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In language, a small number of meaningless building blocks can be combined into an unlimited set of
meaningful utterances. This is known as combinatorial structure. One hypothesis for the initial emer-
gence of combinatorial structure in language is that recombining elements of signals solves the problem
of overcrowding in a signal space. Another hypothesis is that iconicity may impede the emergence of
combinatorial structure. However, how these two hypotheses relate to each other is not often discussed.
In this paper, we explore how signal space dimensionality relates to both overcrowding in the signal
space and iconicity. We use an artificial signalling experiment to test whether a signal space and a mean-
ing space having similar topologies will generate an iconic system and whether, when the topologies dif-
fer, the emergence of combinatorially structured signals is facilitated. In our experiments, signals are
created from participants’ hand movements, which are measured using an infrared sensor. We found that
participants take advantage of iconic signal-meaning mappings where possible. Further, we use trajec-
tory predictability, measures of variance, and Hidden Markov Models to measure the use of structure
within the signals produced and found that when topologies do not match, then there is more evidence
of combinatorial structure. The results from these experiments are interpreted in the context of the dif-
ferences between the emergence of combinatorial structure in different linguistic modalities (speech and

sign).

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Language is structured on at least two levels (Hockett, 1960).
On one level, a small number of meaningless building blocks (pho-
nemes, or parts of syllables for instance) are combined into an
unlimited set of utterances (words and morphemes). This is known
as combinatorial structure. On the other level, meaningful building
blocks (words and morphemes) are combined into larger meaning-
ful utterances (phrases and sentences). This is known as composi-
tional structure. In this paper, we focus on combinatorial structure.

This paper investigates the emergence of structure on the com-
binatorial level. Specifically, we are interested in how the topology
of a signalling space affects the emergence of combinatorial struc-
ture. We hypothesise that combinatorial structure will be facili-
tated when a meaning space has more dimensions (ways
meanings can be differentiated) than the signal space has dimen-
sions (ways signals can be differentiated). We are also interested
in the emergence of iconicity. Iconicity is the property of language
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that allows meanings to be predicted from their signals. We posit
that iconicity can also be facilitated by the topology of a signalling
space, but when a meaning space and a signal space have similar
numbers of dimensions, rather than differing ones. Taken together,
these hypotheses will have different predictions for systems with
different topologies. We posit that it is dimensionality that is at
the root of why different signal structures may be facilitated by dif-
ferent linguistic modalities in the real world (speech and sign).
Previously, linguists have hypothesised that combinatorial
structure is present in all human languages, spoken and signed
(Hockett, 1960). Further, evidence suggests that at least in the
hominid lineage, the ability to use combinatorial structure is a
uniquely human trait (Scott-Phillips & Blythe, 2013). It therefore
needs to be explained why human language has combinatorial
structure. Hockett (1960) proposed that combinatorial structure
emerges when the number of meanings, and therefore signals,
grows, while the signal space stays the same. If all signals are
unique (i.e. they do not overlap in the signal space), this means that
the signal space becomes more and more crowded and that signals
become more easily confused. Combining elements from a smaller
set of essentially holistic signals into a larger set of longer signals
makes it possible to increase the number of signals beyond what
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can be achieved by purely holistic signals. Others have hypothe-
sised that combinatorial structure may be adopted as an efficient
way to transmit signals when more iconic strategies are not avail-
able. Goldin-Meadow and McNeill (1999) propose that there is a
relation between the emergence of combinatorial structure and
the (in)ability for mimetic (~iconic) signal-meaning mappings;
spoken language needs to rely on combinatorial structure exactly
because it cannot express meanings mimetically (iconically).
Roberts, Lewandowski, and Galantucci (2015) argue that early in
a language’s emergence, if iconicity is available, this will be
adopted over methods that are more efficient for transmission
(such as combinatorial structure). This happens because iconicity
is high in referential efficiency, which is more useful when lan-
guages are in their infancy, i.e. when linguistic conventions have
not yet been firmly established in the language community.

An important source of evidence regarding the emergence of
combinatorial structure comes from newly emerging sign lan-
guages, such as Al-Sayyid Bedouin Sign Language and Central Tau-
rus Sign Language (Caselli, Ergin, Jackendoff, & Cohen-Goldberg,
2014; Sandler, Aronoff, Meir, & Padden, 2011). While these lan-
guages do combine words into sentences, the words they use do
not appear to be constructed from combinations of a limited set
of meaningless building blocks (e.g. handshapes). In other words:
these languages do have compositional structure, but lack combi-
natorial structure (at least in the initial stages of their emergence).
Conversely, it is not easy to imagine a spoken language without a
level of combinatorial structure. Nothing similar has ever been
reported for emerging spoken languages such as contact languages,
pidgins and creoles. Taken together, these observations suggest
that different linguistic modalities cause differences in how struc-
ture emerges. Here we ask whether this is due to the availability of
more iconicity in signed languages, or a constraint in the amount of
distinctions possible in spoken languages.

2. Signal-space crowding and the emergence of combinatorial
structure

Mathematical models (Nowak, Krakauer, & Dress, 1999) and
computational models (Zuidema & de Boer, 2009) show that com-
binatorial signals can indeed theoretically emerge from holistic
signals as a result of overcrowding in the signal space. However,
in reality, the process of transition from holistic to combinatorial
signals involves more factors. The evidence from emerging sign
languages mentioned above shows that apparently fully functional
languages can get by without combinatorial structure. These
emerging languages slowly transition from a state without combi-
natorial structure to a state with combinatorial structure, without
a marked increase in vocabulary size (Sandler et al., 2011). Appar-
ently, the size and flexibility of the sign modality allows for a fully
holistic language (on the word level) in an initial stage.

Backing up the naturalistic results, and in contrast with the
models, experimental investigations have failed to show a strong
correlation between the crowdedness of the signal space and the
emergence of combinatorial structure. Verhoef, Kirby, and de
Boer (2014) investigated the emergence of structure in sets of sig-
nals that were produced with slide whistles. Participants learnt a
set of 12 whistled signals, and after a short period of training, their
reproductions were recorded and used as learning input for the
next “generation” of learners. This process of transmission from
generation to generation was modelled in an iterated learning
chain of 10 generations (Kirby, Cornish, & Smith, 2008). They found
that even in this small set of signals, combinatorial structure
emerged rapidly and in a much more systematic way than through
gradual shifts as predicted by Nowak et al. (1999) and Zuidema and
de Boer (2009). This indicates that processes of reanalysis and

generalisation of structure play a more important role than just
crowding of the signal space.

Roberts and Galantucci (2012) also investigated whether crowd-
ing in the signal space affected the emergence of combinatorial
structure. Participants developed a set of signals to communicate
about different animal silhouettes. The instrument used to generate
graphical signals (designed by Galantucci, 2005) prevented them
from either drawing the silhouettes, writing the name of the ani-
mals, or using other pre-existing symbols. They found that there
was no strong relation between the number of animals communi-
cated by participants and the level of structure found in signals.

Little and de Boer (2014) adapted Verhoef et al.’s (2014) slide
whistle experiment to investigate how the size of the signal space
would affect the emergence of structure. By limiting the movement
of the slider of the slide whistle with a stopper, the possible signals
were restricted to a third of the original pitch range. There was no
significant difference in the emergence of structure between the
reduced condition and the original condition, indicating that there
was no strong effect of reducing the available signal space on the
emergence of combinatorial structure. However, although the
stopper prevented a certain portion of the pitch range from being
used, it did not affect participants’ ability to replicate essential fea-
tures of the trajectories that could be produced without a stopper
(for example, a rising pitch repeated). With the specific example of
slide whistle signals, it is not the size of the signal space that would
cause overcrowding, but the way in which signals in the space can
be modified and varied. This idea is at the core of the present work
and will be discussed more thoroughly below.

The current experimental evidence, then, seems to suggest that
crowding in the signal space does not play such a primary role in
the emergence of structure as predicted by Hockett. However, it
is clear that the nature of the signal space must influence the emer-
gence of combinatorial structure, otherwise, we could not explain
that the sign languages can exist (at least briefly) without combi-
natorial structure, whereas spoken languages apparently cannot.
One reason for this difference between modalities could be the
extent to which a given signalling medium allows for the use of
iconicity.

3. Iconicity and combinatorial structure

Hockett (1960) proposed that an arbitrary mapping between
signal and meaning is a design feature of language. However, it is
now well-accepted that there is a non-trivial amount of iconicity
in human language. In spoken language, the most salient example
is true onomatopoeia, the property that a word sounds like what it
depicts (e.g. cuckoo, peewit, chiffchaff and certain other bird
names), though this is quite rare. A more common form of iconicity
is sound symbolism, which has now been demonstrated to be
much more widespread than previously thought (Blasi,
Wichmann, Hammarstrém, Stadler, & Christiansen, 2016). In sound
symbolism, there is a less direct relation between the signal of a
word and its meaning than in onomatopoeia. One example is that
of the relation between the size of an object that a word indicates
and the second formant of the vowel(s) it contains. Vowels with a
high second formant tend to indicate smallness, as in words like
“teeny” (Blasi et al., 2016). Another very different example is that
words that start with sn- often have something to do with the
nose: sneeze, sniff, snot, snout etc. (possibly because “sn” is ono-
matopoeic for the sound one makes when one has a cold). Here
sn- almost functions like a morpheme, but its meaning is not suf-
ficiently well-defined to be a true morpheme, and there are many
words starting with sn that have nothing to do with the nose. In
sign languages, there is a lot of visual iconic structure. For instance,
the sign for tree in British Sign Language has the arm representing
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the trunk, with the fingers pointing upwards and splayed to repre-
sent the branches of the tree. Although it is hard to quantify pre-
cisely, iconic structure is more prevalent in sign language than in
spoken language. This assumption is supported by experimental
evidence demonstrating that it is more difficult to be iconic using
vocalisations than it is with gestures (Fay, Lister, Ellison, &
Goldin-Meadow, 2014). Further, sign languages have more signal
dimensions than spoken languages (Crasborn, van der Hulst, &
van de Kooij, 2002). More signal space dimensions allow for more
mappings to be made between the signal space and the highly
complex meaning space we communicate about in real life, espe-
cially when those meanings are visual or spatial in nature.

In the introduction we mentioned the hypothesis of Goldin-
Meadow and McNeill (1999) and Roberts et al. (2015); that iconic-
ity suppresses the emergence of combinatorial structure. Roberts
and Galantucci (2012) explore how this mechanism could work.
They hypothesise that as signs become conventionalised, iconicity
may become dormant, i.e. language users are no longer aware of it.
Once iconicity has been lost (or become dormant) through a pro-
cess of conventionalistion, this opens up the possibility of re-
analysing regularities in signs as meaningless building blocks that
then become standardised across signs. Iconic signs are robust to
variation, as their meaning can be compensated for with knowl-
edge of the world. This is not possible when signs or building
blocks become arbitrary, and so a pressure for all speakers to
adhere to the same standard takes over. These hypotheses suggest
that the ability to use iconicity interacts with the emergence of
combinatorial (and compositional) structure.

Evidence for the connection between iconicity and combinato-
rial structure comes from several recent experimental studies.
Roberts and Galantucci (2012) found in their animal silhouette
experiment that more iconic signals tend to be less combinatorial.
Further, Roberts et al. (2015) conducted a study where the mean-
ings could either be easily represented iconically or not, with the
results indicating the emergence of combinatorial structure in
non-iconic signals, but not in those that retained their iconicity.
Similarly, Verhoef, Kirby, and Boer (2015) showed that structure
emerged differently in a situation where participants could make
use of possibly iconic signal-meaning mappings than in a situation
where they could not. The experiment used the same setup as the
one described above (Verhoef et al., 2014), except that the whistles
were associated with meanings. In one condition, signals were
paired with the same meaning they were produced for when
passed to the next generation for learning. This meant that iconic-
ity in signals could persist in transmission. In the other condition, a
random meaning was associated with each unique signal pre-
sented to the listener, so that producer and listener did not have
the same meaning for a given signal. The former condition allowed
for transmission of iconic signal-meaning mappings, while the lat-
ter condition did not. Verhoef et al. (2015) found that structure
emerged faster in the condition where signal-meaning mappings
were not preserved, i.e. where iconicity was not possible.

In the experiments above, iconicity is either possible or not. How-
ever, the difference in iconic ability between spoken and signed lan-
guage is one of degree rather than a parameter that is “on” or “off”. In
the experiments in the current paper, we are interested in how more
nuanced manipulations of available signal-meaning mappings can
promote the emergence of combinatorial structure.

4. The current study

4.1. Iconicity in the current study

In this paper, we investigate whether the observed differences
in the emergence of structure are dependent on the degree of

iconicity a particular signal space affords. Iconicity can take var-
ious forms, as we have already made clear. However, we need
to formalise notions of different types of iconicity in order to
inform our experimental design and results. We define two forms
of iconicity: relative and absolute iconicity (Monaghan, Shillcock,
Christiansen, & Kirby, 2014). For relative iconicity, there is what
mathematicians call a homeomorphism between the meaning
space and the signal space (i.e. there is an invertible mapping
in which neighbouring points in the meaning space stay neigh-
bouring points in the signal space). The consequence of such a
mapping is that if one knows enough signal-meaning mappings
(at least the number of dimensions +1), then meanings corre-
sponding to unseen signals and signals corresponding to unseen
meanings can be guessed. In order for this mapping to work,
points along the dimensions of the meaning and signal spaces
must be ordered in some way. Meaning and signal spaces with
categorical dimensions (e.g. biological sex) do not allow for such
generalisable relative iconicity. Indeed, previously, we conducted
an experiment using continuous signals to refer to meanings with
categorical dimensions (Little, Eryllmaz, & de Boer, 2015). Using
the same methodology as the current paper (see Methods section
below), we compared what happens when a continuous signal
space is used to describe a continuous meaning space verses a
discrete meaning space. We found that the discrete condition cre-
ated signals with more movement and structure when relative
iconicity was more difficult. This suggests that structure may
emerge due to transparent mappings not being available, which
fits with the findings from the experiments mentioned above
(Roberts & Galantucci, 2012; Roberts et al., 2015; Verhoef et al.,
2015).

For absolute iconicity, one only needs to see one signal in order
to see an iconic relation. To achieve this, the dimensions that cor-
respond through the homeomorphism must also correspond to a
feature in the real world. For example, this is the case in the abso-
lute iconic mapping between the second formant of vowels [i], [0],
[u] and size, where the second formant (a frequency) maps to the
pitch that an object would make if tapped. It should be noted that
these dimensions do not have to be linear and continuous. They
can be spatial (as in directions) or discrete/categorical (as in pres-
ence and absence of a property). In addition, similarity is a very
broad notion in practice; it often takes the form of an associative
link between a property (e.g. size) and a selected feature that cor-
responds to that property (e.g. frequency when tapped). Depending
on the number of dimensions that are related to the same feature
in the real world, the indirectness of these links, and the total num-
ber of dimensions that are mapped through the homeomorphism,
there is a continuum between absolute iconicity, relative iconicity
and no iconicity at all.

4.2. Topology in the current study

In our experiments, the notion of topology allows us to opera-
tionalise the way signal and meaning spaces map onto each other.
When a meaning space has the same number of dimensions (or
fewer) as the signal space, an iconic mapping is possible. When
the number of dimensions of the signal space is lower than that
of the meaning space, completely iconic mappings are no longer
possible.

Zuidema and Westermann (2003 ) were the first to look at signal
and meaning spaces with identical topologies. They looked at
meanings and signals from a bounded linear space. Using a com-
puter simulation, they found that the most robust signal-
meaning mapping was a topology-preserving iconic mapping:
one in which signals that were close together corresponded to
meanings that were close together. In this way, small errors in pro-
duction and perception only disrupted communication minimally.
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In a follow-up study, de Boer and Verhoef (2012) found that, while
this works when the topologies of the signal and meaning space
match, when the meaning space has more dimensions than the sig-
nal space, mappings emerge that show structure. Here, we propose
that de Boer & Verhoef’s (2012) model can inform us about the
emergence of structure in signed and spoken language: the signal
space of signed languages (in comparison to the signal space of
spoken language) is closer in topology to the (often visual and spa-
tial) meaning space that humans tend to talk about. The more
overlap there is between topologies, the easier it is to find signal-
meaning mappings where a small change in signal corresponds
to a small change in meaning. Moreover, when the topologies
map, it is possible to have productive iconic signal sets where
new signals are predictable from existing ones (for instance, higher
pitches corresponding to smaller objects). In order to develop these
ideas further, it is first necessary to experimentally investigate
whether the effects predicted by de Boer and Verhoef (2012) hold
for human behaviour.

In our experiments, we manipulate the number of dimensions
in our signal and meaning spaces to investigate the properties of
the signalling systems that participants create. The number of
dimensions (the dimensionality) of the meaning space is manipu-
lated by varying images in size, shade and/or colour. The number of
dimensions in the signal space is controlled by using an artificial
signalling apparatus (built using a Leap Motion infra-red hand posi-
tion sensor) that produces tones that can differ in intensity and/or
pitch depending on hand position. This allows us to have different
combinations of signal and meaning space dimensionality, and
therefore different mappings between the topologies of these
spaces.

One important implication to manipulating the topology of our
signal space is that dimensionality is not only tied to the iconicity
possible (as outlined above), but it also affects the size of a signal
space. The more dimensions a signal space has, the more distinc-
tions can be made between signals in that space. This means that
the overcrowding of signal space hypothesis and the iconicity
hypothesis cannot be teased apart by the experimental work in this
paper directly. They may also be more interrelated in real world
languages than is indicated in previous work.

4.3. Experiments

Our experiments aim to explore the effects that signal space
topology has on the emergence of structure. Specifically, following
the themes of de Boer and Verhoef (2012), we aim to find out how
differences in the dimensionality of both the signal space and the
meaning space will affect the structure in signals used. Following
the findings of de Boer and Verhoef (2012), our hypothesis is that
when the dimensionality of the signal space is lower than that of
the meaning space, then combinatorial structure will be adopted.
We also expect that when there is matching dimensionality in sig-
nal and meaning spaces, then participants will adopt iconic
strategies.

Experiment 1 compares signal spaces which are either 1
dimensional (pitch or volume) or two-dimensional (both pitch
and volume). These signals were used to label meanings that
either differed in only one dimension (size) or two dimensions
(both size and shade of grey). However, we found that partici-
pants used duration as a signal dimension, meaning that the
number of signal dimensions did not correspond to the intended
number in the experimental design. To fix this, in Experiment 2,
signals only differed in pitch (and duration) and the meaning
space grew to 3 dimensions to ensure we could observe the
effects of meaning dimensions outnumbering signal space
dimensions.

5. Experiment 1

Experiment 1 consisted of signal creation tasks and signal
recognition tasks. In contrast to previous experimental work, these
signals were not used for communication between participants, or
iterated learning. Instead, participants created and then recognised
their own signals.

5.1. Methods

5.1.1. Participants

Participants were recruited at the Vrije Universiteit Brussel
(VUB) in Belgium. 25 participants took part in the experiment;
10 male and 15 female. Participants had an average age of 24
(SD =4.6). No participants reported any knowledge of sign lan-
guages. We also asked participants to self-report their musical pro-
ficiency (on a scale of 1-5). This information was recorded as
recognition of pitch-track signals might be dependent on partici-
pants’ musical abilities, so we needed to identify and control for
this potential effect in our results.

5.1.2. The signal space

Our experiment used a continuous signal space created using a
Leap Motion device: an infrared sensor designed to detect hand
position and motion (for extensive details about the Leap Motion
paradigm, see Eryilmaz & Little, 2016). Participants created audi-
tory signals using their hand positions within the space above
the sensor. The Leap Motion was used to generate continuous, audi-
tory signals that were not speech-like. In this way, we could see
how structure emerged in our signals in a way that is analogous
to speech, without having pre-existing linguistic knowledge inter-
fere with participants’ behaviour.

We could manipulate the dimensionality of this signal space, so
signal generation depended on moving the hand within a horizon-
tal dimension (x), vertical dimension (y) or both (Fig. 1). Signals
were generated that either differed in pitch (on the x-axis), volume
(on the y-axis), or both. Participants were told explicitly which sig-
nal dimension(s) they were manipulating. When a signal could be
altered along two perceptual dimensions (i.e. pitch and volume),
participants achieved this by moving one hand within a two-
dimensional space, i.e. moving a hand up or down would affect
the volume, while a hand moving left or right would manipulate
the pitch. Participants could hear the signals they were producing.
Participants were given clear instructions on how to use the sensor
and had time to get used to the mapping between their hand posi-
tion and sound.

*y

+X

Fig. 1. The signal dimensions available using the Leap Motion. In phases with a one-
dimensional signal space, only either the x- or y-axis was available.
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Both the pitch and volume scales used were non-linear. Though
our paradigm allows for any mapping between the hand position
and the acoustic signal, participant feedback in pilots indicated
that people could more intuitively manipulate non-linear scales.
However, the output data has variables for both absolute hand
position within signal trajectories (represented as coordinates),
and transformed pitch and volume values so that we could explore
whether participants were relying more on hand position or the
acoustic signal.

Recording was interrupted when participants’ hands were not
detectable, meaning that there were no gaps in any of the recorded
signals, even if participants tried to produce them. This was done
to stop participants creating gaps to separate structural elements
in the signals, as this is not something typically used to separate
combinatorial elements in speech or sign. The data does not show
much (if any) evidence that participants tried to include gaps in the
experimental rounds, which would be evident from sudden
changes in pitch in the signal.

5.1.3. The meaning space

The meaning space consisted of a set of squares that differed
along continuous dimensions. In phases where the meaning space
only differed on one dimension, five black squares differed only in
size. In phases where the meaning space differed on two dimen-
sions, nine squares differed in both size and in different shades
of grey (Fig. 2). Participants had to create distinct signals for each
square.

5.1.4. Procedure

Participants were given instructions on how to generate signals
using the Leap Motion. They were given time to practice using the
Leap Motion while the instruction screen was showing. Participants
had control of when to start the experiment, and so could practice
for as long as they wanted. They were instructed to sit back in the
chair during the experiment, so that their upper body did not inter-
fere with the Leap Motion. Participants were also told that they
would have to recognise the signals they produced, so they knew
they had to make signals distinct from one another.

There were three phases of the experiment: each phase con-
sisted of a practice round and an experimental round. There was
no difference between practice rounds and experimental rounds,
but only the data from the experimental round was used in the
analysis. Each practice and experimental round consisted of a sig-
nal creation task and a signal recognition task.

5.1.5. Signal creation task

At the beginning of each signal creation task, participants saw
the entire meaning space. They then were presented with squares
in a random order, one by one, and pressed an on-screen button to
begin and finish recording their signals. They had the opportunity
to play back the signal they had just created, and rerecord the sig-
nal if they were not happy. Participants created signals for all pos-
sible squares in a phase.

5.1.6. Signal recognition task

After each signal creation task, participants completed a signal
recognition task. All signals they had created were presented to
them in random order one after the other. For each signal, they
were asked to identify its referent from an array of three randomly
selected meanings (from the repertoire of possible meanings - i.e.
squares of different colours and shades of grey - within the current
phase) plus the correct referent, so four meanings in total. They
were given immediate feedback about whether they were correct,
and if not, what the correct meaning had been. This task worked as
a proxy for the pressure to communicate each meaning unambigu-
ously (expressivity), as participants knew that they had to produce
signals that they could then connect back to the meaning in this
task, thus preventing them from producing random signals, or just
the same signal over and over again. Their performance in this task
was recorded.

When participants were incorrect, we measured the distance
between the meaning they selected and the correct meaning. The
distance was calculated as the sum of differences along each
dimension using a measure similar to Hamming distance. Let m;
define a meaning with size i and shade j in a meaning space where
0 <i<IandO0 <j <J.The distance between two meanings m;; and
my; is then the following:

D(my, myy) = i — 1| + [ ]| 1)

For example, if the correct square has values 3 and 3 for size and
shade respectively, and the chosen square had vales 1 and 2 for
size and shade respectively, the distance between these two
squares would be 3. Correct answers have a distance of 0.

5.1.7. Phase 1:1

All participants started with phase 1:1. In this phase, the mean-
ing space consisted of five black squares, each of different sizes
(one meaning dimension). In this phase, the signal space also had

Signal Dimensions Phases Meaning Dimensions
n T ]
- -
One signal dimension 1:2 One meaning dimension
“ . .
+
Y 2:2

-
>

Two signal dimensions

— H B
+X
" N

Two meaning dimensions

Fig. 2. The phases used in the experiment. Phase 1:2 is the mismatch phase.
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only one dimension, which was either pitch or volume. Which sig-
nal dimension the participants started with was assigned at ran-
dom. This phase was a matching phase, as there was a one to
one mapping possible between the meaning space and signal space

(Fig. 2).

5.1.8. Phase 1:2

In phase 1:2, participants created signals for a two-dimensional
meaning space with the squares differing in size and shade. The
signal space had only one dimension. Participants used the same
one-dimensional signal space that they used in phase 1:1, so if they
started the experiment only using pitch, they only used pitch in
this phase. This was the mismatch phase, as there were more
meaning dimensions than signal dimensions (Fig. 2).

5.1.9. Phase 2:2

In phase 2:2, participants described the two-dimensional mean-
ing space (differing in size and shade), but with a two-dimensional
signal space, where the signals differed in both pitch and volume
along the x and y dimensions respectively (Fig. 2). This phase
was a matching phase also, as there was a one to one mapping
available between signal and meaning spaces.

5.1.10. Counterbalancing

Participants completed the phases in order 1:1, 1:2, 2:2 (where
mismatch phase interrupts matching phases) or 1:1, 2:2, 1:2
(where matching phases are consecutive). Order was counterbal-
anced because participants’ behaviour may depend on what they
have previously done in the experiment. If people must solve the
dimensionality mismatch before being presented with the two-
dimensional signal space, then they may continue using an already
established strategy that only uses only one dimension, rather than
change their strategy to take advantage of both dimensions.

5.1.11. Post-experimental questionnaire

We administered a questionnaire with each participant after
they had completed the experiment. This questionnaire asked
about the ease of the experiment, as well as about the strategies
that the participant adopted during each phase of the experiment.
The questionnaire asked explicitly whether they had a strategy
and, if so, how the participant encoded each meaning dimension
into their signal.

6. Results
6.1. Signal creation task

The data collected from the signal creation task consisted of
coordinate values designating hand position at every time frame
recorded, which is what the following statistics are based on. There
were approximately 110 time frames per second. Signals were on
average 3.36 s long. We first looked at the mean of the coordinate
values for each trajectory, and the duration of each signal. These
simple measures give a good starting point to assess whether par-
ticipants were encoding the meaning space directly with the signal
space. If size or shade was directly encoded by pitch, volume or
duration trough relative iconicity, then this should be detectable
in the mean coordinates or duration of the trajectories.

The first dimension a participant used was collapsed into one
outcome variable in our analysis, regardless of whether it was
pitch or volume. All coordinates for signals using either pitch or
volume were normalised to have the same range. We also con-
trolled for whether these coordinates were pitch or volume in
the mixed linear models below as a fixed effect, and also ran a sep-
arate analysis that showed that participants performed just as well

in the task when starting with either pitch or volume (reported in
the signal recognition results below). As explained above, meaning
dimensions were coded to reflect the continuous way in which
they differed, i.e. the smallest square was coded as having the
value of 1 for size, and the biggest square a value of 5, with the
lightest grey square given a value of 1 for shade, and the darkest
had a value of 3. Using these values, we could predict duration
and mean coordinates from size and shade.

We ran a mixed linear model with size and shade as predictors,
duration and mean coordinate value as outcomes. Participant
number was included as a random effect, and whether their start-
ing dimension was pitch or volume as a fixed effect. P-values were
obtained by comparing with null models that did not include the
variable of interest. In the first phase, duration was predicted by
the size of the squares (y2(1) = 18.5, p < 0.001), but the mean
coordinate value was not. In the other 2 phases, the mean coordi-
nate of signals on the first dimension that a participant saw in
phase 1:1 (either pitch or volume) was predicted most strongly
by shade. A mixed linear model, controlling for the same effects
as above, showed this interaction to be significant
(x*(1) =341.4, p < 0.001). The duration of the signal was pre-
dicted most strongly by the size of the square, with each step of
size increasing the signal by 75.296 frames +7 (std errors) (approx
0.7 s). The mixed linear model for this effect, controlling for the
same fixed and random effects, was also significant
(x*(1) = 103.14,p < 0.001). These effects demonstrate a propen-
sity for encoding the meaning space with the signal space using
relative iconicity. Size and duration are easy to map on to one
another, and it makes sense that participants are more likely to
encode the remaining meaning dimension (shade) with the signal
dimension they were first exposed to. Fig. 3 shows the output of
one participant who mapped the signal space onto the meaning
space in a very straightforward one to one mapping, with size
encoded with duration and shade encoded with volume. This is
an example of a topology-preserving mapping (a
homeomorphism).

400 -

300 -

200 -

Volume of Signal

0 500 1000
Duration of Signal

Fig. 3. The mean trajectory coordinates (in mm) along the axis manipulating
volume (where lower values refer to louder sounds) plotted against duration
(number of data frames, roughly 1/110 of a second). Size and shade are represented
by the size and shade of the squares in the graph. Within the phase with the two-
dimensional meaning space with a two-dimensional signal space, this participant
used signal duration to encode size, and signal volume to encode shade.
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We also looked at standard deviation in signals to give us a good
idea of the amount of movement in a signal. Signal trajectories pro-
duced in the phase where there was a mismatch (1:2) had higher
standard deviations (M=48.2 mm) than signals produced in
phases where the signal and meaning spaces matched in dimen-
sionality (M = 33.4 mm), indicating more movement in mismatch
phases. Using a linear mixed effects analysis with standard devia-
tion as the outcome variable and whether phases were matching or
mismatching as the predictor, and controlling for participant num-
ber as a random effect, and whether they started with pitch or vol-
ume as a fixed effect, we found a significant effect
(x?(1) = 4.5, p < 0.05).

6.2. Predictability of signal trajectories

We also quantified signal structure by measuring the pre-
dictability of signal trajectories given other signals in a partici-
pant’s repertoire. If each signal trajectory in a participant’s
repertoire is predictable from the other signals, this gives an indi-
cation of systematic and consistent strategies being used within
the repertoire.

We created a measure for predictability of each signal trajec-
tory, derived from a participant’s entire repertoire. The procedure
is as follows:

1. Use the k-means algorithm to compute a set of clusters S of
hand coordinates using the whole repertoire, which reduce
the continuous-valued trajectories to discrete ones (k = 150).

2. Calculate the bigram probability distribution P for each symbol
X; € S.

3. Use the bigram probabilities to calculate the negative log prob-
ability of each trajectory using Eq. (2) below.

The choice of k was set quite high at 150 to ensure the quanti-
sation was sufficiently fine-grained. This ensured that the high
variation in our data set is well-represented in the prediction
scores to avoid overestimating similarity. In the literature, such
high values for this parameter are used for modelling high-
dimensional speech data, which we used as an upper bound (e.g.
Rédsdnen, Laine, & Altosaar, 2009).

Letting S be the set of 150 clusters obtained in step 1, and T be a
trajectory that consists of m symbols xq,X1,X2,...,X, Where x; € S,
the formal description of step 3 is the following:

m
P(T) = —log P(xo) — ZlogP(xa|xa,1) (2)
a=1
With the predictability value for each trajectory, we used a lin-
ear mixed effects model to compare the predictability of signals in
the matching and mismatching phases. Controlling for duration
and participant number as random effects, and size and shade of
square as fixed effects, we found that whether signals were pro-
duced in matched or mismatched phases predicted how pre-
dictable a trajectory was (y?(1)=3.9, p<0.05). Signals
produced in the matching phases had higher predictability.

6.3. Signal recognition task

Overall, participants were good at recognising their own signals,
identifying a mean of 66% of signals correctly, where 25% was
expected if participants performed at chance level. Using a linear
regression model, we found that participants improved by around
10% with each phase of the experiment (F(1,76) = 9.96, p < 0.01).

There was no significant difference between the recognition
rates of participants who started with either volume or pitch
(t(21.9) = —0.46, p = 0.65), suggesting that there was no differ-

ence in difficulty between the signal dimensions. We also used a
linear regression model to test if musical proficiency predicted per-
formance in the signal recognition task, and found that it did not
(F(1,23) =0.03, p = 0.86).

If signals rely on relative iconicity, then similar signals will be
used for similar meanings, causing more potential confusion
between signals for similar squares. This confusability may cause
participants to be worse at the signal recognition task when rela-
tive iconicity is more prevalent. We tested whether participants
were indeed worse at the recognition task in the condition where
we predicted relative iconicity (in the matching phases). In line
with this hypothesis, we found that participants were worse at
recognising their signals within matching phases (1:1, 2:2)
(M =61.3% correct, SD 24%), than in mismatching phases (1:2)
(M =69.6%, SD=21%). However, this result was not significant
(¢(53.3) = —1.5, p=0.13), and may be an artefact of the experi-
ment getting more difficult as it progressed.

We also calculated the distances between incorrect answers
and target answers, as discussed in our methods (Signal Recogni-
tion Task section). To compare these values to a baseline, we also
calculated the distance between the target answer and a randomly
chosen incorrect answer. Comparing the actual data with the ran-
dom data using a mixed effect linear model, and controlling for
participant number as a random effect, and stimulus number as a
fixed effect, we found that with incorrect choices produced in the
matching phases (1:1, 2:2), participants were closer to the correct
square (M = 2.6 steps away, SD = 1.4) than if they had chosen at
random (M = 3 steps away, SD = 1.7) (¥?(1) = 5.5, p = 0.02). How-
ever, in the mismatching phase (1:2) there was no difference
between actual incorrect choices and random incorrect choices
(both around 3.6 steps away, y2(1) = 0.01, p = 0.9). Further, we
found that the distance from the correct answer was much higher
in the mismatching phases (M = 3.6 steps away, SD = 1.5), than in
the matching phases (M = 2.6 steps away, SD = 1.4), indicating that
participants were relying more on relative iconicity in the match-
ing phases, because their mistakes were predicable, assuming a
transparent mapping between the signal space and the meaning
space. We tested this using a mixed effect linear model, and con-
trolling for the same variables found the effect was significant
(y*(1) =5.3, p < 0.05).

6.4. Post-experimental questionnaire

Nearly all participants reported strategies and they were mostly
the same strategies. These strategies included using pitch, volume
or duration directly to encode size or shade. For example, many
participants used high pitches or short durations for small squares
and low pitches or long durations for big squares. Participants also
reported that involved different movement types, frequencies and
speeds.

As we predicted in the section on counterbalancing, partici-
pants who saw phase 1:2 before phase 2:2, were more likely to
use the same signal strategy throughout, than to change the strat-
egy to take advantage of both dimensions. 84% (SD = 37%) of strate-
gies used for a particular meaning dimension were consistent
throughout phases 1:2 and 2:2 by participants who saw 1:2 first.
Only 54% (SD = 50%) of strategies by those who saw 2:2 first were
consistent. Consistency rates between different phase orders were
significantly different (y?(1) = 8.7, p < 0.01).

Whether a participant self-reported as having a strategy or not
influenced their performance in the signal recognition task. Partic-
ipants were significantly more likely to perform better at recognis-
ing their own signals in a given phase, if they reported having a
strategy (M =70% correct, SD=20%), than if they didn’t
(M = 40% correct, SD = 16%) (t(26.6) = —6, p > 0.001).
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6.5. Hidden Markov Models

6.5.1. Models

While our predictability values outlined in the previous sections
are useful to characterise internal similarities in a repertoire, the
clustering algorithm they are based on ignores temporal depen-
dencies. To infer the structure of the signal repertoires including
the temporal dependencies, we used Hidden Markov Models, or
HMMs. An HMM consists of a set of states of which only one can
be active at a time. The active state produces observable emissions
(such as short stretches of time) drawn from a state-specific distri-
bution, and the next active state depends only on the currently
active state. In the models we derive from our experimental data,
states are analogous to phonemes (or similar to building blocks),
and the emission distributions to determine how they are realised
phonetically. By training HMMs on the signal repertoires, we can
estimate the most likely vocabulary of states across a repertoire,
i.e. the most likely “phonological” alphabet. Note that this model
does not explicitly include meanings, since our purpose is to model
the structure of the signal repertoire.

HMMs are very common in natural language processing appli-
cations, such as part-of-speech tagging and speech recognition
(Baker et al., 2009). A common use for HMMs in the field is mod-
elling phonemes, where typically three states represent three pho-
neme positions, and their emissions are very short segments of
speech making up the observed signal (see Fig. 4).

HMMs are typically used with a fixed transition matrix and a
fixed number of states. Each phoneme is modelled as a “left-to-
right” HMM. These models have exactly one possible starting state,
and all transitions are deterministic. Further, applications typically
assume the number of states is already known and only the emis-
sion distribution for each state needs to be estimated. While this is
useful for modelling a signal whose structure is familiar (such as
human speech), it is not a very useful method of discovering
and/or characterising structure in signals where the properties of
the signalling system are unknown. Most of the structural variation
available is ruled out by the fixed architecture of the HMM. Fur-
thermore, contrary to common practice, we are interested in mod-
elling the properties of the whole signal repertoire rather than
individual signals.

Since we use HMM as a model of the speaker, the estimated
properties of the model should be able to predict the participant’s
performance, such as their score in the recognition task for that
phase. In particular, we are interested in whether the number of
states in the HMM can predict the recognition score of a partici-
pant. Since the states are analogues for the phonemic inventory,
we predict participants with bigger inventories will have worse
recall. Such predictive power would indicate the model success-
fully captures aspects of participant behaviour during the
experiments.

We propose that fewer building blocks across a repertoire indi-
cates combinatorial strategies in comparison to strategies of rela-

2/
t t+1 t+2

Fig. 4. A simple, three state, left-to-right HMM emitting the observation sequence
epere; through the state sequence sos;S,. Each observation e; is a random sample
from the emitting state’s emission distribution X; where i € {0, 1, 2}. Transitions are
annotated with their probabilities. Note how the only non-deterministic part of the
system is the emissions in this type of HMM.

tive iconicity. The efficiency that combinatorial structure brings
is due to its capability to encode multiple meanings with combina-
tions of a limited number of fundamental building blocks (or states
in the HMMs). We expect combinatorial strategies (represented by
a smaller numbers of states) to be more efficient in communicating
meanings, because they overcome the problem of crowding in the
signal space resulting in less confusion between signals. On the
other hand, a system with relative iconicity, which would have
to maintain a systematic relationship between the meanings and
forms, would result in many states within a crowded system. With
a combinatorial system, encoding a newly encountered meaning
dimension does not require the invention of a new signal dimen-
sion to provide a range of signals to encode variations on the mean-
ing dimension, which is what would happen with relative iconicity.
We predict that the signals from phases where the number of
meaning dimensions is greater than the number of signal dimen-
sions will have combinatorial structure, and this will manifest
itself in HMMs trained on those signals having fewer states than
signals from matching phases.

We calculate the structure as well as the transitions of HMMs,
with only an upper boundary on the number of states and no con-
straints on transitions. We use HMMs with continuous multivari-
ate (Gaussian) emissions and the standard Baum-Welch
algorithm for unsupervised training. We trained a separate HMM
on the set of signals generated by each participant at each phase
of the experiment. This way, we ensured that all signals that went
into training a particular HMM had been created to label the same
meaning space.

Because the mapping between hand position and the tones gen-
erated is non-linear, it makes a difference to the HMM which rep-
resentation we use to train it. Which one works best depends on
how participants memorise signals. There is no way of knowing a
priori whether the participants will memorise (and when playing
as the hearer, reverse-engineer) the hand movements themselves,
or the tones produced by these movements. So, in addition to the
raw data that assumes the states emit hand coordinates, we
trained the models on two transformed data sets that assume the
emissions are tonal amplitude and frequency values. These two
additional sets varied in their frequency units, one using the Mel
scale and the other Hertz. The full training procedure used for each
projection is presented in Algorithm 1 in Appendix A.

A series of linear mixed effects regressions were run to see what
aspects of the HMMs are most useful in predicting the signal recog-
nition scores. The dependent variable and covariates we have con-
sidered are the number of states of the model, while the predictors
were phase, phase presentation order, and whether the phase is
matching or mismatching. The random effects were whether vol-
ume or pitch was the first signal dimension introduced, and the
participant number. Likelihood ratio tests were used to justify
every additional component to the regression equation, corrected
for the number of comparisons. The details of the regression and
estimated coefficients are in Appendix B. Phases are coded as
pe{l1:1,1:2,2:2}, independent of their presentation order
(see Counterbalancing in the Methods section for explanation about
order of the phases). Order of presentation is taken into account in
the analysis, and is coded as “consecutive” (when the matching
phases appear one after the other) or “interrupted” (when the mis-
matching phase appears between the matching phases). The
matching phases are p € {1:1,2:2}, and the mismatching phase
is1:2.

6.5.2. Experiment 1 HMM results and discussion
The interaction of number of states, phase order and mismatch
was the best predictor for participant score in each phase

(R*> = 0.616). The signal representation most successful in predict-
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ing the recognition score was the Mel frequency and the amplitude
in linear scale. All results reported here come from HMMs trained
on trajectories represented in Mel.

Some combinations of the interacting components were logi-
cally excluded; for instance, the 1:1 phase can only take place in
the first position, so there is no coefficient for the interaction
between the 1:1 phase and phase orders other than 1. See Fig. 5
for the regression coefficients.

The coefficients associated with predictors reveal a somewhat
complex picture (Fig. 5). Considering that the coefficients indicate
the increase or decrease in the number of states required in each
condition to achieve the same recognition score compared to the
baseline, the coefficients suggest:

e There is a clear distinction between different orderings 1:1, 1:2,
2:2 (interrupted) and 1:1, 2:2, 1:2 (consecutive). The required
number of states is minimised for the consecutive ordering

o For either ordering, the need for any more or fewer states when
moving from the second phase to the third phase is
insignificant.

e Whether the second phase requires more or fewer states than
the first depends on whether the second is a match or a
mismatch.

Our results cannot confirm the prediction that mismatching
phases would require fewer HMM states. It seems that our predic-
tion only holds for the interrupted ordering where there is a mono-
tonic (but not necessarily significant) increase in the number of
states required.

If the matching phases are consecutive (1:1, 2:2, 1:2), this
seems to help all future phases to reduce the number of required
states compared to the first phase (although only the difference
between the first and the third phases is significant). However, if
the matching phases are interrupted by the mismatching phase
(1:1,1:2, 2:2), every phase requires more states than the one it fol-
lows (both second and third phases require significantly more
states than the first). This different behaviour based on ordering
is visible in the how the coefficients for phases 1:2 and 2:2 have
markedly different values in the left and right panels of Fig. 5.
Strikingly, the phase that required the least number of states across
all data seems to be phase 2:2 presented as the second phase. This
is despite phase 2:2 mapping on to a meaning space twice as large
as 1:1.

Order of presentation causing participants to break strategy has
an effect beyond whether or not a phase is mismatching. For
instance, in the ordering 1:1, 1:2, 2:2, the participant could simply

Interrupted Consecutive

Coefficient
Coefficient

Phase Phase

Fig. 5. Fixed effects from Experiment 1, for both orders of presentation of phases.
Each coefficient represents the estimated number of extra states a phase requires in
that condition. Phases 1:1 and 2:2 are matching phaes. Phase 1:2 is mismatching.

ignore the additional dimension on the final phase to perform at
least as well as the second phase, yet there is an (insignificant)
increase in the coefficient in the 2:2 phase. Interestingly, the oppo-
site trend can be seen in the other ordering, where changing over
to a mismatching phase results in an (insignificant) increase in
the number of states required.

7. Experiment 2

Experiment 1 provided important evidence of the effects of
matching and mismatching signal and meaning space topologies.
When there is a one to one mapping between signal and meaning
spaces, participants tend to take advantage of it. Indeed, even in
our conditions designed to produce a dimensionality mismatch,
participants used duration as another signal dimension. Despite
this, we were still able to find significant effects of the matching
phases compared to the mismatching phases on the amount of
movement in signals, the consistency of iconic strategies and
how predictable recognition mistakes were.

Experiment 2 was a very similar signal creation experiment. It
tested the same hypothesis as Experiment 1, but the design was
altered to counter two possible problems with Experiment 1:

(1) Duration was used as a dimension by some participants,
meaning there wasn't really a “mismatch” even with the
1:2 phase.

(2) Participants created signals for a very small meaning set in
Experiment 1 (5 or 9 meanings depending on the phase),
which was seen in its entirety before the experiment. This
made it easier for participants to create a completely holistic
signal set without the need for structure. Only one partici-
pant treated meanings holistically in Experiment 1 (using
frequencies of pitch contours to differentiate meanings).
However, we feel that this is still a flaw in the experimental
design, as this strategy would soon become maladaptive as
meaning numbers rise. In the real world, continuous mean-
ing dimensions are much more nuanced than only having 3
or 5 gradations.

To counter these problems, two alterations have been made in
Experiment 2:

(1) Phase 1:2 in Experiment 2 has been dubbed a “match”
phase, and a new phase 1:3 has been instated to be sure
there is a dimensionality mismatch.

(2) Participants do not create signals for every possible mean-
ing, but a subset of them. This is explained further in the
7.1.3 section below.

7.1. Methods

7.1.1. Participants

Participants were recruited at the VUB in Brussels. 25 partici-
pants took part in the experiment; 8 male and 17 female. Partici-
pants had an average age of 21 (SD = 3.2). As in Experiment 1, we
asked participants to list the languages they speak, with level of flu-
ency, and to self-report their musical proficiency (on a scale of 1-5).

7.1.2. Signals

As in the first experiment, there was a continuous signal space
built using the Leap Motion sensor to convert hand motion into
sounds. However, in this experiment, signals could only be manip-
ulated in pitch. Participants manipulated the pitch in the same way
as in Experiment 1, along the horizontal axis. There was an expo-
nential relationship between hand position co-ordinates and signal
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frequency. The vertical axis was not used at all in this experiment,
meaning that, including duration, the number of signal dimensions
could not be more than 2. However, participants were not explic-
itly told to use duration in order to make the results from Experi-
ment 1 more comparable with Experiment 2. Again, participants
were given clear instructions on how to use the sensor, and were
given a practice period to get used to the mapping between the
position of their hand and the audio feedback before the experi-
ment started.

7.1.3. Meanings

The meaning space again consisted of a set of squares, but in
this experiment they differed along three continuous dimensions:
size, shade of orange, and shade of grey. Squares differed along dif-
ferent numbers of dimensions in each phase (Fig. 6). In contrast to
the first experiment, participants only saw a subset of the possible
meanings. Each dimension was divided into 6 gradations, meaning
that the meaning space grew exponentially with the number of
dimensions (see description of phases below). Having 6 gradations
of difference on meaning-space dimensions meant the meaning
space is big enough to have make productive systems useful, but
coarsely grained enough to not make the discrimination task
impossible. Further to the reasons given above, this aspect of the
experimental design made an incentive for participants to create
productive systems that extend to meanings they have not seen.
The subset the meanings participants saw were randomly selected,
but participants were explicitly told about all of the possible
dimensions. This pressure to make productive systems because
one has only seen a subset of a bigger meaning space has been
demonstrated in experiments such as Kirby et al. (2008) and
Kirby, Tamariz, Cornish, and Smith (2015).

Two of the meaning dimensions in this experiment were “shade
of grey” and “shade of orange”. In pilot studies, we originally had the
squares differ in shade of orange (which we controlled using the RGB
ratio of green to red) and the brightness value. However, this made
the squares at the darker and redder end of the scale very difficult
for participants to tell apart, as they all appeared the same dark
brown colour. To solve this, we used striped squares with alternating
grey and orange stripes (see Fig. 6). This gives the same effect of
squares differing in shade of orange and brightness, but squares at
both ends of the spectrum can be distinguished just as easily.

7.1.4. Procedure

The procedure in Experiment 2 was nearly the same as Experi-
ment 1. There were still 3 phases, each with a practice round and
an experimental round, which were both the same. Each round
has a signal creation task and a signal recognition task. However,
the phases were slightly different.

Signal Space Dimensions Phase Number Meaning Space Di
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Fig. 6. The signal and meaning dimensions used in Experiment 2 in each of the 3
phases.

7.1.5. Phases

All participants had phases presented in the same order: 1:1,
1:2, 1:3. The “1” here refers to 1 signal dimension (pitch), in order
to make these phase labels consistent with the phases in Experi-
ment 1. However, since we have learnt to expect participants to
use duration as a signal dimension, it is important to remember
that the meaning dimensions only outnumber the signal dimen-
sions in a meaningful way in phase 1:3.

7.1.6. Phase 1:1
In phase 1:1, there were 6 squares that differed in 6 gradations
of size. All 6 squares were presented in a random order.

7.1.7. Phase 1:2

In phase 1:2, there were 36 possible meanings. Meanings dif-
fered along two dimensions, 6 gradations of size and 6 shades of
grey stripes (See Fig. 6.) 12 meanings were chosen at random from
this set of 36. Participants were then presented with them in a ran-
dom order. Participants were explicitly told about the introduction
of the new meaning dimension at the beginning of the phase.

7.1.8. Phase 1:3

In phase 1:3, participants were presented with 12 squares in a
random order that differed along three dimensions, 6 gradations
of size, 6 shades of grey stripes and 6 shades of orange stripes
(See Fig. 6.) This made a possible number of 216 squares, which
were chosen from at random. This does mean that some partici-
pants saw more “evidence” of some dimensions than others in
the subset of squares that they saw. However, as with phase 1:2,
all participants were explicitly told about the introduction of the
third meaning dimension at the beginning of the phase.

7.1.9. Signal recognition task

As in the first experiment, participants completed a signal
recognition task. They heard a signal they had created, and were
asked to identify its referent from an array of three randomly
selected squares from the set of possible squares in the current
phase, plus the correct referent, so four squares in total. They were
given immediate feedback about whether they were correct, and if
not, what the correct square had been. Their performance in this
task was recorded for use in the analysis. The distance in the mean-
ing space they were from the correct answer was also recorded in
the same way that it was in Experiment 1.

7.1.10. Post-experimental questionnaire

The questionnaire asked about the strategies that the partici-
pant adopted during each phase of the experiment. As in the first
experiment, the questionnaire was free-form. Participants were
also asked to name the 6 shades of orange used in the experiment,
in order to see if they did indeed label them all “orange”, and to see
if and how they categorised the colours affected their signals. The
shades used in the experiment had been designed to all be per-
ceived as orange. Only 17 participants completed this later part
of the questionnaire because of experimenter error.

8. Results
8.1. Signal creation task

8.1.1. Descriptive statistics

In this experiment, signals were on average 2.3 s (approx. 252
frames long). The average duration of signals rose by about 20
frames each phase (y?(1) = 7.9, p < 0.005).

As in Experiment 1, meaning dimensions were coded to reflect
the continuous way they differed, i.e. the smallest square was
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coded as having the value of 1 for size, and the biggest square a
value of 6, while the lightest grey/orange stripes were given a value
of 1 for shade/colour, and the darkest had a value of 6. Again, across
all phases, the size of square was the best predictor for the duration
of the signal (y?(1) = 63.3, p < 0.001), with signals for the small-
est squares having a mean duration of 1.55s (SD=1.265s), and
the largest squares having a mean duration of 2.7 s (SD=1.9s).
However, in this experiment size was also the best predictor for
the mean pitch of the signals (}?(1) = 15.7, p < 0.001). The small-
est squares had a mean pitch of 403 Hz, and the largest squares had
a mean pitch of 333 Hz. Again, we take this as evidence for the use
of relative iconicity.

We again looked at the standard deviations of individual signal
trajectories to see if the degree of mismatch in the signals affected
the amount of movement in the signals. There was no significant
difference between the two matching phases (Phases 1:1 and

1:2), in fact, the mean standard deviation in these phases was
nearly identical (around 28 mm, SD = 31.5). However, the SDs from
phase 1:3, the mismatch phase, was significantly higher
(M=33.8mm, SD=34.4) than in the other two phases
(x*(1) =6.9, p < 0.01) indicating more movement in the mis-
match phase. Fig. 7 shows how this effect manifested itself in the
signals of one participant where the differences between phases
were particularly marked.

8.1.2. Predictability of signal trajectories

We again calculated the predictability values for each of the sig-
nal trajectories in a repertoire in the same way as we did in Exper-
iment 1. We were interested to see if whether a phase was
matching or mismatching had an effect on how predictable the sig-
nals were. Using a linear mixed effects model and controlling for
duration and participant number as a random effect, and size of
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Fig. 7. The entire signal repertoire of one participant in all three phases of Experiment 2. The colour of the stripes in the pitch tracks represents the colours of the squares they
represent. Square size is denoted along the right-hand side. The numbers by each pitch track are the file names of each meaning which also encode the size and shade of
orange and grey. Signals produced in phase 1:3 have visibly more movement than in the other two phases.
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Fig. 9. Fixed effects from the discrete case for both orders of presentation of phases,
covered in Little et al. (2015). Each coefficient represents the estimated number of
extra states a phase requires in that condition.

square as a fixed effect, we found that whether the signal was pro-
duced in a matching phase or not correlated with how predictable
a trajectory was (2(1) = 11.2, p < 0.001). The value was closer to
0 (so more predictable) in phase 1:1 (M =95), and got less pre-
dictable with each phase (phase 1:2 M =119, phase 1:3 M = 145).

8.1.3. Signal recognition task

We used a linear model to test if musical proficiency predicted
performance in the signal recognition task, and, as in Experiment 1,
found that it did not (F(1,23) = 0.03, p = 0.28).

Overall, participants were slightly worse at recognising their
own signals in Experiment 2 than in Experiment 1. They recognised
their signals with a mean of 56% correct (SD = 13%), again with a
chance level of 25%. Using a linear model, we tested whether par-
ticipants improved in their performance throughout the experi-
ment, as they did in Experiment 1, but found no correlation
(F(1,23) = 1.39, p = 0.24). Success stayed constant across phases
around the 56% mean. The lack of improvement as participants
became more experienced was probably because the meaning
space expanded so rapidly with each phase, making the recogni-
tion task much more difficult.

Again, when participants were incorrect, we were able to mea-
sure the distance between their answer and the correct answer.

We did this in the same way as we did in experiment 1. Using a
mixed effect linear model, and controlling for participant number
as a random effect and square number as a fixed effect, we found
that with incorrect choices produced across phases, participants
were closer to the correct square (M = 3.3 steps away, SD = 2) than
if they had chosen at random (M=4 steps away, SD=2.1)
(x*(1) =22.4, p<0.001) (see Fig. 8), the difference between
actual and random data was significant within phases 1:2 and
1:3 as well.

In later phases, incorrect distances were higher because of the
bigger meaning space. Therefore, 4 meanings chosen at random
would have a much bigger mean distance between them in the big-
ger meaning spaces. As a result, comparison between phases of dis-
tance from the correct answer is not indicative of participants
having problems. However, bigger effect sizes when comparing
the actual data with random data might indicate more reliance
on iconicity. This is because choosing meanings close to the correct
meaning indicates use of iconicity. When there is no iconicity, the
answers should be more similar to the random data. The effect size
for the comparison between the actual data and the random data
in phase 1:3 was smaller (d, = 0.27) than in the other two phases
(d- = 0.46), suggesting that in phase 1:3 there was less reliance on
iconic strategies.

8.1.4. Post-experimental questionnaire

In Experiment 2, every participant had a strategy. Generally,
participants in Experiment 2 reported the experiment to be more
difficult than participants in the first. In phase 1:1, participants
encoded size directly with pitch or duration (80% self-reported).
Participants tended to stick with the same strategy for size, but
developed strategies on top of that to cope with the different shade
elements, and by phase 1:3, 56% of participants self-reported using
a strategy that relied on movement, patterns or pattern
frequencies.

Responses to the colour categorisation part of the questionnaire
were very variable, ranging from 2-6 categories over the 6 squares,
with a mean value of 4.2 categories, though most categories
included the word orange, such as “light orange”, “dark orange”,
“red orange”, “sunset orange”, “blood orange”, but people also
labelled the darkest shade “red”. There was no interaction between
the number of categories that participants separated the squares
into and how well they did in phase 1:3, which was the only phase
to use different shades of orange (F(1,16) = 1.56, p = 0.23).

8.1.5. Hidden Markov Models

The data from the second experiment were processed identi-
cally to the first from continuous trajectories to HMMs. Then, the
number of states for the HMMs, i.e. the best predictor from the first
experiment, was used to predict the recognition scores using a lin-
ear mixed effects model while controlling for participant number
and phase.

The second experiment did not yield the same results as the
first one. The regression did not predict recognition scores using
the number of states in any representation of the signals. Further
analysis was performed to see if any of the other candidate predic-
tors worked for this particular data set, but no predictor performed
well. In other words, we failed to demonstrate that the HMM mod-
els captured participant performance for this experiment.

To investigate which aspect of the second experiment was dif-
ferent, we modelled a third data set from Little et al. (2015), sum-
marised in the introduction of the current paper. The only
difference between the experiment presented in Little et al.
(2015) and Experiment 1 is that the former used discrete meanings
that don’t have an intuitive, natural ordering, such as various tex-
tures or colours. This prevented the participants from exploiting



H. Little et al./Cognition 168 (2017) 1-15 13

the natural ordering of a continuous meaning space as they do in
the current experiments, but retains any dimensionality effects.

We modelled this data set using HMMs and analysed it in the
same way as Experiment 1. The fixed effect coefficients show that
ordering of phases is still important for the discrete case (see
Fig. 9). While for both orderings, the 2:2 phase requires more states
than the 1:2 phase, this difference is only significant in the cases
where there is no strategy change necessary (with interrupted
order). This shows that the continuous data set is more efficiently
represented using relative iconicity that doesn’t change across the
experiment, whereas the discrete data set is most efficiently repre-
sented in the mismatching phase, but only after a strategy within a
matching phase has been established first. This demonstrates that
the types of meanings do modulate the efficiency of iconic and
non-iconic strategies, where more continuous, ordered meaning
spaces are better represented using relative iconicity.

The analysis of the data from Little et al. (2015) adds to our
information, giving us knowledge of how the model behaves using
data from three different experiments. The HMMs make reason-
able predictions about participant behaviour in Experiment 1 and
in Little et al. (2015). This raises the question of what causes the
issue with Experiment 2. The most salient different between the
two experiments was the absence of a two-dimensional signal
space in Experiment 2, as only pitch was used, as well as the 1:3
phase. Accounting for what exactly would cause HHMs to not be
able to model this data in an intuitive way is not clear. Despite this,
we think that HMMs are a very worthwhile method to pursue,
illustrated by where we have succeeded. However, further work
needs to focus on refining our understanding of what predictions
make sense for different data sets.

9. Discussion
We set out to experimentally investigate two hypotheses:

(1) When the topologies of signal and meaning spaces are the
same, this facilitates the emergence of iconic signals.

(2) When the number of meaning dimensions outnumbers the
signal dimensions, this facilitates the emergence of combi-
natorial structure.

In both experiments, we found correlation between the struc-
ture of signal repertoires and the structure of the meaning space,
indicating a prevalence of relative iconicity. This was particularly
marked when signal and meaning spaces had the same number
of dimensions. We also found evidence for more movement in sig-
nals in phases where there was a mismatch between signal and
meaning spaces, suggesting a departure from relative iconicity to
a possibly more structured signalling system. Signals were also
longer in later phases in Experiment 2, which perhaps points to
more sequential encoding. Lewis and Frank (2016) previously
showed that longer word forms are associated with meanings with
more complexity, and signal duration has also been used as a mea-
sure for complexity in experimental studies such as Roberts et al.
(2015).

During phases with matching dimensionalities, participants
produced signals that were more predictable, given a participant’s
entire repertoire, than signals produced within mismatching
phases. This is probably due to the mismatching phases producing
signals with more movement, which is less predictable than static
signals indicative of relative iconicity. We also found that in
matching phases, when participants were incorrect, they were
more likely to choose meanings that were closer to the correct
meaning than if they had chosen at random, again suggesting a
reliance on relative iconic strategies.

The above results provide evidence for the first hypothesis, that
matching topologies incentivise participants to produce signals
with relative iconicity. They also show that more movement and
complexity was present when meaning dimensions outnumbered
signal dimensions. However, exactly how we can characterise this
movement remains unclear. One possibility is that the movement
in our signals is iconic, for instance, representing the stripes of
meanings in Experiment 2. However, the post-experimental ques-
tionnaires do not support this narrative. It is clear from the ques-
tionnaires that participants often used structural strategies, in
that specific elements or dimensions of the signal refer to different
dimensions of the meaning that are then combined to refer to the
whole meaning. However, structure such as this is not indicative of
combinatorial structure as we defined it in the introduction. That
is, the building blocks are not meaningless but correspond to
dimensions in the meaning space. However, there is very little flex-
ibility in the way signal dimensions can be combined in our exper-
iments, and parts of the signals/meanings cannot occur in isolation
(that is, every signal has to have both a pitch and a duration). In
this respect, the structure is neither combinatorial nor composi-
tional but something in between, and possibly something that
could be reanalysed by speakers to be combinatorial structure
through the mechanisms proposed by Goldin-Meadow and
McNeill (1999). Investigating what might cause this reanalysis to
happen would make a good departure for future experimental
work, perhaps having participants creating signals for bigger and
less structured meaning spaces to get rid of the inhibiting effects
of iconicity.

Further to the above, we also gathered evidence about structure
in our signals using Hidden Markov Models. We found interaction
between number of states, phase, and phase order in Experiment 1,
but were not successful in doing this for Experiment 2. Despite
this, we feel that with some fine-tuning Hidden Markov Models
will be a worthwhile tool for measuring combinatorial structure
in artificial signalling experiments in the future.

10. Further work

One of the major difficulties we faced in the analysis of this
experiment was variation in participants’ behaviour. In a popula-
tion of signallers, especially without iconicity, diversity of sig-
nalling strategies is not beneficial, as signallers need to settle on
a shared strategy to be mutually understandable. In order to
address this problem, our next step will be to develop this para-
digm with social coordination experiments where pairs or groups
of participants create shared communication systems. A communi-
cation game will also allow us to identify effects that are the result
of interaction as opposed to the pressure for expressivity on its
own.

Another next step will lie in the extension of the paradigm to
look at other ways to manipulate the mappability between signal
and meaning spaces. In the current experiments, participants were
describing a continuous ordered meaning space with a continuous
signal space. Further, as the meaning space in our experiment was
very structured, what we found was signal structure that directly
corresponded to the structure in the meaning space. However, hav-
ing meaning space dimensions that are not continuous will obfus-
cate the signal-meaning mapping in a way that will make iconic
strategies much more difficult. Work in this area has already
started (Little et al., 2015), but we are still pursuing research on
how different meaning spaces can affect the emergence of signal
structure on different levels. In this vein, we have also run further
experiments with less internal structure in the meaning space in
order to obtain signals that have structure more analogous to
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phonological structure than compositional structure (Little,
Eryilmaz, & de Boer, in press).

Finally, progressively more advanced Hidden Markov Model
variants can be employed where the Markovian assumption is
relaxed. This will both enable using new dimension types, such
as duration, in the HMMs, and also potentially provide more theo-
retically justified model selection criteria, such as the implicit
selection of the number of states in Dirichlet Process HMMs.

11. Conclusion

In conclusion, we have shown that the topology and dimension-
ality of a signal space will affect the emergence of structure and
iconicity: the more closely the topologies of the signal and mean-
ing space correspond, the easier it is to use iconic structure. If there
is no good correspondence, we see more movement in the signals:
perhaps the first steps towards structure (either combinatorial or
compositional). These findings are important to understand how
linguistic modality affects the emergence of structure in real world
languages. The manual modality has more signal space dimensions
than speech. This may help explain why some emerging sign lan-
guages go through a phase where they do not appear to use com-
binatorial structure, but do use iconicity extensively. Our
experimental results indicate that having more dimensions will
not only affect how quickly the signal-space gets overcrowded,
but also to what extent signalling strategies that use relative
iconicity can be used. It is for these reasons, we would like to argue
that our two hypotheses are intrinsically linked as they are both
tied up in the topology and dimensionality of the signal space.

As a final point, our results are also important for researchers
conducting artificial language experiments with signal-space prox-
ies. The topology of the signal space being used has significant
effects on the iconicity and structure which emerges in the exper-
iment which researchers need to be mindful of. Importantly,
understanding these effects, as we have attempted to do here, will
put us in a better position to separate the effects of signal space
topology from other effects under investigation in the broader
literature.
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Appendix A. HMMs

The HMMs used in this study are HMMs with multivariate con-
tinuous Gaussian emissions, using the standard Baum-Welch algo-
rithm for unsupervised training. We used a slightly modified
version of the Python wrappers for GHMM library as our HMM
implementation (Schliep, Georgi, Rungsarityotin, Costa, &
Schonhuth, 2004).

Since Baum-Welch is an expectation—-maximisation algorithm,
it is susceptible to getting stuck in locally optimal solutions. To
overcome this, for each combination of parameters, we randomly
initialise multiple models, and pick the one with the highest like-
lihood. We chose to compare 100 random initialisations for each
parameter set.

A.1. Model selection

The parameter for the number of hidden states is the only one
not estimated by the Baum-Welch algorithm. It also determines
the size of the model since each additional state adds new param-
eters to the model. We have to perform model selection over can-
didate models to approximate the best number of states for each
dataset. We do this by comparing the Bayesian Information Score
(BIC) values of the competing models, picking the one with the
lowest BIC. BIC is a measure that balances the likelihood of the
model and the size of the model, providing a model with both a
high likelihood and a minimal size (Schwarz, 1978).

A.2. Training data

For each HMM, the training data consists of all the signal data
from a particular participant at a particular round. Since there
are three possible data projections, three models are trained per
parameter set. In each phase, there are 5 to 12 signals (depending
on the specific phase and experiment), and all of them are used for
training (since this is already quite a small amount of data to train
these models on). The same BIC selection procedure is used to pick
the best projection.

The number of states varied between 2 and 30. The number 30
is an upper limit inspired by the number of states that would be
needed if there were one state per meaning in two dimensions
(12 x 2 = 24), an inefficient, one-to-one, iconic encoding. The BIC
usually stops decreasing significantly after this point as well, and
training larger models becomes increasingly time consuming, so
we capped this parameter at 30.

In total, these add up to (30 — 2) x 100 = 2800 HMMs trained
per projection per phase per participant, of which the one with
the lowest BIC score is used as the best model. Each phase for each
participant was modelled by exactly three HMMs, one for each
projection. The best projection for each experiment was chosen
using the mixed effects regression outlined in Appendix B.

Algorithm 1. HMM training and selection for each projection

1: function FTHMM(trajectories)

2: hmm « nil

3: bic — 999999

4: nStates — 2

5: maxStates < 30

6: while nStates < maxStates do

7: for 1:100 do

8: hmm' — HMM(nStates)

9: for trajectory in trajectories do
10: hmm' — BaumMWELcH(hmm', trajectory)
11: if BIC(hmm’) < bic then
12: hmm — hmm'

13: bic — BIC(hmm’)
14: nStates — nStates + 1
return hmm
15: function AnaLyzeData(participants, data)
16: models — {}
17: for pr in participants do
18: for phase in 1:3 do
19: trajectories «— datapr][phase]
20: models[pr|[phase] — FiTHMM(trajectories)

return models
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Appendix B. Mixed effect linear regression

Let O(p) € {1,2,3} be the order of phase p. Then the regression
equation can be expressed as:

SCOT@jqp, = o + Olig + € + Nitates X Slope(p) (B-1)
where
By ifp=1:1
B, ifp=1:2&0(p)=2
slope(p) =< p; ifp=1:2&0(p)=3 (B-2)
By ifp=2:2&O0(p)=2
Bs ifp=2:2&0(p)=3
The coefficient values were calculated as

oo = 0.640, 8, = 0.077, 8, = 0.193, p; = 0.053, B, = 0.000, and
Bs = 0.241, where oy, B, B, 85 are found to be the predictors for
which p < 0.05. The oy intercepts for each participant varied in
the range [—0.237,0.189].

On Figs. 5 and 9, the coefficients plotted as Ordering 1 are
B1, B2, Bs, and the ones plotted as Ordering 2 are B, B4, B-

Appendix C. Supplementary material

Supplementary data associated with this article can be found, in
the online version, at http://dx.doi.org/10.1016/j.cognition.2017.
06.011.
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