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Abstract

Normative models of human cognition often appeal to Bayesian filtering, which provides

optimal online estimates of unknown or hidden states of the world, based on previous obser-

vations. However, in many cases it is necessary to optimise beliefs about sequences of

states rather than just the current state. Importantly, Bayesian filtering and sequential infer-

ence strategies make different predictions about beliefs and subsequent choices, rendering

them behaviourally dissociable. Taking data from a probabilistic reversal task we show that

subjects’ choices provide strong evidence that they are representing short sequences of

states. Between-subject measures of this implicit sequential inference strategy had a neuro-

biological underpinning and correlated with grey matter density in prefrontal and parietal cor-

tex, as well as the hippocampus. Our findings provide, to our knowledge, the first evidence

for sequential inference in human cognition, and by exploiting between-subject variation in

this measure we provide pointers to its neuronal substrates.

Author summary

When studying human cognition, it is often assumed that agents form and update beliefs

only about the current state of the world, an approach known as Bayesian filtering. How-

ever, in many situations there are advantages to making inferences about the most likely

sequence of states that have occurred, which involves simultaneously updating beliefs

about the present and the past, based on incoming information. Currently, very little is

known about whether humans adopt such sequential inference strategies, and if they do,

about the neuronal mechanisms involved. We addressed this by applying computational

modelling to data collected during a probabilistic reversal task. At a group level, subjects’
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behaviour showed clear evidence of sequential inference, and between-subject differences

in the strategies adopted were reflected in variations in brain structure in the prefrontal

and parietal cortices, as well as the hippocampus. Our results provide new insight into the

strategies employed in human cognition, as well as the neuronal substrates of sequential

inference.

Introduction

Model-based approaches to cognition posit that agents continually perform online inference

about the current state of the world, based on incoming sensory information. Typically, these

approaches assume that the agent optimises beliefs about the current state of the world,

referred to as Bayesian filtering. However, in many situations (for example, when parsing lan-

guage) it is more appropriate to optimise beliefs about a sequence of states. Since the joint

probability of a sequence of states is not, in general, the same as the (product of marginal)

probabilities of the individual states considered individually, this leads to two alternative defi-

nitions of optimality: optimality of inference about individual states, and optimality of infer-

ence about sequences of states. These diverging goals are captured in the sum-product and

max-sum algorithms for exact inference [1]).

In the context of offline data analysis, it is common to calculate the most likely sequence of

states across an entire data set using the Viterbi algorithm, an application of the max-sum

approach [2]. However, for embodied agents performing online inference, these schemes are

not an option because future outcomes are unobservable, while inference over long sequences

becomes computationally intractable. One possibility is that agents instead perform windowed

sequential inference, in other words they perform inference about short sequences of states

stretching back into the past (Fig 1b). Compared with Bayesian filtering this entails relatively

minor increases in computational cost and represents a plausible hypothesis regarding imple-

mentation of actual cognitive processes in human subjects.

The advantage of representing ‘a short history’ of states is that the most likely (posterior)

distribution over states becomes a more accurate approximation to the true posterior, where

the true posterior entails conditional dependencies between states and different times. For

example, if I am hungry at 11 AM I am more likely to be taking lunch at 1 PM. One cannot

represent this belief in terms of the statements “I was hungry at 11 AM and I was lunching at 1

PM”. Although a Bayesian filter would correctly infer a higher probability of having lunch at 1

PM, given I was hungry earlier, its posterior belief about the current state having lunch has

nothing to say about preceding hunger. Sequential inference becomes even more prescient

when we consider Non-Markovian processes. Bayesian filters assume that states of the world

evolve in a Markovian fashion, such that the preceding state completely specifies the next state

in a probabilistic sense. However, in real-world situations (e.g. language), this Markovian

assumption is often violated. For example, the semantic violation at the end of a sentence

depends on the sequence of preceding words, not just the penultimate word. In this sense,

inferring sequences with deep temporal structure necessarily requires the brain to perform

some form of sequential inference. The importance of considering information contained at

the level of entire sequences has been elegantly demonstrated in work on speech recognition

using machine learning, where models that learn at the level of entire sequences consistently

outperform those that learn at the level of individual frames (short epochs) [3–6].

Establishing whether human subjects perform sequential inference has important implica-

tions both for models of cognition and their neurobiological underpinnings. In particular,
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sequential inference requires that agents explicitly represent and update beliefs about states in

the past, as well as the present. This mandates that neuronal circuits should also represent past

states, and suggests that brain areas involved in processes such as maintaining and manipulat-

ing information about the past, for example prefrontal cortex and hippocampus (i.e., as organs

of succession), might play a crucial role.

Importantly, filtering and sequential inference strategies make quantitatively distinguish-

able predictions about behaviour on appropriate tasks (Fig 2), permitting us to compare the

evidence for these strategies through behavioural modelling Thus, to test our hypothesis that

human subjects perform sequential inference, we developed a simple computational scheme to

implement sequential inference within the context of a probabilistic reversal task (Fig 1a). On

each trial of this task, subjects were presented with superimposed images of either a young face

and an old house, or an old face and a modern house. Subjects were asked to respond (either

‘old’ or ‘young’) and were given probabilistic feedback based on whether the response was cor-

rect. The correct response was determined by the (unknown) task relevant category (either

‘face’ or ‘house’), which the subjects had to infer, based on feedback. Crucially, the task rele-

vant category or condition reversed periodically requiring subjects to track switches in the cat-

egory condition; in order to maintain performance (see Methods for more details).

We applied sequential inference models to behavioural data from 43 younger and 36 older

adults (Fig 1). We hypothesised that behaviour would show evidence of sequential inference,

and as this depends on working memory type resources it might also show an age-related

decline. To identify potential neuronal substrates of sequential inference, we analysed struc-

tural magnetic resonance imaging (MRI) scans to test for the correlates of sequential inference

Fig 1. (a) Probabilistic reversal task. On each trial, subjects were presented with one of two compound stimuli. These consisted of overlaid

images of either an old face and young house (top) or young face and old house (bottom). Subjects were instructed to respond ‘old’ or ‘young’

depending on whether they were in the face or house condition, and that this condition would switch periodically. They were then given

feedback based on their choices, with a reliability of 0.85 (in other words, correct decisions resulted in positive feedback on 85% of occasions)

(b) Cartoon illustrating sequential inference. An agent implementing pure filtering performs inferences about the current state (xt) based on

fixed beliefs about the preceding state (xt-1), together with a current observation (ot). In n step sequential inference, the agent simultaneously

optimises beliefs about both current and past states (up to a depth n). This corresponds to performing inference over a sequence of n+1

states, rather than only performing inference over the current state. Under conditions where states are only partially observable (where there

is no one-to-one mapping between states and observations), and where there are significant causal dependencies between states, this has

the potential to significantly improve model performance.

https://doi.org/10.1371/journal.pcbi.1005418.g001

Sequential inference and its neuronal correlates

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1005418 May 9, 2017 3 / 20

https://doi.org/10.1371/journal.pcbi.1005418.g001
https://doi.org/10.1371/journal.pcbi.1005418


Fig 2. Simulated beliefs for agents employing different sequential inference strategies in performing inference on two different

series of observations (Fig. 2a and Fig 2b). Observations on each trial are indicated by crosses and circles, while the ‘true’ state (i.e., task

relevant category) is indicated by the dotted line. Reversals occur when the true state changes value (from zero to one, or vice versa)

Posterior probabilities for state one obtaining (in other words, the agents’ beliefs at the end of each trial) are shown for the filtering model

(S1) in blue, for the two state sequential inference model (S2) in green and the three state sequential inference model (S3) in red. In this

Sequential inference and its neuronal correlates
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in terms of grey matter density using voxel-based morphometry (VBM) [7]. We hypothesised

that an ability to exploit sequential inference would be positively correlated with grey

matter density in brain regions involved in constructing models of the environment and main-

taining on-line information, specifically the anterior or dorsolateral prefrontal cortex and

hippocampus.

Results

Model-free behavioural analysis

Overall, subjects made correct choices (defined in terms of the actual task contingencies) on

74.5% of trials (SEM: 0.795). As expected, younger adults made more correct choices (mean:

77.9% SEM: 0.765) than older subjects (mean: 70.4% SEM: 1.172). This difference was statisti-

cally significant (p< 0.0001, Wilcoxon rank sum test), suggesting, in line with a previous liter-

ature (see [8] for review), younger adults were considerably better at decision making on this

probabilistic reversal learning task.

Preliminary model comparison

To confirm the appropriateness of the Bayesian modelling approach (see Methods), we per-

formed a preliminary model comparison where we compared the performance of simple

Bayesian filtering (S1) with three models based on Q-learning. These consisted of a simple

model in which each action value was updated independently (Q1), a model in which all values

were simultaneously updated (Q2), and a model in which all values were simultaneously

updated but with separate learning rates for positive and negative feedback (Q3). In keeping

with previous findings [9–11], random effects model comparison favoured S1 in both younger

(exceedance probability > 0.99) and older (exceedance probability = 0.94) groups (Table A in

S1 Text). This suggests that the behaviour of the subjects do indeed takes into account the

structure of the task, in particular the fact that it involves abrupt shifts (reversals), rather than

gradual but continuous changes.

Sequential inference analysis

To test whether subjects performed sequential inference, we compared the behavioural fits of

pure filtering model (S1) with those in which subjects performed inference over sequences of

lengths two to five (S2-5). Random effects model selection provided evidence that both youn-

ger and older adults performed inference over sequences of length two or more (Table 1, Fig

3). The favoured model in both groups (with an exceedance probability of 0.99 or greater) was

S2, in which agents perform joint inference over the current state and the preceding state, but

with evidence of significant variability in sequence length between subjects.

Bayesian parameter averaging over the model space showed that younger adults had signifi-

cantly higher values for both r and v than older adults (Younger: r = 0.95, v = 0.86. Older:

r = 0.89, v = 0.72. Both p< 0.001, Wilcoxon rank sum test). This corresponds to beliefs that

the environment is more stable, meaning a reversal is less likely to occur, and that feedback

was more informative. In younger adults, these beliefs also reflect the true contingencies in the

task. It thus appears that both age groups perform inference over a similar sequence length,

case, sequential inference leads agents to track reversals more quickly. This is indicated by the red and green lines shifting towards the true

value more quickly after reversals. Sequential inference also reduces the effects of misleading observations, as indicated by smaller

changes in belief in response to unexpected stimuli that do not signal reversals (Simulations were performed with parameter values r = 0.05

and v = 0.8, see Hidden Markov Model for description).

https://doi.org/10.1371/journal.pcbi.1005418.g002
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while the age group effect in choice accuracy might be better captured by the certainty of the

prediction at each given state, which we investigate in more depth elsewhere [12]. Note that

since we fixed the precision parameter in our model fitting, due to the redundancy between

model parameters [9,13], some of these group differences may in fact reflect the influence of

changes in precision γ, which governs the stochasticity of action selection (Eq 4). Given that

our main model comparison suggested similar distributions of sequential inference strategies

across age groups, we pooled across subjects, including age group and model fit quality as

indexed by the mean BIC score over the model space for each subject as confounding regres-

sors in subsequent VBM analyses. Measures of model fit such as the BIC and pseudo-R2 indi-

cated that all models explained less data variance in older adults (Table 1). This is unsurprising

given the differences in parameter estimates described above, which indicate that older sub-

jects’ behaviour is more stochastic and harder to predict.

Structural correlates of sequential inference

We next performed voxel-based morphometry [7] to explore how regional variations in grey

matter density are related to interindividual differences in sequential inference. Our motiva-

tion here rested on well described relationships between regional grey matter density and cog-

nitive function across a variety of domains [14]. This led us to hypothesise that grey matter

density would provide a marker that would allow us to identify regions that play a key role in

implementing sequential inference. To characterise between-subject variability in cognitive

strategy, we used two key, and complementary measures. First, as a measure of how strongly

sequential inference (as opposed to filtering) influenced subjects’ behaviour, we defined a mea-

sure ΔLL as the difference in the accuracy with which the best sequential inference model and

the filtering model predicted behaviour as quantified by the difference in log likelihood. Sec-

ond, we defined a measure L which indexes the length of sequence considered by each subject

based on the winning model for that subject. These were entered into a multiple regression

model, along with control regressors encoding age group, gender, total intracranial volume,

individual subject parameter estimates (r and v), and the mean BIC score across the model

space for each subject. Note there was no correlation between estimates of L and ΔLL them-

selves (R = 0.020, p = 0.861)).

Table 1. Behavioural analysis of sequential inference strategies. In both younger and older adults, random effects model comparison results strongly

favour S2, a model in which agents perform joint inference over the current and immediately preceding states. Examination of the posterior probabilities, how-

ever, suggests that a significant proportion of subjects in both groups performed inference over sequences of length three or more (model comparison results

are illustrated in Fig 3c–3f).

Model (sequence length) Summed BIC BIC compared to worst model Posterior probability Exceedance probability Mean Pseudo R2

Younger adults (n = 43)

S1 -3901.1 0.9 0.056 <0.001 0.613

S2 -3809.7 92.2 0.596 0.996 0.625

S3 -3822.6 79.3 0.256 0.004 0.624

S4 -3887.4 14.6 0.053 <0.001 0.614

S5 -3902.0 0 0.039 <0.001 0.612

Older adults (n = 36)

S1 -4554.5 0 0.095 <0.001 0.376

S2 -4528.5 26 0.518 0.990 0.380

S3 -4537.7 16.8 0.216 0.010 0.379

S4 -4547.1 7.4 0.073 <0.001 0.377

S5 -4554.4 0.1 0.098 <0.001 0.376

https://doi.org/10.1371/journal.pcbi.1005418.t001

Sequential inference and its neuronal correlates

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1005418 May 9, 2017 6 / 20

https://doi.org/10.1371/journal.pcbi.1005418.t001
https://doi.org/10.1371/journal.pcbi.1005418


Fig 3. (a,b) Mean choice data and fitted model predictions from a single illustrative (younger) subject in whom the two state

sequential inference model (S2, red) was strongly favoured over filtering (S1, blue). 3a shows model predictions and observed

choices averaged across reversals. 3b shows predicted and observed behaviour averaged across misleading outcomes (situations

where the contingencies had not reversed, but improbable feedback was observed suggesting that they might have). The two state

sequential inference model provides a better fit to the observed choice data (black) than the filtering model because it permits a

Sequential inference and its neuronal correlates

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1005418 May 9, 2017 7 / 20

https://doi.org/10.1371/journal.pcbi.1005418


Across subjects, ΔLL showed a positive association with grey matter density in the left ante-

rior prefrontal cortex (putatively Brodmann area 10), a relationship significant at the whole

brain level (peak voxel coordinates [–20 53 20], t70 = 5.08, p = 0.017 FWE-corrected for whole

brain) (Fig 4, Table B in S1 Text). This suggests that this region may play a key role in deter-

mining a propensity to sequential inference, consistent with a dependence of sequential

inference on higher-level cognitive functions, such as working memory maintenance and

metacognitive functions, widely believed to be subserved by the anterior prefrontal cortex [15–

18].

Between-subject differences in the sequential length regressor L were correlated with grey

matter density in the left posterior parietal cortex ([-29–80 39], t70 = 4.84, p = 0.039 FWE-cor-

rected for whole brain) (Fig 5, Table C in S1 Text). Regions of the posterior parietal cortex are

widely implicated in memory recollection [19–22], and maintenance in working memory

[23,24]. In addition, based on its key role in encoding sequences [25–28], we performed a

region of interest analysis in the hippocampus, using coordinates derived from previous work

on recollecting temporal sequences [27]. Grey matter density in bilateral hippocampus posi-

tively correlated with L (Fig 5, Table C in S1 Text) (Left: [–23–30–17], t70 = 3.75, p< 0.007

FWE-corrected for hippocampus ROI volume. Right: [21–30–12], t70 = 3.68, p< 0.008 FWE-

corrected for hippocampus ROI). This provides clear evidence that the hippocampus plays a

role in supporting sequential inference strategies.

Finally, to assess whether grey matter density in the anterior prefrontal cortex also showed

a relationship with sequence length, we performed an additional region of interest analysis

using the prefrontal cluster identified in our ΔLL analysis (thresholded at p< 0.001 uncor-

rected). Importantly, because these regressors are entered into a single multiple regression

analysis, we control for the effect of the log likelihood regressor. This analysis showed a clear

positive relationship between grey matter density in anterior prefrontal cortex and sequence

length ([–21 56 21], t70 = 2.76, p = 0.031 FWE-corrected for ROI), further implicating this

combination of more rapid switching (3a) and damped responses to misleading observations (3b), precisely in keeping with our

simulation results (Fig 2). The y axis indicates the probability of taking the action that is correct after the reversal in 3a, and the action

that is correct throughout the whole time window in 3b. (c-f): Model comparison for behavioural data in younger (3c,e, green) and

older (3d,f, yellow) subjects. In both age groups, two-state sequential inference (S2) was strongly favoured as the best model, as

evidenced by its very high exceedance probabilities (e,f). However, inspection of the posterior probabilities suggested a diversity of

strategies across subjects; with the use of three state sequential inference (S3) in particular being strongly supported by the data.

(This figure illustrates the results presented in Table 1).

https://doi.org/10.1371/journal.pcbi.1005418.g003

Fig 4. Voxel-based morphometry results for the ΔLL regressor encoding how strongly individual

subjects’ behaviour showed evidence for sequential inference. 4a) ΔLL was positively correlated with

grey matter density in the left anterior prefrontal cortex. (Image thresholded at p < 0.005, cluster size k > 10,

uncorrected for display purposes. Slices depicted are at y = 53 (left) and x = -20 (right))4b) Scatter plot

showing that both younger (crosses) and older (circles) subjects showed a similar positive relationship

between ΔLL and grey matter density. (Grey matter density extracted from the group level peak [–20 53 20],

and corrected for all other regressors in the design matrix).

https://doi.org/10.1371/journal.pcbi.1005418.g004
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region in implementing sequential inference. There was no relationship with ΔLL in the angu-

lar gyrus cluster or hippocampus ROIs.

Post hoc analyses suggested that the relationship between our measures of interest and grey

matter density in these regions were similar across age groups, suggesting that the neuronal

substrates of sequential inference do not alter over the course of healthy ageing (see S1 Text).

No areas showed a significant negative relationship with ΔLL or L, and no significant effects

obtained for any of the other regressors (including the parameter estimates r and v), other

than age and total intracranial volume, which correlated with widespread changes (decreases

for age, increases for total intracranial volume) in grey matter density.

Sequential inference and other cognitive measures

To explore possible relationships among our measures of sequential inference and perfor-

mance on other cognitive tasks, we used a letter n-back task to measure working memory and

Fig 5. Voxel-based morphometry results for the L regressor encoding the sequence length individual

subjects inferred over. 5a,c) L was positively correlated with grey matter density in the left posterior parietal

cortex (a), and bilateral hippocampus (c). Images thresholded at p < 0.005 uncorrected, cluster size k > 10, for

display purposes. Slices depicted are at y = -80 (a) and y = -30 (c)5b,d) Scatter plots showing that both

younger (crosses) and older (circles) subjects showed a similar positive relationship between L and grey

matter density in both the posterior parietal cortex (b) and bilateral hippocampus (d) Grey matter density

extracted from the group level peaks (posterior parietal cortex: [–29–80 39], hippocampus: [–23–30–17] and

[21–30–12] collapsed across hemispheres), and corrected for all other regressors in the design matrix.

https://doi.org/10.1371/journal.pcbi.1005418.g005
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Raven’s matrices to test non-verbal reasoning [29]. The n-back task is described in more detail

in [30]. Briefly, subjects were presented with a series of letters and asked to indicate with a but-

ton press for each letter whether it is the same as the letter 1, 2 or 3 letters back. To test for

inter-individual differences in fluid intelligence, an abbreviated version of Ravens matrices

was used (odd matrices from levels C, D and E, resulting in 18 matrices). Subjects were given

20 minutes to complete the matrices. We calculated partial correlations, controlling for the

effects of age group and gender. Working memory performance, as assessed by (Hits—False

alarms), averaged across one-back, two-back and three-back conditions, showed a positive

correlation with L that showed trend significance (R = 0.218, p = 0.057). No clear relationship

was found with ΔLL (R = -0.041, p = 0.724). No clear relationships were found between Raven’s

matrices scores and either L (R = 0.101, p = 0.408) or ΔLL (R = 0.043, p = 0.727). Note that four

younger and three older subjects were excluded from the Raven’s matrices analyses, and five

younger and five older subjects from the working memory analyses, because they did not com-

plete the relevant tasks. No structural correlates of working memory performance or Raven’s

matrices scores were found in additional VBM analyses.

Discussion

Sequential inference represents a significantly different approach to solving inference prob-

lems from Bayesian filtering. In this framework agents are required to infer multiple states,

and their dependencies, simultaneously rather than just infer the current state. This requires a

capability to store information about previous observations, as well as maintain and update

information about joint distributions. Here, we provide evidence that both younger and older

adults make use of such strategies, inferring the joint probability of sequences of states rather

than inferring the current state in isolation and use this inference to inform their choice behav-

iour. Our findings represent an important departure from existing models of human perfor-

mance on inference tasks, and provides new insights into the cognitive and computational

strategies used by human subjects for coping with a changing and uncertain environment.

Performing inference over sequences of states allows an agent to consider processes that

violate the Markov assumption, under which the current state is determined only by its imme-

diate precursor. This allows agents to deal with problems that have deep temporal structure, as

is common in many real-world situations such as language processing. Indeed in models used

for speech recognition, training at the level of sequences has been shown to produce consider-

able benefits over training at the level of individual frames [3–6], highlighting the benefits of

considering deeper structure. To see the limitations imposed by the Markov assumption,

consider the task of predicting whether it will rain today or not. The weather yesterday

undoubtedly provides some information about this, but there is also extra information con-

tained in observations taken on previous days, since the weather is determined by processes at

timescales from the relatively rapid (individual rain clouds) to the very slow (seasonal fluctua-

tions, El Niño). Sequential inference thus equips agents with greater flexibility, which is likely

to be important for understanding both normative strategies and human behaviour. Moving

beyond Bayesian filtering also has major implications for learning (the so-called ‘dual estima-

tion problem’ [31]), which we will consider in future work.

In addition, using a model-based analysis we were able to relate between-subject differences

in sequential inference performance to grey matter density in left anterior prefrontal and left

posterior parietal cortex, as well as bilateral hippocampus. This is consistent with the estab-

lished role of these regions in supporting the computations necessary for performing inference

over extended sequences of states, given an established relationship between morphometric

features of a region and its level of functional engagement [14].

Sequential inference and its neuronal correlates
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A striking (very significant) finding in our voxel-based morphometry was the link between

left anterior prefrontal cortex, encompassing Brodmann area 10, and the strength of evidence

for sequential inference. This region is believed to play a role in higher order executive cogni-

tive processes [16,32,33],memory retrieval [34] and the manipulation of internally generated

information [35]. It is also implicated in metacognition [18,36]. In particular, it has been pro-

posed that the anterior prefrontal cortex plays a key role in ‘cognitive branching’, where multi-

ple cognitive processes or options for action need to be maintained simultaneously and

integrated together [15], processes with similarities to the type of updating subjects perform

based on our model. Additionally, a similar region of prefrontal cortex is implicated in retro-

spective (‘metacognitive’) judgements about decision confidence, albeit with evidence to sug-

gest this is lateralised to the right hemisphere [18,36]. Unfortunately, it is not possible—based

on our data—to draw fine-grained inferences about the precise cognitive processes that this

region supports during sequential inference, something we will address in future computa-

tional and experimental work.

We observed that interindividual differences in sequence length, likely to be associated with

increasing mnemonic demands, positively correlated with grey matter density in a region of

the left posterior parietal cortex and bilateral hippocampus. Areas of the posterior parietal cor-

tex are activated in neuroimaging studies of memory recall, but the precise functional role of

this activity remains the subject of much on-going debate [19–22]. Additionally, the parietal

cortex has been implicated in maintaining information in working memory [23,24]. Either or

both processes could be involved here and drive the observed relationship. Alternatively, the

relationship between sequential inference and grey matter density in this area might reflect a

role in some other cognitive operation that underpins sequential inference, perhaps in concert

with the hippocampus.

The association between the length of sequence considered by a subject and grey matter

density in the hippocampus is consistent with its known role in encoding, maintaining and

recalling sequences [25–28]. Our data suggest a new role for such retrospective representa-

tions, namely in supporting sequential inference. More speculatively, it is tempting to link the

hippocampus’ putative role to the internally generated forward and backward sweeps through

state space it is believed to support [37–39]. Such sweeps are typically considered in the context

of planning and navigation, but they are also ideally suited for use in inference and learning

more generally [37,40].

In this study, we considered behaviour and brain data collected from both younger and

older adults. Although there were clear differences in task performance (and, correspondingly,

in model parameter estimates) between groups, similar distributions of sequential inference

strategies were observed in both groups, suggesting that these differences were unlikely to be

explicable in terms of the deployment of different cognitive models. Closely related to this, a

post hoc analysis of our structural data suggested similar relationships between our measures

of sequential inference and regional grey matter density in both groups. Taken together, these

results suggest that (at least within the restrictions of our data), the deployment of sequential

inference is largely conserved over the course of healthy ageing.

The results have implications for future studies using reversal paradigms with probabilistic

outcomes, particularly in humans [11,41–44]. Our results suggest that most subjects perform

sequential inference. For many purposes (for example when deriving regressors for functional

neuroimaging), the differences between filtering and sequential inference model predictions

are likely to be unimportant. However, they may be relevant for understanding between-sub-

ject variability, for example in patient groups who show reversal learning impairments [9,45–

49].
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A number of studies have suggested that medial prefrontal and orbitofrontal regions are

important in reversal learning, linking stimuli and outcomes [42,50–52]. This does not conflict

with our findings, which instead predict that lesions of the anterior prefrontal cortex, posterior

parietal cortex or hippocampus might result in subtler behavioural abnormalities, reflecting a

decrease in sequential inference performance relying on such links between stimuli and out-

comes. More generally, we propose that sequential inference modelling is a plausible approach

for explaining behaviour across a wide variety of paradigms that engender decision uncer-

tainty, for example in reward learning tasks with slowly drifting outcome probabilities [53,54].

We anticipate this will be a productive area for future research.

Sequential inference is a potential explanation for postdictive phenomena in perception

[55–57]. In such phenomena, for example the flash lag illusion [56], the perception of a stimu-

lus is influenced by stimuli presented after it. This retrospective influence could be explained if

perception depends upon inference about the joint probability of events within some finite

temporal window, since this will lead to subjects perceiving the most likely sequence of events,

and hence allow later observations to inform percepts about earlier time points (for a related

suggestion see [58]).

Our study provides the first behavioural evidence that human subjects perform simulta-

neous inference over both current and past states, a process likely to be important for adaptive

behaviour. The link to regional cortical morphometry is of particular interest as the processes

that support sequential inference include many that are supported by these regions. The find-

ings also naturally suggest future lines of enquiry, including exploring the capacity for sequen-

tial inference in supporting adaptive behaviour in other cognitive contexts engendering

uncertainty as well as in patient groups who manifest abnormal performance on inference

tasks.

Methods

Participants

Our sample comprised 79 participants encompassing two age groups: 43 younger adults (18

male, mean age = 26.4 years, range = 20–33 years) and 36 older adults (20 male, mean

age = 66.4 years, range = 60–73 years). Data from five younger adults and 2 older adults were

excluded due to technical problems during data acquisition. The educational level of the par-

ticipants was comparatively high: 43% of the younger adults had attended the Gymnasium, a

University high school preparatory track and 51% were currently enrolled at University. Most

of the older adults held academic high school diploma (54%) or vocational school diploma

(39%). All subjects were right-handed (Oldfield Questionnaire: LQ> 80; [59]). None of the

participants reported cardiovascular pathology, psychotropic medication usage, history of neu-

rological or psychiatric episodes or substance abuse.

The study was approved by the local ethics committee of the Charité, University Medicine

Berlin, and written consent was obtained from each participant prior to participation. Partici-

pants were paid 10 Euros per hour of the experiment.

In a separate test session, the Digit Symbol Substitution test (DSS) [60] and a modified ver-

sion of the Spot-a-Word test [61] were assessed as markers of fluid and crystallized intelli-

gence, respectively. As expected, DSS performance decreased from early to late adulthood

(t = -3.99, p< .01), whereas performance on the Spot-a-Word showed a trend for an increase

with age (Z = 1.72, p = .08). The observed dissociation between lifespan age gradients of these

two tests in our sample is consistent with established empirical evidence on the development

of these two facets of intelligence (cf. [62]) and indicates that our sample falls within a repre-

sentative range of age-comparative cognitive testing.
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Experimental task

Subjects performed a probabilistic reversal task across four sessions in the scanner during

fMRI, giving a total of 128 trials. We will report the fMRI data in future papers. Here, our

focus is on intersubject behavioural variability in the depth or prevalence of sequential infer-

ence and its anatomical correlates as measured with structural MRI.

The probabilistic reversal task involved focusing on either a face or house attribute of trans-

lucent greyscale images comprising faces and houses (Fig 1). Face and house stimuli were

divided into either young and old faces or houses of modern and old styles respectively. Sub-

jects had to learn whether to focus on the face or house dimension of the superimposed sti-

muli. On each trial, subjects were tasked categorise (the face or house) as young (modern) or

old, with a left and right button press. A young face was always paired with an old house and

vice versa. In this manner, feedback as to a correct young/old categorization was informative

with respect to task set (with respect to faces or houses). Feedback was probabilistic, with 85%

reliability. If the proportion of gains exceeded 80% on the most recent 10 trials, a reversal of

the task relevant category (face or house) was implemented within the next 1–3 trials. Subjects

were informed about the possibility of this change but not its actual timing or performance

dependency. Subjects were instructed to try to obtain as many rewards as possible. This was

achieved by inferring the task relevant (i.e. more frequently rewarded) category as well as

switches therein. Subjects were familiarised with the task in a practice sessions that included at

least one reversal. There were 4 runs in total, amounting to a total of 128 trials for the probabi-

listic reversal task. Within a trial, each stimulus was presented for 2 seconds, followed by a var-

iable interval of 1–7 seconds (mean 1.25 seconds), during which a fixation cross was shown.

This was followed by a feedback stimulus presented for 1 second and a variable interval of 2–8

seconds (mean 3.25 seconds) with a fixation cross (Fig 1).

Face stimuli were taken from the FACES database [63], house stimuli were selected from an

internet search. Individual face and house stimuli were adjusted in brightness, overlapping

face and house stimuli were adjusted separately for each specific stimulus pairing to ensure

equal subjective saliency of face and house stimuli [64]. The gender of the face stimuli was bal-

anced within tasks, as was the number of young (modern) and old stimuli. Before the task, sub-

jects were familiarized on a different stimulus subset with the type of face and house stimuli

that were used during the experiment, as well as with the categorization of individual or over-

lapping stimuli into young (modern) or old face and houses. Each stimulus was presented for

2 seconds, followed by a variable interval of 1–7 seconds (mean 1.25 seconds), during which a

fixation cross was shown. This was followed by a feedback stimulus presented for 1 second and

a variable interval of 2–8 seconds (mean 3.25 seconds) with a fixation cross.

Behavioural covariate measures

To assess the contribution of cognitive function to differences in sequential inference, subjects

performed a working memory (n-back) task, as well as the Raven’s matrices test of nonverbal

reasoning. Performance measures on these tasks were used as additional covariates to analyse

behaviour and brain structure.

Hidden Markov Model

To model subjective inference, we used a simple Hidden Markov Model (HMM) in line with

the previous literature [9–11]. Here, agents infer the hidden state xt corresponding to the cur-

rent task condition or context; in other words, the task relevant category, face or house. (We

arbitrarily define xt = 1 as the ‘face’ condition and xt = 2 as the ‘house’ condition). The outcome

of each trial is indicated by ot (ot = 1 represents positive feedback, ot = 2 represents negative
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feedback). The visual cue presented on each trial is represented by yt, where yt = 1 corresponds

to the old face / modern house pair, and yt = 2 corresponds to the young face / old house pair.

Actions selected by the subject are encoded as at = 1 for an ‘old’ response and at = 2 for the

‘young’ / ‘modern’ response. The parameter r encodes the probability of a reversal between tri-

als, and v encodes the cue validity (the probability of receiving positive feedback given that the

agent has made the correct decision, and negative feedback if not). Thus, the generative model

considered by the agent takes the form:

Pðxt j ot; at; yt; xt� 1; r; vÞ ¼
Pðot jxt; at; yt; vÞPðxtjxt� 1; rÞ

PðotÞ
ð1Þ

Pðxt ¼ ijxt� 1 ¼ j; rÞ ¼ Eij

E ¼
1 � r r

r 1 � r

" #
ð2Þ

Pðot ¼ 1jxt ¼ i; at ¼ j; yt ¼ k; vÞ ¼ Aijk

A1�� ¼
v 1 � v

1 � v v

" #

A2�� ¼
1 � v v

v 1 � v

" #

ð3Þ

Action selection followed a softmax decision rule [54] based on the agent’s current beliefs

such that:

Pðat ¼ ijyt ¼ 1; gÞ ¼
egPðxt¼ijo1:t� 1Þ

X

j¼1;2

egPðxt¼jjo1:t� 1Þ

Pðat ¼ ijyt ¼ 2; gÞ ¼ 1 � Pðat ¼ ijyt ¼ 1; gÞ

ð4Þ

Where γ is the precision parameter that governs the stochasticity of choice. For completeness,

we also fitted models that additionally included a ‘perseverance’ parameter indexing a ten-

dency to repeat previously performed actions [13], but these proved to be inferior during

model comparison, and we do not report these results here.

Sequential inference

Having defined the relationship between successive states, as well as between states and obser-

vations, we created five Bayesian update schemes: a pure filtering scheme, which updates

beliefs about the current state (a sequence of length one), and sequential models that per-

formed inference over the current state and between one and four preceding states. In other

words, the joint distribution over sequences of two to five states. Omitting the dependence on

parameters, actions and stimuli for the sake of clarity, for a sequential inference model of

order n, the agent performs inference over:

Pðxt� nþ1; . . . ; xtjot� nþ1; . . . ; ot; xt� nÞ ð5Þ
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Thus the agent infers the joint probability distribution over the sequence of states xt-n+1 to

xt, conditioned only on the last state preceding the sequence xt-n and the series of outcomes ot-
n+1 to ot. This means that for a model of order one (a filtering model), agents perform inference

only over the current state:

Pðxtjot; xt� 1Þ ¼ PðotjxtÞPðxtjxt� 1Þ ð6Þ

While for a model of order two, agents perform inference over the joint probability of a

two-state sequence:

Pðxt; xt� 1jot; ot� 1; xt� 2Þ / PðotjxtÞPðxtjxt� 1ÞPðot� 1jxt� 1ÞPðxt� 1jxt� 2Þ ð7Þ

The crucial difference between Eqs 6 and 7 is that the posterior in the pure filtering scheme

is only over the current state, whereas for the sequential scheme (Eq 7) the posterior represen-

tation is over the joint occurrence of the current state and preceding state. Exact probabilities

for the current state can then be calculated by first normalising and then summing probabili-

ties. Thus for a sequential model of order two:

Pðxt ¼ ijo1:tÞ ¼
X

j¼1:2
Pðxt ¼ i; xt� 1 ¼ jjot; ot� 1; xt� 2Þ ð8Þ

Exact inference on the joint distribution over states requires a number of sufficient statistics

that grows exponentially with the number of time steps considered (for this model 2n statistics

are necessary). Since this rapidly becomes combinatorially intractable, we consider only short

sequence lengths of 1 to 5 states (this choice was endorsed by our model comparison results,

which favoured short sequences).

It is important to note that although sequential inference permits an agent to consider non-

Markovian processes (in other words, processes with deep temporal structure), the generative

models considered here are all Markovian. The dissociable behavioural predictions that we

consider result from the fact that filtering and sequential inference strategies optimise different

beliefs as described above. Exploring sequential inference in the context of problems with non-

Markovian structure is an issue that we will consider in future work.

Action value models

In addition, we performed a preliminary analysis demonstrating the applicability of the HMM

to our data by fitting three different models based on variations of action value learning [65].

In the simplest, ‘single update’ model (Q1), the value of each state-action pair Q(yt,at) is

updated separately based on a fixed learning rate φ and the difference between the observed

and the expected reward (the reward prediction error):

Qðyt; atÞ ¼ Qðyt; atÞ þ φðot � Qðyt; atÞÞ ð9Þ

Actions were again selected according to a softmax decision rule, such that:

Pðat ¼ ijyt; gÞ ¼
egQða¼i;ytÞ

X

j¼1;2

egQða¼j;ytÞ
: ð10Þ

Since this model ignores the reciprocal nature of the values of state action pairs, we also fit a

‘quadruple update’ model (Q2), in which the values of all four state-action pairs were updated

simultaneously. Finally, we fit a ‘quadruple asymmetric update’ model (Q3) which contained

separate learning rates αg and αl for positive and negative feedback, allowing for potential

asymmetries in how subjects responded to gains and losses.
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Model fitting and comparison

Maximum a posteriori (MAP) estimation was performed with largely uninformative priors.

These were defined as:

r � Betað1:1; 1:1Þ

v � Betað1:1; 1:1Þ

lnðgÞ � Nð1; 0:25Þ

φ � Betað1:1; 1:1Þ

where Beta(α, β) is the beta distribution with parameters α and β, and N(μ, σ2) is the normal

distribution with mean μ and variance σ2. These priors essentially served to prevent the param-

eters taking extreme values, but similar results were obtained using simple maximum likeli-

hood estimation. Fitting was carried out using the Nelder-Mead simplex method. We selected

MAP estimation because it is simple and computationally efficient, and it also allowed us to fit

parameters in intuitively meaningful spaces whilst making only minimal assumptions (in con-

trast, for example, to using a Laplace approximation). However, we acknowledge that more

sophisticated approaches could have been adopted and these may be fruitfully adopted in

future studies.

Because there is a strong degree of redundancy between the softmax precision (or inverse

temperature) parameter γ and other model parameters [9,13], to mitigate against overfitting

we used a fixed γ across all subjects. This was fixed separately for each model, using the group

mean from an initial analysis, in which γ was a free parameter: pairwise model comparison

between fixed γ and free γ versions of each type of model provided strong evidence in favour

of the fixed model in every case.

Model comparison was based on the Bayesian Information Criterion (BIC), which is

defined as

BIC ¼ 2
X

t¼1:n
lnPðatjo1:t� 1; yMAPÞ � k lnðnÞ ð11Þ

where k is the number of free parameters in the model and n is the number of data points. To

compare models we employed a random-effects model comparison approach, which is robust

to the effects of group heterogeneity and outliers [66]. Parameter values for inclusion in the

VBM analysis were derived using Bayesian parameter averaging over the sequential inference

and filtering models. Briefly, this involves taking a weighted average of the estimated parame-

ters for each model, with single-subject weightings determined by the posterior probabilities

of each model in that subject.

Scanning and voxel-based morphometry

Whole-brain structural MRI data were obtained with a Siemens 3T Trio Magnetom using a

T1-weighted MPRAGE sequence (TR, 1550 ms; TE, 2.34 ms; TI, 900 ms; FA, 9 degrees; voxel

size, 1 × 1 × 1 mm; no gap; FOV, 244 ms). Structural scans were segmented, aligned and nor-

malised to MNI space at a resolution of 1.5 mm isotropic using DARTEL in SPM12 [67], and

smoothed with an 8mm kernel. Total intracranial volumes were calculated as the summed vol-

ume of the grey matter, white matter and CSF images derived using the SPM new segmenta-

tion functions [68]. VBM analysis was performed using the normalised grey matter images,

masked at a threshold of 0.2.

To test for structural correlates of sequential inference we defined two key measures. First

we defined a measure of how strongly sequential inference was manifest in each participant’s
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behavior. This measure, ΔLL, was defined as the difference in log likelihood scores between the

best sequential inference and filtering models. We also defined a measure L which encoded the

length of sequence under the best fitting model in each subject.

To test for the structural correlates of sequential inference using VBM, we defined a general

linear model that contained these measures; as well as regressors encoding age group (as a

binary regressor), gender, average model fit (as assessed by the mean BIC score), the parameter

estimates v and r derived from Bayesian parameter averaging as described above, and total

intracranial volume (in order to assess volume effects independent of overall interindividual

differences changes in intracranial size [69]). All preprocessing and imaging analyses were per-

formed using SPM12 (http://www.fil.ion.ucl.ac.uk/spm/).

Hippocampal regions of interest were defined based on the literature implicating the hippo-

campus in the processing of temporal sequences [27] using spheres of 10 mm radius centred at

[+/-21–21–15] (MNI coordinates). To see whether grey matter density in areas sensitive to the

propensity for sequential inference also reflected sequence length, we defined a region of inter-

est in the anterior prefrontal cortex showing a correlation with ΔLL at a threshold of p< 0.001

uncorrected. Note that, under the null hypothesis, the change in log likelihood and depth of

sequential inference are independent.

Supporting information

S1 Text. Post hoc analysis of structural data and age-related differences in structural infer-

ence. Tables giving preliminary model comparison and VBM results. Figures illustrating the

effects of ΔLL and L on model fitting.
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