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Language evolution can be viewed from two viewpoints: the development of a communicative
system and the biological adaptations necessary for producing and perceiving said system. The
communicative-system vantage point has enjoyed a wealth of mathematical models based on
simple distributional properties of language, often formulated as empirical laws. However, be-
yond vague psychological notions of “least effort”, no principled explanation has been proposed
for the existence and success of such laws. Meanwhile, psychological and neurobiological mod-
els have focused largely on the computational constraints presented by incremental, real-time
processing. In the following, we show that information-theoretic entropy underpins successful
models of both types and provides a more principled motivation for Zipf’s Law.

1. Introduction

There are two distinct developments that the “evolution of language” refers to,
namely (1) the biological, and especially the neurobiological, adaptations neces-
sary for producing, perceiving and processing language and (2) the development
of the communication system, abstracted away from generators and receivers of
the signal. The development of the communication system has proven remarkably
easy to study using rather simple mathematical models (e.g. Ferrer-i-Cancho,
2015b; Lieberman, Michel, Jackson, Tang, & Nowak, 2007; Pagel, Atkinson, &
Meade, 2007; Piantadosi, Tily, & Gibson, 2011), but finding an equally parsi-
monious quantitative model for the neurobiology of language has proven surpris-
ingly difficult. Despite advances on both sides, a combined approach has not been
widely adopted, with the mathematical community at times dismissing the “psy-
chological bias”, much less the neuroscientific one (cf. Ferrer-i-Cancho, 2015a).
A current neurobiological theory for cortical responses (Friston, 2005) provides
the necessary unifying perspective for the evolution of language both as a commu-
nication system and as a neurobiological system. More precisely, the diachronic
development is shaped by the synchronic constraints arising from basic neuro-
computational principles. In the following, we will use this to derive Zipf’s Law
in the abstract from neurobiologically motivated first principles as well as provide
a prediction about the form of its parameters.



2. Zipf’s Law and Psychological Tradeoffs in Communication

Frequency-based explanations are common in empirical linguistics, yet they pro-
vide few deep, causal explanations (e.g. what drives the development of the fre-
quency distribution?). Nonetheless, distributional statistics provide a convenient,
largely theory agnostic method for modelling properties of a language. Zipf (1929,
1935, 1949) demonstrated that distributional statistics in language often follow a
Pareto-like distribution (although that is not the terminology he used). Zipf sug-
gested a number of power laws in language, but in the following we will focus on
the relationship between frequency (f ) and rank (r):

f ∝ 1

r
⇔ f =

c

r
(1)

for some constant c. This is often extended via an exponent, empirically observed
to be near 1, allowing for a slope parameter when plotted log-log:

f =
c

rα
⇒ log f = log

c

rα
= log c− α log r (2)

Now, the probability density function (PDF) for the Pareto distribution is given by

P (x) =
(α− 1)xα−10

xα
, x ≥ x0 (3)

where x0 > 0 is the location parameter and expresses the minimum possible value
and α > 1 is the shape parametera and expresses how “bent” the distribution is.
When x’s are ranks, then x0 = 1 and this reduces to

P (x) =
α− 1

xα
, x ≥ 1 (4)

which we recognize as a special case of Equation (2) when c = α− 1.
Zipf postulated a principle of least effort as the motivation for his empirical

laws, and indeed this matches well with the “80-20” laws often associated with the
Pareto distribution. Ferrer-i-Cancho and Solé (2003) added mathematical rigor to
this intuition via simultaneous optimization of hearer and speaker effort when op-
erating on signal-object associations and showed that Zipfian distributions emerge
naturally when hearer and speaker effort are weighted equally.

3. Linking Brains and Behavior: Words as Experiments

Friston (2005, 2009) proposed a theory of neurocomputation based on the fitting
of generative models of upcoming perceptual stimuli via expectation maximiza-
tion. Friston, Adams, Perrinet, and Breakspear (2012) expanded upon this pro-
posal by incorporating action into the model-fitting process, focusing on saccades

aTraditionally, the PDF is expressed with α and α+1 such that α > 0, but our presentation makes
the notation more compatible with the literature on Zipf’s Law.



(eye movements) in visual processing. An accurate model follows from minimiz-
ing the (information-theoretic) free energy and surprisal in the generative models.
However, in order to best improve the generative model, the most informative, and
therefore the most surprising stimuli, are sought out.

3.1. Information-theoretic Surprisal

In information-theoretic terms, surprisal is also called self-information and is de-
fined as

I(x) = − logP (x) (5)

i.e. the self-information of a specific element, class or form is the negative log-
arithm of the probability of its occurrence. The logarithmic transform provides
power-law type scaling and turns additive effects on this scale into multiplica-
tive effects on the original scale. Because probabilities are always between zero
and one (inclusive), the logarithm is always negative and thus the negative sign
in the definition places self-information on a non-negative scale. Although “self-
information” and “surprisal” are technical terms with a precise definition, they
nonetheless correspond roughly to intuition. The less probable a certain element
is (i.e. the less expected it is), the closer its probability is to zero and hence the fur-
ther its logarithm is away from zero, i.e. the greater its surprisal. Moreover, they
contain more information in themselves because they are not as easily predictable.

3.2. Information-theoretic Entropy

We can also consider the amount of information contained in an entire set, or,
equivalently, how much surprisal we should expect from a “typical” or “average”
element. In technical terms, the expected value is given by:

H(X) = E[I(x)] = −
∫
P (x) logP (x) dx, x ∈ X (6)

This value is commonly called entropy.

3.3. Maximizing Entropy in Language

If we assume that language is optimized for the balance between hearer and
speaker, then we can replace P (x) by the Pareto PDF (3,4) above and can maxi-
mize the entropy of language, i.e. the average surprisal, by optimizing the param-
eter α.

In particular, the entropy of the Pareto distribution (with x0 = 1) is given by:b

H(X) = log

(
1

α− 1

)
+

(
α

α− 1

)
(7)

bThe derivation of this result is beyond the scope of this paper. Again, we use a slightly non
traditional parameterization to better match the literature on Zipf’s Law.
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Figure 1. The entropy of the Pareto distribution decreases with increasing α

Figure 1 shows the relationship between α and the entropy of the Pareto distri-
bution. As α → ∞, P (x) converges to the Dirac delta-function δx0=1(x) and
entropy drops as only one symbol (word) from a large pool is meaningful. Intu-
itively, this would happen when a language consists of nearly only filler words
and one meaningful word — if that word occurs exclusively, then it is not very
informative in itself because there is no surprise, but if that word occurs rarely,
then it is very informative but this contribution is lost in the average. However, as
α→ 1, the distribution becomes successively flatter, but maintaining a spike-like
structure with a thick tail. Intuitively, this occurs when a small number of words
are highly informative but all words have non-vanishing information content. As
such, we expect that α = 1 is near optimal when c = α − 1 and that languages
will have evolved (in the communicative sense, but following from the biological
evolution) to have near optimal α.

4. Empirical Estimates Across Languages

Baixeries, Elvevg, and Ferrer-i-Cancho (2013) have previously shown that α de-
creases during first language acquisition on the basis of data from four Germanic
languages, generally converging towards a value slightly below 1, with a fair



amount of inter-language variability. In the following, we examine α across a sam-
ple of 310 languages using the translations for Universal Declaration of Human
Rights provided by the nltk.corpus Python package (Bird, Klein, & Loper,
2009) (see Table 1). We use ordinary least-squares regression to obtain estimates
for the intercept (log c) and slope (−α) from Equation (2). Source code for the
analysis can be found on Bitbucket.c

Table 1. Estimation of α by encoding. Er-
ror is standard error of the mean across sin-
gle-language estimates. Encoding serves as
a proxy for writing system; for this cor-
pus, UTF-8 is typically used for ideographic
scripts, while Other includes Hebrew and
Arabic scripts.

Encoding n α
Latin1 190 0.90 ± 0.01
Cyrillic 10 0.74 ± 0.08
UTF8 86 0.97 ± 0.03
Other 110 0.93 ± 0.03
All 310 0.90 ± 0.01

4.1. Constant of Proportionality

In hypothesizing that α = 1 is optimal, we assumed a proper Pareto distribution,
i.e that c = α − 1. Figure 2 shows that this is not quite true, with α − c = 0.8
perhaps representing a more realistic assumption. As such, we expect that α will
accordingly be shifted away from 1. In particular, we can consider accommodate
this shift by setting α in Equation (4) equal to α′ + k for some constant k. Then
we have

P (x) =
α′ + k − 1

xα′+k
, x ≥ 1 (8)

which implies that our estimate for α should be shifted away from one by the same
amount as α− c, i.e. we should expect α ≈ 0.8 to be near optimal.

4.2. Exponent

Figure 3 shows the distribution for estimates of α across languages, with a mean
of about 0.9 (cf. Table 1). This is somewhat less than the original predicted
idealized value of α = 1; however, it is line with our updated estimate based on
the bias in α − c. Moreover, our c-corrected estimate provides an explanation of
why previous work has found α to be near one, but rarely exactly one, even when
corrected for observation error.

chttps://bitbucket.org/palday/evolang/
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Figure 2. The difference between the constant of proportionality and α. If Zipfian distributions are
exactly Pareto, then α− c = 1, but this is not the case. Instead, the distribution is shifted left, with a
mode of around 0.8

As writing systems may have an impact on blind orthographic measures (i.e.
notions of “word” based purely on white-space delimited tokenization), we pro-
vide additional estimates divided by text encoding, which stands as a proxy for
orthographic system, see Table 1 and Figure 4. Although the shape of the distri-
bution varies across orthographic systems, the distributions all have a mode near
0.8, which suggests that the writing system does not lead to differences larger than
those previously observed between closely related languages (cf. Baixeries et al.,
2013).

5. Conclusion

Frequency-based explanations abound in empirical linguistics, from corpus lin-
guistics to psycho- and neurolinguistics. Yet, they often suffer from a bit of a
chicken and egg problem: X does this becauseX is more frequent, but how didX
become more frequent in the first place? The results presented here provide a first
step towards grounding empirical laws in the processing constraints and strategies
of individual language users. We have shown how neurocomputational principles
can motivate empirical laws via processing strategies, but not yet provided a direct
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Figure 3. Distribution of α across languages. The surprisal-maximizing Pareto model predicts that
α = 1 should be ideal

derivation — our model is compatible with the principles but does not require neu-
robiological specifics and thus remains psychological. Nonetheless, we are able
to formulate hypotheses in a principled way about the ideal values for parameters,
which bear out in empirical testing. Having parameters that relate back to as-
sumptions about basic cognitive strategies and processing constraints are far more
valuable than parameters related to uninformed curve fitting. We can and should
have both quantity and explanatory quality. Theories of language evolution need
to be motivated by the biological entities doing the evolving.
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