal [26] is silent on this issue and does not spell out a procedure for converting a multi-segmented self-suspending task to a corresponding set of single-segment deferrable tasks. However, in our opinion, performing such a transformation without introducing additional pessimism is not at all easy in the general case.

In the following, we illustrate the inherent difficulty of the problem by focusing on a special case to which we can apply a recent result of Nelissen et al. [24], which allows analyzing the exact worst-case response time of multi-segmented self-suspending sporadic tasks, albeit with exponential time complexity. Nelissen et al.’s worst-case response time analysis [24] is exact under the following conditions:

1. the task set contains only one self-suspending task,
2. the self-suspending task is the lowest-priority task,
3. the scheduling policy is preemptive fixed-priority scheduling, and
4. all tasks have constrained deadlines (i.e., \(D_i \leq T_i \) for all \(\tau_i \)).

For an arbitrary number of tasks \(k \geq 2 \), suppose that the system has \(k - 1 \) regular sporadic tasks and only one segmented self-suspending task \(\tau_k \), and that all tasks have implicit deadlines (i.e., \(D_i = T_i \) for all \(\tau_i \)). Further suppose that task \(\tau_k \) has \(m_k \) segments with \(m_k \geq 3 \).

To convert a computation segment of \(\tau_k \) into a single-segment deferrable task, we need to derive the segment’s latest-possible arrival time, relative to the release of a job. Formally, for the \(j^{th} \) computation segment of task \(\tau_k \), we let \(\rho_k^j \) denote its latest-possible arrival time, with the interpretation that, if a job of task \(\tau_k \) arrives at time \(t \), then it is guaranteed that the \(j^{th} \) computation segment of this job will not arrive later than at time \(t + \rho_k^j \).

How can we compute \(\rho^j_k \)? Suppose that the worst-case response time of the \(j^{th} \) computation segment of task \(\tau_k \) is \(W_k^j \), and recall that \(S_k^j \) denotes the maximum self-suspension length before the \(j^{th} \) computation segment of \(\tau_k \). Then \(\rho_k^j \) can be expressed in terms of \(W_k^j \):

\[
\rho_k^j = W_k^j + S_k^j,
\]

where \(W_k^0 = 0 \). Therefore, if we can derive the exact segment worst-case response time \(W_k^j \) for \(j = 1, 2, \ldots, m_k - 1 \), we can easily compute \(\rho_k^j \) for \(j = 1, 2, \ldots, m_k \). And conversely, if we can somehow obtain \(\rho_k^j \) for \(j = 2, \ldots, m_k \),

4We refer to the characteristics of the worst-case release pattern provided in Lemma 2 in [23]. The exact worst-case response time can be obtained by exploring all release patterns that satisfy these conditions.
we can trivially infer W^j_k for $j = 1, 2, \ldots, m_k - 1$. Based on these considerations, it appears that the transformation problem is — at least in the considered special case — equivalent to the worst-case response time analysis of a multi-segmented self-suspending task.

However, deriving an exact bound W^j_k for $j = 1, 2, \ldots, m_k - 1$ for task τ_k is not easy: even for the above “simple” case, Nelissen et al.’s solution [24] for calculating the exact worst-case response time requires exponential time complexity if $j \geq 2$. Furthermore, Nelissen et al. [24] identified several misconceptions in prior analyses, and after correcting those misconceptions, observed that the problem of deriving the worst-case response time of a computation segment in pseudo-polynomial time seems to be very challenging indeed.

Nelissen et al. [24] did not study the period enforcer; rather, they considered unrestricted self-suspicions. However, given that the period enforcer has no effect on tasks that do not self-suspend [26], and given that in the considered special case only the lowest-priority task self-suspends, we believe that these observations transfer to the period enforcement case.

To summarize, to analyze the period enforcer based on Theorem 5 in [26], a procedure for transforming multi-segmented self-suspending tasks into sets of single-segment deferrable tasks is needed, but no such procedure is given in the original proposal [26]. Based on the presented considerations, we conclude that filling in this missing step is non-trivial and observe that the closest known solution by Nelissen et al. [24] requires exponential time even in the greatly simplified special case of a single self-suspending task. It thus remains unclear how Theorem 5 in [26] can be used for schedulability analysis of sets of multi-segmented self-suspending tasks. While we did search for alternative analysis approaches that do not rely on Theorem 5, we did not find a simple or efficient schedulability test for the period enforcer without introducing substantial additional pessimism. The problem remains open.

Next, we take a look at the period enforcer in the context of synchronization protocols.

5 Incompatibility with Suspension-Based Locking Protocols

Binary semaphores, i.e., suspension-based locks used to realize mutually exclusive access to shared resources, are a common source of self-suspensions in multiprocessor real-time systems. When a task tries to use a resource that has already been locked, it self-suspends until the resource becomes available. Such self-suspending due to lock contention, just like any other self-suspension, result in deferred execution and thus can detrimentally affect a task’s interference on lower-priority tasks. It may thus seem natural to apply the period enforcer to control the negative effects of blocking-induced self-suspending. However, as we demonstrate with two examples, it is actually unsafe to apply period enforcement to lock-induced self-suspending.

5.1 Combining Period Enforcement and Suspension-Based Locks

Whenever a task attempts to lock a shared resource, it may potentially block and self-suspend. In the context of the multi-segmented self-suspending task model, each lock request hence marks the beginning of a new segment.

The period enforcer algorithm may therefore be applied to determine the eligibility time of each such segment (which, again, all start with a critical section). There is, however, one complication: when does a task actually acquire a lock? That is, if a task’s execution is postponed due to the period enforcement rules, at which point is the lock request processed, with the consequence that the resource becomes unavailable to other tasks?

There are two possible interpretations of how period enforcement and locking rules may interact. Under the first interpretation, when a task requires a shared resource, which implies the beginning of a new segment, its lock request is processed only when its new segment is eligible for execution, as determined by the period enforcer algorithm. Alternatively, under the second interpretation, a task’s request is processed immediately when it requires a shared resource.

As a consequence of the first rule, a task may find a required shared resource unavailable when its new segment becomes eligible for execution even though the resource was available when the prior segment finished. As a consequence of the second rule, a shared resource may be locked by a task that cannot currently use the resource because the task is still ineligible to execute.

We believe that the first interpretation is the more natural one, as it does not make much sense to allocate resources to tasks that cannot yet use them. However, for the sake of completeness, we show that either interpretation can lead to deadline misses even if the task set is trivially schedulable without any enforcement.

5 In fact, in ongoing work, it has recently been shown that verifying the schedulability of task τ_k is coNP-hard in the strong sense even in the considered simplified case [7].

6 The use of period enforcement in combination with suspension-based locks has indeed been assumed in prior work [27], stated as a motivation and possible use case in the original period enforcer proposal [26], and suggested as a potential improvement elsewhere [13, 14].
5.2 Case 1: Locking Takes Effect at Earliest Segment Eligibility Time

In the following example, we assume the first interpretation, i.e., that the processing of lock requests is delayed until the point when a resuming segment would no longer be subject to any delay due to period enforcement. We show that this interpretation leads to a deadline miss in a task set that would otherwise be trivially schedulable.

Consider the following simple task set consisting of two tasks on two processors that share one resource. Task τ_1, on processor 1, has a total execution cost of $C_1 = 4$ and a period and deadline of $T_1 = D_1 = 8$. After one time unit of execution, jobs of τ_1 require the shared resource for two time units. τ_1 thus consists of two segments with costs $C_1^1 = 1$ and $C_1^2 = 3$. Task τ_2, on processor 2, has the same overall WCET ($C_2 = 4$), a slightly shorter period ($T_2 = D_2 = 7$), and requires the shared resource for one time unit after two time units of execution ($C_2^1 = 2$ and $C_2^2 = 2$). Without period enforcement (and under any reasonable locking protocol), the task set is trivially schedulable because, by construction, any job of τ_1 incurs at most one time unit of blocking, and any job of τ_2 incurs at most two time units of blocking.

In contrast, with period enforcement, deadline misses are possible. Figure 5 depicts a schedule of the two tasks assuming periodic job arrivals and use of the period enforcer algorithm. We focus on the eligibility times $ET_{2,1}^2$, $ET_{2,2}^2$, $ET_{2,3}^2$, ... of the second segment of τ_2.

Since τ_2's first job requests the shared resource only after two time units of execution, it is blocked by τ_1's critical section, which commenced at time 1. At time 3, τ_1 releases the shared resource and τ_2 consequently resumes (i.e., $a_{2,1}^2 = 3$). According to the period enforcer rules [26], the second segment is immediately eligible because, according to Equation (1) in Section 4,

$$ET_{2,1}^2 = \max(ET_{2,0}^2 + T_2, busy(\tau_2, a_{2,1}^2)) = \max(-T_2 + T_2, 3) = 3.$$

(Recall that $ET_{2,0}^2 = -T_2$, and interpret $busy(\tau_2, a_{2,1}^2)$ with respect to τ_2's processor.)

At time 7, the second job of τ_2 is released. Its first segment ends at time 9. However, its second segment is not eligible to be scheduled before time 10 since $ET_{2,2}^2 \geq ET_{2,1}^2 + T_2 = 3 + 7 = 10$. At time 9, the second job of τ_1, released at time 8, can thus lock the shared resource without contention. Consequently, when τ_2's request for the shared resource takes effect at time 10, the resource is no longer available and τ_2 must wait until time $a_{2,2}^2 = 11$ before it can proceed to execute. We thus have

$$ET_{2,2}^2 = \max(ET_{2,1}^2 + T_2, busy(\tau_2, a_{2,2}^2)) = \max(10, 11) = 11.$$

The third job of τ_2 is released at time 14. Its first segment ends at time 16, but since $ET_{2,3}^2 \geq ET_{2,2}^2 + T_2 = 11 + 7 = 18$, the second segment may not commence execution until time 18 and the shared resource remains available to other tasks in the meantime. The third job of τ_1 is released at time 16 and acquires the uncontested shared resource at time 17. Thus, the segment of τ_2 cannot resume execution before time $a_{2,3}^2 = 19$. Therefore

$$ET_{2,3}^2 = \max(ET_{2,2}^2 + T_2, busy(\tau_2, a_{2,3}^2)) = \max(18, 19) = 19.$$

The same pattern repeats for the fourth job of τ_2, released at time 21: when its first segment ends at time 23, the second segment is not eligible to commence execution before time 26 since $ET_{2,4}^2 \geq ET_{2,3}^2 + T_2 = 19 + 7 = 26$.

Figure 5: Example schedule of two tasks τ_1 and τ_2 on two processors sharing one lock-protected resource. The example assumes that lock requests take effect only when the critical section segment becomes eligible to be scheduled according to the rules of the period enforcer algorithm. Under this interpretation, the fourth job of task τ_2 misses its deadline at time 28.
Figure 6: Example schedule of two tasks τ₁ and τ₂ on two processors sharing one lock-protected resource. The example assumes that lock requests take effect immediately, even if the critical section segment is not yet eligible to be scheduled according to the rules of the period enforcer algorithm. Under this interpretation, the third job of task τ₁ misses its deadline at time 24.

By then, however, τ₁ has already locked the shared semaphore again, and the second segment of the fourth job of τ₂ cannot resume before time a₂,₄ = 27, at which point

\[ET₂,₄ = \max (ET₂,₃ + T₂, busy(τ₂, a₂,₄)) = \max (26, 27) = 27. \]

However, this leaves insufficient time to meet the job’s deadline: as the second segment of τ₂ requires \(C₂ = 2 \) time units to complete, the job’s deadline at time 28 is missed.

By construction, this example does not depend on a specific locking protocol; for instance, the effect occurs with both the MPCP [25] (based on priority queues) and the FMLP [2, 6] (based on FIFO queues). The corresponding response-time analyses for both protocols [3, 14] predict a worst-case response time of 6 for task τ₂ (i.e., four time units of execution, and at most two time units of blocking due to the critical section of τ₁). This demonstrates that, under the first interpretation, adding period enforcement to suspension-based locks invalidates existing blocking analyses. Furthermore, it is clear that the devised repeating pattern can be used to construct schedules in which the response time of τ₂ grows beyond any given implicit or constrained deadline.

Next, we show that the second interpretation can also lead to deadline misses in otherwise trivially schedulable task sets.

5.3 Case 2: Locking Takes Effect Immediately

From now on, we assume the second interpretation: all lock requests are processed immediately when they are made, even if this causes the shared resource to be locked by a task that is not yet eligible to execute according to the rules of the period enforcer algorithm. We construct an example in which a task’s response time grows with each job until a deadline is missed.

To this end, consider two tasks with identical parameters hosted on two processors. Task τ₁ is hosted on processor 1; task τ₂ is hosted on processor 2. Both tasks have the same period and relative deadline \(D₁ = D₂ = 8 \) and the same WCET of \(C₁ = C₂ = 4 \). They both access a single shared resource for two time units each per job. Both tasks request the shared resource after executing for at most one time unit. They both thus have two segments each with parameters \(C₁,₁ = 1 \) and \(C₁,₂ = 3 \).

The example exploits that a job may require less service than its task’s specified WCET. To ensure that the shared resource is acquired in a certain order, we assume the following deterministic pattern of the actual execution times. Let \(\epsilon \) be an arbitrarily small, positive real number with \(\epsilon < 1 \).

- The first segment of even-numbered jobs of τ₁ executes for only \(1 - \epsilon \) time units.
- The first segment of odd-numbered jobs of τ₂ executes for only \(1 - \epsilon \) time units.
- All other segments execute for their specified worst-case costs.

Figure 6 shows an example schedule assuming periodic job arrivals.
At time $1 - \epsilon$, the first job of τ_2 acquires the shared resource because τ_1 does not issue its request until time 1. Consequently, τ_1 is blocked until time $a_{1,1}^2 = 3 - \epsilon$, and we have

$$ET_{1,1}^2 = \max (ET_{1,0}^2 + T_1, \ busy(\tau_1, a_{1,1}^2)) = \max(-T_1 + T_1, 3 - \epsilon) = 3 - \epsilon$$

and

$$ET_{2,1}^2 = \max (ET_{2,0}^2 + T_2, \ busy(\tau_2, a_{2,1}^2)) = \max(-T_2 + T_2, 0) = 0.$$
The first jobs of τ_1 and τ_2 are both released at time 0 and attempt to access the shared resource at time 1. Task τ_1’s request is serviced first; as a result τ_2 resumes only at time $a^2_{1,1} = ET^2_{2,1} = 5$ after having been suspended for four time units:

$$ET^2_{2,1} = \max (ET^2_{2,0} + T_2, \text{busy}(\tau_2, a^2_{2,1})) = \max(-T_2 + T_2, 5) = 5.$$

Task τ_2 then executes its second computation segment for $C^2_2 = 6$ time units until time 11, when the job accesses the shared resource for a second time. Since there is no contention from τ_1 at this time, τ_2 resumes after only two time units at time 13. This leaves the job sufficient time to complete at time 14, one time unit before its deadline at time 15.

The second job of τ_2 is released at time 15 and issues a request for the shared resource at time 16. Since there is no contention from τ_1 at the time, the second computation segment arrives already at time $a^2_{2,2} = 18$, after having been self-suspended for only two time units. However, since the second segment of the first job arrived at time $a^2_{2,1} = 5$, the second segment of the second job is not eligible to start execution until time $ET^2_{2,2} = 20$ since

$$ET^2_{2,2} = \max (ET^2_{2,1} + T_2, \text{busy}(\tau_2, a^2_{2,2})) = \max(5 + T_2, 18) = 20.$$

As a result, τ_2 faces contention from τ_1 when it issues its second request for the shared resource at time 26, which ultimately leads to a deadline miss at time 30.

In contrast, without period enforcement, τ_2 does not miss its deadline at time 30 because, across its two requests, a job of τ_2 is delayed by at most one request of τ_1, for a total self-suspension time of at most two six time units. That is, even though the individual self-suspension segments of the two tasks are each up to four time units long (i.e., $S^1_1 = S^1_2 = S^2_2 = 4$), the fact that self-suspensions arise due to the same cause (resource contention) means that the total self-suspension time is actually less than the sum of the individual per-segment bounds.

Existing analyses for the DPCP [3][27][28] and the DFLP [3] exploit this knowledge and therefore predict task τ_2 to be schedulable with a worst-case response time of 14. The example in Figure 7 further demonstrates that the period enforcer invalidates existing blocking bounds for distributed semaphore protocols. As an aside, the example in Figure 8 further highlights limitations of the segmented self-suspension model in the context of synchronization protocols, where the lengths of self-suspensions encountered at runtime are inherently not independent.

Returning to the shared-memory case, as a third possible interpretation, one could also exclude critical sections from period enforcement such that only the rest of the computation segment after a critical section is subject to period enforcement (i.e., making critical sections immediately eligible to execute). This can be understood as

8This interpretation does not fit the assumptions stated in [20][24].
making each critical section an individual computation segment (exempt from period enforcement) that is separated from the following computation by a “virtual” self-suspension of maximum length zero. As in the case of distributed semaphore protocols, this interpretation breaks the feedback cycle highlighted in Sections 5.2 and 5.3 but still invalidates all existing blocking analyses as it artificially inflates the synchronization delay.

An example of this effect is shown in Figure 8, which depicts the same scenario as in Figure 7 under the assumption that a shared-memory semaphore protocol is used (i.e., critical sections are executed locally by each job) and that critical sections are exempt from period enforcement. As in the distributed case, period enforcement induces a deadline miss, whereas existing blocking analyses [3, 14] exploit the fact that a remote critical section can block only once, thus arriving at a worst-case response time bound of 14 for τ_2.

To conclude, in both Figures 7 and 8, period enforcement has an effect as if a single remote critical section can block a given job multiple times, which is fundamentally incompatible with efficient blocking analysis [3].

5.5 Discusion

While it is intuitively appealing to combine period enforcement with suspension-based locking protocols [13, 14, 27], we observe that this causes non-trivial difficulties. In particular, our examples show that the addition of period enforcement invalidates all existing blocking analyses.

If critical sections are subject to period enforcement, our examples also suggest that devising a correct blocking analysis would be a substantial challenge due to the demonstrated feedback cycle between the period enforcer rules and blocking durations. Fundamentally, the design of the period enforcer algorithm implicitly rests on the assumption that a segment can execute as soon as it is eligible to do so. In the presence of locks, however, this assumption is invalidated. As demonstrated, the result can be a successive growth of self-suspension times that proceeds until a deadline is missed. The period enforcer algorithm, at least as defined and used in the literature to date [26], is therefore incompatible with the existing literature on suspension-based real-time locking protocols (e.g., [2, 3, 13, 14, 27]).

Finally, it is worth noting that our examples can be trivially extended with lower-priority tasks to ensure that no processor idles before the described deadline misses occur. It is also not difficult to extend the examples in Figures 6 and 8 with a task on a third processor such that all critical sections of τ_1 and τ_2 are separated from their predecessor segments by a non-zero self-suspension.

6 Concluding Remarks

We have revisited the underlying assumptions and limitations of the period enforcer algorithm, which Rajkumar [26] introduced to handle segmented self-suspending real-time tasks.

One key assumption in the original proposal [26] is that a deferrable task τ_i can defer its entire execution time but not parts of it. This creates some mismatches between the original segmented self-suspending task set and the corresponding single-segment deferrable task set, which we have demonstrated with an example that shows that Theorem 5 in [26] does not reflect the schedulability of the original segmented self-suspending task system.
The original proposal [26] further left open the question of how to convert a segmented self-suspending task set to a corresponding set of single-segment deferrable tasks. This problem remains open. Taking into account recent developments [7, 24], we have observed that such a transformation is non-trivial in the general case.

Finally, we have demonstrated that substantial difficulties arise if one attempts to combine suspension-based locks with period enforcement. These difficulties stem from the fact that period enforcement can increase contention or lock-holding times, which increases the lengths of self-suspension intervals, which then in turn feeds back into the period enforcer’s minimum suspension lengths. As a consequence, period enforcement invalidates all existing blocking analyses.

Nevertheless, the period enforcer algorithm per se, and Theorem 5 in [26], could still prove to be useful for handling self-suspending tasks (that do not use suspension-based locks) if efficient schedulability tests or methods for constructing sets of single-segment deferrable tasks can be found. However, such tests or transformations have not yet been obtained and the development of a precise and efficient schedulability test for self-suspending tasks remains an open problem.

Acknowledgements

We thank James H. Anderson and Raj Rajkumar for their comments on early drafts of this paper. This work has been supported by DFG, as part of the Collaborative Research Center SFB876.

References

