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We cannot describe how the mind is
made without having good ways to
describe complicated processes. Before
computers, no languages were good for
that. Piaget tried algebra and Freud
tried diagrams; other psychologists
used Markov Chains and matrices, but
none came to much. Behaviorists, quite
properly, had ceased to speak at all.
Linguists flocked to formal syntax, and
made progress for a time but reached a
limit: transformational grammar shows
the contents of the registers (so to
speak), but has no way to describe what
controls them. This makes it hard to
say how surface speech relates to
underlying designation and intent–a
baby-and-bath-water situation. I prefer
ideas from AI research because there
we tend to seek procedural description
first, which seems more appropriate for
mental matters.

Marvin Minsky, Music, Mind, and
Meaning
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1. Introduction

Wir müssen wissen, wir werden wissen.

David Hilbert

In 1980, Kutas and Hillyard discovered a component of the human event-related potential
(ERP) that would come to dominate the study of human language processing.1 More than
thirty years later, we still lack a standard theory of the neurocognitive mechanism behind
the N400. Similar problems exist for the other major components associated with language,
such as the P600.

How can it be that a well-characterized, reliable experimental phenomenon lacks a standard
theory? Part of the problem is that our current theories are not precise enough to be truly
falsifiable. Presented with a challenge for a favorite theory, we always have the option of
weaving complicated narratives. Some of this story telling is perhaps necessary in a young
field dealing with complex phenomena like cognitive neuroscience — we simply do not know
enough to make the educated guesses necessary for more precise theories. However, some
of this is related to the types of statistical and analytical methods we apply to our data.

From reaction times to eye tracking to EEG and fMRI, all of the major experimental methods
in the study of human sentence processing deliver quantitative data with incredible preci-
sion in at least one dimension. Yet, the majority of traditional statistical tools, experimental
methods and theory look for qualitative, even categorical, contrasts. When all of our preci-
sion is reduced to “greater than”, “less than”, or “equal to”, it is not surprising that we are
unable to adequately discriminate models and their predictions. We need models that make
precise predictions if we want a precise description of language processing. And only quan-
titative models are precise.

This dissertation presents a first attempt, through a number of complementary approaches,
towards quantifying and refining a model of human language processing. We begin with
a short introduction to the model in question, the extended Argument Dependency Model
(eADM, Bornkessel-Schlesewsky and Schlesewsky 2009, 2013), and continue with some philo-
sophical, yet important considerations concerning the goal of modeling and role of statistics.
The chapter concludes with a brief outline of the remaining chapters.

1The single-minded focus on this one component has led Steve Small to suggest that many papers should be
published in the (non-existent) Journal of the N400.
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1. Introduction

1.1. The extended Argument Dependency Model (eADM)

Traditional notions of language, stemming from a philological perspective more than 2000
years old,2 typically involve concepts such as “subject” or “object”, i.e. grammatical rela-
tions based upon morphosyntactic marking. However, even such a simple notion as “sub-
ject” quickly reveals itself as anglocentric and breaks down when we look at the variation
present in the world’s more than 6000 languages. Traditional subject markers — nomina-
tive case, agreement with the verb, even canonical word order — seem to be the artifact of
English informed by classical languages. And if we could resolve such issues for languages
with nominative-accusative alignment, a quick look at ergative languages3 will reveal how
complex the situation is from a cross-linguistic perspective.

Moreover, when we consider that the supposed goal of sentence processing is comprehen-
sion, i.e. the extraction of meaning, then the classical subject is rather unhelpful, with trivial
examples like the passive voice and expletive subjects4 demonstrating that subjecthood is at
best a single cue for the semantic relations actually conveyed by a given sentence. In a series
of studies in the 1980s demonstrating that syntax was not sufficient for predicting sentence
interpretation cross-linguistically, MacWhinney and Bates put forth a model based on com-
petition between processing cues (Bates, McNew, et al. 1982; MacWhinney, Bates, and Kliegl
1984; MacWhinney and Bates 1989; Bates and MacWhinney 1989). This model can be viewed
as the predecessor to the eADM, and as such, warrants a closer look.

1.1.1. Cue-based Processing

Cues in the Competition Model include traditional morphosyntactic features such as case,
agreement and word order as well as more semantic and even pragmatic-phonological fea-
tures such as animacy and stress. The interaction of these cues varies across languages and
the language-specific weighting (cue strength) depends on cue validity (how helpful the cue
actually is in determining an interpretation) (MacWhinney, Bates, and Kliegl 1984). Cue va-
lidity in turn depends on the cue availability (called “cue applicability” in MacWhinney, Bates,
and Kliegl 1984) and cue reliability (how informative a cue is). For example, morphological
case in German is often ambiguous and thus not always available; however, unambiguous
case marking provides, when present, for a single possible interpretation. Case marking
thus has strong cue reliability yet weaker cue availability, which still yields a large cue va-
lidity and thus cue strength, seen in the nigh deterministic nature of unambiguous case
marking in German.

2Pāṇini, often cited as the first grammarian, wrote his grammar of Sanskrit in the 4th century BC (Meyer et al.
1909).

3Ergative languages encode the sole argument of intransitive verbs morphosyntactically the same as the
patient-like argument of transitive verbs. If English were ergative, than rather than She killed him — he died,
we would have She killed him — him died.

4e.g. semantically void it in constructions like It’s raining.
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1. Introduction

The information from different cues is combined according to their respective weights to
yield a probabilistic interpretation. In German, for example, word order generally drives in-
terpretation in the presence of ambiguous case marking with a preference for subject-initial
word orders. However, animacy can change this interpretation such that sentences like Die
Gabel leckte die Kuh, (lit. ‘the fork licked the cow’ but morphosyntactically ambiguous) are in-
stead interpreted correctly without requiring forks to have tongues. Using such sentences,
MacWhinney, Bates, and Kliegl (1984) and Kempe and MacWhinney (1999) were able to sug-
gest a partial ordering for the core cues animacy, morphology, and word order in several
languages.
By separating itself from strict notions of “syntax”, the Competition Model presents a parsi-
monious account of language processing and cross-linguistic variation. Crucially, the Com-
petition Model is a purely psycholinguistic one based on behavioral measurements involving
explicit offline judgements. As such, it is susceptible to bias from metalinguistic knowledge
and cannot inform us about the precise time course nor the underlying neural architecture
of sentence processing.

1.1.2. Beyond Behavior: Neurocognition

The extended Argument Dependency Model (eADM) is a neurocognitive, and more recently,
neurobiologically grounded model of cross-linguistic language comprehension, which,
like the Competition model, eschews traditional notions of syntax and linguistic domains
and uses holistic, cue-based processing (Bornkessel and Schlesewsky 2006; Bornkessel-
Schlesewsky and Schlesewsky 2009, 2013, 2014). In particular, the cues are used to drive an
interpretation based on the “actor” participant, i.e. the participant primarily responsible
for the state of affairs being described (cf. Van Valin 2005; and “Proto-Agent”, Dowty
1991; Primus 1999). Similar to the cues of the Competition Model, individual actor-related
features will be more important for actor identification in certain languages as opposed
to others (e.g. case marking in German, Japanese or Hindi versus English) and, within a
particular language, some actor-related features will be weighted more strongly than others
(Bates, McNew, et al. 1982; MacWhinney, Bates, and Kliegl 1984; Kempe and MacWhinney
1999; Bornkessel-Schlesewsky and Schlesewsky 2009).
Based on the results of electrophysiological studies across a range of typologically diverse
languages, the eADM posits that the human language comprehension system endeavors
to identify the actor participant as quickly and unambiguously as possible while compre-
hending a sentence. Accordingly, if several candidates are available, they compete for
the actor role with measurable neurophysiological repercussions (Bornkessel-Schlesewsky
and Schlesewsky 2009; Alday, Schlesewsky, and Bornkessel-Schlesewsky 2014). Moreover,
non-prototypical actors — even in intransitive constructions — are more difficult to
identify, which is reflected accordingly in electrophysiology (Bornkessel-Schlesewsky and
Schlesewsky 2009).
Actor identification is based to some extent on the self as the prototype of the ideal actor
(Bornkessel-Schlesewsky and Schlesewsky 2009). Cues are thus features of this prototype and

4



1. Introduction

Figure 1.1.: The eADM before its neuroanatomical formulation. Reproduced with permission
from Bornkessel-Schlesewsky and Schlesewsky (2008)

encompass both the language-specific cues of the Competition Model (morphology, word or-
der) as well as domain-general features (e.g. animacy, certain movement parameters related
to biological motion, first-person and singular) (Bornkessel-Schlesewsky and Schlesewsky
2009, 2013). We call these cues prominence features both because they render a referent more
salient in a linguistic sense but also because they are more distinguishable from the back-
ground in a perceptual sense (e.g. a lone, animate entity like a wolf stands out from a nat-
uralistic scene like a field). We distinguish between actor prototypicality, which is in some
sense an innate property of the referent, and prominence which is a property of an argu-
ment’s realization in a given context (cf. Frenzel, Schlesewsky, and Bornkessel-Schlesewsky
2015).

Earlier versions of the eADM proposed a three-stage cascading architecture, broadly
breaking processing up into (1) initial chunking and morphological analysis, (2) computa-
tion of prominence on roughly the lexical level (but including dependency computations
between arguments), and (3) sentence scale processing and evaluation, including well-
formedness, pragmatic and world knowledge (Figure 1.1, cf. Bornkessel and Schlesewsky
2006; Bornkessel-Schlesewsky and Schlesewsky 2008; Bornkessel-Schlesewsky and Schle-
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1. Introduction

sewsky 2009). Information flows in a cascade from one stage to the next as soon as it
becomes available. Thus even at the start of an initially morphologically ambiguous phrase,
the ambiguous morphological information is passed along the processing pipeline. In other
words, processing is incremental at every step, with incrementally updated results from
the previous processing stage being passed along to the next stage. Information is thus
propagated in a continuous manner along sequential yet overlapping processes, which
reflects the continuity of processing in the brain. The cornerstone of the actor strategy was
found in Stage 2 and named Compute Prominence, where the core arguments competed for
the actor role.

Later revisions of the eADM have focused on neurobiology and moved away somewhat from
the stage-based architecture of the earlier forms (Figure 1.2, cf. Bornkessel-Schlesewsky and
Schlesewsky 2013). Nonetheless, the actor strategy remains central to the model. Like-
wise, previous computational assumptions are now grounded in neuroanatomy, such as
hierarchical organization, which leads to a time-space correspondence (i.e. the later pro-
cessing steps are performed further away from the primary perceptual regions). New to
the model are the neuroanatomical streams (based on major fiber-tracts in the brain) for
processing flow and information propagation. Expanding upon work in non-human pri-
mates that found a division of labor between the dorsal and ventral streams into roughly
“what” and “where” (or “how”), the dorsal and ventral streams are proposed to perform dif-
ferent types of manipulations (DeWitt and Rauschecker 2012; Rauschecker and Scott 2009;
Bornkessel-Schlesewsky and Schlesewsky 2013; Bornkessel-Schlesewsky, Schlesewsky, et al.
in press). The dorsal stream is order-sensitive and thus performs non-commutative op-
erations, such as those based on word oder, while the ventral stream is order-insensitive
and thus performs commutative operations such as relative animacy rankings between ar-
guments or the formation of dependencies, e.g. associating modifiers with the modified
(Bornkessel-Schlesewsky and Schlesewsky 2013; Bornkessel-Schlesewsky, Schlesewsky, et
al. in press; Bornkessel-Schlesewsky and Schlesewsky in press). Both streams are assumed
to be bidirectional (i.e. both bottom-up and top-down influences are possible) and some
cross-talk is possible, but the data necessary for a fully developed theory on these latter
points are not yet available. The streams converge in the frontal cortex, where a final in-
tegrative/evaluative/control step is performed in and near the area traditionally known as
Broca’s Area.

In all of its iterations, the eADM depends heavily on the actor heuristic, and this is the part
of the model where the theory is most developed. Indeed, early formulations were perhaps
accurately described by Brouwer, Fitz, and Hoeks (2012) as “a model of core argument inter-
pretation (rather than a fully fledged model of sentence comprehension)”, although newer
revisions provide a parsimonious if somewhat underspecified model of language compre-
hension. A precise, quantitative formulation of the actor strategy and prominence is thus
imperative, and that is the central task of the modeling work presented in this dissertation.

6



1. Introduction

Figure 1.2.: The newer eADM with neuroanatomical streams. Reproduced with permission
from Bornkessel-Schlesewsky and Schlesewsky (2013)
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1. Introduction

1.2. The Goal of Modeling

The evolution of the Competition Model and the eADM provide an opportunity to consider
the role of theory and modeling — they both feature a similar core mechanism (cue-based
processing, competition), yet differ in significant ways, both in the details of that mechanism
and in the level of description sought. Popper (1934) suggested that scientific methodology
should be based on falsifiability, as it is in general impossible to verify a theory because it
is impossible to test every single possible datum. (This problem had been the bane of the
Vienna Circle a few years before.) Lakatos (Lakatos and Musgrave 1970; Lakatos 1978) ex-
panded this notion into research programmes5 consisting of an immutable “hard core” of
non-revisable beliefs, whose falsification renders the entire theory falsified, and a “protec-
tive belt” of revisable beliefs, or mutable details. (Modifying the hard core leads to a new
research programme.) While the protective belt should be modified to accommodate new
data, it should nonetheless be well defined and as specific as possible. Just-so stories and
other post-hoc flexibility are often symptomatic of a lack of specificity (cf. Simmons, Nelson,
and Simonsohn 2011; Wagenmakers et al. 2012; Gelman and Loken 2013).

Similarly, implementation details for computationally modeled theories should belong to
the protective belt and not the hard core. For example, a major problem in the so-called
“past-tense debate” of 1990s psycholinguistics was that the debate often focused on imple-
mentation details and other parts of the protective belt without testing the claims of the hard
core (cf. Alday 2010). A computational implementation is not a theory; however, a theory is
often underspecified without a computational implementation due to free parameters (cf.
Seidenberg and Joanisse 2003). And even computationally implemented models often show
surprising flexibility via free parameters (cf. Howes, Lewis, and Vera 2009).

From this perspective, the Competition Model and the eADM have parts of their respective
hard cores in common and thus could potentially belong to the same broader research pro-
gramme, yet they belong to distinct sub research-programmes on account of their different
explanatory goals. The eADM strives to put forth a parsimonious model of the neurobiology
of language (albeit currently restricted to language comprehension), while the Competition
Model restricts itself to a psychobehavioral model of language comprehension. Nonetheless,
the overlap allows for many results to be transferred from one sub research-programme to
the other (cf. Marr and Poggio 1976).

1.2.1. Mechanisms and Properties

In this vein, it makes sense to distinguish between mechanisms and properties. A mecha-
nism is a process or operating principle which defines the “how” of a model, while a prop-
erty is more (epi)phenomenological. Both mechanisms and properties may be central to the
research programme, belonging to its hard core, or auxiliary hypotheses, belonging to its

5The British spelling research programme is traditionally used even in texts with American orthography, when
used in the narrow sense meant by Lakatos.

8



1. Introduction

flexible belt. A well-defined mechanism is sufficient for many properties and can thus be
falsified by falsifying those properties. However, a theory may begin by postulating a set
of properties and attempting to derive a mechanism for explaining those properties. The
Competition Model and the eADM thus have many similar properties but differ in the speci-
fication of their (admittedly, related) mechanisms.

A model that differs in its mechanism from the proposed theory can still be useful, if it can
tell us something about the properties proposed by the theory.6 In this sense, it is reason-
able to use models that are clearly not “true”7 because they can still be useful.8 The use of
grammatical relations like “subject” and “object” to describe language comprehension are
thus models which have several useful properties (many of which make them sufficient for
use in language education), but whose usefulness is much more limited from the perspective
of a single cross-linguistically valid account of human language processing.

1.2.2. Levels of Abstraction

In discussing which models are useful for exploring the properties proposed by a research
programme, it often makes sense to distinguish between levels of description. Many times
the difference in fundamental mechanism offered by a model arises from a different level
of description. In neuroscience, Marr and Poggio (1976) proposed four levels of description
for an information-processing system, presented here from lowest to highest:9

1. Hardware: The concrete, physical realization and implementation of the system and
the functioning of its atomic components (e.g. neurons, synapses in neurobiology).

2. Mechanisms: The low-level mechanisms and fundamental operations of information
processing (e.g. memory, executive function, etc.), which map onto complex combina-
tions of the physical primitives (e.g. brain networks, neuroanatomy).

3. Algorithms: The algorithms used to solve the information processing problem, which
are carried out with the low-level mechanisms.

4. Computation: The nature of the information processing problem to be solved (“what”
and “why”), somewhat similar to traditional black-box and behavioral approaches.

Previous versions of the eADM primarily addressed the upper (latter) two levels, but with
each iteration, the eADM has attempted to address additional issues of the mechanistic level.
(Cognitive neuroscience as a whole is still a long way from solving the mapping between
the mechanistic and physical levels, in part due to the complexity of the systems involved
and in part due to ethical constraints.) Despite their surface similarities, the eADM and the

6“[A] theory can be valuable even if it doesn’t correspond to the real world because of what it can teach us
about theories that do correspond to the real world.” Source: http://4gravitons.wordpress.com/2013/03/
29/in-defense-of-pure-theory/.

7http://4gravitons.wordpress.com/2012/11/26/why-i-study-a-theory-that-isnt-true/
8Or, as the saying attributed to George Box goes, “All models are wrong, but some are useful.”
9It is interesting to note that the original text explicitly defines four levels, although it is often stated as Marr’s

Tri-Level Hypothesis, with the middle two-levels collapsed (cf. Dawson 1998). This is perhaps due to the
somewhat confusing example involving three levels of processing for vision.
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1. Introduction

Competition Model begin to diverge at the computational level — the eADM frames language
comprehension as deeply intertwined with another domain-general computational problem,
namely identifying actors, while the Competition Model focuses on the single computational
problem of language comprehension.

In this sense, the actor heuristic is a description at a computational and algorithmic level,
yet one that seems to map well onto lower levels. While it is certainly important that the
proposed algorithms are actually implementable on the mechanisms and hardware available
(i.e. that a neurolinguistic theory of language comprehension actually be neurobiologically
possible), Marr and Poggio (1976) emphasize the importance of a precise characterization
at both the computational and algorithmic levels. In the work presented here, we focused
on computational and algorithmic aspects, which are best revealed by the high temporal
precision of EEG. As such, EEG, and in particular ERP, serves as the primary online measure,
while offline measures such as judgements and reaction times provide a complementary
black-box description of the computational problem.

1.3. The New Statistics, Parameter Estimation and
Mixed-Efects Models

Precise characterizations have traditionally been a problem in the psychological and lan-
guage sciences. Human behavior is notoriously complex and language especially so. More-
over, traditional statistical methods based on null-hypothesis significance testing (NHST),
e.g. ANOVA, deliver a binary — and hence qualitative — decision. To counter the limits of
this approach (which deserve — and have received — books of their own), an approach based
on parameter estimation has been proposed under the banner “The New Statistics” (Fidler
et al. 2004; Cumming 2013, 2014). Oddly enough, parameter estimation was a necessary part
of some of the oldest statistical techniques, e.g. regression; however, many of these were
computationally intractable with the numerical techniques and computers of the middle
twentieth century, especially when adapted for large datasets or repeated-measure designs.
Thus ANOVA, a computationally easy special case of regression yielding only � -tests, came
to be preferred to explicit regression yielding both � -tests and parameter estimates.

Recently, linear mixed-effects models have become popular in the psychological and linguis-
tic sciences, due in part to new, faster and easier-to-use implementations as well as increased
computing power (Baayen, Davidson, and Bates 2008; Jaeger 2008; Barr 2008; Kliegl, Wei, et
al. 2010; Kliegl, Masson, and Richter 2010; Barr et al. 2013; Barr 2013). Mixed effect mod-
els allow hierarchical modeling of subject and item effects in addition to the experimental
manipulation, or, equivalently, extend linear regression to accomodate for sampling varia-
tion along multiple axes simultaneously (subjects, items, etc. in addition to residual error).
The work presented here is based extensively on the application of regression techniques —
both traditional (generalized) linear models and their mixed-effects extension. In addition
to supporting parameter estimation, regression models allow for the inclusion of additional
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covariates, which in turn enables modeling more of the variation present in everyday lan-
guage use.

1.4. Towards a More Precise Formulation of the Actor
Heuristic

Parameter estimation thus gives us a method of hardening the core of a research programme
as well as firming up its protective belt so that its parts may one day be moved into the core.
Exploration of the parameter and property space requires specification through the devel-
opment of models, yet many models are woefully underspecified. In the following chapters,
a number of quantitative modeling approaches are explored, all with the goal of improving
the quality of the theory. In Chapter 2, we examine the statistical learnability and global
optimality of the actor heuristic compared to the subject heuristic by examining the behav-
ior of a dependency parser, and justify the use of dependency parsers as a model sharing
many properties with human language comprehension. Chapter 3 examines an initial quan-
tification of prominence and distinctness with EEG data using weights derived a priori from
qualitative results in the literature, while Chapter 4 demonstrates the feasability of reducing
the free parameters in the eADM by estimating the feature weights at a single subject level.
Subsequently, the feasibility of studying the electrophysiology of language and of the actor
heuristic in a natural story context is demonstrated in Chapter 5. Chapters 2 and 6 present
new, unpublished material, while Chapters 3, 4 and 5 introduce material already published
or currently under peer review. This difference is also reflected in the formats of the respec-
tive chapters. Review chapters consist of a brief summary of the publication, a description
of its relevance as well as a short entry on my contribution to the published work, followed
by the manuscript in its entirety. Finally, Chapter 7 reviews the major insights garnered by
this comprehensive approach and presents an outlook.
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2. Looking for Arguments That Get
Stuf Done: Greediness and the
Actor Strategy

All models are wrong, but some are
useful.

George Box

As mentioned in the Introduction, the traditional grammar-school notion of “subject” is
cross-linguistically a tenuous concept at best. Nonetheless, it has achieved some manner
of success as a model, both in terms of linguistic description and as a driving principle of
parsing and comprehension strategies. Clearly, the subject model has some useful prop-
erties that capture certain aspects of linguistic reality — many languages have something
like subject-verb agreement and there seems to be even cross-linguistically a preference for
subject-initial word order (cf. Comrie 2011).

The preference for subject-initial configurations can be viewed from a computational per-
spective as a greedy algorithm, or an algorithm which makes locally optimal choices at each
increment. However, global optimality, i.e. the correct interpretation of a sentence in its
entirety, does not necessarily follow from local optimality. Consider for example the partial
sentence:

(1) Peter
Peter.ambiguous

sah
saw.1st-3rd

…
…

At this point, the input consists of a noun with ambiguous case marking and a verb, which
agrees in number with the noun. There are thus two possible interpretations: Peter is either
the seer (2) or the seen (3).

(2) Peter
Peter.ambiguous

sah
saw.1st-3rd

mich.
me.

(3) Peter
Peter.ambiguous

sah
saw.1st-3rd

ich.
I.

12



2. Looking for Arguments That Get Stuff Done: Greediness and the Actor Strategy

The input is thus locally underspecified. We can avoid a potentially false interpretation by
weakening the requirement for incremental processing, but the evidence does not seem
to support this — a wide range of studies report an N400 on the second noun for such
ambiguous-verb-nominative configurations (for a particularly recent one, see Alday, Schle-
sewsky, and Bornkessel-Schlesewsky 2014). Yet object-initial orders seem to be preferred
with object-experiencer verbs like gefallen:1

(4) Peter
Peter.ambiguous

gefällt
pleases.3rd

die
the

Sängerin.
singer.f.NOM.

(5) Peter
Peter.ambiguous

gefällt
pleases.3rd

der
the

Sängerin.
singer.f.DAT.

This is still broadly compatible with a subject-based heuristic under a slightly weakened
incrementality requirement: if the initial argument is followed by a “normal” verb, then in-
terpret it as a subject, otherwise if the initial argument is followed by an object-experiencer
verb, interpret it as an object. Although more weakly incremental than a word-for-word
account, it is nonetheless reasonable in its assumptions, especially under traditional (gener-
ative) syntactic theory, where the subject concept only makes sense in a structural relation
to the verb. However, when we consider that verb-final constructions are also possible, this
proposal of “wait for the verb” quickly becomes untenable. Moreover, electrophysiological
evidence also indicates that even unambiguous object-first constructions are at least locally
dispreferred (e.g. increased N400 amplitude on the second noun in verb-final constructions
Frisch and Schlesewsky 2001; cf. Bornkessel 2002). A greedy, subject-based heuristic can thus
fail to be globally optimal in a number of situations. As incrementality — greediness — seems
to be a fundamental property of the human language system, we are forced to reconsider the
assumption of subject-centricity, despite its usefulness as a model in other contexts.

Within the framework of the eADM, the actor-heuristic, or more generally, prominence-
driven processing, was introduced in Chapter 1 as an alternative to subject-centric process-
ing. If we consider the previous examples, then we see a more consistent pattern, namely
a decreasing prominence ranking across the sentence, the quantification of which is the
subject of Chapter 3.
For the object-experiencer verbs,2 it is difficult to find a clear “actor” in a strict sense
of agency — arguably the stimulus has causal properties, but does not actually do any-
thing, while the experiencer suffers or endures an emotional state. The properties of
the actor are modeled on the prototype of the self and its role in the world (i.e. as part
of the perception-action-loop, cf. Bornkessel-Schlesewsky, Schlesewsky, et al. in press;
Bornkessel-Schlesewsky and Schlesewsky 2013, in press; see also Bornkessel-Schlesewsky

1lit. ‘to please’, but used in the sense of ‘to like’, only with the liker as the object and the likee as the subject.
2i.e. verbs, whose objects are subject to a mental state. Examples in English include excite, please, and amuse.
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Figure 2.1.: Reproduced with permission from Bornkessel-Schlesewsky and Schlesewsky
(2009)

and Schlesewsky 2009; and Primus 1999). In this sense, emotional states, a mark of sentience,
are more prominent than the stimulus (cf. Figure 2.1, Primus 1999).

The label “actor strategy” is thus a convenient shorthand for prominence processing, based
on its most common variant (and potentially its evolutionary roots as part of the perception-
action-loop, cf. Bornkessel-Schlesewsky, Schlesewsky, et al. in press; Wolpert 1997). Earlier
formulations proposed a complementary role for the actor, which they termed “undergoer”,
but ontologically, this role is completely dependent on and largely defined by the contrast
to the actor (cf. Bornkessel-Schlesewsky and Schlesewsky 2009; Primus 1999). Later formu-
lations of the eADM removed the explicit undergoer category (Bornkessel-Schlesewsky and
Schlesewsky 2013), but we can still use the term as a convenience. We can thus view the
actor strategy as trying to establish the dependency relationship between arguments (see
Figure 2.1). This predicts that this dependency relationship may potentially be more reli-
ably determined in a greedy fashion in verb-final constructions, even with ambiguous case
morphology, than the subject-centric constructions.

The central goal of this dissertation is specification through modeling, especially quantita-
tive modeling. The claimed global optimality of the actor strategy compared to the subject
strategy in a greedy system must then be demonstrated. Dependency parsing, although
differing greatly in its mechanism from human language comprehension, nonetheless pro-
vides a useful model for exploring the properties of the proposed processing strategies. In
the words of Seidenberg and Joanisse (2003), it’s time to show a(n implemented) model. For
that, we turn to dependency parsing.
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ROOT Economic news had little effect on financial markets .

Predicate

Attribute Subject
Object

Attribute Attribute

Prepositional Complement

Attribute

Punctuation

Figure 2.2.: Dependency structure for an English sentence (adapted from Nivre 2010)

2.1. Dependency Parsing

In the computational linguistics literature, “dependency parsing” refers to systems and tech-
niques for mapping a sentence to a hierarchical structure based on the principles of depen-
dency grammar, a syntactic tradition going back centuries, which has primarily found ap-
plication in descriptive linguistics (Nivre 2010). Much like generative grammar, there are
several different theoretical frameworks with different assumptions about the finer details,
but all share a core assumption: syntactic structure consists of words and directed, assy-
metrical relationships between them called dependencies (Nivre 2010). As is usual in modern
linguistics, this structure can be represented as a rooted3 tree (see Figure 2.2), with the node
closer to the root called the head and the node closer to the periphery called the dependent.
We represent this tree with arrows from each head to its dependents,4 i.e. flowing from the
root towards the leaves. Each arc is given a label indicating the dependency type (see Figure
2.2), which generally describes functional relationships between a head and its dependents,
e.g. “subject”, “object” or “attribute”. This differs from the more common phrase structure
representation, which uses phrases and structural categories instead of words and functional
categories (Nivre 2010, cf. Figure 2.3). Although the type of information represented directly
differs, it is in general possible to convert between the two types of representations (Nivre
2010).

For our purposes, the representation offered by dependency parsing offers several advan-
tages. Functional relationships, such as subject and actor (see below) more reliably align
with a form-to-meaning mapping than do structural ones. As determining this mapping
is the goal of language comprehension, an explicit encoding of functional relationships is
advantageous for a model of human language processing. In the following, we present an
initial account of dependency parsing as a model of language comprehension.

3For computational reasons, we introduce an artifical root, which prevents elements from lacking a syntactic
head.

4N.B. There is a rival tradition which draws the arrows in the other direction (Nivre 2010).
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S

PUNCT

.

VP

PP

NP

NN

markets

ADJ

financial

IN

on

NP

NN

effect

ADJ

little

VBD

had

NP

NN

news

ADJ

Economic

Figure 2.3.: Phrase structure for an English sentence (adapted from Nivre 2010)

2.2. Dependency Parsing as a Cognitive Representation

A further advantage of dependency relationships is that they can be interpreted as encoding
parameterized, hierarchical evaluation of language units.5 For example, the representation
in Figure 2.2 directly encodes which words modify which others: modifiers are directly ad-
joined to the modified, verbal complements (subjects, objects and potentially prepositional
complements) are directly adjoined to the verb complex. We can view modifiers as param-
eters (in a functional-computational sense) to a noun phrase, modifying its computational
behavior (meaning), and similarly verbal complements parameterize the verb via its argu-
ment structure.

This computational perspective, while simple, has several subtle and desirable implications.
First, there is no need for a strong separation of verbs and nouns (or word categories in
general): the word category emerges from a given parameterization. A verb-like word with
subject and object or actor and undergoer parameters is functionally a verb. A noun-like
word being used as a parameter of a functional verb is a noun. This matches well with the as-
sumptions of the eADM regarding the flexibility of word categories (Bornkessel-Schlesewsky
and Schlesewsky 2009, in press) as well as neurolinguistic findings indicating that the brain
does not necessarily distinguish between word categories (for fMRI evidence, see Tyler et al.
2004; Vigliocco et al. 2011; for EEG, Federmeier et al. 2000; for a review, see Crepaldi et al.
2011; for a dissenting opinion, Shapiro and Caramazza 2003).

5It seems a bit redundant to say “[syntactic] dependencies encode computational dependencies”, but this is a
rather important point.
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Moreover, this representation captures the notion of “level of detail”: each subsequent em-
bedding is a level of detail that can optionally be removed. (In phrase structure represen-
tation, the adjectives and the nouns are at the same level of embedding.) This allows us to
focus on core aspects of comprehension with natural language by simply trimming the trees
so that deeper embeddings are ignored, and successively reduce the amount of trimming as
the theory becomes more developed.

Finally, the combination of parameterization and level of detail yields a model of hierar-
chical encoding or evaluation6 with each head representing the evaluation of itself as pa-
rameterized by its dependents. In other words, subtrees represent a model of chunking in a
way that captures the most essential details as being most accessible, i.e. higher up in the
tree and thus more recently evaluated. This chunking model is also compatible with mod-
els of language processing based on content-addressable memory, such as Lewis, Vasishth,
and Van Dyke (2006), with the growing chunks representing accumulating feature bundles
and attachment depth related to decay of individual features. Anti-locality effects, where in-
creasing distance between a noun and its verb can increase processing speed, then reflect
reactivation via re-evaluation during new attachment.7

The dependency representation is thus especially well suited to modeling the cognitive rep-
resentation of language. For a model of language processing, however, we require that the
parser also construct its representations in a comparable way, i.e. incrementally, and, ide-
ally that the parser be able to learn and not require the input of an explicit grammar, i.e. be
data-driven. In the dependency tradition, transition-based parsing meets both of these re-
quirements.

2.3. Transition-based Parsing

A transition-based parser is a data-driven shift-reduce parser. In other words, transition-based
parsers take a local perspective to parsing, examining each input and deciding whether to
use it immediately, e.g. by combining it with previous input (reduce), or to read in additional
input and see if the situation improves any (shift). In dependency parsing, there are two pos-
sible reductions: left arc and right arc attachment, which correspond respectively to attach-
ing the new input to existing input as either a head or a dependent. These state transitions
are learned in a supervised way by training the decision mechanism (oracle) on annotated
data. Although language learning in humans is arguably not explicitly supervised, human
learners do receive implicit feedback as to whether or not they arrived at the correct inter-
pretation.

6Here and in the following, “evaluate” and its derivatives are meant in a computational sense as in “function
evaluation”, whereby a computation is carried out.

7Note that this does provide for a certain correlation with the notion of “dependency” and its effect on language
processing as put forth in the Syntactic Prediction Locality Theory (SPLT) and its successor Dependency
Locality Theory (DLT) (Gibson 1998, 2000); however, the dependencies in dependency parsing are inherently
different from the combined syntactic-referential dependencies put forth by Gibson, not the least because
Gibson defines locality via phrase-structural distance.

17



2. Looking for Arguments That Get Stuff Done: Greediness and the Actor Strategy

Crucially, although there have been some recent efforts to implement back-tracking or other
repair strategies (Honnibal, Goldberg, and Johnson 2013), the majority of transition-based
parsers are forced to follow through on their decisions. In this way, they can also be tricked
into garden-pathing in the same way humans are — a locally optimal decision to reduce turns
out to be wrong. Neither transition-based parsers nor the human-processing mechanism
can escape when they have gone far enough along the wrong path. With smaller violations,
however, the human language processer is capable of recovering, while a transition-based
parser cannot escape its previous choices (even if it can make correct choices later on that
lead to self contradiction, such as two subjects). Local parsing errors thus remain in the fi-
nal output as well as potential consequences of initial errors. Taken together, these errors
should correlate with the combined local and global optimality of certain comprehension
strategies, such as the subject and actor strategies. In particular, we can explore and com-
pare the optimality of the subject and actor strategies by examining the performance of a
transition-based dependency parser trained on label sets containing either actors and un-
dergoers or subjects and objects.

2.4. A First Attempt

In the following, we present an initial exploration of the performance characteristics of a
dependency parser trained on traditional subject-object labels compared to one trained on
prominence-based labels. We used the MaltParser (Nivre et al. 2007), which is a completely
data-driven transition-based parser with flexible specification of feature models, the set of
input features that the oracle is trained and operates on.

For the training and test sets, we used stimuli from the experiments presented in Chapter 4
of Bornkessel (2002), which followed broadly speaking a 2x2x2 design for WORD-ORDER x
AMBIGUITY x VERBTYPE. Subject-object and object-subject word orders were presented in a
verb-final configuration. All sentences were globally unambiguous with only one argument
agreeing with the verb in number; however, the sentences were also manipulated so as to be
either locally case ambiguous or locally unambiguous. In other words, in unambiguous sen-
tences, it was possible to deterministically assign grammatical relations based on local input,
but in ambiguous sentences this was not possible until the verb. Both active-dative verbs and
dative-experiencer verbs were used; thus thematic role assignment was only aligned with
syntax in half of the sentences. An example of the four ambiguous conditions is presented
in (6).

(6) Gestern
Yesterday

wurde
was

erzählt,
told

dass
that

a. Maria
Maria

Sängerinnen
singers

folgt.
follow.SG

‘Maria follows singers.’

18



2. Looking for Arguments That Get Stuff Done: Greediness and the Actor Strategy

b. Maria
Maria

Sängerinnen
singers

folgen.
follow.PL

‘Singers follow Maria.’

c. Maria
Maria

Sängerinnen
singers

gefällt.
please.SG

‘Maria pleases singers.’, i.e. ‘Singers like Maria.’

d. Maria
Maria

Sängerinnen
singers

gefallen.
please.PL

‘Singers please Maria.’, i.e. ‘Maria likes singers.’

For this first attempt, the parser was trained and tested using a single experimental item
(particular lexical realization of the experimental conditions) with a delexicalized feature
model (see below). Experimental stimuli were used because no appropriate treebank was
available, and a single item sufficed because psycholinguistic stimuli are strictly controlled
to be feature matched and thus each additional item introduces no variation to the training
set. A larger training set can be emulated in a restricted sense by increasing the number of
training iterations.

2.4.1. Properties of Appropriate Feature Models

Features in MaltParser are specified in terms of the input buffer (FIFO8) and a stack of par-
tially processed tokens (LIFO9), which corresponds to memory in a cognitive architecture
with most recent elements most easily accessible. Items in both the stack and input buffer
may additionally be addressed by index or by their dependency relationship (i.e. by both
linear and graph position), but arcs may only be made between the top/front most element
of the stack and input buffer. In terms of cognitive architecture, this is equivalent to only
being able to integrate the new input with the most recent representation, which can be
either the directly preceding element or a more complex hierarchical structure computed
from recent input.

Although MaltParser supports look-ahead, look-ahead must not play a role in a model of natu-
ral language processing because language is inherently sequential.10 Look-back corresponds
to memory and is currently an underspecified portion of the model. A reasonable assump-
tion seems to be the availability of all features for the top of the stack and some features

8first in, first out
9last in, first out

10Parafoveal preview in reading somewhat violates this principle by providing limited access to upcoming in-
put, and this is reflected in different electrophysiological effects in reading (cf. Kretzschmar, Bornkessel-
Schlesewsky, and Schlesewsky 2009; Kretzschmar 2010). For a model of comprehension during reading, it
may therefore make sense to allow a limited look-ahead with reduction in the number of features available.
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for both the next element in the stack and the dependencies of the topmost element. This
corresponds to full availability for the most recently processed element as well as some avail-
ability for recently processed elements and co-activated elements as in the Lewis, Vasishth,
and Van Dyke (2006) model.

For the current experiment, no features were specified beyond those of the topmost element
as well as the current input. While this arguably crippled the parser, it prevented a more
serious problem for such short, simple sentences, namely that the parser shifted until the
verb and then performed globally informed processing.

2.4.2. Non-Traditional Dependency Structures

In addition to the restrictions to the feature model, incrementality in human language pro-
cessing also presents another set of constraints for the graph representation of the core
grammatical or prominence relations, i.e the exact dependency relationship between the
verb and nominal arguments. In particular, it is unlikely that the human language system
waits for the verb to process the nouns, which implies that the language system attempts
to categorize the nominal arguments immediately. This can be inferred by either a further
nominal argument or the verb in verb-medial constructions. As such, a dependency struc-
ture that reflects this and allows for immediate, incremental arc attachment should be pre-
ferred.

The solution used here, which we call Argument-Verb Chain, attaches the subject or more
prominent argument to the verb and the object or less prominent argument to the other
argument. Thus, when a verb is encountered, a subject or more prominent argument can
be immediately integrated, which roughly corresponds to Compute Linking in earlier ver-
sions of the eADM (Bornkessel-Schlesewsky and Schlesewsky 2009). Alternatively, when an
additional noun is encountered, the relationship between the two can be immediately estab-
lished, which roughly corresponds to Compute Prominence in earlier versions of the eADM
(Bornkessel-Schlesewsky and Schlesewsky 2009). The correct parse under this scheme for
the sentences in 6 is presented in Figure 2.4.

2.4.3. Preliminary Results

Testing was conducted using a mixture of the leave-one-out cross-validation procedure and
self-verification. In both cross- and self-validation, the parser failed to achieve accuracy
above 85% on either label set, despite highly constrained input. Initial results showed better
performance for the subject label with an extreme sensitivity to the exact feature specifica-
tion for both relative and absolute performance. For example, encoding case ambiguity as
having no case marking increased accuracy compared to encoding case ambiguity as being
compatible with both nominative and dative cases (depending on the exact feature model,
in excess of 50 percentage point difference).

20



2. Looking for Arguments That Get Stuff Done: Greediness and the Actor Strategy

ROOT Maria Sängerinnen folgt

Predicate

Object

Subject

ROOT Maria Sängerinnen folgt

Predicate

Less Prominent

More Prominent

ROOT Maria Sängerinnen gefällt

Predicate

Object

Subject

ROOT Maria Sängerinnen gefällt

Predicate

Less Prominent More Prominent

ROOT Maria Sängerinnen folgen

Predicate

Object Subject

ROOT Maria Sängerinnen folgen

Predicate

Less Prominent More Prominent

ROOT Maria Sängerinnen gefallen

Predicate

Object Subject

ROOT Maria Sängerinnen gefallen

Predicate

Less Prominent

More Prominent

Figure 2.4.: Argument-verb-chain dependency structure for the sentences in (6). The left col-
umn uses the traditional grammatical-relations label set, while the right column
uses the prominence label set.

This sensitivity to feature specification also revealed a more problematic aspect of the exper-
imental design. The parser was trained and tested on the critical conditions of a psycholin-
guistic experiment, without any distractor stimuli. Much as human test subjects do, the parser
developed an optimal strategy for the experiment instead of for general use. Sentence inter-
pretation for the subject-label was possible by only examining number agreement, while sen-
tence interpretation for the actor-label additionally required examination of the verb type.
The disadvantage of this additional complexity is also reflected in improved performance
for additional training iterations with the actor strategy, but not for the subject strategy.

This suggests that the advantage of the actor strategy, at least for traditional nominative-
accusative languages, arises in part from distributional statistics of constructions. When
all combinations are equally likely, then there is no purely linguistic advantage to the actor
strategy and there may even be a slight disadvantage. From a psychological perspective,
the actor strategy does have a few advantages: (1) it is a domain-general mechanism and
(2) it has cross-linguistic applicability in a way that “subject” does not. Initial work on
applying dependency parsing to languages such as Hindi, which are split-ergative, show
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high unlabeled accuracy, but a somewhat disappointing label accuracy (Nivre 2009).11

While a data-driven parser may be able to learn ergative alignment with as much success
as nominative-accusative alignment, learning both systems in a single language seems
difficult. Prominence-based labels (even if applied to a more traditional graph structure
than used here) may offer a way to resolve this problem.

Finally, one training-testing run based on a feature set with access to the second element in
the stack (i.e. with additional memory) yielded more promising results for the actor strategy,
with the actor strategy achieving an aggregate accuracy of 67%, while the subject strategy
scored only 45.8%. More interestingly, the parser tended to make mistakes and generaliza-
tions as humans do; the results from leave-one-out testing for object-initial word orders are
in Appendix A. Using subject-labels, the parser does indeed develop a subject preference,
while using actor-labels, it does develop a preference for more prominence. Crucially, the
number of mistakes for a parse with actor-labels follows more closely the behavioral prefer-
ences of human test subjects than does the number for a parser with subject-labels.

Unfortunately, these interesting results must be regarded for the time being with caution.
Using a snapshot of the testing environment (including intermediate build and training
products) taken after these tests consistently yields the same results; however, running the
testing again using a clean checkout from version control yields different results. Thus far,
we have not been able to find the source of the discrepancy, but we have reason to believe
that such results may again be possible: namely the mistakes in the test sets seem to more
closely match the biases found in the leave-one-out training sets than the results from the
replication attempts do. For example, in the non-replicable environment, training sets miss-
ing an object-initial construction resulted in a preference for subject-initial constructions
in testing, but this type of expected bias is not always found in the replication attempts.
The replication attempts also demonstrated a suspiciously low accuracy for the actor-label
(lower than chance), which was insensitive to removing number and verb type from the
feature model, suggesting a problem with the replication attempt.

2.5. Review and Outlook

In this chapter, we examined the use of transition-based dependency parsers as a computa-
tional model of human language processing. Following a discussion of the useful properties
of these parsers, we used them to test the learnability and optimality of greedy strategies
based on traditional grammatical relations (subject and object) and prominence (actor and
undergoer) with mixed results. The performance of each strategy depended on the exact
feature model specification the oracle was trained on, and much like human test subjects in
the absence of distractors, the parser developed an experiment-specific strategy on several
occasions. While this challenges the supremacy of the traditional subject heuristic, it does

11i.e. the correct dependency relationships (arcs) were established, but often were the wrong type of relation-
ship (labels).
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not establish the optimality of the actor heuristic either. Finally, prominence-based parsing
may provide a solution to issues related to parsing split-ergative languages.

Further work must focus on developing an adequate training treebank so that the statistics
of natural language can be taken into account, as a “fully balanced” training set actually
introduces bias for rare constructions and thus reduces their difficulty in the testing set.
Additionally, while some necessary properties of the oracle’s feature model were established,
there is still a great deal left underspecified. Exploring the behavior of different feature
models on larger training corpora will provide insight into how different cues are integrated
to optimize decision making.
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3. Distinctness as a Numerical
Quantity

Anyone who cannot cope with
mathematics is not fully human. At
best he is a tolerable sub-human who
has learned to wear shoes, bathe, and
not make messes in the house.

Robert Heinlein, Time Enough For Love

A key element of the proposed actor heuristic is competition between the candidates for the
actor role. In metaphor and in practice, competition is much more difficult when the com-
petitors are closely matched, which leads to the proposition that the actor heuristic is most
efficient when the competitors are maximally distinct (Bornkessel-Schlesewsky and Schle-
sewsky 2009, 2013, 2014). Quantifying distinctness is thus a necessary step in quantifying
the actor heuristic.

In Alday, Schlesewsky, and Bornkessel-Schlesewsky (2014), we presented an initial explo-
ration of different possibilities for quantifying prominence and distinctness based on two
basic concepts from linear algebra: metrics and dot products. In this chapter, we introduce
the formalisms used in that publication, summarize the results and present some consider-
ations for future research.

3.1. Brief Summary of Methods and Results

3.1.1. Mathematical Formalisms

In developing a computational model for prominence, we follow the usual practice and en-
code the set of prominence features for a given participant as a feature vector, i.e. an ordered
list of numerical encodings for prominence features. In particular, we view each feature
as a dimension in Euclidean �-space, where � is the number of features we are trying to
model. Distinctness can then be conceived of as “distance” in this space, which in general
corresponds to the idea of a metric1 in mathematics.

1For a vector space � defined over the real numbers ℝ, and vectors ,֐ ֑, ֒ ∈ � , a metric is a function տ ∶� × � → ℝ satisfying the following properties:
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The Manhattan Metric as Interference

In particular, the Manhattan metric, �(Ԥ, ԥ) = ∑� |Ԥ� − ԥ�|, seems to reflect a natural notion

of distance in prominence space, as it provides a measure of feature overlap. Feature over-
lap correlates inversely with the notion of interference found in the literature on working
memory (cf. McElree 2006; Jonides et al. 2008; Lewis and Vasishth 2005; Lewis, Vasishth, and
Van Dyke 2006), and thus Manhattan distance yields a measure of distinctness comparable
(but inverted from) interference.

Dot Product as Prominence

A key feature of the eADM (and the Competition Model) is the language-specific weighting
of prominence features. We can conceptualize this as a distortion of prominence space with
small differences in heavily-weighted features stretched to become greater in relation to
their less strongly weighted features. This distortion is similar in spirit to the distortion of
space-time by heavy objects put forth by general relativity, which yields a useful metaphor:
the distortion along the feature weighting works as an attractor basin for the actor role,
which fits in well with recent suggestions from computational neuroscience that suggest at-
tractor networks provide a neurobiologically plausible means of modeling decision-making
processes (Deco, Rolls, Albantakis, et al. 2013; Deco, Rolls, and Romo 2009; Basten et al. 2010;
Heekeren et al. 2004).

This notion can be extended to “repulsor (hills)”, which describe dispreferred or unstable
configurations. An example is the state produced by an initial accusative before the presen-
tation of a subsequent nominative — the actor heuristic is temporally forced to consider an
untenable actor assignment. The sign of a feature’s weight indicates whether it is an attrac-
tor or a repulsor, while its magnitude indicates its strength.

The dot product of the weight vector with the feature vector, i.e. the sum of individually
weighted features, is thus a measure of the strength of attraction or repulsion. This cor-
responds to a measure of prominence or compatibility with the actor role. Moreover, this
measure has the interesting property of being equivalent to a weighted, signed Manhattan
distance:2

1. (Identity) տ(֐, ֑) = 0 if and only if ֐ = ֑
2. (Symmetry) տ(֐, ֑) = տ(֑, (֐
3. (Triangle Inequality) տ(֐, ֒) ≤ տ(֐, ֑) + տ(֑, ֒)

Together, these imply a fourth property:

4. (Non-negativity) տ(֐, ֑) ≥ 0
2As a metric is non-negative by definition, it is no longer accurate to call a signed variant a “metric”. For

such near misses, we use the everyday term “distance” and reserve the term “metric” for those meeting the
formal criteria.
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� ⋅ ��� − � ⋅ ��� = ∑� Ԧ� ⋅ NP2� − ∑� Ԧ� ⋅ NP1�= ∑� Ԧ� ⋅ (NP2� − NP1�)= � ⋅ (��� − ���)
Adding in appropriate absolute value signs to the last line would yield a weighted Manhattan
metric.

Elementwise Diference as Net Gain in Actor Features

Comparing the Manhattan metric, which lacks any notion of “directionality”, to a signed dif-
ference is somewhat unfair when both measures are supposed to describe a greedy, i.e. order-
dependent, process. As such, we use the signed Manhattan distance proposed above without
weights as a third distinctness measure. By setting all the weights equal to one, we have a
way to establish the effect of weighting. This measure is equal to the summed elementwise
difference and thus measures the net gain in actor-compatible features.

3.1.2. Results

With the above mathematical formalisms, we were able to provide a computational imple-
mentation of Compute Prominence (see Chapter 1), which we combined with a simple shift-
reduce parser to provide measures for the stimuli used in an EEG experiment. The EEG exper-
iment used verb-medial sentences manipulating word order (SO vs. OS), local case ambiguity
on the first NP, and the type of both NPs (pronoun vs. full NP). For the first NP, the pronoun
was third-person singular, while for the second NP the pronoun was first-person singular.
Disambiguation for the ambiguous condition always occurred on the second NP and never on
the verb. This experimental manipulation is known to elicit a biphasic N400-late positivity
effect, which allows us to test the proposed measures in both time windows.

Using mixed-effects models, we examined the predictive power of the three measures in the
N400 and late-positivity time windows. In both time windows, the difference-in-prominence
measure (signed difference of dot products) provided the best fitting model, the net actor-
feature change (signed elementwise difference) again the second best, and the interference
model (Manhattan metric) the worst. Model fits in the N400 time window were generally
better than model fits in the late-positivity time window, which fits well with results in-
dicating that the N400 is a more direct measure of actor competition (for a review, see
Bornkessel-Schlesewsky and Schlesewsky 2009). Moreover, there is strong evidence that
the late-positivity effect is in part task-related (Haupt et al. 2008; Sassenhagen, Schlesewsky,
and Bornkessel-Schlesewsky 2014), which was supported by the much larger improvement
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in model fit with the inclusion of reaction time for the late-positivity model compared to the
N400 model.

3.1.3. Future Directions

Recently, Frenzel, Schlesewsky, and Bornkessel-Schlesewsky (2015) showed that there is an
electrophysiological effect for the actor prototypicality of a given lexeme or referent, which is
distinct from the electrophysiological effect resulting from the prominence of its realization
in a sentence context. Incorporating such lexical data into the model proposed here should
then improve its fit to the EEG data. This could be done either at the population level (incor-
porating actor prototypicality values derived from another group of test subjects) or at the
individual level (allowing each test subject to rate the stimuli at a later date).

Although we are able to ground our choice of metric and signed distance measures based
on their abstract properties, it may nonetheless be worthwhile to consider other metrics
for future work. In particular, the Mahalanobis distance (Mahalanobis 1936), which can be
thought of as the generalization of �-scores to higher dimensions, shows some conceptual
promise. The Mahalanobis distance can be conceptualized geometrically as expressing dis-
tance from the center of mass of an object, or equivalently, a distribution.3 In terms of actor
space, this could be used to measure the distance from a particular argument to the distri-
bution representing all actor arguments. (Neurocognitively, this would be sum total of an
individual’s experience with actor arguments. In terms of modeling, this could be calculated
from a corpus.) As a standardized measure, the Mahalanobis distance would then provide a
measure of actor prototypicality that accounts for the distributional differences of the var-
ious prominence scales. As a corollary, the Mahalanobis distance could also be used as a
dissimilarity measure between two arguments.

The Mahalanobis distance has two potential problems: lack of directionality and weighting
based purely on distributional characteristics instead of informedness (i.e. cue availability
instead of cue validity). As the Mahalanobis distance is related to the Euclidean distance (and
indeed, standardized Euclidean distance is a special case of Mahalanobis distance), adding
directionality is not as trivial as simply removing absolute value signs. Squaring changes
not only the sign (preventing issues with non-negativity, especially given the subsequent
square root) but also many characteristics of the metric.4 (The subsequent square root is
less of a problem, as we could simply interpret directionality via the imaginary component.)
Additionally, many of the desirable properties of the Mahalanobis distance, e.g. its geomet-
ric interpretation, arise from a weighting that is incompatible with the principles of the
Competition Model and eADM.

3We are using the term “distance” here because we are being somewhat loose in our terminology, e.g. measur-
ing the distance between a distribution and a point, but the Mahalanobis distance can be used as a metric in
the rigorous sense.

4A clear example of this is the difference between the mean and the median in statistics, which can be thought
of the center of a distribution based on the Euclidean and Manhattan metrics, respectively. See also http://
www.johnmyleswhite.com/notebook/2013/03/22/modes-medians-and-means-an-unifying-perspective/.
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3.2. Relevance

In this paper, we presented for the first time a computational implementation of the actor-
heuristic. We demonstrated that, as predicted by the eADM, a weighted feature model out-
performs unweighted interference models such as those proposed in the working memory
literature. On the basis of the mathematical formalism developed here and evidence from
computational neuroscience, we developed the notion of attractor basins as an additional
useful formalism for the actor heuristic, which has since been integrated into the eADM (cf.
Bornkessel-Schlesewsky and Schlesewsky 2014), and suggested that this mechanism may
subserve a number of sub-computations necessary for language comprehension. Finally,
this work serves as a framework for testing actor prototypicality effects, which complements
the recent work from Frenzel, Schlesewsky, and Bornkessel-Schlesewsky (2015).

3.3. Publication

Peer-Reviewed Article P. M. Alday, M. Schlesewsky, and I. Bornkessel-Schlesewsky
(2014). “Towards a Computational Model of Actor-based Language Comprehension”.
In: Neuroinformatics 12.1, pp. 143–179. DOI: 10.1007/s12021-013-9198-x

Conference P. M. Alday, M. Schlesewsky, and I. Bornkessel-Schlesewsky (2012). Towards
a Computational Model of Actor-based Language Comprehension. Poster presented at the
Neurobiology of Language Conference. San Sebastian

My Contribution For this paper, I developed a mathematical model of distinctness based
on dot products and metric spaces and provided a computational implementation, in-
cluding a basic shift-reduce parser for applying the theory to existing experimental
data. Using that implementation, I analyzed an existing experiment using traditional,
factorial methods as well as using mixed-effects models to compare different numer-
ical realizations of distinctness and wrote large portions of the introduction and dis-
cussion as well as all of experimental methods, results and conclusions.
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Abstract Neurophysiological data from a range of typo-

logically diverse languages provide evidence for a cross-

linguistically valid, actor-based strategy of understanding

sentence-level meaning. This strategy seeks to identify the

participant primarily responsible for the state of affairs

(the actor) as quickly and unambiguously as possible, thus

resulting in competition for the actor role when there

are multiple candidates. Due to its applicability across

languages with vastly different characteristics, we have

proposed that the actor strategy may derive from more

basic cognitive or neurobiological organizational princi-

ples, though it is also shaped by distributional properties of

the linguistic input (e.g. the morphosyntactic coding strate-

gies for actors in a given language). Here, we describe

an initial computational model of the actor strategy and

how it interacts with language-specific properties. Specif-

ically, we contrast two distance metrics derived from the

output of the computational model (one weighted and one

unweighted) as potential measures of the degree of com-

petition for actorhood by testing how well they predict
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modulations of electrophysiological activity engendered by

language processing. To this end, we present an EEG study

on word order processing in German and use linear mixed-

effects models to assess the effect of the various distance

metrics. Our results show that a weighted metric, which

takes into account the weighting of an actor-identifying

feature in the language under consideration outperforms

an unweighted distance measure. We conclude that actor

competition effects cannot be reduced to feature overlap

between multiple sentence participants and thereby to the

notion of similarity-based interference, which is prominent

in current memory-based models of language processing.

Finally, we argue that, in addition to illuminating the under-

lying neurocognitive mechanisms of actor competition, the

present model can form the basis for a more comprehen-

sive, neurobiologically plausible computational model of

constructing sentence-level meaning.

Keywords Computational model · Language processing ·

Emergence · Ambiguity resolution · Actor identification

Introduction

The roughly 6000 languages of the world present a diverse

set of grammars and input forms for the single processing

mechanism of the human brain. Fundamental differences in

word order, different means of encoding different parts of

morphosyntax and broad variation in dropped / elided ele-

ments are just some of the variation with which the brain

must cope; the complexity of a language is matched and

exceeded by the complexity of language diversity. In light

of the extreme variance between the languages of the world

and their respective grammars, less syntax-bound language

processing strategies have been proposed.

3. Distinctness as a Numerical Quantity
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Neurophysiological data from a range of typologically

diverse languages provides evidence for a comprehension

and processing heuristic based on the notion of “actor”,

the participant primarily responsible for the state of affairs

(Bornkessel-Schlesewsky and Schlesewsky 2009). The role

of actor, while correlating strongly with certain parts of mor-

phosyntax in some languages, is a language independent

construct and is orthogonal to traditional notions of gram-

mar (Bornkessel-Schlesewsky and Schlesewsky 2013a).

Here, we present a computational implementation of the

heuristic as well as a quantitative comparison with EEG data

from an experiment primarily manipulating word order and

its related ambiguities. We show that the actor heuristic is

not just an interesting, qualitative theoretical construct, but

rather a quantifiable and testable model. Indeed, we show

that the quantification of the actor heuristic is a reliable,

effective predictor of ERP data.

Neurophysiological Model and Language Processing

Strategy

Before turning to the computational model that is the focus

of the present paper, we will briefly describe the empirical

neurocognitive model on which it is based. This discus-

sion will serve primarily to introduce the critical notion of

competition for the actor role, which will be central to the

computational model to be introduced later. Having intro-

duced actor competition, we will briefly summarize the

empirical evidence in support of it.

The Extended Argument Dependency Model (eADM)

and Actor-Centered Comprehension

The extended Argument Dependency Model ((e)ADM;

Bornkessel 2002; Schlesewsky and Bornkessel 2004;

Bornkessel and Schlesewsky 2006; Bornkessel-

Schlesewsky and Schlesewsky 2008, 2009, 2013b) is a

neurobiologically motivated, neurocognitive model of

language comprehension with an explicit focus on cross-

linguistic diversity. In other words, the model aims to

account for language processing in typologically diverse

languages and to explain which aspects of the processing

architecture are universal and which are language-specific.

The eADM posits that language processing is orga-

nized in a cascaded, hierarchical fashion and proceeds

along two major functional-neuroanatomical streams in the

brain. One of these, the postero-dorsal stream, engages in

time-dependent computations, while the other, the antero-

ventral stream, engages in time-independent computations

(Bornkessel-Schlesewsky and Schlesewsky 2013b). Time-

dependent computation refers to the notion that, in the

combination of two elements, A and B, the order in which

they are encountered is crucial for the way in which they

are combined. For example, in German, the order in which

two noun phrases are encountered in an NP-NP-V sequence

changes the likelihood for one being interpreted as the

actor argument as opposed to the other. In time-independent

computation, by contrast, the order of encountering two ele-

ments A and B will not influence the way in which they

are combined. For example, a plausibility-based heuristic

which computes the most plausible combination of argu-

ments and the verb (e.g. given “apple” and “eat”, the

reading that the apple is the undergoer of the eating event

rather than the actor) is independent of which element is

encountered first. These time-independent computations are

implemented in terms of schema unification (see below for

a brief description of schemata and the ventral stream).

Thus, time-dependent versus time-independent computa-

tions could also be described as “sequence-dependent”

versus “sequence-independent” operations.

Processing in both streams is organized in a hierarchi-

cal manner in accordance with the neurobiological principle

of hierarchical processing (Felleman and Van Essen 1991;

Rauschecker 1998; Rauschecker and Scott 2009; DeWitt

and Rauschecker 2012) and classic assumptions regard-

ing the structure of complex cognitive models (Simon

1962; Newell 1990). This means that, as information flows

along the streams, the representations that are processed are

assumed to become increasingly complex.1 In the follow-

ing, we will refer to the successive points of information

processing within the hierarchy as “processing steps” for

convenience, though this is clearly a cognitive term that

does not directly reflect the underlying neurobiological

organization.

In a first step (ignoring preceding aspects of phonological

processing and segmentation), the processing system iden-

tifies word categories and uses these to build a constituent

structure (“syntactic structuring” within the postero-dorsal

stream). Crucially, and in contrast to the assumptions of oth-

er comprehension models (Friederici 2002; Hagoort 2005;

Vosse and Kempen 2000), this structure does not determine

sentence interpretation: this is accomplished via a separate

mechanism, as we shall see shortly. A second function of

category processing in this step is to classify the current

input element in terms of its function, e.g. whether it is

referential (“nouny”) or predicating (“verby”).

1Note that, though the model is hierarchically organized, it is not mod-

ular in the traditional Fodorian sense (Fodor 1983). Firstly, due to the

cascaded nature of processing, a particular processing step need not be

fully complete before the next step is initiated. Secondly, from a neuro-

biological perspective, connections within each pathway are inherently

bidirectional such that top-down modulations of information process-

ing are always possible. Nevertheless, we assume that there is an

asymmetry in the directionality of information flow based on the tenet

of hierarchical organization.

3. Distinctness as a Numerical Quantity
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In a second step, sentence-level interpretive mechanisms

set in. In the postero-dorsal stream, the system determines

sentence meaning from an action-based perspective by

assessing who or what is primarily responsible for the state

of affairs being described, i.e. here, the actor heuristic men-

tioned above comes into play. The antero-ventral stream,

by contrast, constructs a schema-based representation of

sentence-level meaning via the unification of “actor-event

schemata”. For reasons of brevity, we will not go into details

with respect to the properties of these schemata or their uni-

fication, and focus instead on the “actor computation” step

posited as part of the postero-dorsal stream. For a detailed

discussion of actor-event schemata, the interested reader

is referred to Bornkessel-Schlesewsky and Schlesewsky

(2013b).

The notion of “actor computation” within the postero-

dorsal stream is based on the assumption that a linguistic

actor is a “stable, language-independent category, possi-

bly rooted in the human ability to understand goal-directed

action” (p. 250) (Bornkessel-Schlesewsky and Schlesewsky

2013a). The fact that humans are generally attuned to this

category as opposed to others could be due to basic evo-

lutionary demands. In the words of Leslie (1995): “Agents

are a class of objects possessing sets of causal properties

that distinguish them from other physical objects” and “as

a result of evolution, we have become adapted to track

these sets of properties and to efficiently learn to interpret

the behaviour of these objects in specific ways” (p. 122).

By tracking (potential) actors, i.e. those entities that appear

suited to bringing about changes in the environment (e.g.

warranting a fight-or-flight response), we can interpret the

world around us and make predictions about upcoming

events (see also Frith and Frith 2010). In accordance with

this assumption, it has been demonstrated that the human

attention system appears to have developed a special sen-

sitivity towards humans and non-human animals (i.e. good

potential actors) as opposed to other categories (New et al.

2007). In this way, the actor-centered comprehension strat-

egy posited by the eADM essentially views a sentence as an

instruction to conceptualize a particular scenario in which

an actor is engaged in a certain event or state of affairs.

How are actor participants identified during language

comprehension? In this regard, we have proposed that

the prototypical actor may be modeled on the first per-

son (i.e. the self as an acting agent, see Tomasello 2003,

Haggard 2008). According to Dahl, this “self-as-actor” per-

spective is tied to humans perceiving conspecifics as being

“like myself, individuals who can perceive the world and

act upon it” (Dahl 2008, p. 149). Thus, in order to under-

stand the environment around us, we use the self as a model

for other animate entities (and particularly other humans),

which in turn serve as a model for inanimate entities. In

view of these considerations, the language comprehension

system uses the features +self and +animate as cues to

the identification of actor participants (see below for a

summary list of actor features). Furthermore, in line with

the notion that the self-as-actor perspective involves seeing

others as individuals (i.e. other “selves”), an optimal actor

is individuated (i.e. definite and specific). Finally, actor-

hood correlates with particular morphosyntactic features,

which are partly cross-linguistically applicable (in partic-

ular: occurring as the first argument in a sentence) and

partly language-specific (e.g. nominative case marking).

Thus, the different features vary in applicability across lan-

guages; they also vary in their language-specific weighting,

i.e. their importance to identifying actor participants in a

particular language (cf. also MacWhinney and Bates 1989;

Bates et al. 2001). We have posited that language-particular

cues to actorhood (e.g. the importance of morphological

case marking in a language such as German) are acquired

via their high degree of co-occurrence with the universal

actor features based on the first person model (Bornkessel-

Schlesewsky and Schlesewsky 2013a). Thus, prototypical

actor features derived from the self-as-actor perspective are

used to bootstrap other, language-specific (morphosyntac-

tic) features of actor participants—a view that is similar

to that adopted by emergentist models of other linguistic

categories such as parts of speech (Croft 2001).

Linguistic prominence features related to actor

identification.

1. +self

2. +animate/+human

3. +definite/+specific

4. +1st position (correlates with actorhood cross-lingui-

stically; (Tomlin 1986))

5. +nominative (correlates with actorhood in nominative-

accusative languages with morphological case)

The degree to which arguments are good competitors for

the actor role is defined by two points: (a) their own pro-

totypicality in terms of the defining actor features and the

correlating prominence features (see above), and (b) the

existence and prototypicality of further competitors. Thus,

an initial argument is preferentially analyzed as an actor

even if it is not highly prototypical (e.g. if it is inanimate).2

2In this regard, the assumptions of the eADM differ from those of the

Competition Model (e.g. Bates et al. 1982, 2001, MacWhinney and

Bates 1989), which assumes that a strong cue for the undergoer role

(e.g. accusative case in a language such as German or Hungarian) can,

to all intents and purposes, exclude an argument from being considered

a potential actor. The eADM, by contrast, posits that a sole argument

is always considered for the actor role no matter how bad a candidate

it is—unless there is a second, more optimal candidate (for discussion,

see Bornkessel-Schlesewsky and Schlesewsky to appear).

3. Distinctness as a Numerical Quantity
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Once a second argument—a competitor—is encountered,

however, the relative actor prototypicality of the arguments

is crucial in determining whether the actor preference for

the first argument can be maintained or whether it needs to

be revised.

In accordance with the model architecture in Fig. 1,

increased competition for the actor role (including the

need to revise a previous actor choice) correlates with

increased activation in the posterior superior temporal sul-

cus and the temporo-parietal junction as part of the postero-

dorsal stream (Bornkessel et al. 2005; Grewe et al. 2006;

Bornkessel-Schlesewsky and Schlesewsky 2009) and the

anterior temporal lobe as part of the antero-ventral stream

(Magnusdottir et al. 2012; for discussion, see Bornkessel-

Schlesewsky and Schlesewsky 2013b). In neurophysiologi-

cal terms, it is reflected in increased amplitude of the N400

event-related brain potential (Bornkessel-Schlesewsky and

Schlesewsky 2009, 2013a). We assume that the N400—

and negative ERP deflections in general—result from a

mismatch between top-down and bottom-up information

sources within the two processing streams (for proposals

that the N400 depends on an integration of top-down expec-

tations and bottom-up input, see (Federmeier 2007; Lotze

et al. 2011)). Crucially, as scalp ERPs are macroscopic

responses which typically result from the mixing of mul-

tiple underlying sources, the claim is not that an N400

effect elicited by actor competition results from activation

changes in only a single locus within a stream. Rather, it

is likely due to the summed reaction of top-down/bottom-

up integration within multiple processing steps within both

streams (e.g. “actor computation” within the postero-dorsal

stream and “actor-event schema unification” within the

antero-ventral stream). In addition, since we posit that the

notion of top-down/bottom-up integration can be general-

ized to other language-related negativities (e.g. left-anterior

negativity (LAN) effects, which result, for example, from

Fig. 1 Model architecture for

the latest version of the extended

Argument Dependency Model,

eADM (adapted from

(Bornkessel-Schlesewsky and

Schlesewsky 2013b)). Panel A

provides a basic overview of the

model’s neuroanatomical

assumptions: the ventral (solid

line) and dorsal (dashed line)

streams are assumed to emanate

from primary auditory cortex

(PAC) and to perform

information processing in a

hierarchically organized manner.

Thus, in spite of the fact that the

streams are inherently

bidirectional, there is an

asymmetry in the directionality

of information flow on account

of the hierarchical organization.

Panel B shows the assumed

structure of hierarchical

processing within the two

streams
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subject-verb agreement errors in which the expectation for

a particular agreement morpheme is not met), latency and

topography of the negativity response are assumed to vary

depending on the loci within the streams giving rise to the

mismatch and the timing of their activation (Sassenhagen

et al. 2013).

When actor competition is behaviorally relevant (e.g.

when participants perform an acceptability judgment task

and actor competition affects how acceptable a sentence

is deemed to be), it additionally engenders a late positive

ERP response. In this view, late positivities in language

processing (“P600” effects) are viewed as members of the

domain-general P300 family (Coulson et al. 1998; Roehm

et al. 2007; Kretzschmar 2010). Recently, Sassenhagen

et al. (2013) linked this idea to a neurobiological model of

the P300, the Locus Coeruleus-Norepinephrine (LC/NE-P3)

model (Nieuwenhuis et al. 2005). According to this model,

the P300 results from activation of the Locus Coeruleus (i.e.

the brain stem source for noradrenergic projections to the

cortex) following the detection of subjectively significant

events. This results in a release of norepinephrine, thereby

increasing neural responsivity to a particular stimulus and

influencing the behavioral response to it. From this per-

spective, late positivities in language processing reflect a

systemic neuromodulator release facilitating the application

of decision processes rather than linguistic processing per

se. In support of this view, Sassenhagen et al. (2013) found

that an N400 – late positivity scalp ERP pattern engen-

dered by semantically anomalous versus plausible words in

a highly constrained sentence context could be decomposed

using independent component analysis (ICA) and single-

trial analyses. Results revealed that, while N400 effects

were timelocked to critical stimulus onset, positivity effects

were response-locked.

In summary, actor competition is reflected in N400–late

positivity patterns in electrophysiological studies, though,

as described above, the two components of this biphasic

response are functionally distinct and, in principle, indepen-

dent of one another. In addition, the presence or absence of

the late positivity effect is conditioned by the experimental

environment and task.

Evidence for the Actor Heuristic and for Competition

for the Actor Role

The eADM’s notion of competition for the actor role is

supported by a range of cross-linguistic studies on sen-

tence comprehension, which have provided evidence for the

following generalization regarding online-processing:

Cross-linguistic generalization regarding actor iden-

tification in online language processing (Bornkessel-

Schlesewsky and Schlesewsky 2009):

The processing system attempts to identify the actor

role as quickly and unambiguously as possible.

Corollaries:

The processing system prefers actor-initial orders

The processing system prefers prototypical actors.

Evidence for this generalization stems from electrophys-

iological studies in a number of typologically varied lan-

guages, including Turkish (Demiral et al. 2008), Chinese

(Wang et al. 2009) and Hindi (Choudhary et al. 2010),

thus corroborating previous findings of a “subject-first

preference” in European languages (e.g. Dutch: Frazier

(1987), German: Schriefers et al. (1995), Schlesewsky

et al. (2000), Bornkessel et al. (2004b), amongst oth-

ers; Italian: de Vincenzi (1991), Penolazzi et al. (2005)).

Importantly, the empirical findings from non-Indo-Europe-

an languages (Chinese and Turkish) support the assump-

tion of an actor-first rather than a subject-first preference,

since they rule out explanations based solely on formal

subject features such as agreement. They further suggest

that the actor-first preference cannot be reduced to struc-

tural simplicity or frequency (see Wang et al. (2009) for

a summary). The finding of an actor-first preference even

in an ergative language (Hindi) further demonstrates the

need to assume an actor-first as opposed to a subject-first

preference.3

The preference for prototypical actors shows up in a

similarly ubiquitous way: When an argument that is unam-

biguously the actor in a transitive (two participant) relation

is non-prototypical because it is inanimate, different lan-

guages consistently show an N400 effect (for a comprehen-

sive review, see (Bornkessel-Schlesewsky and Schlesewsky

2009)). For an illustration, consider the following example

from Frisch and Schlesewsky (2001):

3In an ergative language such as Hindi, the actor argument in a tran-

sitive (two-participant) event is not morphosyntactically “privileged”

in the sense that it does not agree with the verb, for example. Thus,

it does not qualify for grammatical subjecthood in the same way as a

transitive actor in a non-ergative language such as German, Dutch or

Italian. The results from Hindi thus provide strong converging support

for the assumption that the actor preference is interpretive rather than

grammatical in nature.
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In example (1), the initial accusative—as a very poor

actor candidate—leads the processing system to expect

to encounter a better actor candidate as a second argu-

ment. When this expectation is contradicted by the features

of an inanimate second argument (1a), which is also an

atypical actor, an N400 effect arises in comparison to a

control condition with an animate second argument (1b).

Thus, as described in the preceding section, the N400

effects arises from a mismatch between top-down infor-

mation (the expectation) and bottom-up information (the

features of the second argument). In addition to German

(Frisch and Schlesewsky 2001; Roehm et al. 2004) and

English (Weckerly and Kutas 1999), this effect has been

shown in Mandarin Chinese (Philipp et al. 2008) and Tamil

(Muralikrishnan et al. 2008).

Why a Computational Model of Actor Competition?

As is apparent from the preceding section, the actor-based

comprehension strategy is well described in qualitative

terms. In formalizing this strategy with an implemented

model, we pursue a twofold aim. Firstly, from the computa-

tional implementation of the actor strategy, we aim to gain

quantitative predictions that can be tested against empirical

data. This will allow for the predictions of the eADM to be

tested in a more stringent manner and for cross-linguistic

similarities and differences to be expressed in more explicit

terms.

Secondly, these quantitative predictions can be used to

illuminate the basic processing mechanisms underlying the

actor strategy. In particular, we aimed to compare two alter-

native conceptualizations of actor competition: unweighted

similarity-based interference and weighted competition.

Similarity-based interference is a notion that features promi-

nently in contemporary approaches to working memory

(WM), which emphasize the status of WM as the activated

portion of long-term memory rather than as a separate buffer

(for overviews, see McElree (2006), Jonides et al. (2008);

for approaches to language-processing based on this notion,

see Lewis et al. (2006), Lewis and Vasishth (2005)). Accord-

ingly, memory retrieval is conceptualized not as the result of

a (serial) search, but of a content-addressable pointer mech-

anism based on so-called retrieval cues. These cues (for

example, case, number or other features) provide the rel-

evant information required to access the item in question.

Retrieval becomes more effortful when cues overlap (i.e.

apply to several items in memory), a phenomenon termed

“similarity-based interference”.

Similarity-based interference appears well suited as a

potential mechanism underlying actor competition effects

(Bornkessel-Schlesewsky and Schlesewsky 2013a), which,

as described in detail above, arise when multiple candidates

within a clause bear actor features. Since interference in its

typical form (i.e. as conceptualized within the WM litera-

ture) is based exclusively on feature overlap, it predicts that

the degree of competition for the actor role should be a func-

tion of the number of actor features shared by the arguments,

while the specific weighting of a feature within a language

should be irrelevant. More directly: feature overlap is an all-

or-nothing measure for individual features because either

two entities overlap in a given feature or not. By contrast,

a second potential conceptualization of the degree of actor

competition is that it goes beyond similarity-based interfer-

ence in the classical sense and rather also takes into account

the importance of a particular feature for actor recognition

in the language under consideration. From this perspective,

the degree of actor competition should be proportional to

the difference in prominence (i.e. goodness of fit to the actor

role) between arguments with individual features weighted

according to their language-specific importance.

By means of the computational implementation intro-

duced in the next section, we will calculate explicit metrics

for the two alternative conceptions of actor competition

outlined above and will test these against data from a

neurophysiological experiment on sentence processing.

In this way, we endeavor to use the computational imple-

mentation of the actor strategy not only as a means of

deriving more precise (quantifiable) predictions, but also to

shed further light on the how the strategy is neurocognitively

implemented.

Computational Implementation

The present implementation focuses on the core cal-

culation of actor competition for referential elements,

called Compute Prominence in previous versions of the

eADM (Bornkessel-Schlesewsky and Schlesewsky 2009;

Bornkessel and Schlesewsky 2006). For convenience, we

similarly use the existing terminology “Stage 1” to refer

to the initial chunking and analysis step and “Stage 2” to

refer to the sentence-level interpretative mechanisms of the

second step. A brief summary of the current software imple-

mentation can be found in the Technical Notes at the end of

this article (p. 29).

The computational implementation does impose one

restriction that the neurocognitive model upon which it is

based does not: Stage 1 completes in full before Stage 2

begins. This is however not as detrimental to the approxi-

mation as it may initially seem because Stage 2 processes

each constituent incrementally in the original sequential
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order. Furthermore, both incremental and final full pro-

cessing results for Compute Prominence are computed and

optionally displayed.4

The completion of Stage 1 in its entirety before Stage 2

is unfortunately not capable of modeling cases where addi-

tional, disambiguating information becomes available. In

German, this primarily happens in noun phrases via gen-

der (indefinite NPs) and number (definite NPs) information

available on the first non-article adjective or head noun.

(Disambiguation via verb agreement is also possible, but

this is an interaction with the computation for predicat-

ing elements—Compute Linking in previous versions of the

eADM—and is not currently modeled for non verb-final

word orders.) However, none of these forms of disam-

biguiation occur in the present experimental manipulation.

Nonetheless, processing of ambiguities remains a major

focus of present and future research.

Stage 1

The initial chunking and morphological analysis in Stage 1

is performed here only in a restricted fashion. The full com-

plexity of German phrase structure would be a non-trivial

undertaking and lies outside the scope of this paper and

its focus on the actor heuristic (Stage 2) and an appro-

priate computational implementation. However, a sufficient

implementation of Stage 1 to parse the stimuli from an

EEG/ERP experiment with their relatively rigid structure is

possible.

In the present experiment (see section “EEG Experi-

ment”), it suffices to process inflection carried via pronouns

and articles. In German, the article carries the majority of

the morphological burden in noun phrases. The head noun

inflects for number and can carry an additional marker for

dative in the plural; however, this information was redun-

dant in the present experiment, where neither dative nor

plurals were used.5 In the pronominal system, there exist

a few ambiguities, especially between the nominative and

accusative 3rd person for neutra and feminina as well as in

the plural. This ambiguity could potentially be resolved by

agreement with the verb; however, it also presents a general

test case for the heuristic implemented by Compute Promi-

nence. The ambiguity is thus marked as such and otherwise

4This restriction exists primarily to simplify the implementation in

a single Python program (see Technical Notes); to better model the

waterfall data flow, coroutines could be used or Stage 1 and Stage 2

could be split into two programs connected by Unix pipes.
5Furthermore, the article also carries number information, albeit with

a small ambiguity that is resolved through further adjectives or the

marking on the head noun.

not further processed by Stage 1. The further ambiguity in

the pronominal system between the 3rd person feminine

dative and the second person plural nominative is always

resolved by verbal agreement, but as there are no datives

in this experiment, this special case is not processed fur-

ther and is implemented by pass (a syntactic placeholder

in Python similar to void) in the branch construct.

Stage 2

Implementation of Stage 2 was restricted to the function

Compute Prominence, which provides in non-headmarking

languages the most important parts of the actor heuris-

tic in single-sentence processing.6 Furthermore, Compute

Prominence remains largely unchanged in recent and further

planned updates to the eADM.

In implementing Compute Prominence, we view the

hierarchies as dimensions in (a subspace of) Euclidean

n-space, where n is the number of hierarchies. The promi-

nence of an individual argument is thus a vector, with each

component being a scalar representing the prominence with

respect to a particular hierarchy. The hierarchies with the

corresponding values for various linguistic features in the

current implementation are given in Table 1. The “addi-

tional” feature NUMBER derives from another prototypical

feature of the self-as-actor view: singular correlates with

stronger individuation. Negative values are used to actively

penalize a particular prominence component in the next

calculation. That is, negative values indicate a feature that

strongly correlates with a poor actor candidate (designated

in the computational model by the feature +dep).7

For now, we make the a priori assumption that case

is a singular feature with multiple levels cf. (Kempe and

MacWhinney 1999). However, it is possible that “case” is

merely a convenient moniker for a set of strongly corre-

lating binary features such as ±nom and ±acc. Ambigu-

ity would then be encoded by setting all individual case

features to the same value, e.g. +acc, +nom for an ambigu-

ity between nominative and accusative. This latter approach

is the typical one found in NLP and has the interesting

feature that individual cases can carry different, individ-

ual weights (see below). For example, +acc may be a

much stronger indicator of a particular role assignment than

+nom.

6Of course, contextual effects also play a role in normal language use.
7For the purposes of the present paper,+dep may simply be considered

a convenient label for a poor actor candidate. For an in-depth discus-

sion of ±dep and a motivation in terms of a previous version of the

eADM, see (Bornkessel and Schlesewsky 2006)
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Table 1 Prominence hierarchies and the corresponding scalar val-

ues for the various features as used in the current implementation of

Compute Prominence

Feature Hierarchy

Person: First = 1 > Other = 0

Case: Nominative = 1 > Dative = 0 > Accusative = −1

Animacy: Animate = 1 > Inanimate = 0

Position: Early = 1 > Late = 0

Number: Singular = 1 > Plural = 0

Definiteness: Definite = 1 > Indefinite = 0

Similarly, other features with multiple levels are encoded

binarily according to their most prominent tendency.

±PERSON is actually ±1ST. PERSON and not a multi-

tiered variable. Extending this to accommodate the second

person would only require the addition of a further field in

the prominence vector. As all functions in the implemen-

tation are written to handle vectors of arbitrary length, this

would require no changes to the core code. However, the

question remains open for the model development, whether

representation as multiple fields or as a variable with more

degrees of freedom is the sensible choice. Multiple variables

allow for learning the weights (and hence the impact) of dis-

tinct levels separately; however, this potentially allows for

unlikely combinations of multiple levels.8 A final consid-

eration in the weight encoding is the use of fuzzy logic for

the boolean values. For example, an ambiguous noun phrase

could be assigned values between zero and one to indicate

some form of probability for a given analysis. A plant could

be assigned an animacy value of 0.25 (alive and able to

die but largely not capable of independent action), an ani-

mal could be assigned a value of 0.8 (alive and capable of

independent action, but not sentient) and a human a value

of 1.0 (alive, willful and sentient). Furthermore, this corre-

sponds with animacy hierarchies seen in the languages of

the world, with similar ordering, but language-specific cut-

off points between levels (Silverstein 1976). Such gradience

adds a flexibility to the use of binary features at the cost of

making the prominence encoding somewhat less sparse.

The language-specific relative weights are also stored

in a vector in the same space. The scalar (dot) product

of the weight vector with the prominence vector yields a

scalar value for the total prominence. This value is then

compared with a threshold value to determine if +dep is

assigned immediately. Compute Prominence is applied to

8This is perhaps an advantage—in languages where inclusive and

exclusive first person are morphologically distinct, this could be repre-

sented by the interaction of ±1st. Person and ±2nd. Person. This added

complexity nonetheless introduces its own cost and brings language

specific features deeper into the model.

both arguments and the values are compared, with the more

prominent argument being assigned −dep (i.e. designated as

the actor argument) and the less prominent argument +dep.9

In the special case of an Object-Experiencer verb, promin-

ence values for the case hierarchy are inverted: the entire

hierarchy is multiplied by -1, thus reversing the orientation

such that the accusative and dative outrank the nominative.

A sample sentence set for the EEG experiment used here

as well as an analysis for a single condition of that set are

given in Tables 2 and 3.

Distinctness/Actor Competition

The use of vectors to represent prominence data also allows

for several other calculations to be made. The magnitude

of the projection of an argument’s prominence vector on

the prominence vector for an idealized actor or undergoer

is an index for the prototypicality of a particular argument.

Similarly, the scalar product of the two argument vectors

corresponds inversely with distinctness.

Distinctness is more broadly the distance between two

arguments in actor-space. It thus provides a measure for

the degree of competition for the actor role: when dis-

tinctness is low, multiple arguments bear actor features and

competition for the actor role is high; when distinctness is

high, actor features accumulate on only a single argument

and competition for the actor role is low. Various metrics

are provided (selectable as command line options in the

implementation here) for the distance measurement. The

Manhattan metric10 reflects the summed distance between

individual features. This is the default in the model and

reflects an intuitive notion of distinctness. Furthermore, the

Manhattan metric provides a general measurement of fea-

ture overlap and thus correlates inversely with traditional

notions of interference—the fewer features that overlap/

interfere, the larger the Manhattan distance. The Euclidean

metric11 is also provided and reflects a more continuous

notion of distinctness. Finally, the difference in Euclidean

magnitude of the two vectors is provided as a metric

reflecting the difference in “absolute” (unweighted scalar)

prominence. This magnitude difference also reflects the

directionality of the prominence shift—the prominence of

NP1 is subtracted from the prominence of NP2. Thus, NP2

is more prominent if and only if the magnitude difference is

9In the case of a single argument, e.g. intransitivity, the distinction

measure is not performed and the model depends solely on the thresh-

old comparison. The present experiment included only monotransitive

sentences.
10d(x, y) =

∑

i

|yi − xi |

11d(x, y) =
√

∑

i

(yi − xi )2
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positive. The selected metric is outputted (in batch mode;

see Technical Notes) as the field dist. For the data here,

this is the Manhattan metric, and so dist is equal to
∑

i |NP 2i − NP 1i |.

Distinctness as distance in actor space is calculated on

the raw prominence vectors without the weight distortion.

This has the simultaneous advantage and disadvantage that

the distance is language independent.12 Weighted distance

is given by the field sdiff (in the batch mode output) and

is calculated as the difference of the weighted, scalar promi-

nences: �w · �NP 2 − �w · �NP 1 =
∑

i wi · NP2i −
∑

i wi ·

NP1i , where �w is the language specific weight vector. Since

the weighted scalar prominences are calculated by the dot

product of the weight and feature vectors, this is equiva-

lent to the weighted, signed Manhattan distance.13 Baseline

weights were based on previous work done in German in

the framework of the Competition Model cf.(Kempe and

MacWhinney 1999; MacWhinney et al. 1984). The quali-

tative ordinal scales were converted to quantitative interval

scales via a simple order of magnitude mapping: for a

feature f1 ranked more strongly than another feature f2,

f1 = 10f2 (see Stevens (1951) for the classification of

scales). If a feature is considered a much stronger cue than

another, then two orders of magnitude of separation was

assumed: f1 = 100f2. Thus, we have the following order-

ing: case = 1000 > position, person = 100 > animacy,

number = 10 > def initeness = 1.14 The exact numerical

values have no empirical meaning in their own right. Rather

12In as far as all features are treated equally—some languages may not

take advantage of certain features, e.g. English largely does not use

case.
13 This follows very straightforwardly from the definition and standard

properties of the dot product:

�w · �NP 2 − �w · �NP 1 =
∑

i

wi · NP2i −
∑

i

wi · NP1i

=
∑

i

wi · (NP2i − NP1i)

= �w · ( �NP 2 − �NP 1)

14As noted by an anonymous reviewer, the EEG experiment presented

below does not include any number or animacy contrasts. This how-

ever does not present any great problem for the data at hand: due to

properties of the metrics at hand, the non contrasting features sim-

ply cancel out and do not even introduce additional parametric levels

into the respective prominence metrics. These features remain in the

models present because their presence does not detract from the com-

parisons in question and avoids an experiment-specific model. One

subtle disadvantage does come into play here though: the fit of the

weights for these two features is not tested. Especially our ranking of

position relative to animacy may prove problematic and, as such, more

explicit testing, manipulation and determination of model weights is

planned for future research.

their relationship to one another is central.15 Changing the

precise values will of course change the coefficients in the

fitted mixed linear model, but will not change the properties

of the model as a whole.16

In terms of the research questions introduced above, the

main aim of the present paper is to compare the distinct-

ness measures dist and sdiff as predictors of empirical

neurophysiological data. While dist provides a good mea-

sure of similarity-based interference, sdiff implements

the alternative, weighted notion of distinctness.

EEG Experiment

We tested the effectiveness of the model parameters as pre-

dictors of neurophysiological activity using data from an

EEG experiment on word order processing in German.

The experiment manipulated actor competition by vary-

ing actor-undergoer order and case-marking ambiguity in

transitive sentences with a noun phrase (NP1) – verb – noun

phrase (NP2) structure. In particular, it examined sentences

which—due to locally ambiguous case information—were

initially compatible with an actor-first reading but sub-

sequently required a reinterpretation as undergoer-initial.

These are cases where actor competition is particularly high.

They were compared with locally ambiguous sentences in

which the actor-first preference was borne out and competi-

tion for the actor role was thus considerably less pronounced

as well as with unambiguously case-marked sentences. Cru-

cially for present purposes, the relative prominence of the

two arguments—and hence their relative degree of actor

prototypicality—was also manipulated in order to induce

more subtle variations of actor competition. To this end,

NP1 was either realized as a non-pronominal NP or as a

3rd person pronoun and NP2 was either realized as a non-

pronominal NP or a 1st person pronoun. Recall from section

“The Extended Argument Dependency Model (eADM) and

Actor-Centered Comprehension” that optimal actorhood

is assumed to be modeled on the first person within

15This follows from the notion of an actor space—we can expand or

contract the space by a constant multiple without changing the inherent

properties of it. Specifically, c�v · c �w = c(�v · �w).
16Subject to the constraints of the effects this has on precision and

representation on the computing machine in question. Theoretically,

we could divide all of these values by 1000 (the maximum weight

given here), giving us coefficients on [0, 1], which would reflect their

impact in the notation of probability theory. This is a very interest-

ing approach, as the deterministic impact of case would receive a

(probability) coefficient of one—certainty. However, this all too eas-

ily leads to the assumption that there is necessarily a single feature

which, when unambiguous, is singularly deterministic in its influ-

ence. Or, in the particular case of German, that the impact of case is

always deterministic—clearly, this is not the case as all too often, the

morphological marking is ambiguous: 0 × 1000 is still 0.
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Table 2 Stimulus design in the EEG experiment. Every condition appeared for each lexical item

Initial Ambiguous NP1-Type NP2-Type Sentence(Example)

Actor Yes Noun Noun Die Bettlerin bedrängte den Kommissar auf der Straße.

Undergoer Yes Noun Noun Die Bettlerin bedrängte der Kommissar auf der Straße.

Actor No Noun Noun Der Bettler bedrängte den Kommissar auf der Straße.

Undergoer No Noun Noun Den Bettler bedrängte der Kommissar auf der Straße.

Actor Yes Noun Pronoun (1sg) Die Bettlerin bedrängte mich auf der Straße.

Undergoer Yes Noun Pronoun (1sg) Die Bettlerin bedrängte ich auf der Straße.

Actor No Noun Pronoun (1sg) Der Bettler bedrängte mich auf der Straße.

Undergoer No Noun Pronoun (1sg) Den Bettler bedrängte ich auf der Straße.

Actor Yes Pronoun (3sg) Noun Sie bedrängte den Kommissar auf der Straße.

Undergoer Yes Pronoun (3sg) Noun Sie bedrängte der Kommissar auf der Straße.

Actor No Pronoun (3sg) Noun Er bedrängte den Kommissar auf der Straße.

Undergoer No Pronoun (3sg) Noun Ihn bedrängte der Kommissar auf der Straße.

Actor Yes Pronoun (3sg) Pronoun (1sg) Sie bedrängte mich auf der Straße.

Undergoer Yes Pronoun (3sg) Pronoun (1sg) Sie bedrängte ich auf der Straße.

Actor No Pronoun (3sg) Pronoun (1sg) Er bedrängte mich auf der Straße.

Undergoer No Pronoun (3sg) Pronoun (1sg) Ihn bedrängte ich auf der Straße.

The base sentence (first example) translates to “The beggar hassled the commissioner in the street.” The gender of NP was varied for the ambiguity

condition; the person of NP2 was varied for the NP2-type condition. Abbreviations: 3sg = third person singular, 1sg = first person singular

the eADM. Accordingly, 1st person pronouns are optimal

actors, 3rd person pronouns (which are not 1st person, but

nevertheless highly individuated) are somewhat less opti-

mal actors and non-pronominal noun phrases are somewhat

less optimal again. By manipulating person rather than more

commonly examined actor features such as animacy, the

present study therefore allowed us to test the effectiveness

of our computational implementation of actor computa-

tion (Compute Prominence) as well as the self-as-actor

perspective.

Participants

Thirty-seven monolingually raised native speakers of Ger-

man (20 women; mean age: 25.9 years, range: 20–40

years) participated in the EEG study after giving writ-

ten informed consent. Participants were right-handed as

assessed by a German version of the Edinburgh handedness

inventory (Oldfield 1971). The majority of the participants

were students at the Free University Berlin at the time of

the experiment. Two additional participants were excluded

due to technical problems or a failure to complete both

experimental sessions.

Materials

The critical sentence types used in this study are shown

in Table 2. Sixty sets of the conditions shown in Table 2

were constructed, thus resulting in a total of 960 critical

sentences. These were subdivided into two lists of 480

sentences each (30 from each condition and 8 from each

lexical set). The critical sentences for each list were pseudo-

randomly interspersed with 240 filler sentences. Fillers

Table 3 Summarized analysis for the sentence Die Bettlerin

bedrängte den Kommissar auf der Straße “The beggar hassled the

commissioner in the street”

Feature NP1 NP2 Weight

Case 0 −1 1000

Animacy 1 1 10

Person 0 0 100

Number 1 1 10

Definiteness 1 1 1

Position 1 0 100

Prominence

Simple 5 2

Weighted 121.0 −979.0

Metrics

dist 2

signdist +2

sdiff −1100.0

Please note that the order of operation in computing the metrics mat-

ters: sum the pairwise differences (with absolute values, no weighting,

or weighting, for dist, signdist and sdiff, respectively)
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were also declarative main clauses of German but did not

contain case or word order ambiguities. Eighty of the filler

sentences were ungrammatical due to a case or agreement

violation and 60 were semantically implausible, thus ensur-

ing that participants needed to take into account both the

grammaticality of the sentences and their plausibility when

performing the acceptability judgement task (see below).

The filler sentences were the same across the two lists. List

presentation was counterbalanced across participants, with

each participant reading the sentences from one list once.

Procedure

Participants were seated in a dimly lit, sound-attenuated

booth, approximately 1 meter in front of a 17 inch computer

screen. Sentences were presented visually in a phrase-by-

phrase manner (i.e. noun phrases were presented together

as chunks). Each trial began with the presentation of a

fixation asterisk (presentation time: 300 ms, followed by

an inter-stimulus-interval, ISI, of 200 ms). Single words

were presented for 400 ms and phrases for 500 ms, with

an ISI of 100 ms in each case. Following the presenta-

tion of the sentence-final word or phrase, there were 500

ms of blank screen, after which a question mark signalled

to participants that they should judge the acceptability of

the preceding sentence using two hand-held push-buttons.

They were instructed that their judgement should be based

both on form and content (i.e. also take into account the

plausibility of the sentence). Assignments of the left and

right buttons to “yes” and “no” responses were counterbal-

anced across participants. Following the judgement or after

the maximal reaction time of 2000 ms had expired, there

was an inter-trial interval (blank screen) of 1000 ms before

presentation of the next sentence began. The experiment

was conducted in two sessions, separated by approximately

a week. In each session, a participant read 8 blocks of

45 sentences each, with blocks separated by short breaks.

Sessions lasted approximately 3 hours including electrode

preparation.

EEG Recording and Preprocessing

The EEG was recorded from 25 Ag/AgCl electrodes fixed

at the scalp by means of an elastic cap (Easy Cap GmbH,

Herrsching, Germany). AFZ served as ground. Electrodes

were positioned according to the international 10-10 system.

The electrooculogram was monitored by means of elec-

trodes placed at the outer canthi of both eyes (horizontal

EOG) and above and below the participant’s right eye (verti-

cal EOG). EEG and EOG channels were amplified by means

of a Refa amplifier (Twente Medical Systems, Enschede,

The Netherlands) and digitized with a sampling rate of

250 Hz. Channels were referenced to the left mastoid but

rereferenced to linked mastoids offline. In order to elim-

inate slow signal drifts, a 0.3–20 Hz band-pass filter was

applied to the raw EEG data. Trials containing EEG or EOG

artifacts were excluded from the final data analysis (the

EOG rejection criterion was 40 µV). For display purposes

only, the grand average ERPs were smoothed with an 8Hz

low-pass filter.

EEG Data Analysis

In an initial step, we performed a standard data analy-

sis for language-related event-related brain potential (ERP)

studies. Thus, average ERPs were calculated per condi-

tion, electrode and participant from the onset of the crit-

ical second noun phrase to 1000 ms post onset, before

grand averages were computed over all participants. We

then computed a repeated-measures ANOVA with the

factors word order (actor-initial versus undergoer-initial),

ambiguity (NP1 ambiguous between actor and undergoer

versus unambiguously marked), NP1-Type (definite noun

phrase versus 3rd person pronoun), NP2-Type (definite

noun phrase versus 1st person pronoun) and region of inter-

est (ROI). Lateral regions of interest were defined as fol-

lows: left-anterior (F3, F7, FC1, FC5); left-posterior (CP1,
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Fig. 2 Grand average ERPs triggered at the onset of NP2 for the

unambiguous condition and NP2 a noun with definite article. The con-

dition codes reflect the 2 × 2 × 2 × 2 design: S = subject (actor) initial

word order, O = object (undergoer) initial; U = unambiguous, A =
ambiguous; N = Noun, P = pronoun, for NP1 & NP2 respectively
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CP5, P3, P7); right-anterior (F4, F8, FC2, FC6); right-

posterior (CP2, CP6, P4, P8). A single ROI was used for

the midline sites (FZ, FCZ, CZ, CPZ, PZ). For analyses

involving more than one degree of freedom in the numera-

tor, significance values were corrected when sphericity was

violated (Huynh and Feldt 1970). This analysis was used to

identify regions in which the effects were most pronounced

for the subsequent analysis using linear mixed effects mod-

els, in which we tested the effectivity of the distinctness

metrics as predictors of language-related electrophysisolog-

ical activity.

Linear mixed effects models provide a tool capable of

handling the random variation introduced by intersubject

differences and lexical effects (Baayen et al. 2008), which

are not modeled in the current implementation. Further-

more, they allow continuous predictors such as the actor

metrics here, while ANOVA-based analyses do not. Using

the R package lme4 (Bates et al. 2013), we calculated

models using subject and item as random factors, and the

various distinctness measures as fixed factors. For the ran-

dom factors, we used the maximal random-effect structure

common to all models, i.e. random slopes grouped per dis-

tinctness measure, as models without random slopes are

anti-conversative (Barr et al. 2013).17,18 As an exact estima-

tion of p-values in mixed effects models is not straightfor-

wardly possible due to difficulties in estimating the degrees

of freedom, we follow Baayen et al. (2008) in consider-

ing an absolute t-value exceeding 2 as an indication of

significance at the 5 %- level.

Intermodel comparisons are also not completely straight-

forward, especially in the case of non-nested models. Most

importantly, log-likelihood tests and the associated χ2-sta-

tistic (i.e. the parallel to traditional ANOVA, even called

via the function anova() in R) are only valid for nested

models.19 To compare non-nested models, we turn to infor-

mation-theoretic criteria (cf. Burnham and Anderson 2002,

p. 88). In particular, Akaike Information Criterion (AIC,

17The models resolved for ambiguity in the P600 time window have

only random intercepts, as models with random slopes failed to

converge.
18Higher order interactions were excluded for three reasons. First,

comparing models which differ in random-effect structure is less

straightforward than those which differ in only fixed-effect struc-

ture. (Even for the fixed effects, the comparison between non nested

models requires information-theoretic criteria, see main text.) Second,

models with higher order interactions in the random-effects structure

did not always converge and due to the aforementioned complexi-

ties of comparing random-effects structures, it is not clear which of

several higher-order models to choose from. Finally, computational

complexity increases extremely quickly with random effect complex-

ity. Limiting the random-effects structure to the maximal common one

provides an acceptable balance between estimation accuracy, ease of

comparison, and computer time.
19 Models in which the parameters for one model form a proper subset

for the parameters of the other.

(Akaike 1974)) and Bayesian Information Criterion (BIC,

(Schwarz 1978)) provide further tools for comparing mod-

els, based on log-likelihood (fit) penalized by the number of

parameters (overfitting). The absolute value of these scores

is not meaningful in itself, but the general rule when com-

paring two models is “smaller is better”. In the following,

AIC and BIC are shown in the model summaries, while

only AIC with log-likelihood and degrees of freedom for the

fixed factor is shown in the model comparisons, since the

comparison of non-nested models always involved models

with the same number of parameters. For nested mod-

els, χ2-statistics (based on likelihood ratio tests) are also

shown.

Model Performance and Prediction: Results

Behavioral Data

The results of the rating task showed that participants

judged all conditions to be highly acceptable (lowest

mean acceptability ratings were 86 % for the ambiguous,

undergoer-initial condition with two non-pronominal noun
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Fig. 3 Grand average ERPs triggered at the onset of NP2 for the

ambiguous condition and NP2 a noun with definite article. The condi-

tion codes reflect the 2 × 2 × 2 × 2 design: S = subject (actor) initial

word order, O = object (undergoer) initial; U = unambiguous, A =
ambiguous; N = Noun, P = pronoun, for NP1 & NP2 respectively
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phrases and 89 % for the ambiguous, undergoer-initial con-

dition with NP1 a pronoun and NP2 a non-pronominal noun

phrase; all other conditions showed an acceptability of 93 %

or higher). We refrain from analyzing the ratings statisti-

cally in order to avoid interpreting ceiling effects. Most

importantly for present purposes, they demonstrate that par-

ticipants found the sentences acceptable and that they were

able to correctly reanalyze the ambiguous undergoer-initial

sentences (which should otherwise have been judged as

unacceptable).

The analysis of the reaction times (restricted to sen-

tences correctly judged as “acceptable”) revealed an inter-

action of AMBIGUITY, WORD-ORDER and NP2-TYPE

(F (1, 36) = 4.95, p < 0.03) and an interaction of

AMBIGUITY and NP1-TYPE (F (1, 36) = 8.45, p <

0.006). Resolving both interactions by ambiguity showed

an WORD-ORDER x NP2-TYPE interaction only for locally

ambiguous (F (1, 36) = 11.58, p < 0.002) but not for

unambiguous sentences (p > 0.15). For the ambiguous sen-

tences, the interaction was due to longer reaction times for

undergoer-initial as opposed to actor-initial sentences when

the second noun phrase was non-pronominal / third person

(mean RTs of 473 ms for undergoer-initial and 439 ms for

actor-initial sentences; F(1, 36) = 16, 77, p < 0.0003),

while there was no effect of actor-undergoer order when the
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Fig. 4 Grand average ERPs triggered at the onset of NP2 for the

unambiguous condition and NP2 a first person pronoun. The condi-

tion codes reflect the 2 × 2 × 2 × 2 design: S = subject (actor) initial

word order, O = object (undergoer) initial; U = unambiguous, A =
ambiguous; N = Noun, P = pronoun, for NP1 & NP2 respectively

second noun phrase was a first person pronoun (p > 0.22).

The interaction of AMBIGUITY and NP1-TYPE was due

to longer RTs for unambiguous sentences in which NP1

was realized as a non-pronominal NP as opposed to a first

person pronoun (mean RTs of 443 ms and 431 ms, respec-

tively; F(1, 36) = 8.53, p < 0.006).

In summary, reaction times were longer when sentences

required a reanalysis towards an undergoer-initial order—as

expected from the perspective of an actor-first preference—

but this effect was only observable when the disambiguating

second noun phrase was a non-pronominal third person, not

when it was a first person pronoun. This finding provides

converging support for the assumption that first person is

a strong cue for actorhood, which can attenuate the behav-

ioral reanalysis effect (for previous findings showing that

strong cues for the target reading can attenuate reanalysis

effects in behavioral data, though they are still observable

electrophysiologically, see Bornkessel et al. 2004b).

Measures

The output from the implementation includes the selected

distinctness metric as well as the scalar (weighted) dif-

ference in prominence for each item and condition

(i.e. for each experimental stimulus). Additionally, the
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Fig. 5 Grand average ERPs triggered at the onset of NP2 for the

ambiguous condition and NP2 a first person pronoun. The condition

codes reflect the 2 × 2 × 2 × 2 design: S = subject (actor) initial

word order, O = object (undergoer) initial; U = unambiguous, A =
ambiguous; N = Noun, P = pronoun, for NP1 & NP2 respectively
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implementation also outputs prominence scores calculated

for NP1 and NP2. We duplicate this data for all subjects and

enter it into the dataframe for EEG data. Based on visual

inspection and significance testing via repeated measures

analyses of variance (ANOVAs), we restricted the analysis

to a subset of the data.

First, the time window for the N400 was found to be

about 300-500ms post stimulus onset for the pronouns, and

about 100ms later (400–600ms post onset) for the nouns

(cf. Fig. 2 & 3 vs. Fig. 4 & 5). A similar effect was found

for the late positivity (P600) time window: 600-800ms post

onset for the pronouns and 700-900ms post onset for the

nouns. As such, the time windows were parameterized in

the model: “N400” vs “P600”, with the exact time win-

dow reflecting whether the target stimulus was a noun or a

pronoun. This difference in latency is not unexpected: both

frequency and length are known to influence the latency

of exogenous ERP components. Pronouns being highly

frequent and short (a classic example of Zipf’s Law; (Zipf

1935, 1949; Manning and Schütze 2000)) thus elicit a

somewhat earlier effect. This is predicted by the cascaded

architecture of the eADM: for shorter words, the informa-

tion that is necessary for processing to proceed to the next

step accrues more quickly.

Our choice of relatively traditional windows for the N400

and late positivity should thus not be taken as reflections

of an a priori assumption about the ontological latency of

these components. As previously mentioned, the decisive

attribute of a component is its polarity; latency is to some

extent an indication of the amount of processing necessary

to reach the computational step reflected by a particular

component. Amplitude is meaningful as a vague correlate of

processing power needed at a particular step; however, due

to well-known issues with equivalent dipoles, cancellation,

etc., amplitude of scalp EEG is not a monotonic function of

processing effort.

Furthermore, the ANOVA performed across five regions

of interest (four quadrants and midline) revealed the strong-

est effects and interactions in the left posterior ROI, and for

simplicity and computability, we restrict our model fitting

to this ROI. The relevant ANOVA results are summarized in

the Appendix (Tables 32 and 33).20

20More rigorous methods are available for dynamically determining

the time window and topographical distribution of components. Maris

(2004) and Maris and Oostenveld (2007) propose the necessary meth-

ods for non parametric method testing and determination of the effects

in time and space (topography). Issues of computational tractability as

well as data set size (different (sub)sets of data have to be used for

determining the spatiotemporal distribution and testing it) reaffirmed

our decision against introducing too many non-traditional methods for

this initial computational model.

N400

We begin with the parametric time window “N400”. Here,

we first generated the most basic models using only the dis-

tinctness measures as fixed effects. However, we note that

neither sdiff nor dist explicitly encode the experimen-

tal parameter ambiguity, i.e. the degree of evidence for an

actor or non-actor analysis of the first argument based on

morphological case marking, the strongest cue to actorhood

in German. In German, there are two possible ways of deter-

ministically resolving locally ambiguous case marking: (a)

the elimination of possibilities by another unambiguously

marked argument and (b) agreement with the verb. It is,

however, generally accepted in the psycholinguistic and

neurolinguistic literature that sentence processing proceeds

incrementally, i.e. the processing system uses strategies

to resolve local ambiguities even in the absence of clear

evidence for one or the other reading in the input (Marslen-

Wilson 1973; Crocker 1994). In this experiment, ambiguity

resolution was provided via (a) on the second argument,

which means that the initial ambiguity affects both which

predictions the language system is able to make initially and

how much new information becomes available at NP2. It

thus makes sense to see how the parameter ambiguity inter-

acts with our distinctness measures. For sdiff (Table 4),

a likelihood ratio test reveals a significant improvement

(Table 5). Similarly, we find an improvement for dist

(Table 6), albeit a smaller one (Table 7). The comparison

between the models with ambiguity, which are shown in

Table 4 Summary of model fit for sdiff (weighted distinctness) and

ambiguity in the N400 window

Linear mixed model fit by maximum likelihood

AIC BIC logLik deviance

395191 395291 −197584 395169

Random effects:

Groups Name Variance Std.Dev.

item (Intercept) 0.18 0.42

c.(sdiff) 2.3e−08 0.00015

subj (Intercept) 1.2 1.1

c.(sdiff) 2.6e−08 0.00016

Residual 17 4.1

Fixed effects:

Estimate Std. Error t value

(Intercept) 1.2 0.19 6

ambiguityunambig 0.5 0.031 16

c.(sdiff) −0.00039 4e−05 −9.8

ambiguityunambig:c.(sdiff) 0.00038 2.5e−05 15
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Table 5 Statistics for models in the N400 time window based on the sdiff metric, showing the effect of ambiguity with interaction

Df AIC logLik Chisq Chi Df Pr(>Chisq)

sdiff: mean ˜ c.(sdiff) + . . . 9 395675 −197828.97

sdiff.ambiguity: mean ˜ ambiguity * c.(sdiff) + . . . 11 395190 −197584.42 489.11 2 <2.2e−16 ***

(Random effect structure elided. See page 12)

Tables 4 and 6 for sdiff and dist, respectively, show

that sdiff provides a better fit to the data.

Examining the models more closely, we see that the inter-

action between ambiguity and dist was not significant. In

light of this missing interaction with dist, we can also con-

sider using ambiguity as a simple model parameter that does

not interact with our distinctness measures. In this case,

we find a significant improvement for dist (Table 8) over

the model without any ambiguity, and, moreover, the model

with interaction does not differ significantly from the one

without (Tables 9 and 10).

It thus appears that the interaction with ambiguity was

particular to sdiff.

At this point, it is important to note that sdiff differs

from dist not only in its weighting, but also in its use

of “directionality” by being a signed value. We can also

calculate a signed version of dist, termed signdist,

by the sum of the pairwise differences:
∑

i(NP2i −

NP1i). This is the same as the Manhattan metric without

absolute value signs or sdiff with all weights equal

to one (via associativity of addition and subtraction, see

Table 6 Summary of model fit for dist (feature overlap) and

ambiguity in the N400 window

Linear mixed model fit by maximum likelihood

AIC BIC logLik deviance

395140 395240 −197559 395118

Random effects:

Groups Name Variance Std.Dev.

item (Intercept) 0.18 0.43

c.(dist) 0.057 0.24

subj (Intercept) 1.2 1.1

c.(dist) 0.12 0.35

Residual 17 4.1

Fixed effects:

Estimate Std. Error t value

(Intercept) 1.3 0.19 6.6

ambiguityunambig 0.26 0.036 7.2

c.(dist) 0.24 0.07 3.5

ambiguityunambig:c.(dist) −0.012 0.036 −0.33

Footnote 13, p. 9). Intuitively, this measurement is the net

change in prominence features—a negative value indicates

fewer prominence features, while a positive value indicates

more positive features. As with the other distance measures,

the parameter ambiguity improves model fit significantly.

Tellingly, the minimally adequate model for signdist

with ambiguity (Table 11) does not differ from the mini-

mally adequate model for dist (Table 12); see Table 13

for a direct comparison between the minimally adequate

models for all 3 predictors.

Holding ambiguity constant to examine the interaction

in more depth, we can again compare sdiff and dist.

We find that they do not differ for unambiguous sentences;

however, sdiff performs substantially better than dist

and even signdist as a model predictor for ambigu-

ous sentences (Table 14). This is immediately apparent in

Figs. 6–10.

It is clear that dist behaves roughly the same, regard-

less of ambiguity, while signdist and sdiff interact

with ambiguity—directionality clearly plays a role in the

ambiguous condition. We even see that the slope in the

ambiguous condition for dist is actually in the opposite

direction of the other two predictors.

In Figs. 7 and 8, we can observe some difference

between signdist and sdiff, in particular that the con-

fidence interval is broader for signdist, which indicates

a poorer fit. When we visualize the data in three dimensions

as contour plots instead of as two subplots, the difference

becomes even clearer (Figs. 9 and 10). Color indicates

height, variation in color thus means variation in height,

i.e. slope. Level curves, like in a topography map, indicate

the overall shape of the landscape. The flat coloring in the

unambiguous conditions for signdist and sdiff is

indicative of the amount of variation being very small in

comparison to the variation by the ambiguous condition.

Moreover, sdiff shows a much more nuanced behav-

ior in the ambiguous condition than signdist—this is

clearly visible in the spacing between contour lines and

their respective heights (difference between neighboring

colors in the figures). The combination of weightedness

and direction is much more telling about the processing of

ambiguities than direction alone.

The sdiff model for the N400 time window reveals a

strong negative correlation between sdiff and mean ERP
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Table 7 Statistics for models in the N400 time window based on the dist metric, showing the effect of ambiguity with interaction

Df AIC logLik Chisq Chi Df Pr(>Chisq)

dist: mean ˜ c.(dist) + . . . 9 395188 −197585.02

dist.ambiguity: mean ˜ ambiguity * c.(dist) + . . . 11 395139 −197558.87 52.31 2 4.37e−12 ***

(Random effect structure elided. See page 12)

amplitude, especially in the ambiguous condition (cf. sign

of the t-statistic in Table 15, gradient direction in Fig. 8).

The decrease in the mean reflects the negativity in the

ERP response, while the increase in prominence reflects

an undergoer-first word order. For signdist, we see a

weaker, yet similar effect. For dist, we see a positive cor-

relation with ERP amplitude (dist is non negative per

definition, but the models used centered values): the more

features that don’t overlap, the greater the mean, and hence,

the smaller the negativity. In the unambiguous conditions,

the correlation between mean ERP amplitude and sdiff

is not significant (Table 16); however, we again see that the

sign remains negative.

Additionally, the interaction of signedness and weight-

edness in sdiff expresses itself twofold. Signedness

is a form of directionality and leads to a better gradient

structure, and this becomes especially important when the

correct directionality is not initially clear, namely in the

ambiguous condition. This provides for the similarity in

structure between sdiff and signdist that we see in

Figs. 7 and 8 in contrast to the level structure of dist

(Fig. 6). The weightedness of sdiff then contributes a

Table 8 Summary of model fit for dist (feature overlap) and

ambiguity in the N400 window (without interaction)

Linear mixed model fit by maximum likelihood

AIC BIC logLik deviance

395138 395229 −197559 395118

Random effects:

Groups Name Variance Std.Dev.

item (Intercept) 0.18 0.43

c.(dist) 0.057 0.24

subj (Intercept) 1.2 1.1

c.(dist) 0.12 0.35

Residual 17 4.1

Fixed effects:

Estimate Std. Error t value

(Intercept) 1.3 0.19 6.6

ambiguityunambig 0.26 0.036 7.2

c.(dist) 0.24 0.067 3.5

further, necessary granularity to the model. Directionality

provides information about the direction of change, while

weightedness contributes additional information about the

amount of change.

From the models tested, the best is then the one using

sdiff interacting with ambiguity for its fixed effects

(Table 13).

Finally, in an additional post-hoc test, we can compare

sdiff to a traditional, unweighted syntactic measure—i.e.

a subject as opposed to an actor strategy—using new met-

rics, syndist and synsigndist, which are restricted to

the features PERSON, NUMBER and CASE. The unweighted-

ness follows from the all-or-nothing principles of agreement

and case marking—either a verb and a noun agree or they

don’t / a noun is either nominative or it isn’t. As is evident

in Table 17, even under these experimental circumstances,

without global ambiguity, where the deterministic case

marking of German provides for a clear syntactic analysis,

the prominence-based model fares better. Nevertheless,

since cues to actorhood and subjecthood show considerable

overlap in the present experimental design, this result can

only be taken as a tentative initial indication that an actor-

based strategy outperforms a subject-based strategy when

the two are tested against each other via computational

modelling.

Late Positivity (P600)

Visual inspection of the ERP data (Figs. 2–5) suggests a

secondary effect in the form of a late positivity, which is

line with previous findings on undergoer-initial ambiguous

sentences in German (Haupt et al. 2008). As in the N400

time window, the models including ambiguity as an addi-

tional fixed factor perform far better than those without

ambiguity. Similarly, dist shows no interaction with ambi-

guity (Tables 18 and 19), while sdiff and signdist do

(Tables 20, 21, 22 and 23).

In accordance with the reverse in polarity over a

biphasic reaction, we also see a reverse in effect direc-

tion: whereas a more highly positive sdiff correlated

with a decreased mean (negativity) in the N400 time

window, it correlates with an increased mean (positivity) in

the P600 time window. Similarly, dist now correlates with

a decreased mean (negativity, or here, lack of a positivity).
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Table 9 Statistics for models in the N400 time window based on dist metric, showing the effect of ambiguity without interaction

Df AIC logLik Chisq Chi Df Pr(>Chisq)

dist: mean ˜ c.(dist) + . . . 9 395188 −197585.02

dist.ambiguity.no int: mean ˜ ambiguity + c.(dist) + . . . 10 395137 −197558.92 52.20 1 5.00e−13 ***

(Random effect structure elided. See page 12)

This is reflected in the respective t-statistics (Tables 18, 20

and 22): their signs have reversed.

A direct comparison of the minimally adequate models

for each predictor can be found in Table 24.

Following the smaller effect size of the late positivity,

the models do not differ by much. (The apparent trivial

advantage for dist in AIC stems from it having fewer

degrees of freedom, i.e. a smaller overfitting penalty.) How-

ever, upon resolving the interaction, we again see a greater

differentiation in the ambiguous but not in the unambigu-

ous condition21 (Tables 25–28). In the ambiguous condi-

tions, sdiff outperforms dist—as in the N400 time

window.

This is also clearly reflected in Figs. 11, 12 and 13 where

the gradience reflected in the unambiguous condition differs

from the unambiguous condition for sdiff but not dist

(see also Figs. 14 and 15 for a comparison of signdist

and sdiff split by ambiguity). Interestingly, the difference

in variance in the mean is overall less in both condi-

tions: this is reflected by the narrower confidence intervals

(Figs. 11–13) and in the visibility of the color gradient for

the unambiguous condition for sdiff (Fig. 15). The latter

is indicative of the variance in the ambiguous condition

being comparable enough to the unambiguous condition

that the same scale provides the necessary resolution for

both conditions. The reversal in effect direction is also

apparent in the reversal of the color schemes for the contour

plots.

While the effect in the P600 time window is smaller than

in the N400, the general trend is nonetheless clear: increased

prominence of the second argument compared to the first

leads to an increase in the mean amplitude in the later time

window. More succinctly, we see a positivity in the P600

time window for an object-initial word order. Taken together

with the N400 for the object-initial word order, we have a

biphasic pattern for object-initial sentences.

As discussed in section “The Extended Argument

Dependency Model (eADM) and Actor-Centered

Comprehension”, the eADM posits a functional distinction

21The slightly better performance of dist in this comparison of the

unambiguous conditions is twofold: (1) it has fewer degrees of freedom

and hence a smaller overfitting penalty in the AIC measure, and (2)

the positive-only nature of dist lines up with the directionality of the

positivity (but not the negativity).

between the two components comprising the biphasic pat-

tern observed here. While the N400 is assumed to reflect

actor competition per se (including its resolution), the late

positivity is assumed to index the behavioral reorientation

induced by subjectively significant (task-relevant) events.

In the present study, sentences requiring a reanalysis of the

actor-first preference entailed such a reorientation since the

degree of actor competition was relevant for participants’

completion of the judgement task. As this explanation pre-

supposes that (in contrast to the N400 effect) the positivity

effect is reaction-locked rather than stimulus-locked, we

computed an additional analysis in which we included loga-

rithmically transformed mean reaction times per participant

and condition into the mixed effects models as continuous

predictors. While both models are greatly improved by

including average reaction time by subject for each con-

dition (i.e. single-subject averages) as a factor (Tables 29

and 30), the improvement is much greater (many orders

of magnitude) for the late positivity window, as would be

expected for an effect of task.

Discussion

We have presented a computational model that implements

the actor strategy in language comprehension. The predic-

tions of the model were tested against the results of an

empirical study using event-related brain potentials (ERPs).

Specifically, we examined the predictive capacity of two

metrics for computing argument distinctness (i.e. degree

of competition for the actor role): the unweighted distance

measure dist (the Manhattan metric) and the weighted

scalar difference measure sdiff. While both measures

proved to be statistically significant predictors of N400 - late

positivity amplitude, sdiff provided better model fits than

dist. This was apparent particularly in ambiguous sen-

tences, which, in some cases, called for a reanalysis towards

an undergoer-initial order. Moreover, though this was not

the primary focus of the present study, the current results

provide an initial indication that the sdiff metric of actor

computation provides a better fit to the electrophysiolog-

ical data than a metric based purely on cues to syntactic

subjecthood. They further show that the N400 and late

positivity responses can be dissociated in that the latter is
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Table 10 Statistics for models in the N400 time window based on dist metric, comparing the modelling of ambiguity with and without

interaction

Df AIC logLik Chisq Chi Df Pr(>Chisq)

dist.ambiguity.no int: mean ˜ ambiguity + c.(dist) + . . . 10 395137 −197558.92

dist.ambiguity: mean ˜ ambiguity * c.(dist) + . . . 11 395139 −197558.87 0.11 1 7.41e−01

(Random effect structure elided. See page 12)

tied more closely to participants’ behavioral reactions than

the former. In the following, we will first discuss the evi-

dence supporting a weighted as opposed to an unweighted

distance metric and the architectural consequences arising

from this result, before turning to implications for the

functional interpretation of the N400 and late positivity in

language processing tasks. We will then describe how this

initial computational model of the actor strategy might serve

to advance the development of a neurobiologically plausible

model of actorhood computation. Finally, we will describe

some future directions resulting from this work.

Evidence for and Consequences of a Weighted Distance

Metric

As mentioned in section “Distinctness/Actor Competition”,

dist (the Manhattan metric) roughly corresponds with

“feature overlap” or traditional notions of similarity-based

interference, such as those in memory-based models of

Table 11 Summary of model fit for signdist (directed, net change

in prominence features) and ambiguity in the N400 window

Linear mixed model fit by maximum likelihood

AIC BIC logLik deviance

395396 395496 −197687 395374

Random effects:

Groups Name Variance Std.Dev.

item (Intercept) 0.17 0.42

c.(signdist) 0.015 0.12

subj (Intercept) 1.2 1.1

c.(signdist) 0.015 0.12

Residual 17 4.1

Fixed effects:

Estimate Std. Error t value

(Intercept) 1.2 0.19 6.1

ambiguityunambig 0.5 0.031 16

c.(signdist) −0.2 0.03 −6.8

ambiguityunambig: 0.2 0.019 11

c.(signdist)

language processing (e.g. Lewis et al. 2006; Lewis 2000;

Lewis and Vasishth 2005; McElree et al. 2003). By contrast,

sdiff takes into account the language-specific weighting

of the actor-related features. For German, this weighting

places particular emphasis on the function of unambiguous

case marking, which is the dominant cue to actor assign-

ment when it is available (MacWhinney et al. 1984). In

addition, it allows for coalitions of features to form to over-

come “deficient” (ambiguous) case marking (Bates et al.

1982). The strong role of case as well as well the supple-

mentary role of coalitions of weaker cues is most obvious

in comparing the ambiguous and unambiguous conditions.

The predictive power of sdiff comes not only from

its weighting, but also from its directionality, which serves

to model the incremental demands of language process-

ing, including the development (and possible fulfillment)

of expectations. In relation to the current experiment, the

directionality of the sdiff measure (negative or positive)

essentially reflected the degree to which the parser’s expec-

tations about the prominence of the second argument were

met. When sdiff was positive, the second argument was

more prominent than the first, thus requiring a revision of

the initial actor analysis of the first argument. This was

reflected in a biphasic N400 - late positivity pattern, as

was already observed in previous studies on actor-reanalysis

in German (Haupt et al. 2008). As noted in section

“Evidence for the Actor Heuristic and for Competition for

the Actor Role” we interpret the negativity as an index

of actor competition (leading to reanalysis of the initial

actor-first preference in this case) and the late positivity as

reflecting a behaviorally significant categorization of the

sentences as less well-formed. This categorization reflects

Table 12 Statistics for the minimally adequate models for each

unweighted predictor in the N400 time window

Df AIC logLik

dist.ambiguity.no int: 10 395137 −197558.92

mean ˜ ambiguity + c.(dist) + . . .

signdist.ambiguity: 11 395395 −197686.89

mean ˜ ambiguity * c.(signdist) + . . .

(Random effect structure elided. See page 12)
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Table 13 Statistics for the minimally adequate models for each pre-

dictor in the N400 time window: sdiff and signdist interact with

ambiguity, dist does not

Df AIC logLik

dist.ambiguity.no int: 10 395137 −197558.92

mean ˜ ambiguity + c.(dist) + . . .

sdiff.ambiguity: 11 395190 −197584.42

mean ˜ ambiguity * c.(sdiff) + . . .

signdist.ambiguity: 11 395395 −197686.89

mean ˜ ambiguity * c.(signdist) + . . .

(Random effect structure elided. See page 12)

the unmotivated positioning of the undergoer argument in a

position that linearly precedes that of the actor.

Crucially, however, the advantage of sdiff over dist

as a predictor of language-processing related neurophysio-

logical activity cannot be reduced to the directionality of

the sdiff metric. This was shown by the comparison of

the two basic metrics with a directional (signed) version

of dist, signdist. For locally ambiguous sentences,

model fits involving sdiff were better than those involv-

ing both dist and signdist, thus attesting to the fact

that both directionality and feature weighting contribute to

the advantage for sdiff. Both N400 and late positivity

amplitude for a revision of the actor-first preference were

modulated by NP2 prominence (i.e. depending on whether

NP2 was a first person pronoun or a definite noun phrase)

and the magnitude of this modulation was predicted more

accurately by the more fine-grained, weighted sdiff met-

ric than by the unweighted dist and signdist metrics.

An additional divergence between the sdiff and dist

measures is apparent in the model fits for the late positivity

time window. Here, sdiff showed directionally oppo-

site effects for ambiguous and unambiguous sentences: in

the ambiguous cases, more positive sdiff correlated with

higher positivity amplitude (as described above), while, for

unambiguous sentences, more positive sdiff correlates

with decreased positivity amplitude. By contrast, dist

does not differentiate between ambiguous and unambiguous

sentences, as demonstrated by the fact that the interaction of

Table 14 Statistics for models in the N400 time window with NP1

ambiguous

Df AIC logLik

dist: mean ˜ c.(dist) + . . . 9 197520 −98751.07

sdiff: mean ˜ c.(sdiff) + . . . 9 197353 −98667.50

signdist: mean ˜ c.(signdist) + . . . 9 197477 −98729.61

(Random effect structure elided. See page 12)
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Fig. 6 Mean EEG in the N400 time window as a function of dist

(centered) and its interaction with ambiguity. Dashed lines indicate the

95 % confidence interval

dist and ambiguity can be removed from the model with-

out affecting model fit. Thus, in unambiguous sentences, the

data show a small, late positivity for actor- as opposed to

undergoer-initial sentences. We posit that this could again

be explained in terms of predictability in online process-

ing. Specifically, unambiguous initial accusative marking

(sentences with very strongly negative sdiff) allows for

comparatively more prediction: in contrast to an initial nom-

inative, it is apparent that the construction is transitive and

that a second argument is required (Bornkessel et al. 2004a;

Wolff et al. 2008). Accordingly, unambiguous nominative-

initial (actor-initial) engender a slightly increased late pos-

itivity at the less predictable NP2 in comparison to their

accusative-initial counterparts. Interestingly, we observed

no such effect in the earlier time window. This supports

the perspective that the N400 reflects competition for the

signdist
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Fig. 7 Mean EEG in the N400 time window as a function of

signdist (centered) and its interaction with ambiguity. Dashed

lines indicate the 95% confidence interval
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Fig. 8 Mean EEG in the N400 time window as a function of sdiff

(centered) and its interaction with ambiguity. Dashed lines indicate the

95 % confidence interval

actor role more directly than the late positivity. In unam-

biguous sentences, competition is relatively low due to the

strong weighting of unambiguous case marking informa-

tion in German. Hence, no effects on N400 amplitude were

observed in these sentence types. The late positivity, by

contrast, reflects a behaviorally relevant well-formedness

categorization, which can, in part, be envisaged as depen-

dent on how predictable a particular element is within a

given sentence context. This result emphasizes the qualita-

tive difference between the N400 and late positivity effects,

in spite of their tight interrelationship within the overall

biphasic response. Such a difference is further supported by

the finding that the amplitude of the late positivity effect

showed a substantially stronger correlation with reaction
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Fig. 9 Mean EEG in the N400 time window as a function of

signdist (centered) and its interaction with ambiguity. The colors

indicate the “height”, i.e., a range of (predicted) values of the mean

EEG; the value is given by the contour curves. Colors that are closer

together (e.g. light vs. dark blue) indicate finer differences. More color

indicates more variation

-2
0
0
0

0
1
0
0
0

Mean

ambiguity

s
d

if
f

ambiguous unambiguous

Fig. 10 Mean EEG in the N400 time window as a function of sdiff

(centered) and its interaction with ambiguity. The colors indicate the

“height”, i.e., a range of (predicted) values of the mean EEG; the value

is given by the contour curves. Colors that are closer together (e.g. light

vs. dark blue) indicate finer differences. More color indicates more

variation

times for the behavioral task than the amplitude of the

N400.

Overall, our findings suggest that the neural imple-

mentation of actor competition is best modeled by a

weighted— rather than an unweighted—measure of the dis-

tance between the arguments in terms of actor features. This

indicates that actor competition cannot be wholly reduced

to similarity-based interference—at least in the sense of

similarity-based interference as it is currently assumed in

existing memory-based models of sentence processing. Cru-

cially, similarity-based interference is a property of memory

Table 15 Summary of model fit for sdiff (weighted distinctness) in

the N400 window, with NP1 ambiguous

Linear mixed model fit by maximum likelihood

AIC BIC logLik deviance

197353 197429 −98668 197335

Random effects:

Groups Name Variance Std.Dev.

item (Intercept) 0.21 0.46

c.(sdiff) 9.3e−08 0.0003

subj (Intercept) 1.1 1.1

c.(sdiff) 1.1e−07 0.00033

Residual 17 4.1

Fixed effects:

Estimate Std. Error t value

(Intercept) 1.2 0.19 6.2

c.(sdiff) −0.00039 7e−05 −5.6
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Table 16 Summary of model fit for sdiff (weighted distinctness) in

the N400 window, with NP1 unambiguous

Linear mixed model fit by maximum likelihood

AIC BIC logLik deviance

197470 197546 −98726 197452

Random effects:

Groups Name Variance Std.Dev.

item (Intercept) 0.21 0.46

c.(sdiff) 2.5e−08 0.00016

subj (Intercept) 1.5 1.2

c.(sdiff) 3.3e−08 0.00018

Residual 17 4.1

Fixed effects:

Estimate Std. Error t value

(Intercept) 1.7 0.21 7.9

c.(sdiff) −5.9e−06 3.8e−05 −0.16

models assuming a direct access to memory representa-

tions via a content-addressable pointer mechanism rather

than a memory search: “The defining property of a content-

addressable retrieval process is that information (cues) in the

retrieval context enables direct access to relevant memory

representations, without the need to search through extrane-

ous memory representations” (McElree 2006, p. 163). Thus,

since different types of cues serve to specify the “parts”

making up the pointer address, they are not weighted—

just as in a street address the name of the street, say, is

not weighted differently to the house number or the post-

code. It is therefore the qualitative overlap between cues

that leads to similarity-based interference and weighting of

the cues has no obvious role in a memory retrieval mech-

anism of this type. While, to the best of our knowledge,

these characteristics apply to all existing models of language

processing drawing on the assumption of direct memory

access and similarity-based interference (McElree 2006;

Lewis et al. 2006; Lewis and Vasishth 2005; Martin and

McElree 2008), we cannot exclude that it may in principle

Table 17 Statistics comparing the predictors for a (unweighted) syn-

tactic subject and (weighted) actor-prominence features in the N400

time window

Df AIC logLik

synsigndist.ambiguity: 11 395292 −197635.41

mean ˜ ambiguity * c.(synsigndist) + . . .

sdiff.ambiguity: 11 395190 −197584.42

mean ˜ ambiguity * c.(sdiff) + . . .

(Random effect structure elided. See page 12)

Table 18 Summary of model fit for dist (feature overlap) and

ambiguity in the P600 window

Linear mixed model fit by maximum likelihood

AIC BIC logLik deviance

403101 403193 −201541 403081

Random effects:

Groups Name Variance Std.Dev.

item (Intercept) 0.066 0.26

c.(dist) 0.068 0.26

subj (Intercept) 1.2 1.1

c.(dist) 0.15 0.39

Residual 19 4.4

Fixed effects:

Estimate Std. Error t value

(Intercept) 0.47 0.18 2.6

ambiguityunambig −0.093 0.038 −2.4

c.(dist) −0.51 0.075 −6.9

be possible to assume a weighting of retrieval cues. If this

were the case, the current findings could potentially also be

subsumed under models based on the notion of similarity-

based interference in memory retrieval. Nevertheless, we

would like to stress once again that this assumption of fea-

ture weighting is not incorporated in any current models

of this type.

Relation to Previous Work on Computer-Implemented

Models

Vosse and Kempen (2008) conducted a similar computer-

supported study using experimental stimuli from a previ-

ous experiment on scrambling (non canonical word order)

effects with different verb classes in German, e.g. sen-

tences where actorhood features do not as clearly align with

syntactic subjecthood (Bornkessel and Schlesewsky 2006).

The model presented is based primarily on morphosyntac-

tic features—sentence topology (especially important for

German data, but also used to model information struc-

tural alternations in word order), the related linear word

order, and lexical features (including word category) and

frames (related to valency in traditional linguistics). Input

is processed via “unification” (see also Kempen, this issue),

whereby trees are successively assembled and attached to

one-another to build a single, unified tree / representation

for the sentence. Processing difficulty is represented by

cycles required to attach items in the correct configuration,

e.g. a single nominative argument in agreement with the

verb is readily attached, whereas a non agreeing noun-verb

pair requires more effort to attach.
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Table 19 Statistics for models in the P600 time window based on dist metric, comparing the modelling of ambiguity with and without

interaction

Df AIC logLik Chisq Chi Df Pr(>Chisq)

dist.ambiguity.no int: mean ˜ ambiguity + c.(dist) + . . . 10 403101 −201540.73

dist.ambiguity: mean ˜ ambiguity * c.(dist) + . . . 11 403101 −201539.69 2.09 1 1.48e−01

(Random effect structure elided. See page 12)

In this way, Vosse and Kempen’s model is similar to the

model presented here: both allow for a particular type of

competition for attachment to a representation / role.22 The

models differ however in which features are modeled as well

as their ability to model the entire time-course. Crucially,

Vosse and Kempen’s model primarily models late positiv-

ities (although they acknowledge that “certain negativities

might find their origin in parser dynamics as well”) and fails

to predict that subsequent studies have consistently shown

a biphasic N400 - late positivity pattern following a reanal-

ysis towards an undergoer-initial order in sentences with

accusative verbs rather than only a positivity (Haupt et al.

2008).

However, it is important to point out that the aim of the

present study was not to pit an actor-based interpretation

strategy against a subject-centered interpretation strategy.

Rather, based on the empirical motivation for an actor strat-

egy in our own previous research (see section “Evidence

for the Actor Heuristic and for Competition for the Actor

Role”), it sought to examine the predictive capacity of vari-

ous computational metrics designed to implement the actor

heuristic. Thus, while the current findings provide an ini-

tial indication that a computational model based on an

an actor-centered rather than subject-centered interpretation

strategy shows a superior fit to electrophysiological find-

ings on human sentence comprehension (see the improve-

ment of sdiff over synsigndiff in both time win-

dows (Tables 17, and 31), the present experimental design

included a considerable degree of overlap between the

features relevant to the two strategies. Thus, a direct compu-

tational test of an actor-first strategy against a subject-first

strategy in situations where the two diverge more strongly

remains to be carried out in future research.

Implications for the Interpretation of the N400 and Late

Positivity ERP Responses

The present findings have interesting and potentially impor-

tant implications for the interpretation of language-related

ERP responses. In this section, we will therefore relate our

22Vosse and Kempen (2009) describe their parsing framework as a

“dynamic model of syntactic parsing based on activation and inhibitory

competition.”

results to current approaches to the N400 and late positivity

in turn.

With regard to the N400, many researchers have recently

come to favor a lexically-based interpretation of this

component. According to this perspective, modulations

of N400 amplitude do not reflect the computation of

message-level meaning, but can rather be reduced to the

effort required to retrieve a word from semantic memory

(Kutas and Federmeier 2000). Effort is conditioned, in part,

by intrinsic properties of the word such as its frequency, but

also by its degree of preactivation given the preceding sen-

tence and discourse context (Lau et al. 2008; Brouwer et al.

2012; Stroud and Phillips 2012). These assumptions can

explain why N400 amplitude is modulated by single-word

predictability (e.g. DeLong et al. 2005) and also why, in

English and Dutch, “semantic reversal anomalies” (i.e. sen-

tences such as “The hearty meals were devouring . . . ”, Kim

and Osterhout 2005) engender only late positivity effects

but not N400 effects.

Table 20 Summary of model fit for sdiff (weighted distinctness)

and ambiguity in the P600 window

Linear mixed model fit by maximum likelihood

AIC BIC logLik deviance

403740 403841 −201859 403718

Random effects:

Groups Name Variance Std.Dev.

item (Intercept) 0.06 0.24

c.(sdiff) 1.5e−08 0.00012

subj (Intercept) 1.2 1.1

c.(sdiff) 1.3e−08 0.00011

Residual 19 4.4

Fixed effects:

Estimate Std. Error t value

(Intercept) 0.72 0.18 4

ambiguityunambig −0.6 0.033 −18

c.(sdiff) 0.00053 3.4e−05 15

ambiguityunambig:c.(sdiff) −0.00059 2.6e−05 −23

3. Distinctness as a Numerical Quantity

50



Neuroinform

Table 21 Statistics for models in the P600 time window based on the sdiff, comparing the modelling of ambiguity with and without interaction

Df AIC logLik Chisq Chi Df Pr(>Chisq)

sdiff.ambiguity.no int: mean ˜ ambiguity + c.(sdiff) + . . . 10 404244 −202112.37

sdiff.ambiguity: mean ˜ ambiguity * c.(sdiff) + . . . 11 403740 −201859.03 506.68 1 < 2.2e−16 ***

(Random effect structure elided. See page 12)

Table 22 Summary of model fit for signdist (directed, net change

in prominent features) and ambiguity in the P600 window

Linear mixed model fit by maximum likelihood

AIC BIC logLik deviance

403875 403976 −201927 403853

Random effects:

Groups Name Variance Std.Dev.

item (Intercept) 0.059 0.24

c.(signdist) 0.015 0.12

subj (Intercept) 1.2 1.1

c.(signdist) 0.0082 0.091

Residual 19 4.4

Fixed effects:

Estimate Std. Error t value

(Intercept) 0.72 0.18 4

ambiguityunambig −0.6 0.033 −18

c.(signdist) 0.31 0.028 11

ambiguityunambig:c.(signdist) −0.36 0.02 −18

While this lexical view of the N400 is rather appeal-

ing and is able to account for a wide range of findings

in the language-related ERP literature, it does not suf-

fice to explain the present findings. Firstly, consider the

basic finding of an increased N400 whenever a reanalysis

towards an undergoer-initial order was required. This could

be explained by the lexical view under the assumption that,

following the actor interpretation of the first noun phrase

and the subsequently encountered transitive verb, the pro-

cessing system expects to encounter a second noun phrase

marked for (or at least compatible with) accusative (rather

than nominative) case. In terms of preactivation, this would

entail preactivating accusative case forms—either in terms

of full-form lexical entries or of abstract, but nevertheless

lexically stored, grammatical information. (But note that

this explanation presupposes a rather specific view of lexi-

cal organization.) Crucially, however, it is not clear how this

explanation might extend to the additional modulation of

the actor-reanalysis effect via person / pronominality. The

system has no way of predicting whether the second noun

phrase will be a first person pronoun or a non-pronominal

NP (since there is no expectation to encounter an actor argu-

ment at this point, one could not make the argument that

a first person argument is more highly expected since it

is a more prototypical instantiation of an actor argument).

Thus, it is not clear how a purely lexically-based account

of the N400 might account for the present findings (for fur-

ther examples of problematic results for this class of N400

models, see Lotze et al. 2011; Bornkessel-Schlesewsky et

al. 2011; Bourguignon et al. 2012). Rather, our data suggest

that the N400—as one instance of a broader class of negativ-

ity responses—reflects at least certain aspects of integration

between the current input and the input previously encoun-

tered. While top-down factors such as predictability, which

can plausibly be translated into the notion of lexical pre-

activation, play an important part in determining N400

amplitude, bottom-up properties of the current input item

must also be taken into account.

With regard to the late positivity, the close relation-

ship between positivity amplitude and behavioral responses

(reaction times) provides converging support for accounts of

this component which posit a general (task-related) expla-

nation rather than a specific linguistic function (e.g. reanal-

ysis or effortful combinatorial analysis, Hagoort 2003;

Kuperberg 2007). In addition to the account advocated here,

Table 23 Statistics for models in the P600 time window based on the signdist, comparing the modelling of ambiguity with and without

interaction

Df AIC logLik Chisq Chi Df Pr(>Chisq)

signdist.ambiguity.no int: mean ˜ ambiguity + c.(signdist) + . . . 10 404211 −202095.55

signdist.ambiguity: mean ˜ ambiguity * c.(signdist) + . . . 11 403875 −201926.73 337.66 1 < 2.2e−16 ***

(Random effect structure elided. See page 12)

3. Distinctness as a Numerical Quantity

51



Neuroinform

Table 24 Statistics for the minimally adequate models for each

predictor in the P600 time window: the models do not differ by much

Df AIC logLik

dist.ambiguity.no int: 10 403101 −201540.73

mean ˜ ambiguity + c.(dist) + . . .

sdiff.ambiguity: 11 403740 −201859.03

mean ˜ ambiguity * c.(sdiff) + . . .

signdist.ambiguity: 11 403875 −201926.73

mean ˜ ambiguity * c.(signdist) + . . .

(Random effect structure elided. See page 12)

such a view has been proposed most prominently from the

perspective of the conflict monitoring hypothesis (e.g. Kolk

et al. 2003; van de Meerendonk et al. 2009). According

to this proposal, late positivity effects in language process-

ing reflect the detection of conflicting information and an

ensuing check of the input for errors in previous process-

ing steps. Evidence for this perspective stems, for example,

from the finding that late positivities can be observed

in response to various types of conflicts including ortho-

graphic errors (Vissers et al. 2006) and that, while both

weak and strong semantic conflicts induce N400 effects,

only strong conflicts engender an additional late positivity

(van de Meerendonk et al. 2010). The conflict monitoring

hypothesis can therefore also account for the observation

that a reanalysis of the actor-first preference engenders late

positivity effects (in addition to N400 modulations): here,

conflict is high in comparison to sentences with an actor-

initial word order. More precisely, in contrast to the N400,

which is observable for all visually presented words (cf. the

description in the very first study Kutas and Hillyard 1980),

but can be described as an effect in certain contexts, the

late positivity belongs more to the class of relative effects,

occurring primarily in contrast to a condition with less

(resolvable) conflict in experiments with a conflict-focused

task (e.g. acceptability judgments) (Sassenhagen et al. 2013;

Frenzel et al. 2011; Hahne and Friederici 2002).

However, a crucial difference between the conflict mon-

itoring account and the present approach is that, accord-

ing to the conflict monitoring view, the late positivity

Table 25 Statistics for models in the P600 time window with NP1

ambiguous

Df AIC logLik

dist: mean ˜ c.(dist) + . . . 9 202377 −101179.75

sdiff: mean ˜ c.(sdiff) + . . . 9 202102 −101042.26

signdist: mean ˜ c.(signdist) + . . . 9 202396 −101189.33

(Random effect structure elided. See page 12)

Table 26 Statistics for models in the P600 time window with NP1

unambiguous

Df AIC logLik

dist: mean ˜ c.(dist) + . . . 5 200678 −100334.17

sdiff: mean ˜ c.(sdiff) + . . . 5 200976 −100483.28

signdist: mean ˜ c.(signdist) + . . . 5 200981 −100485.95

(Random effect structure elided. See page 12)

Table 27 Summary of model fit for sdiff (weighted distinctness) in

the P600 window, with NP1 ambiguous

Linear mixed model fit by maximum likelihood

AIC BIC logLik deviance

202103 202179 −101042 202085

Random effects:

Groups Name Variance Std.Dev.

item (Intercept) 0.1 0.32

c.(sdiff) 1.1e−07 0.00034

subj (Intercept) 1.1 1

c.(sdiff) 2.2e−07 0.00047

Residual 19 4.4

Fixed effects:

Estimate Std. Error t value

(Intercept) 0.72 0.18 4

c.(sdiff) 0.00053 9.2e−05 5.7

Table 28 Summary of model fit for sdiff (weighted distinctness) in

the P600 window, with NP1 unambiguous

Linear mixed model fit by maximum likelihood

AIC BIC logLik deviance

200977 201019 −100483 200967

Random effects:

Groups Name Variance Std.Dev.

item (Intercept) 0.1 0.32

subj (Intercept) 1.4 1.2

Residual 19 4.3

Fixed effects:

Estimate Std. Error t value

(Intercept) 0.12 0.2 0.58

c.(sdiff) −6.4e−05 1.2e−05 −5.6
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Fig. 11 Mean EEG in the P600 time window as a function of dist

(centered) and its interaction with ambiguity. Dashed lines indicate the

95 % confidence interval

reflects a (domain-general) reanalysis of the input (con-

flict resolution) (van de Meerendonk et al. 2009) while

we posit that conflict resolution is reflected in the N400.

Evidence for the N400 as the locus of conflict resolution

stems from the observation that recent studies examining

reanalyses of the actor-first preference have consistently

found N400 effects, with additional late positivities depend-

ing on the behavioral relevance of the object-initial order

(Bornkessel et al. 2004b; Haupt et al. 2008). Specifically,

when the object-initial order was licensed by the presence

of an object-experiencer verb and therefore did not call for

a behavioral reorientation (i.e. judgement of the sentence as

unacceptable), only an N400 effect was observed but no late

positivity. The present results provide converging support

for this perspective, since conflict resolution in the sense

of a reanalysis should be more closely tied to the conflict-

inducing feature in the input rather than to the behavioral

response. Thus, the observation that the amplitude of the late

positivity correlated considerably more strongly with the

reaction times for the judgment task is expected under the

assumption that the N400 reflects (input-related) conflict

resolution, while the late positivity reflects the behavioral

consequences of the conflict (and its resolution) in the given

task environment.23

23Note that an explanation along these lines can also account for the

dissociation between mild and strong conflicts observed by van de

Meerendonk et al. (2010). As it appears plausible to assume that only

the strong conflicts were registered as behaviorally significant, our

account derives the finding of a late positivity for these conflicts, while

no such effect was observed for mild conflicts. This explanation leads

to the testable prediction that, with different task instructions (e.g. a

judgment task emphasizing that even mild implausibilities should be

classified as such), van de Meerendonk et al. (2010)’s mild conflict

stimuli should also engender a late positivity.
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Fig. 12 Mean EEG in the P600 time window as a function of

signdist (centered) and its interaction with ambiguity. Dashed

lines indicate the 95 % confidence interval

Towards a Neurobiologically Realistic Computational

Model of Actor computation

The present results demonstrate that the sdiff measure is

a promising candidate for a neurocognitively plausible for-

malization of actor competition, as it is a valid predictor of

neurophysiological activity related to sentence comprehen-

sion. In addition, we propose that this metric can be viewed

as a first step towards a computational formalization of the

neurobiological model described in section “The Extended

Argument Dependency Model (eADM) and Actor-Centered

Comprehension”. Specifically, we suggest that the insights

gleaned from the present work may further our understand-

ing of how linguistic categories posited within the eADM—

such as the actor role—are recognized and processed in

a neurobiologically plausible manner and how we might
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Fig. 13 Mean EEG in the P600 time window as a function of sdiff

(centered) and its interaction with ambiguity. Dashed lines indicate the

95 % confidence interval
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Fig. 14 Mean EEG in the P600 time window as a function of

signdist (centered) and its interaction with ambiguity. The colors

indicate the “height”, i.e., a range of (predicted) values of the mean

EEG; the value is given by the contour curves. Colors that are closer

together (e.g. light vs. dark blue) indicate finer differences. More color

indicates more variation

envisage the relation between linguistic and non-linguistic

categories.

Our proposal builds on the suggestion that, in view

of its cross-linguistic ubiquity, actor could be modeled

as an attractor category (Bornkessel-Schlesewsky and

Schlesewsky 2013a). Recent work in computational neuro-

science has shown that attractor networks provide a neuro-

biologically plausible means of modeling decision-making

processes (Deco et al. 2009; Deco et al. 2012), both for

complex value-based choices as well as for perceptual clas-

sifications (“perceptual decision-making”; Heekeren et al.
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Fig. 15 Mean EEG in the P600 time window as a function of sdiff

(centered) and its interaction with ambiguity. The colors indicate the

“height”, i.e., a range of (predicted) values of the mean EEG; the value

is given by the contour curves. Colors that are closer together (e.g. light

vs. dark blue) indicate finer differences. More color indicates more

variation

2004; Basten et al. 2010). In an attractor network, deci-

sions can be modeled via attractor states in a neural network

which are associated with (stable) high firing rates. Which

state “wins” during decision making is determined by the

current input and the initial stochastic firing behaviour of the

network. Based on the overarching (language-independent)

importance of the actor category (see section “Evidence

for the Actor Heuristic and for Competition for the Actor

Role”), it has been proposed that an attractor network

for actor categorization exists independently of language

(Bornkessel-Schlesewsky and Schlesewsky 2013a). This

network is universal, as it reflects the general human ability

to recognize goal-directed action. The stable firing patterns

inherent to this network are plausibly based on sets of input

features that co-occur in domain-general actor recognition.

As the linguistic actor category overlaps to a certain degree

with these general features (e.g. via the features +HUMAN,

+ANIMATE and +1ST. PERSON), there is a propensity for

actor recognition via the general attractor network. With

regard to more language-specific features (e.g. case mark-

ing), the system will learn that these correlate with the

remaining (domain-general) actor features such that, in the

mature system, they also push the network towards the actor

recognition attractor state.24 Crucially, an important con-

sideration pertains to the degree of evidence for a certain

decision—e.g. the classification of a certain event partici-

pant as an actor—that the current input offers. The sdiff

metric can be viewed as a measure that captures this degree

of evidence.

Weighted, directed measures, such as sdiff, provide

the means to quantify the effects of attractor basins. Indeed,

the physical metaphor behind attractor basins also provides

insight into why sdiff functions better than dist or

signdist (Fig. 16). The proximity of an attractor is given

by dist, but not whether it is a positive or negative attrac-

tor (true attractor vs. repulsor, or hill vs. basin; see Fig. 17).

This is a decent first approximation, but quickly fails in

more rolling landscapes, e.g. in languages with free word

order, where it is not clear which argument will come first.

The directionality of signdist provides a better approx-

imation, modeling attraction and repulsion, but the best

approximation comes from the strength of the attractor (the

steepness of the sides of the basin / hill or equivalently,

the height and depth; see Fig. 18). This is exactly what

sdiff does—the weightedness distorts the actor space,

creating stronger and weaker attractors (Fig. 19). In this

sense, deterministic case marking and garden path sentences

are examples of attractor basins that are too deep to escape,

24This proposal of a tight interrelationship between domain-general

and linguistic actor features is supported by the recent observation that

properties of an ideal actor may depend—at least to some degree—on

the characteristics of one’s native language (Fausey et al. 2010; Fausey

and Boroditsky 2011).
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Table 29 Statistics for the minimally adequate (stimulus-based) models in the N400 time window compared to their extension via reaction time

(RT)

Df AIC logLik Chisq Chi Df Pr(>Chisq)

sdiff.ambiguity: mean ˜ ambiguity * c.(sdiff) + . . . 11 395190 −197584.42

sdiff.ambiguity.rt: mean ˜ ambiguity * c.(sdiff) + log(rt) + . . . 12 395172 −197574.02 20.80 1 <5.10e−06 ***

(Random effect structure elided. See page 12)

where the language system becomes trapped at the bottom

of a well, or perhaps, to use another meaning of the word

“space”, in a black hole.

Finally, though we have focused on the actor role here,

we propose that the notion of attractor basins could be

used to formalize the entire processing architecture shown

in Fig. 1. Specifically, attractors could be used to model

the categories assumed at every processing step within the

cascade (e.g. phonemes, actor-event schemata etc.). They

could further help to address an issue that is conspicuously

missing from the current model implementation, namely the

need to provide an estimate of the timing of the different

processing steps and, accordingly, of the neurophysiological

responses elicited by them. At present, the model only spec-

ifies the relative order of information processing but offers

no quantifiable timing estimates. However, combining the

assumption of cascaded, hierarchically organized process-

ing steps and the attractor notion opens up a possible avenue

for such a quantification. As noted in section “The Extended

Argument Dependency Model (eADM) and Actor-Centered

Comprehension”, cascaded processing is based on the idea

that, once a sufficient degree of information has accrued,

processing can proceed to the next step. Drawing upon the

attractor notion, we can posit that the faster the system rec-

ognizes that information is relevant for a particular attractor,

the faster processing at the step relevant to that attractor will

be. Accordingly, the formalization of actor space presented

here could be used as the basis for estimating processing

latency as well as amplitude and, in our view, should also

carry over to other linguistic categories. Of course, tim-

ing estimates will not be trivial given the different levels

of neuronal responses that need to be considered here: as

mentioned in section “The Extended Argument Dependency

Model (eADM) and Actor-Centered Comprehension”, scalp

ERPs as examined here are macroscopic responses with

(typically) multiple underlying sources and therefore can-

not be directly compared to the cascade of activity that

is assumed to proceed through individual regions along

the antero-ventral and postero-dorsal streams. Accordingly,

latencies of language-related ERP components such as the

N400 likely do not reflect the absolute timing of information

processing (see Bornkessel-Schlesewsky and Schlesewsky

2013b). Nevertheless, assuming that our proposal regard-

ing the basic relationship between evidence for an attractor

and duration of the processing step in question is correct,

both the direct neuronal responses and the neurophysiolog-

ical responses measured by means of scalp EEG recordings

should be quantifiable as some function of the degree of

evidence for the respective attractor category.

Future Directions and the Role of Neuroinformatics

In the experiment presented here,sdiff showed the advan-

tage of a weighted, directed distinctness measure over

simple (unweighted) interference measures. Nonetheless,

morphological case and ambiguities involving the same

dominated the most important prominence variations. In

future work, we aspire to test the metric against a wider

range of stimuli, including globally ambiguous sentences

and generally more naturalistic language. On account of

the modular nature of the implementation, any EEG dataset

could be processed and analyzed, either via adapting /

constructing a suitable front-end (Stage 1) parser or via

manually tagging the stimuli appropriately for Stage 2. As

more work is done in this direction of quantifying linguistic

differences in the brain, it becomes increasingly important

to have diverse test data, especially if learning is to be

Table 30 Statistics for the minimally adequate (stimulus-based) models in the P600 time window compared to their extension via reaction time

(RT)

Df AIC logLik Chisq Chi Df Pr(>Chisq)

sdiff.ambiguity: mean ˜ ambiguity * c.(sdiff) + . . . 11 403740 −201859.03

sdiff.ambiguity.rt: mean ˜ ambiguity * c.(sdiff) + log(rt) + . . . 12 403505 −201740.85 236.36 1 <2.2e−16 ***

(Random effect structure elided. See page 12)
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Table 31 Statistics comparing the predictors for a (unweighted) syn-

tactic subject and (weighted) actor-prominence features P600 time

window

Df AIC logLik

synsigndist.ambiguity: 11 404065 −202021.65

mean ˜ ambiguity * c.(synsigndist) + . . .

sdiff.ambiguity: 11 403740 −201859.03

mean ˜ ambiguity * c.(sdiff) + . . .

(Random effect structure elided. See page 12)

simulated at some point. To this end, it is crucially important

that databases of EEG data for diverse stimuli from typo-

logically varied languages are available, similar to the cor-

pora and treebanks used by researchers in natural language

processing. A general model of language comprehension is

the goal, not a model for particular dataset.

Call for Data (Banks)

To this end, we would like to see databanks of neuroanatom-

ical and neurophysiological data similar to the “treebanks”

common in computational linguistics and natural language

processing research. Such databanks should provide a val-

idated, state-of-the-art analysis with traditional methodolo-

gies, e.g. ANOVA (including standardized ROIs and/or sin-

gle electrodes as a factor, with grand-average ERP) as well

as parametric labeling of relevant linguistic information—

cloze probability of each word, morphosyntactic features,

thematic relations, known important semantic features (e.g.

animacy and ideally other features that are expressed mor-

phosyntactically in any of the world’s languages), lexical

Fig. 16 Attractor basins in actor space. Prominence can be viewed as

a distortion of actor space. The curvature of actor space then pulls or

pushes actorhood towards a particular argument

Fig. 17 Attractor basins in actor space as measured by dist. The

directionality of distortion is lost, making prediction difficult

frequency estimates, estimates of syntactic frequency for

any syntactic peculiarities (e.g. non canonical word orders),

etc. The EEG data should preferably be stored in an open

format, or at least in a format for which there are suit-

able plugins and converters—perhaps one of the formats

supported by the open source EEGLAB software pack-

age. Data should not be filtered, rereferenced or otherwise

manipulated offline before storage so as to not limit analy-

sis by alternative techniques (time-frequency analysis, ICA,

etc.). Instead, the measurement parameters (sampling rate,

reference electrode, equipment manufacturer), experimen-

tal setup (presentation mode and aspects pertaining thereto)

and anonymized subject data (age, sex, etc.) as well as

Fig. 18 Attractor basins in actor space as measured by signdist.

The gradience of distortion is lost, leading to only qualitative

predictions
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Fig. 19 Attractor basins in actor space as measured by sdiff.

Both directionality and gradience of the distortion is preserved, thus

enabling accurate prediction. The distortion here is to scale for the

sentence Die Bettlerin bedrängte den Kommissar auf der Straße. (See

Table 3)

experimental task, handedness of the test subject and task

interface layout, should be stored as metadata. Optionally,

the number of channels could be stored as well; however,

this is not necessary. Channel names should be standardized

to the 10-10/10-20 system terminology. Behavioral data

should be linked not just as metadata, but also as a proper

dataset unto itself. (Relational databases provide a conve-

nient way to do this.) Only then, can we truly test our models

of sentence comprehension, i.e. our “parsers”, with the same

rigor that has been standard in other computational disci-

plines for years now—with lots of large, standardized tests.

Vosse and Kempen (2008) took an important first step

in this direction, analyzing data from another experiment;

however, it appears important to go beyond comparisons

of modeling output with the published, summarized data.

As discussed by Arbib et al. (this issue), it is important

to remember that summary data implies the existence of

non summarized data, i.e. more complete data. As one

researcher’s noise is another’s signal, even the most basic

filtering removes important data; the usual presentation of

means and ANOVA leads even more to be desired. The

BrainMap database is an excellent start for fMRI data, but

it only makes the want of a comparable database for EEG

data more striking. Recent trends in Open Access and pre-

registration point to such databases as being the way of the

future. We need data sharing beyond rebuttal and as com-

mon proving ground beyond the current experiments hand

crafted to show off a particular model feature.

Beyond the traditional, well parameterized experimental

data, we would ideally also like to see a complementary set

of data acquired in a less structured, free-task environment.

That is, we would like to see a similar dataset of EEG/fMRI

recording of natural stories with a maximal task of a few

comprehension questions taken offline after the main exper-

iment (Whitney et al. 2009) but with fully tagged input.

Computational linguists use more than sets of simple, con-

structed sentences to test their data and so should we—our

models need to be able to handle the full complexity of

human language in its actual use and not just in our ideal-

ized laboratory conditions. These more complex inputs also

present us the chance to move beyond sentence-processing

models towards language-processing models.

The existence of large, standardized datasets also pro-

vides for a proving ground for newer methodologies. For

example, although time-frequency analysis, principal com-

ponent analysis (PCA) and independent component analysis

(ICA) have been used in recent years to differentiate certain

subtleties not readily apparent from traditional ERP-based

analyses, the world of EEG-data is still dominated by ERP.

This is almost certainly related to not just the complexity

of these new methods, but also their unclear relationship

to ERP results. A standard dataset provides exactly the

playground necessary to demonstrate and test new method-

ologies and their relationship to old ones.

Brief Technical Notes on Implementation

The present implementation is in Python 3.2. A previous

version was written and tested in Python 2.7; however, the

implementation of Stage 1 and necessity of using non ASCII

encoding for German sentence data motivated the shift to

the 3.x series of Python with its much more extensive Uni-

code support. File and directory manipulations were all

tested on POSIX compatible platforms.

There are options to set the baseline weights all equal to

one (no weighting) or to a priori estimated weights based on

previous work done in German (Kempe and MacWhinney

1999). A further correction (from empirical data) can then

be applied to the individual baseline weights via additional

options.

To test the weight configuration, a set of potential

constructions in German is provided in a form directly

processable by Stage 2. A test mode operating purely

on these preanalyzed inputs is one of three modes of

operation.

The other modes are a batch mode for generating pre-

dictions about experimental stimuli and an interactive mode

for demonstrations of the model, as well as a mode capa-

ble of processing Stage 1 output vectors, either as list of

experimental conditions from a file or interactively. Both the

batch and interactive modes use a limited version of Stage 1,

featuring a small parser customized for the experiment in

question (see Stage 1).
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More detailed documentation can be found with the

publicly available source code (see below).

Information Sharing Statement

All program source code for the implementation and gen-

eration of figures related to the mixed-models as well

as the necessary input files is available to the public at

https://bitbucket.org/palday/ginnungagap-code/.
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Appendix

Table 32 ANOVA for the N400 window

ANOVA:

Effect DFn DFd F p p<.05 ges

2 roi 4.00 144.00 14.47 0.00 * 0.03

3 wordOrder 1.00 36.00 19.60 0.00 * 0.01

4 ambiguity 1.00 36.00 19.11 0.00 * 0.01

5 np1type 1.00 36.00 5.61 0.02 * 0.00

6 np2type 1.00 36.00 54.44 0.00 * 0.14

7 roi:wordOrder 4.00 144.00 5.51 0.00 * 0.00

8 roi:ambiguity 4.00 144.00 7.51 0.00 * 0.00

9 wordOrder:ambiguity 1.00 36.00 21.84 0.00 * 0.01

10 roi:np1type 4.00 144.00 13.25 0.00 * 0.00

11 wordOrder:np1type 1.00 36.00 0.57 0.45 0.00

12 ambiguity:np1type 1.00 36.00 0.75 0.39 0.00

13 roi:np2type 4.00 144.00 55.78 0.00 * 0.06

14 wordOrder:np2type 1.00 36.00 0.35 0.56 0.00

15 ambiguity:np2type 1.00 36.00 0.17 0.68 0.00

16 np1type:np2type 1.00 36.00 0.17 0.68 0.00

17 roi:wordOrder:ambiguity 4.00 144.00 2.58 0.04 * 0.00

18 roi:wordOrder:np1type 4.00 144.00 1.04 0.39 0.00

19 roi:ambiguity:np1type 4.00 144.00 0.53 0.72 0.00

20 wordOrder:ambiguity:np1type 1.00 36.00 1.30 0.26 0.00

21 roi:wordOrder:np2type 4.00 144.00 12.10 0.00 * 0.00

22 roi:ambiguity:np2type 4.00 144.00 4.53 0.00 * 0.00

23 wordOrder:ambiguity:np2type 1.00 36.00 6.40 0.02 * 0.00

24 roi:np1type:np2type 4.00 144.00 1.21 0.31 0.00

25 wordOrder:np1type:np2type 1.00 36.00 1.99 0.17 0.00

26 ambiguity:np1type:np2type 1.00 36.00 0.23 0.63 0.00

27 roi:wordOrder:ambiguity:np1type 4.00 144.00 0.61 0.66 0.00

28 roi:wordOrder:ambiguity:np2type 4.00 144.00 2.68 0.03 * 0.00

29 roi:wordOrder:np1type:np2type 4.00 144.00 0.35 0.84 0.00

30 roi:ambiguity:np1type:np2type 4.00 144.00 4.03 0.00 * 0.00

31 wordOrder:ambiguity:np1type:np2type 1.00 36.00 2.88 0.10 0.00

32 roi:wordOrder:ambiguity:np1type:np2type 4.00 144.00 0.91 0.46 0.00
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Table 32 (continued)

Sphericity Corrections:

Effect W p p<.05

2 roi 0.37 0.00 *

7 roi:wordOrder 0.20 0.00 *

8 roi:ambiguity 0.28 0.00 *

10 roi:np1type 0.22 0.00 *

13 roi:np2type 0.33 0.00 *

17 roi:wordOrder:ambiguity 0.22 0.00 *

18 roi:wordOrder:np1type 0.32 0.00 *

19 roi:ambiguity:np1type 0.07 0.00 *

21 roi:wordOrder:np2type 0.19 0.00 *

22 roi:ambiguity:np2type 0.23 0.00 *

24 roi:np1type:np2type 0.12 0.00 *

27 roi:wordOrder:ambiguity:np1type 0.22 0.00 *

28 roi:wordOrder:ambiguity:np2type 0.06 0.00 *

29 roi:wordOrder:np1type:np2type 0.14 0.00 *

30 roi:ambiguity:np1type:np2type 0.32 0.00 *

32 roi:wordOrder:ambiguity:np1type:np2type 0.12 0.00 *

Table 33 ANOVA for the N400 time window resolved in the Left-Posterior Region of Interest

ANOVA:

Effect DFn DFd F p p<.05 ges

2 roi 4.00 144.00 24.10 0.00 * 0.06

3 wordOrder 1.00 36.00 25.71 0.00 * 0.02

4 ambiguity 1.00 36.00 31.79 0.00 * 0.04

5 np1type 1.00 36.00 0.16 0.69 0.00

6 np2type 1.00 36.00 93.33 0.00 * 0.19

7 roi:wordOrder 4.00 144.00 7.46 0.00 * 0.00

8 roi:ambiguity 4.00 144.00 5.01 0.00 * 0.00

9 wordOrder:ambiguity 1.00 36.00 37.31 0.00 * 0.04

10 roi:np1type 4.00 144.00 0.27 0.89 0.00

11 wordOrder:np1type 1.00 36.00 0.11 0.74 0.00

12 ambiguity:np1type 1.00 36.00 2.62 0.11 0.00

13 roi:np2type 4.00 144.00 3.44 0.01 * 0.00

14 wordOrder:np2type 1.00 36.00 0.87 0.36 0.00

15 ambiguity:np2type 1.00 36.00 1.98 0.17 0.00

16 np1type:np2type 1.00 36.00 1.42 0.24 0.00

17 roi:wordOrder:ambiguity 4.00 144.00 9.99 0.00 * 0.00

18 roi:wordOrder:np1type 4.00 144.00 0.74 0.56 0.00

19 roi:ambiguity:np1type 4.00 144.00 2.76 0.03 * 0.00

20 wordOrder:ambiguity:np1type 1.00 36.00 0.23 0.63 0.00

21 roi:wordOrder:np2type 4.00 144.00 0.72 0.58 0.00

22 roi:ambiguity:np2type 4.00 144.00 1.82 0.13 0.00

23 wordOrder:ambiguity:np2type 1.00 36.00 0.50 0.48 0.00

24 roi:np1type:np2type 4.00 144.00 0.20 0.94 0.00
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Table 33 (continued)

Effect DFn DFd F p p<.05 ges

25 wordOrder:np1type:np2type 1.00 36.00 5.24 0.03 * 0.00

26 ambiguity:np1type:np2type 1.00 36.00 0.86 0.36 0.00

27 roi:wordOrder:ambiguity:np1type 4.00 144.00 1.71 0.15 0.00

28 roi:wordOrder:ambiguity:np2type 4.00 144.00 1.85 0.12 0.00

29 roi:wordOrder:np1type:np2type 4.00 144.00 0.53 0.72 0.00

30 roi:ambiguity:np1type:np2type 4.00 144.00 0.07 0.99 0.00

31 wordOrder:ambiguity:np1type:np2type 1.00 36.00 0.89 0.35 0.00

32 roi:wordOrder:ambiguity:np1type:np2type 4.00 144.00 1.89 0.11 0.00

Sphericity Corrections:

Effect W p p<.05

2 roi 0.48 0.00 *

7 roi:wordOrder 0.20 0.00 *

8 roi:ambiguity 0.24 0.00 *

10 roi:np1type 0.15 0.00 *

13 roi:np2type 0.53 0.01 *

17 roi:wordOrder:ambiguity 0.34 0.00 *

18 roi:wordOrder:np1type 0.23 0.00 *

19 roi:ambiguity:np1type 0.13 0.00 *

21 roi:wordOrder:np2type 0.17 0.00 *

22 roi:ambiguity:np2type 0.32 0.00 *

24 roi:np1type:np2type 0.20 0.00 *

27 roi:wordOrder:ambiguity:np1type 0.21 0.00 *

28 roi:wordOrder:ambiguity:np2type 0.41 0.00 *

29 roi:wordOrder:np1type:np2type 0.12 0.00 *

30 roi:ambiguity:np1type:np2type 0.15 0.00 *

32 roi:wordOrder:ambiguity:np1type:np2type 0.14 0.00 *

Table 34 ANOVA for the P600 window

ANOVA:

Effect DFn DFd F p p<.05 ges

2 wordOrder 1.00 36.00 23.01 0.00 * 0.02

3 ambiguity 1.00 36.00 30.55 0.00 * 0.03

4 np1type 1.00 36.00 0.01 0.93 0.00

5 np2type 1.00 36.00 9.65 0.00 * 0.04

6 wordOrder:ambiguity 1.00 36.00 20.21 0.00 * 0.02

7 wordOrder:np1type 1.00 36.00 1.96 0.17 0.00

8 ambiguity:np1type 1.00 36.00 0.23 0.64 0.00

9 wordOrder:np2type 1.00 36.00 4.41 0.04 * 0.00

10 ambiguity:np2type 1.00 36.00 0.01 0.93 0.00

11 np1type:np2type 1.00 36.00 1.31 0.26 0.00

12 wordOrder:ambiguity:np1type 1.00 36.00 0.50 0.48 0.00

13 wordOrder:ambiguity:np2type 1.00 36.00 5.17 0.03 * 0.00

14 wordOrder:np1type:np2type 1.00 36.00 2.01 0.17 0.00

15 ambiguity:np1type:np2type 1.00 36.00 0.03 0.86 0.00

16 wordOrder:ambiguity:np1type:np2type 1.00 36.00 3.00 0.09 0.00
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Table 35 ANOVA for the P600 time window resolved in the Left-Posterior Region of Interest

ANOVA:

Effect DFn DFd F p p<.05 ges

2 wordOrder 1.00 36.00 28.20 0.00 * 0.02

3 ambiguity 1.00 36.00 26.00 0.00 * 0.04

4 np1type 1.00 36.00 0.00 1.00 0.00

5 np2type 1.00 36.00 85.25 0.00 * 0.23

6 wordOrder:ambiguity 1.00 36.00 43.74 0.00 * 0.05

7 wordOrder:np1type 1.00 36.00 0.56 0.46 0.00

8 ambiguity:np1type 1.00 36.00 1.33 0.26 0.00

9 wordOrder:np2type 1.00 36.00 2.09 0.16 0.00

10 ambiguity:np2type 1.00 36.00 2.88 0.10 0.00

11 np1type:np2type 1.00 36.00 1.30 0.26 0.00

12 wordOrder:ambiguity:np1type 1.00 36.00 0.50 0.48 0.00

13 wordOrder:ambiguity:np2type 1.00 36.00 0.15 0.70 0.00

14 wordOrder:np1type:np2type 1.00 36.00 7.45 0.01 * 0.00

15 ambiguity:np1type:np2type 1.00 36.00 0.85 0.36 0.00

16 wordOrder:ambiguity:np1type:np2type 1.00 36.00 0.00 0.95 0.00

Table 36 Summmary statistics for the accuracy in trials

Summary statistics:

wordOrder ambiguity np1type np2type N Mean SD FLSD

O A N N 37.00 0.86 0.13 0.01

O A N P 37.00 0.93 0.08 0.01

O A P N 37.00 0.89 0.11 0.01

O A P P 37.00 0.94 0.06 0.01

O U N N 37.00 0.95 0.06 0.01

O U N P 37.00 0.94 0.04 0.01

O U P N 37.00 0.98 0.02 0.01

O U P P 37.00 0.96 0.02 0.01

S A N N 37.00 0.97 0.04 0.01

S A N P 37.00 0.97 0.04 0.01

S A P N 37.00 0.98 0.02 0.01

S A P P 37.00 0.98 0.04 0.01

S U N N 37.00 0.97 0.04 0.01

S U N P 37.00 0.97 0.04 0.01

S U P N 37.00 0.98 0.03 0.01

S U P P 37.00 0.99 0.02 0.01
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Table 37 Summmary statistics for reaction time in trials

Summary statistics:

wordOrder ambiguity np1type np2type N Mean SD FLSD

O A N N 37.00 484.45 197.41 16.07

O A N P 37.00 435.32 164.68 16.07

O A P N 37.00 482.62 184.68 16.07

O A P P 37.00 433.66 157.27 16.07

O U N N 37.00 465.44 167.91 16.07

O U N P 37.00 437.66 155.49 16.07

O U P N 37.00 442.40 161.16 16.07

O U P P 37.00 424.94 142.27 16.07

S A N N 37.00 436.50 147.15 16.07

S A N P 37.00 427.92 146.34 16.07

S A P N 37.00 442.69 149.04 16.07

S A P P 37.00 427.23 151.57 16.07

S U N N 37.00 438.67 151.13 16.07

S U N P 37.00 433.64 149.12 16.07

S U P N 37.00 437.05 151.31 16.07

S U P P 37.00 420.69 127.54 16.07
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4. Decisions, Decisions: Quantifying
Cue Contributions

There are two kinds of statistics, the
kind you look up and the kind you
make up.

Archie Goodwin

Following the success in quantifying prominence (Alday, Schlesewsky, and Bornkessel-
Schlesewsky 2014, see Chapter 3), it became clear that the weighting of the individual
prominence features presented a problematic set of free parameters. Free parameters
represent not just potential underspecification in a model but also a source of possible
interindividual variation, as the space of possible parameters also creates a solution space,
where multiple solutions may exist for a given computational problem (cf. Howes, Lewis,
and Vera 2009). We addressed the issue of both free parameters and interindividual varia-
tion in Alday, Schlesewsky, and Bornkessel-Schlesewsky (in press), where we presented a
technique for estimating parameter weights at an individual level.

4.1. Brief Summary of Methods and Results

In a short experiment (30-40 minutes), subjects were shown verb-final sentences with two
nominal arguments with rapid serial visual presentation. The nominal arguments appeared
fully crossed for animacy (animate, inanimate), case (nominative, accusative) and number
(singular, plural), with the verb agreeing in number with at least one of the nominal argu-
ments. In addition to unambiguous sentences, the full-crossing also leads to globally ambigu-
ous sentences, both well-formed (e.g. two plural nouns, because plural nouns in German are
case-ambiguous) and ill-formed (e.g. double singular accusative or double singular nomina-
tive). After the end of the sentence, subjects had to answer a comprehension question within
four seconds, whose answer indicated their assignment of the agent/actor role.

Due to the large factorial design, subjects were not exposed to every item in every condition;
rather, sentences were chosen at random from a large pool of possible stimuli. Although all
conditions were equally represented in the stimuli pool, the random sampling and random-
ized presentation means that not all conditions were necessarily equally represented for
each subject.
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Analyses were performed on a per-subject level using binomial regression for the assign-
ment decision (actor-initial vs. actor-second) and linear regression for the reaction times.
The reaction time analysis yielded large intra-subject variation, possibly due to the com-
plexity of the task, and hence unreliable parameter estimates. The actor-assignment analy-
ses, however, yielded comparatively low intra-subject variation and stable estimates. Data
from four subjects did show an interesting amount of interindividual variance in terms of
exact numerical estimates, but a remarkable consistency in qualitative estimates. In other
words, subjects largely developed the same ranking for the prominence features but distinct
weightings.

Subsequently, data from all four test subjects were pooled and analyzed using mixed-effects
models. We then reanalyzed the EEG data from Alday, Schlesewsky, and Bornkessel-
Schlesewsky (2014) with both the pooled weights and the weights from a single subject as
well as the original a priori weights and found a comparable fit across models.

4.2. Relevance

In this paper, we demonstrated the feasibility of estimating the free parameters found in our
computational implementation of the actor strategy quickly and easily at the single-subject
level. Moreover, the framework we implemented is extensible, open source and based on
free software and will run on any modern laptop. Together, this allows for the reduction of
free parameters using rapidly acquired data.

4.3. Publication

Peer-Reviewed Article P. M. Alday, M. Schlesewsky, and I. Bornkessel-Schlesewsky (in
press). “Discovering Prominence and its Role in Language Processing: An Individual
(Differences) Approach”. In: Linguistic Vanguard. DOI: 10.1515/lingvan-2014-1013

My Contribution For this paper, I conceived, designed and carried out the experiment,
including writing the necessary software. Additionally, I performed the analysis and
wrote the entire paper with the exception of the section describing the eADM.
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Abstract

It has been suggested that, during real time language comprehension,
the human language processing system attempts to identify the argument
primarily responsible for the state of affairs (the “actor”) as quickly and
unambiguously as possible. However, previous work on a prominence
(e.g. animacy, definiteness, case marking) based heuristic for actor identi-
fication has suffered from underspecification of the relationship between
different cue hierarchies. Qualitative work has yielded a partial ordering
of many features (e.g. MacWhinney, Bates, and Kliegl 1984), but a pre-
cise quantification has remained elusive due to difficulties in exploring
the full feature space in a particular language. Feature pairs tend to
correlate strongly in individual languages for semantic-pragmatic reasons
(e.g., animate arguments tend to be actors and actors tend to be mor-
phosyntactically privileged), and it is thus difficult to create acceptable
stimuli for a fully factorial design even for binary features. Moreover, the
exponential function grows extremely rapidly and a fully crossed factorial
design covering the entire feature space would be prohibitively long for a
purely within-subjects design.

Here, we demonstrate the feasibility of parameter estimation in a short
experiment. We are able to estimate parameters at a single subject level
for the parameters animacy, case and number. This opens the door for
research into individual differences and population variation. Moreover,
the framework we introduce here can be used in the field to measure
more “exotic” languages and populations, even with small sample sizes.
Finally, pooled single-subject results are used to reduce the number of

∗corresponding author: phillip.alday@staff.uni-marburg.de
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free parameters in previous work based on the extended Argument Depen-
dency Model (Bornkessel and Schlesewsky 2006; Bornkessel-Schlesewsky
and Schlesewsky 2009; Bornkessel-Schlesewsky and Schlesewsky 2013;
Bornkessel-Schlesewsky and Schlesewsky in press; Alday, Schlesewsky, and
Bornkessel-Schlesewsky 2014).

Multimedia: OpenSesame experiment and Python support scripts; sam-
ple stimuli; R scripts for analysis
Keywords: computational model; language processing; emergence; ambi-
guity resolution; actor identification; prominence; individual differences

Introduction

Parameter underspecification is a critical issue in modern linguistic models,
with too many parameters typically dismissed to the periphery of qualitative
description and “performance”. The return on investment for working out the
precise mechanistic and quantitative “details” of a model often seems too poor,
especially in light of the many levels of linguistic variation: language > dialect
> idiolect (inter-speaker) > intra-speaker. Yet, it is exactly these parameters
and how they can vary that is interesting when discussing language instead of a
language.

Even well-formulated psycholinguistic and neurolinguistic models often suffer
from underspecification with many parameters omitted and many more never
empirically estimated. Implemented computational models suffer less from the
underspecification problem, but still have many issues with free parameters
(Howes, Lewis, and Vera 2009) and researcher degrees of freedom (Simmons,
Nelson, and Simonsohn 2011). Previously, we presented a computational model
of language processing based on the interaction of weighted prominence features
(Alday, Schlesewsky, and Bornkessel-Schlesewsky 2014). While our models
provided a good fit for event-related potential data (i.e. electrical brain activity
time-locked to a critical word within a sentence) which has a very poor signal-
to-noise ratio, we nonetheless relied on a somewhat problematic conversion of
ordinally scaled data to ratio-scaled data using simple logarithmic scaling. In
the following we present a framework for empirically quantifying the parameters
of well-defined computational models based on competition and constraint-
satisfaction, focusing on the class of prominence-based models.

Using a small experiment and a basic statistical technique, we demonstrate that
it is possible to estimate parameters at the single subject level in less than half an
hour and perhaps a good cup of coffee. The ease of this approach opens the door
to quantitative study of interindividual variation and linguistic settings in which
only small samples of speakers are accessible (e.g. less-researched languages,
clinical populations).
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Prominence, the Extended Argument Depen-
dency Model (eADM) and Actor-Centered Com-
prehension

Before turning to the parameter estimation approach that is the focus of the
present paper, we will briefly describe the empirical neurocognitive model on
which it is based. This framework will provide two critical concepts for the
parameter estimation: prominence (the independent variable) and the actor role
(the dependent variable).

The extended Argument Dependency Model (eADM) is a neurocognitive, and
more recently neurobiologically grounded model of cross-linguistic language com-
prehension which places particular emphasis on the role of the “actor” participant
(Bornkessel and Schlesewsky 2006; Bornkessel-Schlesewsky and Schlesewsky 2009;
Bornkessel-Schlesewsky and Schlesewsky 2013; Bornkessel-Schlesewsky and Schle-
sewsky in press) The actor, a term taken from Role and Reference Grammar
(Van Valin 2005) and termed Proto-Agent in other approaches (Dowty 1991;
Primus 1999), refers to the event instigator / participant primarily responsible
for the state of affairs being described. Based on the results of electrophysiologi-
cal studies across a range of typologically diverse languages, the eADM posits
that comprehension is actor-centered in the sense that the human language
comprehension system endeavours to identify the actor participant as quickly
and unambiguously as possible while comprehending a sentence. Accordingly, if
several candidates are available, they compete for the actor role and actor compe-
tition has measurable neurophysiological repercussions (Bornkessel-Schlesewsky
and Schlesewsky 2009; Alday, Schlesewsky, and Bornkessel-Schlesewsky 2014).

Actor identification in language processing is based both on domain-general
features (e.g. animacy, certain movement parameters such as autonomous and/or
biological motion, similarity to the first person etc.) and on language-specific fea-
tures such as case marking or word order. In accordance with language-external
observations regarding the importance of actor entities for mechanisms such
as attentional orienting (New, Cosmides, and Tooby 2007) or social cognition
(U. Frith and Frith 2010), the eADM assumes that the actor can be viewed as
a cognitive and neurobiological attractor category, with domain-general actor
features allowing for the bootstrapping of language-specific actor characteris-
tics during language development (Bornkessel-Schlesewsky and Schlesewsky in
press). Clearly, individual actor-related features will be more important for actor
identification in certain languages as opposed to others (e.g. case marking in
German, Japanese or Hindi versus English) and, within a particular language,
some actor-related features will be weighted more strongly than others (Bates
et al. 1982; Bates and MacWhinney 1989; Bates, Devescovi, and Wulfeck 2001;
MacWhinney, Bates, and Kliegl 1984).

In this regard, parameter estimation – i.e. estimating the weighting of individual
actor-related prominence features in a given language – becomes a central
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modelling problem. In the following, we introduce an initial, empirically-based
framework for parameter estimation that is flexible, based on open source
software components and thus freely distributable and requires only a minimal
time commitment from test subjects (i.e. native speakers of a given language). We
thereby intend to establish a basis for examining (a) inter-individual differences
in parameter weightings, and (b) lesser-studied languages for which only a small
number of speakers is available to participate in linguistic experiments.

Previous Computational Work

Alday, Schlesewsky, and Bornkessel-Schlesewsky (2014) presented the first compu-
tational implementation of actor competition, with a strong focus on distinctness
(similarity / distance in the space of prominence features) as a predictor of mean
EEG signal in time windows previously associated with actor competition. Due
to high variance in EEG data – both inter- and intra subject – mixed effect
models with crossed random factors for subjects and items were used. Moreover,
the dependent variable was not a single offline behavioral measurement but rather
an online measure of brain activity. The independent variables were different
notions of distance, i.e. different mathematical ways of combining prominence
features and weights into a single distinctness score. While models involving
neurophysiological data are arguable much closer to the actual biological reality
of language processing, they measure processes at a level where the correspon-
dence between conscious intuition and subconscious computation is far from
clear. As such, while the parameter estimation used here is of utmost importance
for continued work on such models, the results of the two approaches are not
directly comparable but rather complementary.

Individual Experimentation

Robust parameter estimation must apply at the single subject (i.e. individual
native speaker) level for several reasons. Language comprehension in a given
language arguably involves a “strategy space” rather than hard-and-fast, de-
terministic processing strategy (see Howes, Lewis, and Vera (2009), for a more
general cognitive perspective). Thus, by estimating inter-individual variability,
we can establish an estimate of the breadth of the strategy space. Secondly,
under certain circumstances (e.g. languages with few remaining or available
speakers, clinical populations, children) it may not be possible to obtain data
from a large pool of participants. Hence, the framework described here aims to
provide a first step towards parameter estimation for individual participants,
using the actor competition / prominence feature approach of the eADM as
a test case. Of course, the approach is in principle applicable to any type of
linguistic feature / model parameter.
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Experiment

In order to maximize the portability and availability of individual parameter
estimation, the experiment is restricted in equipment and duration. The experi-
ment is programmed in OpenSesame (Mathôt, Schreij, and Theeuwes 2012), a
freely available, Open Source software package written in Python for cognitive
science experiments that runs on Windows, Mac OS X and Linux. No further
equipment is required for the experiment itself. Similarly, the other parts of
the proposed toolchain (R, Python and various packages for them) are all free
software and available on all three platforms.

The much harder restriction is the duration of the experiment. While many
psycholinguistic and neurolinguistic experiments last several hours per test
subject, we restricted ourselves to a run time of between 30 and 40 minutes. This
clearly restricts the number of trials available, which forces a tradeoff between a
fully factorial exploration of differing conditions and the number of trials per
condition. In the provided example experiment, the stimulus preparation script
load_data.py generates the fullest factorial design allowed by its inputs (for
our current sample stimuli, [ANIMACY x CASE x NUMBER] x [NP1, NP2], a
total of 16 conditions, including violations) across all items and takes a random
sample to generate 200 trials (see Table 1).

Table 1: Sample stimuli. All sentences began with Gestern wurde
erzählt (‘Yesterday, it was told’). Due to case syncretism in the
German plural, all plural nouns were ambiguous and thus encoded
in the subsequent models as being the average of nominative and
accusative. The active task for the first sentence is _ hat/haben
angeremeplt (’_s has/have bumped into’), with the two nouns
placed on either side (left-right placement was random.) Because
the article in German carries most case information and some
number information, it was omitted in the task.

dass die Pfarrer die Magier angerempelt haben.
that the pastors the magicians bumped-into have
dass den Wirt den Einbrecher eingeladen hat.
that the host.ACC the thief.ACC invited has
dass die Bürostühle der Kellner gespendet hat.
that the office chairs the waiter.NOM donated has
dass die Zäune die Tischler bedauert haben.
that the fences the carpenters regretted have
dass die Räume der Veranstalter eingeschaltet hat.
that the rooms the organizer.NOM turned-on. has.
dass den Bauer der Obdachlose gerettet hat.
that the farmer.ACC the homeless person.NOM saved has
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This leads to an extremely sparse sample which will differ from run to run. The
variation is in and of itself interesting, as it gives some indication of minimal
learnability requirements.

The task for the experiment is a comprehension question, asking either for the
actor or the undergoer (“Who did X?” / “Someone did X to whom?” or passive
variants of the same).1 For the syntactically ambiguous or ungrammatical
sentences, this task attempts to force the subject to arrive at some interpretation
of the sentence (as would happen in normal conversation). This serves as an
explicit task somewhat similar to traditional acceptability judgements. The
task is also timed with a moderately hard timeout of 4 seconds, which should
push the subject to answer more intuitively and less metalinguistically. The
answer is encoded as having assigned actorhood to the first or the second NP
(cf. Bates et al. 1982; MacWhinney, Bates, and Kliegl 1984; Li, Bates, and
MacWhinney 1993; Kempe and MacWhinney 1999). “Correctness” is not a
valid measure across conditions because the ambiguous and ungrammatical
conditions lack a canonical answer. Moreover, the interesting question is how
the prominence heuristic allows for decision under uncertainty. The response
time is also recorded, under the assumption that prominence features misaligned
with their weightings and the actor prototype will lead to higher reaction times.

Parameter Estimation

Ultimately, the computational problem presented by the actor strategy is classifi-
cation. The language system must assign actorhood to a single argument and, in
order to do that, depends on classifying an individual argument’s probability of
being an actor. Probabilitistic classification into two groups is a well-researched
problem with many methods available. The simplest method, based on the
general linear model, is probit regression (Bliss 1934).

The dependent variable in probit regression is a probabilisitic binary classification,
while the independent variables are the feature encodings.2 The model weights
correspond to the coefficient estimates, allowing direct extraction of the weights
and easy interpretation. Although the better known logistic regression yields
similar results and has coefficients that are slightly easier to interpret (as an
odds ratio), probit regression has several advantages for modelling the role of
prominence features.3 Logistic regression is more difficult to implement in a

1In initial tests, it seems that test-subjects felt more comfortable when only active or passive
questions were presented. The results for one volunteer who completed both the mixed and
pure passive variants were similar, resulting in the same rankings. However, the two trial runs
are not directly comparable because each run used a different subset of the possible stimuli.

2Currently, the features are encoded as binary pairs with 1 for marked/more prominent
and 0 for less prominent. For many things, a discrete scale seems unnatural, and the model
can accommodate continuous scales on [0,1] without modification. This is currently used for
ambiguous case marking, encoded as 0.5.

3The model coefficients in logit regression correspond to changes in the odds ratio for the
dependent variable per unit change in the independent variable. In probit regression, the
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Bayesian framework, which is a disadvantage for planned future work utilizing
estimates from several sources (i.e. work involving non-flat priors and pooling).
More importantly, probit regression is the better model for the dichotomization
of a continuous variable. Prominence is a continuous variable, but the actor
strategy is a dichotomization strategy,4 and probit regression is thus better
suited.5

For a transitive relationship, there are two arguments each carrying their own set
of prominence features. While it is possible that the weights for the features are
position dependent (i.e. that there is an interaction term for argument position
by prominence), we make the simplifying assumption that this is not the case.
Accordingly, we can collapse the two sets of features into a single set of pairwise
differences, thus reducing the number of parameters to be estimated. This
also makes the work more compatible with the types of models used in Alday,
Schlesewsky, and Bornkessel-Schlesewsky (2014), where the weights actually
applied to the pairwise differences. Here we use NP1 - NP2 to model expectations:
NP1 - NP2 < 0 means that a more prominent argument comes in a later position,
which is known to be dispreferred (preference for initial actors).

Due to the sparseness of the data, we also exclude interaction terms between
features.

Sample Analysis

Actor Identification Sample analysis scripts and data sets collected from
graduate students are included in the supplementary materials. In the following,
we present the results from sample01a.6

For our regression, a 1 encodes an initial actor, while a 0 encodes an initial
undergoer. Because of the mutual exclusivity of the actor-undergoer relation, we
do not need to encode the other argument. We chose one to correspond to initial
actor so that more prominence would correlate positively with more actorhood.
Table 2 provides the results of the regression with sample01a.

While the exact meaning of the estimates in probit regression is difficult, the
relationship in the size of the estimates is straight forward. Case clearly has

coefficients represent change in the z-score of the dependent variable per unit change in the
independent variable. The errors in logistic regression follow the logistic function, while the
errors in probit regression follow the normal distribution. This leads to the “tipping” behavior
of emergent binary categories from a continuous scale. Both methods depend on a logarithmic
link function.

4Indeed, the currently postulated processing model assumes that the threshold for this
dichotomization is dynamic, adapting to contextual demands.

5To our knowledge, no psycholinguistic study has utilized probit regression. However,
logistic regression, which is generally better known, and its mixed-effect extension have been
proposed as a more appropriate way to analyze categorical responses, cf. (Jaeger 2008) and
others.

6The number refers to the test subject, while the a refers to the task (active question,
i.e. name the actor). Other possible codes are p (passive question, i.e. name the undergoer)
and b (both types of questions randomly mixed).
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Figure 4: Individual Actor Space
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Reaction Time The reaction time model shows the same general trend in the
magnitude of the various estimates9 but much higher variance. This variance
leads to poor t-values. Index has a very small effect here – roughly 2ms reduction
in reaction time for each successive item. This reflects a “training effect”, where
the test subject adapts to the experimental conditions and task. Although this
effect is statistically highly significant, the magnitude is quite small.

The high degree of variance in the reaction time (related to the complexity of
the task) and the limited power of such a small experiment leads to promising
yet not reliable results. Training has a significant effect on test subject ability:
a roughly 400ms reduction over the course of the experiment. Over a larger
experiment, we expect that this effect would reach some natural asymptote as
the test subjects become comfortable with the task and that the accompanying
reduction in the variance would lead to larger t-values.

More research is required in order to investigate how best to integrate reaction
time into the parameter estimation.

Comparison to Previous Work

Df AIC BIC logLik
model.apriori 11 395190 395291 -197584
model.emp 11 395223 395324 -197600
model.pooled 11 395252 395352 -197615

Table 4: Comparison of sdiff performance for a priori weights, weights from
sample01a, and all samples. Models fitted to the EEG data in the N400 window
(Alday et al, 2014).

Using the model estimates collected here, it is possible to compare empiri-
cal weights with the a priori estimates presented in Alday, Schlesewsky, and
Bornkessel-Schlesewsky (2014). More precisely, the weight of a given feature is
given by eβ , where β is the coefficient in the probit model. The exponentiation is
necessary because the probit link function is logarithmic. We can also compute a
mixed effects model over the four subjects tested thus far and extract the fixed-
effect relevant coefficient for the pooled weightings. A comparison of the apriori,
single-subject empirical and pooled models of the best distinctness measure
(sdiff, Alday, Schlesewsky, and Bornkessel-Schlesewsky 2014) is presented in
Table 4. Critically, although two different sets of test subjects were used, the
models are all extremely similar in their fit. The t-score for the distinctness
metric was also similar.

9The reversed sign reflects that increased prominence aligns better with general expectations
(actor preference) and thus reduced reaction times.
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Better Data through Openness

An exciting aspect of estimating model parameters based on individual per-
formance in a quick experiment is the possibility of making science accessible,
available and touchable to everyone, which should open the door for exploration
of areas where data acquisition has been difficult, such as the study of indi-
vidual differences and less-researched languages. This depends on the software
and underlying methodology being freely accessible, free to modify and free to
distribute. All software used here is licensed under the GNU Public License
(GPL). For the portions we wrote, we encourage you to fork us on Bitbucket:
bug fixes and improvements are of course welcome, but example stimuli for
different languages, sample data and alternative analyses would contribute far
more towards our and the broader community’s understanding of language.

Future Plans

Our own future plans for the software include a more integrated tool chain.
Currently, the user has to install several programs (Python + several extensions,
OpenSesame, R), but it should be possible to move core features into the
OpenSesame experiment. The user would perhaps no longer have access to
more advanced features (for which she would need some programming know-how
anyway), but a core set of features for spontaneously testing a single-subject
would fit into a single OpenSesame experiment file pool. As part of this, we are
currently implementing a framework for combining the estimated parameters
with an existing computational framework and providing an animation of how
sentence processing in an individual works. All models are wrong, including
ours, but some are useful (Box and Draper 1987) and the most useful are the
ones everybody can see and tinker with.

More Data, Less Uncertainty

The framework presented here shows that parameter estimation is possible
even with few trials from a single subject. With minimal equipment and quick
parameter estimation, it is now possible to gather data from more languages, and
we have another tool to remove our Indo-European blinders. At the other end of
the spectrum, model fit may be poorer with a few test subjects than with a single
subject, if the variance between subjects is large. This would be an interesting
result within itself, indicating the size of the strategy space for a single language
(population). More data from more languages and more individuals will help
us to better understand both the cognitive mechanisms underlying language in
general and the speaker-level adaption to a particular language.
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5. Natural Stories: New Perspectives
on ERPs and the Role of Frequency

Science is the belief in the ignorance of
experts.

Richard Feynman

One key advantage of prominence-based processing compared to grammatical-relation-
based processing is the parsimonious account of the role of contextual (including extralin-
guistic) information. The domain of syntactic subjects is inherently the sentence level,1 thus
requiring a separate mechanism for integrating contextual-pragmatic information into
language processing, while the domain of the actor role is at the level of the “plot” or event.
We therefore expect that the actor heuristic will particularly shine in a larger and less
constrained context. However, the high temporal resolution of EEG, or more precisely, the
resulting extreme temporal sensitivity, becomes problematic in such naturalistic settings,
and conventional wisdom states that it is not possible to extract meaningful results in such
a setting. In Alday, Schlesewsky, and Bornkessel-Schlesewsky (submitted), we demonstrate
the feasibility of analyzing EEG data from an experiment with naturalistic stimuli using
the N400 as a test case and reported results compatible with previous findings from more
controlled experimental conditions.

5.1. Brief Summary of Methods and Results

5.1.1. Methods

EEG data were collected from 57 test subjects, five of which were excluded from the final
analysis, yielding 52 test subjects. Participants answered a short questionnaire after the ex-
periment to control for attentiveness; no additional task was performed. The experimental

1This is a slight oversimplification, but it fits in well with traditional notions of “subject” used in parsing, which
are based on formal syntax and grammatical relations (i.e. the strategy we have been comparing the actor
strategy to). In particular, it is not coincidence that the central theme of a discussion is called the “subject of
conversation” and that the focal point of a research area is called its “subject (matter)”. Syntactic subjects
do function as a cataphoric discourse device, indicating topicality, even in non topic-marking languages (cf.
Bornkessel-Schlesewsky and Schlesewsky 2014). A clear example of this is the shift in focus from John hit
Mary to Mary was hit by John — although the underlying physical-event semantics are arguably identical, the
pragmatic usage is not.
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stimulus was auditorily presented using a recording from Whitney et al. (2009) and consisted
of a 23 minute story adapted from an out of copyright short story.

The EEG data were subsequently cleaned of electrical noise and artifacts via sine-wave re-
moval and ICA (Winkler, Haufe, and Tangermann 2011) and high-pass filtered at 0.3 Hz. The
single-trial mean amplitude in the time window was extracted from 1682 epochs per sub-
ject, time locked to the start of content words. For this exploratory study, analyses were
restricted to the time window 300-500ms post onset, a typical window for the N400, because
the N400 is one of the most extensively studied language related components and has proven
to be a very robust effect (cf. Kutas and Federmeier 2011). Nonetheless, the techniques used
here are quite general and should apply equally well to other ERP effects.

5.1.2. Results

Analysis was performed using linear mixed-effects models and restricted to the centro-
parietal midline electrodes (Cz, CPz and Pz). As an initial proof of concept, models were
calculated for both corpus frequency and relative frequency within the story; only the
relative-frequency model was improved by including ordinal position in the story as a
covariate. Relative frequency with ordinal position yielded a similar fit to corpus frequency.
Both frequency models showed the well-established effect for decreasing N400 amplitude
with increasing frequency.

The Role of Frequency

Based on the similarity between the best models for corpus frequency and relative frequency,
frequency seems to be a dynamic entity. In line with findings that the N400 indexes the fulfill-
ment of expectations (or lack thereof), we suggested that frequency be viewed as a prior in a
Bayesian sense. In particular, corpus frequency reflects an always available, weakly informa-
tive prior, while relative frequency reflects a locally constrained prior. As more information
becomes available, the informativeness of the local prior increases, which is reflected in the
interaction between relative frequency and ordinal position.

Prominence Features

Additionally, in line with previous findings on the N400, effects were found for animacy
(Weckerly and Kutas 1999; Philipp et al. 2008) as well as the interaction of morphology and
position (cf. Frisch and Schlesewsky 2001), which also matches predictions from the eADM
for processing low-prominence referents. Finally, combination models were computed us-
ing the different frequency measures, ordinal position and orthographic length (as a proxy
for stimulus duration) with overall improved model fits but similar results. Interestingly,
the different prominence features interacted differently with the two frequency measures.
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The Nature of the ERP

The replication of results from the literature using a fixed time window in a heterogeneous
context presents a challenge for the usual perspective on the nature of ERP components.
While most theories of the ERP do not explicitly assume that ERPs operate on discrete enti-
ties, traditional strictly controlled experimental environments have yielded homogeneous
data with fairly well-defined waveforms that give the impression of discrete processing
phases. We argue that ERPs instead reflect continuous information processing, whose peak-
like appearance in traditional experiments results from the uneven information flow due to
rapid serial visual presentation or fixed-length auditory stimuli. From this perspective, we
then argue that component latencies reflect not only position within the processing pipeline
but also the time scale upon which they operate. As a specific example, the N200/MMN and
N400 index mismatches, but their particular sensitivity is a reflection of their time scale.
The N200/MMN is sensitive to mismatches perceptible on a very short time scale, such as
physical properties of the stimulus, while the N400 operates on a time scale roughly cor-
responding to single worlds and is thus sensitive to semantic mismatches at the level of
individual words. A similar argument applies to P300 and P600 effects.

Although counterintuitive, this perspective is compatible with existing theories of electro-
physiology. It also fits in well with the recent suggestion within the broader eADM frame-
work that human language comprehension arises from a difference in quantity and not
quality between humans and other primates (Bornkessel-Schlesewsky, Schlesewsky, et al.
in press), as increasing quantity could lead to additional increasingly large temporal scales
and hence more hierarchical complexity.

5.2. Relevance

In this paper, we demonstrated the feasibility of analyzing electrophysiological data elicited
from a more ecologically valid setting than previously thought possible. The compatibility
with existing results has two implications: (1) the proposed method yields valid results and
(2) the rigors of controlled experimental manipulations do not induce a special processing
mode in the brain distinct from “natural”, normal language processing. This opens the doors
to more comprehensive studies of language “at scale”, including the effects of rich, extended
contexts.

Using richer contexts showed a dynamicism for the effect of frequency, which previously
had not been apparent. Additionally the role of prominence features was shown to be mea-
surable in a naturalistic environment, which suggests that previous results were not merely
the result of experimental manipulation. This in turn opens the door for studying promi-
nence features and their interactions with one another, which are postulated to be every
bit as important as their individual effects, in a way not possible using traditional factorial
designs.
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Finally, this manuscript proposes a new perspective on the nature of ERP components,
which, while compatible with existing neurobiological theories of the ERP, contradicts the
usual intuition about the nature of individual components.

5.3. Publication

Peer-Reviewed Article P. M. Alday, M. Schlesewsky, and I. Bornkessel-Schlesewsky
(submitted). “Electrophysiology Reveals the Neural Dynamics of Naturalistic Auditory
Language Processing: Event-Related Potentials Reflect Continuous Model Updates”.
In: Journal of Neuroscience

Conferences P. M. Alday, A. Nagels, et al. (2011). Actor Identification in Natural Stories: Qual-
itative Distinctions in the Neural Bases of Actor-related Features. Talk presented at the Neu-
robiology of Language Conference. Annapolis

P. M. Alday, J. Sassenhagen, and I. Bornkessel-Schlesewsky (2014b). Tracking the Emer-
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Abstract1

Recent advances in statistical computing have made it possible to use experimental designs beyond2

traditional factorial manipulations, thus allowing investigations into the neurobiology of cognition to3

employ more naturalistic and ecologically valid designs. Using mixed efects models for epoch-based4

regression, we demonstrate the feasibility of examining event-related potentials (ERPs) to study the5

neural dynamics of auditory language processing in a naturalistic setting. We replicated previous indings6

from the literature as a proof of concept, despite the large variability between trials during naturalistic7

stimulation. This suggests a new perspective on ERPs, namely as a continuous modulation relecting8

continuous model updates (cf. Friston, 2005) instead of a series of discrete and essentially sequential9

processes.10

2
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Introduction11

In real-life situations, the human brain is routinely confronted with complex, continuous and multimodal12

sensory input. Such natural stimulation difers strikingly from traditional laboratory settings, in which test13

subjects are presented with controlled, impoverished and often isolated stimuli (e.g. individual pictures or14

words) and often perform artiicial tasks. Accordingly, cognitive neuroscience has seen an increasing trend15

towards more naturalistic experimental paradigms (Hasson and Honey, 2012), in which complex, dynamic16

stimuli (e.g. movies, natural stories) are presented without an explicit task (e.g. Hasson et al., 2004, 2008;17

Skipper et al., 2009; Whitney et al., 2009; Lerner et al., 2011; Brennan et al., 2012; Conroy et al., 2013;18

Hanke et al., 2014).19

In spite of being uncontrolled, naturalistic stimuli have been shown to engender distinctive and reliable20

patterns of brain activity (Hasson et al., 2010). However, they also pose unique challenges with respect to21

data analysis (e.g. Hasson and Honey, 2012 cf. also the 2014 Real-life neural processing contest, in which22

researchers were invited to develop novel analysis techniques for brain imaging data obtained using complex,23

naturalistic stimulation). To date, the discussion of these challenges has focused primarily on neuroimaging24

data and, in the majority of cases, on visual stimulation. Naturalistic stimuli in the auditory modality, by25

contrast, give rise to an additional and unique set of problems, particularly when examined using techniques26

with a high temporal resolution such as Electroencephalography (EEG) or Magnetoencephalography (MEG).27

Consider the case of language processing: in contrast to typical, controlled laboratory stimuli, a natural28

story or dialogue contains words that vary vastly in length, a stimulus property to which EEG and MEG29

are particularly sensitive because of their superb temporal resolution. The characteristic unfolding over30

time of auditory stimuli is already evident when evoked electrophysiological responses are compared in more31

traditional, controlled studies – the endogenous components show increased latency and a broader temporal32

distribution (see for example Wolf et al., 2008, where the same study was carried out in the auditory33

and visual modalities). EEG and MEG studies with naturalistic stimuli consequently tend to use the less34

naturalistic visual modality (segmented, rapid-serial visual presentation, e.g. Frank et al. (2015); or natural35

reading combined with eye-tracking, e.g. Kretzschmar et al. (2013); Hutzler et al. (2007)).36

Given current data analysis techniques, these distinctive properties of the auditory modality impose severe37

limitations on our ability to conduct and interpret naturalistic auditory experiments, particularly when38

seeking to address questions related to time course information in the range of tens – or even hundreds –39

of milliseconds. Here, we present a new analysis technique that addresses this problem using linear mixed40

efects modeling. We further provide an initial demonstration of the feasibility of this approach for studying41

3
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auditorily presented naturalistic stimuli using electrophysiology.42

Materials and methods43

Participants44

Fifty-seven right-handed, monolingually raised, German native speakers with normal hearing, mostly stu-45

dents at the Universities of Marburg and of Mainz participated in the present study after giving written46

informed consent. Three subjects were eliminated due to technical issues, one for psychotropic medication,47

and one for excessive yawning, leaving a total of 52 subjects (mean age 24.2, std.dev 2.55; 32 women) for48

the inal analysis.49

Experimental stimulus and procedure50

Participants listened passively to a story roughly 23 minutes in length while looking at a ixation star. The51

story recording, a slightly modiied version of the German novella “Der Kuli Klimgun” by Max Dauthendey52

read by a trained male native speaker of German, was previously used in an fMRI study by Whitney et53

al. (2009). Subjects were instructed to blink as little as possible, but that it was better to blink than to54

tense up from discomfort. After the auditory presentation, test subjects illed out a short comprehension55

questionnaire to control for attentiveness.56

EEG recording and preprocessing57

EEG data was recorded from 27 Ag/AgCl electrodes ixed in an elastic cap (Easycap GmbH, Herrsching,58

Germany) using a BrainAmp ampliier (Brain Products GmbH, Gilching, Germany). Recordings were sam-59

pled at 500 Hz, referenced to the left mastoid and re-referenced to linked mastoids oline. Using sine-wave60

itting, the EEG data were irst cleaned of line noise, and then automatically cleaned of artifacts using ICA61

(Winkler et al., 2011). The ICA decomposition was performed via Adaptive-Mixture ICA on data high-pass62

iltered at 1 Hz and downsampled to 100Hz (Palmer et al., 2007) and backprojected onto the original data63

high-pass iltered at 0.1 Hz. Subsequently, the original data were high-pass iltered at 0.3 Hz and 168264

segments extracted per test subject, time locked to the onset of content words. This ilter was chosen to65

remove slow signal drifts as traditional baselining makes little sense in the heterogeneous environment of66
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naturalistic stimuli (cf. Frank et al., 2015, who also found that a heavier ilter helped to remove correlation67

between the pre-stimulus and component time windows).68

Data analysis69

For this initial exploratory study, we focus on the N400 event-related potential (ERP), a negative potential70

delection with a centro-parietal maximum and a peak latency of approximately 400 ms, but the methodology71

should apply to other ERP components as well.72

The N400 is well suited to the purposes of the present study, since it is highly robust and possibly the73

most researched ERP component in the neurobiology of language (see Kutas and Federmeier, 2011, for74

a recent review). Although the exact neurocognitive mechanism(s) that the N400 indexes are still under75

debate, it can be broadly described as being sensitive to manipulations of expectation and its fulillment (cf.76

Kutas and Federmeier, 2000, 2011; Hagoort, 2007; Lau et al., 2008; Lotze et al., 2011). This can be seen77

most clearly in the sensitivity of the N400 to word frequency, cloze probability and contextual constraint,78

but also to manipulations of more complex linguistic cues such as animacy, word order and morphological79

case and the interaction of these factors (Bornkessel and Schlesewsky, 2006; Bornkessel-Schlesewsky and80

Schlesewsky, 2009). Importantly for the examination of naturalistic stimuli, N400 amplitude is known to81

vary parametrically with modulations of these cues, thus making it well suited to modeling neural activity82

based on continuous predictors and activity luctuations on a trial-by-trial basis (cf. Cummings et al., 2006;83

Roehm et al., 2013; Sassenhagen et al., 2014).84

More recently, researchers have attempted to quantify expectation using measures derived from information85

theory, such as surprisal. These have enjoyed some success as a parsing oracle in computational psycholin-86

guistics (Hale, 2001; Levy, 2008) and have been shown to correlate with N400 amplitude for naturalistic87

stimuli (real sentences taken from an eye-tracking corpus) presented with RSVP (Frank et al., 2015).88

We examined single trial mean amplitude in the time window 300-500ms, a typical time window for the N40089

efect (Kutas and Federmeier, 2011; cf. Frank et al., 2015). To simplify the analysis, both computationally90

and in terms of comprehensibility, only data from the electrodes Cz, CPz, and Pz were used, following the91

centro-parietal distribution of the N400. Data from these electrodes were analyzed using linear mixed efects92

models (Pinheiro and Bates, 2000)93
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Statistical Methods94

Mixed efects models present several advantage over traditional repeated-measures ANOVA for the explo-95

ration presented here. First, they yield quantitative results, estimating the actual diference between con-96

ditions instead of merely the signiicance of the diference. Second, they can easily accommodate both97

quantitative and qualitative independent variables, allowing us to integrate measures such as frequency98

without relying on dichotomization and the associated loss of power (cf. MacCallum et al., 2002). Finally,99

they are better able to accommodate unbalanced designs than traditional ANOVA methods.100

Amajor topic of debate in the application of mixed models to psycho- and neurolinguistic data is the structure101

of the random efects. While Baayen et al. (2008) recommend forward selection of the random-efect structure,102

starting from the minimal intercepts-only structure, Barr et al. (2013) recommend backwards selection from103

the maximal random-efect structure, and Barr (2013) takes this suggestion one step further and suggests104

including all interactions. In practice, Barr et al. (2013)’s suggestion is somewhat problematic as complex105

random efect structures are costly to compute and often fail to converge on real data sets. Moreover, the106

backward selection procedure suggested by Barr et al potentially leads to issues with overparameterization107

(see for example this thread and this comment by Doug Bates, author of the popular lme4 and nlme packages,108

on the mailing list for the R special interest group for mixed models). Another suggestion common to the109

mixed model literature is to follow the random-efect structure that best models the experimental design110

(see for example the GLMM wiki).111

Here, we use a minimal model with a single random-efect term for the intercept of the individual subjects.112

This is equivalent to assuming that all subjects react the same way to each experimental manipulation113

but may have diferent “baseline” activity. This is a plausible assumption for an initial exploration, where114

we focus less on interindividual variation and instead focus on the feasibility of measuring population-level115

efects across subjects. Furthermore, this is not in violation of Barr et al. (2013)’s advice, which is explicitly116

directed at conirmative studies. The reduced random-efect structure reduces the number of parameters117

to estimate, which (1) greatly increases the computational tractability of the exploration at hand and (2)118

allows us to focus the relatively low power of this experimental setup on the parameters of interest.119

We omit a random efect term for “item” as there are no “items” in the traditional psycholinguistic sense120

here. A random efect for “lexeme” is also not appropriate because while some lexemes appear multiple121

times (e.g., “Ali”, the name of the title character), many lexemes appear only once and this would lead to122

overparameterization.123

No parameter for electrode was introduced into the model as this would have reduced overall power and124
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increased computational complexity. The three electrodes used are close enough together that they should125

all have correlated values, which means more data and thus more precise estimates.126

In order to make the models and their its more readily comparable with each other, all models were estimated127

with Maximum Likelihood Estimation (i.e. with REML=FALSE in lme4, cf. Pinheiro and Bates, 2000; Baayen128

et al., 2008). For simpler models, we present the full model summary, including an estimation of the inter-129

subject variance and all estimated coeicients for the ixed efects, but for more complicated models, we130

present Type-II Wald χ2 tests for readability. Type-II Wald tests have a number of problems (see for131

example the discussion here), but even assuming that their results yield an anti-conservative estimate, we132

can use them to get a rough impression of the overall efect structure (cf. Bolker et al., 2009). For groups of133

several similar models, e.g. adding or removing a single term, we generally present a likelihood ratio test.134

For the model summaries, we view |t| > 2 (i.e., the estimate of the coeicient is more than twice as large135

as the error in the estimate) as being indicative of a reliable estimate. We view |t| < 2 as being unreliable136

estimates, which may be an indicator of low power or of a generally trivial efect. (We note that Baayen et137

al. (2008) use |t| > 2 as approximating the 5%-signiicance level.) For the Type-II Wald tests, we use the138

p-values as a rough indication of reliability of the estimate across factor levels, which each receive their own139

coeicient in the model (e.g. a single “morphology” factor in the Wald tests, but two coeicients for the three140

levels: “unambiguous nominative” and “unambiguous accusative”, with the third level “ambiguous” being141

encoded as part of the intercept term.) This will become clearer with an example, and so we begin with a142

well-known modulator of the N400: frequency of a word in the language as a whole.143

Results144

Proof of Concept: Frequency145

In a natural story context, traditional ERP methodology with averaging and grand averaging yields wave-146

forms that appear uninterpretable or even full of artifacts. From the perspective of continuous processing,147

this is not surprising at all. Some information is present before word onset via context (e.g. modiiers before148

a noun), which leads to ERPs that seem to show an efect very close to or even before zero. Some words are149

longer than others, which leads to a smearing of the traditional component structure, both at a single-trial150

and at the level of averages. These problems are clearly visible in Figure 1, which shows an ERP image151

(Jung et al., 2001) for a single participant for initial accusatives, which are known to be dispreferred to initial152

nominatives (Frisch and Schlesewsky, 2001) and thus should engender an N400 efect. However, a modula-153
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tion of the ERP signal may nonetheless be detectable in the N400 time window, indexing the processing of154

the new information available at the trigger point. As a proof of concept for our method, we irst examine155

the well-established efect of frequency on N400 amplitude (see Kutas and Federmeier, 2011 for a review),156

the results of which are in present in Table 1.157

Corpus Frequency158

The frequency of a word in the language as whole, corpus frequency, is known to correlate with N400159

amplitude and interact with cloze probability (see Kutas and Federmeier, 2011 for a review). Using the160

logarithmic frequency classes from the Leipzig Wortschatz, we can see in Table 1 that corpus frequency has161

a small, but reliable efect (only -0.6 µV per frequency class, but t < −13 in the N400 time window). This162

is exactly what the literature predicts – frequency is not dominant in context-rich environments, but plays163

a distinct role (Dambacher et al., 2006; cf. Kutas and Federmeier, 2011).164

Moreover, corpus frequency is insensitive to context as it represents global and not local information. Adding165

index, i.e. the ordinal position in the story, to the corpus frequency model does not improve it, as shown in166

Table 2. This lack of improvement relects the context insensitivity of corpus frequency, which is a global167

measure not dependent on the story context. (At the sentence level, there is some evidence that ordinal168

position plays modulates the role of frequenc, e.g. Van Petten and Kutas (1990), but the ordinal position169

in the story averages out this modulation across the entire story. Short stimuli are dominated by boundary170

efects but longer naturalistic stimuli are not.) This is also visible in Figure 2, in which the regression lines171

have roughly the same slope regardless of index.172

Relative Frequency173

The relative frequency of a word in a story is also known to correlate with N400 amplitude (cf. Van174

Petten et al., 1991, which found a repetition priming efect for words repeated in natural reading). This175

is seen indirectly in repetition priming (which is essentially a minimal, binary context) and information-176

theoretic surprisal, which can be seen as a reinement of relative frequency. In contrast to corpus frequency,177

incorporating index does improve the relative frequency model (Table 3). The improved model is presented178

in Table 4; relative frequency was divided into classes using the same algorithm as for corpus frequency, but179

applied exclusively to the smaller “corpus” of the story. Interestingly, the interaction of index with relative180

frequency has a smaller estimated value than the main efect for index, but a larger t-value, indicating a181

more reliable estimate and a clearer efect. This interaction is visible in the clearly difering slopes in Figure182
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3. The main efect for relative frequency has both a larger estimate and t-value than the terms with index.183

Frequency is Dynamic184

Somewhat surprisingly, the model for relative frequency with index provides nearly as good a it as the185

model for corpus frequency (Table 5). Adopting a Bayesian perspective on the role of prior information186

(here: frequency), this result is less puzzling. From a Bayesian perspective, corpus frequency is a nearly187

universally applicable but weakly informative prior on the word, while the relative frequency is (part of) a188

local prior on the word. This is clearly seen in the interaction with position in the story – corpus frequency’s189

informativeness does not improve over the course of the story, but relative frequency’s does as the probability190

model it represents is asymptotically approached. Thus, (corpus) frequency makes a small but measurable191

contribution in a rich context, while it tends to dominate in more restricted contexts. Relative frequency192

becomes a more accurate model of the world, i.e. a more informative prior, as the length of the context193

increases. Corpus frequency is thus in some sense an approximation of the relative frequency calculated over194

the context of an average speaker’s lifetime of language input.195

In this sense, we can say that frequency is dynamic and not a static, inherent property of a word. In196

the absence of local context, frequency is calculated according to the most general context available – the197

sum total of language input. With increasing local context, a narrower context for calculating frequency is198

determined, increasingly cut down from the global language input (which now of course includes the new199

local context). From this perspective, it is less surprising that a model incorporating the development of200

relative frequency over time yields results that are nearly as good as a model based on the well-established201

efect of corpus frequency. Frequency is an approximation for expectation, and a larger context leads to202

expectation that is better predicted from that context than from general trends.203

The present approach: examining complex inluences within a ixed epoch204

The results for frequency in both its forms are not surprising in the sense that they match previous results.205

Nonetheless, it is perhaps somewhat surprising that it is possible to extract the efects in such a heterogeneous206

and noisy environment. Part of the problem with the type of presentation in Figure 1 is that the inluences207

on N400 (and ERP in general) amplitude are many, including frequency, and this three dimensional repre-208

sentation (time on the x-axis, trial number sorted by orthographic length on the y-axis, and amplitude as209

color, or equivalently, on the z-axis) shows only some of them. Some hint of this complexity is visible in210

the trends between trials – the limited coherence of vertical stripes across trials relects the sorting accord-211
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ing to orthographic length. Unsorted, the stripes are greatly diminished. Similarly, other patterns emerge212

when we (simultaneously) sort by other variables, but our ability to represent more dimensions graphically213

is restricted.214

A further complication is the inclusion of continuous predictors. Traditional graphical displays – and sta-215

tistical techniques – are best suited for categorical predictors, which we can encode with diferent colors,216

line types or even subplots. With continuous predictors, this is more diicult (and indeed the reason why217

we did not include an ERP image of frequency to accompany the model sanity checks). This distorts our218

perspective as to the true “shape” of ERPs. The sharply deined ERP curves that are familiar from tradi-219

tional experiments are simply level curves in a multidimensional space, much like lines of equal height on220

a topographic map. However, even a mountain that appears as a series of coherent rings on a topographic221

map will tend to be jagged and craggy when viewed in its full multidimensional splendor instead of a series222

of averages on a two-dimensional piece of paper.223

In the graphical presentation of the ERP, we have held only two (morphology and position) of many inluences224

constant and sorted along another dimension (stimulus length), but ran out of visual dimensions to present225

other inluences graphically. However, the mixed-efects models are capable of incorporating many dimensions226

simultaneously, including continuous dimensions like frequency, which have been traditionally diicult to227

present as an ERP without resorting to methods like dichotomization (see Smith and Kutas, 2014a, 2014b228

for a similar but complementary approach using continuous-time regression). In other words, traditional229

graphical representations of ERPs have diiculty displaying more complex efects and interactions.230

One approach is to pick a ixed time-window, freeing up the horizontal axis for something other than time,231

which its well with the epoch-based regression approach used here. Displays of the regression at a particular232

time point are also level curves at a particular time and provide clarity about the shape efect at a particular233

time, but are less useful for exploring the time course of the ERP. Nonetheless, this perspective allows us234

to study the modulation of the ERP in a given epoch via more complex inluences, such as those that arise235

in a natural story context. The implications of this perspective – complex inluences in a ixed epoch – are236

discussed more fully below.237

Animacy, Case Marking and Word Order238

In addition to frequency as a relatively basic, word-level property, we examined the efects of several higher-239

level cues to sentence interpretation – animacy, case marking and word order – in order to determine whether240

our methodology is also suited to examining neural activity related to the interpretation of linguistically241
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expressed events. Psycholinguistic studies using behavioral methods have demonstrated that such cues242

play an important role in determining real-time sentence interpretation (e.g. with respect to the role of a243

participant in the event being described; a human is a more likely event instigator, as is an entity that is244

mentioned early rather than late in a sentence etc.) – and, hence, expectations about upcoming parts of the245

stimulus (e.g. Bates et al., 1982; MacWhinney et al., 1984). Electrophysiological evidence has added support246

to this claim, with an increased N400 amplitude for dispreferred yet grammatically correct constructions (for247

animacy efects in English, Chinese and Tamil Weckerly and Kutas, 1999; Bornkessel et al., 2003; e.g. for248

accusative-initial sentences in several languages including German, Swedish and Japanese, Schlesewsky et al.,249

2003; Philipp et al., 2008; Wolf et al., 2008; Bourguignon et al., 2012; Hörberg et al., 2013; Muralikrishnan250

et al., in press). As a further exploration, we examine the feasibility of measuring these efects in the natural251

story context.252

For the following analyses, we further restricted the trials to full noun phrases occurring as main arguments253

of verbs that were in the nominative or accusative case (roughly “subjects” and “objects”, not including254

indirect objects). This matches previous work most closely and avoids more diicult cases where the theory255

is not quite as developed (i.e., what is the role of animacy in prepositional phrases?). In the following, ‘+’256

indicates preferred (i.e., animate, initial position, or unambiguous nominative) and ‘-’ indicates dispreferred257

(i.e., inanimate, non-initial position, unambiguous accusative). For morphology, there is an additional neutral258

classiication for ambiguous case marking.259

We begin with a model for these linguistic cues and their interactions with each other, shown in Table 6. For260

comparison, we include the Wald tests for this simple model in Table 7. From the model summary, we can261

see a main efect for animacy: animate/preferred is more positive, or in other words, there is a negativity for262

inanimate/dispreferred. Similarly, we see main efects for both types both types of unambiguous case marking,263

with a negativity for unambiguous nominative / preferred and a positivity for unambiguous accusative264

/ dispreferred, which at irst seems to contradict previous evidence that dispreferred cue forms elicit a265

negativity. This somewhat surprising result is quickly explained by the interaction between morphology in266

position, which shows a negativity for the dispreferred initial-accusative word order. The “missing” main267

efect for (ordinal) position is not surprising for German data, where case and animacy drive the interpretation268

(cf. MacWhinney et al., 1984) – the role of position is driven more by its interactions than its main efect.269

The Wald tests show similar results with the curious exception that position is signiicant. This is likely270

a result of the strength of position’s interaction with morphology; position is important for the model, the271

interactions “absorb” some of the efect. However, the Wald tests are marginal tests, they test the efect of272

completely removing a given term – and thus all of its interactions – from the model. With this in mind,273
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it becomes clear that position achieves signiicance via its interactions. Since it is problematic to interpret274

main efects in the presence of interactions anyway, this is not a large problem.275

Index and Corpus Frequency: Covariates, not confounds276

We also considered more extensive models with the covariates index and corpus frequency. Table 8 shows277

the results for the model comparison: including index and corpus frequency improves the model it. The278

Wald tests for this more extensive model are shown in Table 9.279

In the full model, we ind main efects for index, corpus frequency, morphology and position. There is280

no longer an efect for animacy. This can be explained by the reliable correlation between animacy and281

frequency (in this story, Kendall’s τ = −0.24, p =< 0.001 ), and so the variance explained by animacy is282

absorbed into the frequency term. The interaction between morphology and position is again present. Both283

morphology and position interact with position individually and in a three-way interaction. There is also284

a three-way interaction between the linguistic cues (Figure 4). Moreover, morphology and position have285

a three-way interaction with corpus frequency (Figure 5). Additionally, there are number of higher level286

interactions between morphology or position, but we avoid interpreting these further than to note that they287

are compatible with results in the literature.288

Word Length289

Due to convergence issues, it was not possible to create a maximum model including orthographic length,290

index, corpus frequency, and all the linguistic cues, but the model with corpus frequency and orthographic291

length as covariates for the prominence features shows a similar set of efects (Table 10). This again serves292

as a validity check that the efects for the linguistic cues are not merely the result of confounds with other293

properties of the stimulus.294

Frequency is Dynamic, Redux295

We can also examine the interplay between linguistic cues and the two types of frequency in a single model,296

shown in Table 11. Due to convergence issues, it was not possible to include index or orthographic length in297

this model, but nonetheless several interesting patterns emerge.298

There are main efects for both types of frequency as well as morphology; additionally corpus and relative299

frequency interact with each other. The interaction between morphology and position is again present as well300
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as an interaction between animacy and morphology and a three-way interaction between all three features.301

Interestingly, there appears to be a division in the interactions between linguistic cues and frequency type.302

Corpus frequency interacts with position, morphology, and with both in a three-way interaction, while303

relative frequency interacts with animacy and with animacy and morphology and with morphology and304

position in three-way interactions. There are also higher-order interactions including both frequency types305

and the prominence features.306

Discussion307

We have presented a new approach to analyzing electrophysiological data collected in response to a natural-308

istic auditory stimulus (a natural story). Strikingly, the current results mirror a number of well-established309

indings from traditional, highly controlled studies. This is somewhat surprising given the large amount of310

jitter in naturalistic stimuli. The words themselves have diferent lengths and diferent phonological and311

acoustic features; moreover, the phrases have diferent lengths, which are often longer than in traditional312

experiments. This leads to the information carried by the acoustic-phonological signal being more broadly313

and unevenly distributed in time. Yet, we still see clear efects at a ixed latency, which seems to be at314

odds with traditional notions of ERPs as successive, if occasionally overlapping events, relecting various315

(perhaps somewhat parallel) processing stages. In the following, we discuss the implications of our results316

for the interpretation of ERP responses in cognitive neuroscience research – both in a naturalistic auditory317

environment and beyond.318

Implications for Electrophysiological Research in Cognitive Neuroscience: ERP319

Components as Ongoing Processes320

In cognitive neuroscience research, ERPs are often treated as discrete events. From this perspective, individ-321

ual components within the electrophysiological signal (e.g. the N200, N400, P300 and P600 to name just a322

small selection of examples) are interpreted as indexing particular cognitive processes which occur at certain,323

clearly deined times within the overall time course of processing (see e.g. Friederici, 2011, for a recent324

review in the language domain). However, ERP data recorded in response to naturalistic, auditory language325

challenge this traditional view: in contrast to ERPs in studies employing segmented visual presentation326

(RSVP), components no longer appear as well deined peaks during ongoing auditory stimulation and this327

applies equally to the early exogenous components and to endogenous components.328
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Let us irst consider the exogenous components. The fact that these no longer appear during continuous329

auditory stimulation other than at stimulus onset does not mean that the neurocognitive processes indexed by330

these early components do not take place later in the stimulus, but rather that their form is no longer abrupt331

enough to be visually distinct from other signals in the EEG. The abruptness of stimulus presentation in332

RSVP leads to the abruptness of the components, but continuous stimulation, as in a naturalistic paradigm,333

leads to a continuous modulation of the ERP waveform without the typical peaks of RSVP.334

More precisely, the relevant continuity is not that of the stimulus itself, but rather of the information it335

carries. In RSVP, all external information for a given presentation unit is immediately available, although336

there may be certain latencies involved in processing this information and connecting to other sources of337

information (e.g. binding together multimodal aspects of conceptual knowledge). Thus, as the information338

passes through the processing system, it is available in its entirety and there are sharp increases in neural339

activity corresponding to this lood of new information resulting in sharp peaks. In auditory presentation, the340

amount of external information is transmitted over time (instead of over space), and thus the clear peaks fall341

away as the incoming information percolates continuously through the processing system, yielding smaller342

and temporally less well deined modulations of the ERP. In summary, we propose that the appearance343

of ERP components as small modulations or large peaks is a result of the relative change in the degree344

of information processed. In studies employing visual presentation, time-locking to recognition point (e.g.345

Brink and Hagoort, 2004; Wolf et al., 2008) or employing other similar jitter-controlling measures in auditory346

presentation, ERPs thus relect the state of processing at the climax of (local) information input and fail to347

provide information about incrementality below the level of units such as words.348

This proposal accords well with a predictive coding-based approach to electrophysiological responses, in349

which ERP responses such as the mismatch negativity (MMN) relect both bottom-up adaptation to the350

stimulus and modulation of top-down predictions / adjustment of an internal model (Friston, 2005; Garrido351

et al., 2009). Predictive coding posits that the brain constantly attempts to match sensory input sampled352

from the external world to predictions about the state of the world derived from an internal model, accom-353

plished by means of hierarchically organised forward and inverse models and thought to be implemented354

by hierarchically organised cortical networks. At the lowest level, predictions are matched against sensory355

input and any resulting mismatch (prediction error) is propagated back up the hierarchy via feedforward356

connections (bottom-up adaptation), thereby initiating model updates to minimise prediction errors both at357

the current level and the level below (top-down modulation). From the predictive coding perspective, the358

MMN for deviant stimuli within a series of standards relects an attenuation of the response to the standards359

rather than the generation of an additional mismatch response to the deviants: stimulus repetition leads360
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to model adjustment and the minimization of prediction error for subsequent standard presentations and,361

accordingly, a disappearance of the MMN. An approach along these lines straightforwardly accounts for362

the apparent discrepancy between ERP responses in traditional and naturalistic paradigms. In naturalistic363

settings, continuous stimulation in conjunction with rich contextual information leads to increased model364

update and adaptation, particularly for early sensory aspects of processing, thereby resulting in an attenua-365

tion of ERP components. In other words, the prediction errors and resulting model updates are necessarily366

more pronounced in isolated stimuli than in stimuli encountered in a naturalistic context.367

Continuous Components, Continuous Processing, and Growing Representations368

We propose that this continuous, subsymbolic incrementality can be extended to also account for a broader369

range of stimulus-locked components such as the N200 and N400. Speciically, we suggest that the account370

of the MMN outlined above can be straightforwardly extended to these components in the sense that they371

relect similar stimulus-related processing mechanisms as the MMN (bottom-up adaptation and top-down372

modulation), but at diferent levels of the processing hierarchy (for a somewhat similar view, see Pulvermüller373

et al., 2009). This view is not entirely new: early research concerning the N400 examined the possibility that374

it was a member of the N200 family (Kutas and Federmeier, 2011), much like the long-standing debate about375

whether the P600 belongs to the P300 family (Osterhout et al., 1996; e.g. Gunter et al., 1997; Coulson et376

al., 1998; Sassenhagen et al., 2014). The notion of continuous processing presented here hints at a coherent377

account for such component families, related to their temporal resolution. Following Giraud and Poeppel378

(2012)’s suggestion that the frequency bands in cortical oscillations track the time resolution of hierarchical379

structure in speech processing, we can consider similar ERP components with diferent time-scales as tracking380

the time resolution of diferent stimulus features (Dogil et al., 2004; see also Bornkessel and Schlesewsky,381

2006; Roehm et al., 2007). In this view, the MMN and N200 are similar to the N400 but react to more basic382

features of the stimulus at a lower latency because they relect a similar neural process earlier in the processing383

hierarchy. This leads to a higher temporal resolution but a smaller analysis time window, in accordance with384

the frequency of the oscillation under consideration. This perspective accounts for the apparent paradox of385

MMN efects for manipulations more typical to N400 experiments (cf. “ultrafast processing” in recent studies386

such as Pulvermüller et al., 2001; MacGregor et al., 2012; Shtyrov et al., 2014); or other fast recognitions387

of large-scale stimulus change (e.g. category error in Dikker et al., 2009) as relecting predictions that are388

exceedingly precise and can thus be falsiied quickly. Moreover, similar mechanisms operating at diferent389

scales is compatible with the recent proposal that the mechanisms for human language processing arise from390

a diference from nonhuman primates in quantity rather than quality (Bornkessel-Schlesewsky et al., in press)391
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and is compatible with the account that the neural aspects of early language acquisition follow increasing392

time scales (Friederici, 2005). More complex processing arises as fundamental processing mechanisms are393

repeated and expanded across multiple time scales.394

Conclusion395

We have demonstrated the feasibility of studying the electrophysiology of speech processing with a naturalistic396

stimulus. The replication of well-known efects served as a proof of concept, while initial exploration of the397

more complex interactions possible in a rich context suggested new courses of study. Surprisingly, we found398

robust manipulations at a ixed latency from stimulus onset in spite of the extreme jitter from diferences399

in word and phrase length. This suggests that ERP responses should be viewed as continuous modulations400

and not discrete, yet overlapping waveforms.401
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Figure 1: Single trial and average ERPs from electrode CPz from a single subject for unambiguous accusatives
placed before a nominative. In the upper part, single trials are displayed stacked and sorted from top to
bottom in decreasing orthographic length as a weak proxy for acoustic length, while the lower part displays
the average ERP. Amplitude is given by color in the upper part and by the y-axis in the lower part. The
dashed vertical lines indicate the boundaries of the N400 time window, 300 and 500ms post stimulus onset.
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Figure 4: Interaction of animacy, morphology and position from the full prominence model with index and
frequency class.
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Table 1: Summary of model it for (corpus) frequency class in the time window 300–500ms from stimulus
onset using all content words.

Linear mixed model it by maximum likelihood
AIC BIC logLik deviance

2021954 2021996 -1010973 2021946
Scaled residuals:

Min 1Q Median 3Q Max
-33.06 -0.53 0 0.53 38.43

Random efects:
Groups Name Variance Std.Dev

subj (Intercept) 0.10 0.31
Residual 130.01 11.40

Number of obs: 262392, groups: subj, 52.
Fixed efects:

Estimate Std. Error t value
(Intercept) 0.5 0.075 6.6
freq.class −0.059 0.0045 −13
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Table 2: Comparison of models for (corpus) frequency class with and without index (ordinal position).
Including index does not signiicantly improve model it.

Df AIC BIC logLik deviance χ2 χ2 Df Pr(>χ2)
m.freq 4 2021954 2021995 -1010973 2021946
m.freq.index 6 2021954 2022017 -1010971 2021942 3.74 2 0.154
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Table 3: Comparison of models for relative frequency class with and without index (ordinal position). In-
cluding index signiicantly improves model it.

Df AIC BIC logLik deviance χ2 χ2 Df Pr(>χ2)
m.rel 4 2022083 2022125 -1011037 2022075
m.rel.index 6 2022078 2022141 -1011033 2022066 8.61 2 0.0135
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Table 4: Summary of model it for relative frequency class and index (ordinal position) in the time window
300–500ms from stimulus onset using all content words. The interaction term yields a reliable estime, while
the main efect for index is not quite reliable.

Linear mixed model it by maximum likelihood
AIC BIC logLik deviance

2022079 2022141 -1011033 2022067
Scaled residuals:

Min 1Q Median 3Q Max
-33.07 -0.53 0 0.53 38.4

Random efects:
Groups Name Variance Std.Dev

subj (Intercept) 0.10 0.31
Residual 130.07 11.40

Number of obs: 262392, groups: subj, 52.
Fixed efects:

Estimate Std. Error t value
(Intercept) 0.51 0.17 3

index −0.00031 0.00017 −1.8
rel.freq.class −0.14 0.027 −5.3

index:rel.freq.class 6.7e−05 2.8e−05 2.4
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Table 5: Comparison of best models for corpus and relative frequency. Both models yield similar its.
Df AIC BIC logLik

m.freq 4 2021954 2021995 -1010973
m.rel.index 6 2022078 2022141 -1011033
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Table 6: Summary of model it for linguistic cues (animacy, morphology, linear position) known to elicit
N400-like efects. Dependent variable are single-trial means in the time window 300–500ms from stimulus
onset using only subjects and (direct) objects. ’+’ indicates preferred (i.e., animate, initial position, or
unambiguous nominative) and ’-’ indicates dispreferred (i.e., inanimate, non-initial position, unambiguous
accusative). Morphology also has an additional ’neutral’ level for ambiguous case marking.

Linear mixed model it by maximum likelihood
AIC BIC logLik deviance

530425 530553 -265199 530397
Scaled residuals:

Min 1Q Median 3Q Max
-11.87 -0.54 0 0.54 12.94

Random efects:
Groups Name Variance Std.Dev

subj (Intercept) 0.20 0.44
Residual 125.99 11.22

Number of obs: 69108, groups: subj, 52.
Fixed efects:

Estimate Std. Error t value
(Intercept) −0.59 0.11 −5.4
animacy+ 0.34 0.17 2

morphology- 0.6 0.13 4.6
morphology+ −0.93 0.33 −2.8

position+ 0.17 0.15 1.1
animacy+:morphology- −0.026 0.27 −0.096
animacy+:morphology+ −0.8 0.48 −1.7

animacy+:position+ −0.11 0.23 −0.48
morphology-:position+ −0.2 0.48 −0.41
morphology+:position+ 1.4 0.43 3.4

animacy+:morphology-:position+ −0.65 0.65 −1
animacy+:morphology+:position+ 0.9 0.61 1.5
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Table 7: Type-II Wald tests for the model presented in Table 6
χ2 Df Pr(>χ2)

animacy 6.46 1 0.011 *
morphology 33.69 2 < 0.001 ***

position 9.10 1 0.00255 **
animacy:morphology 0.66 2 0.721

animacy:position 0.11 1 0.74
morphology:position 47.22 2 < 0.001 ***

animacy:morphology:position 3.71 2 0.157
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Table 8: Model comparison for linguistic-cue based models with index and (corpus) frequency
Df AIC BIC logLik deviance χ2 χ2 Df Pr(>χ2)

prom 14 530425 530553 -265198 530397
prom.index 26 530392 530630 -265170 530340 56.43 12 < 0.001

prom.freq.index 50 530281 530738 -265090 530181 159.18 24 < 0.001
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Table 9: Type-II Wald tests for the model combining index, (corpus) frequency and linguistic cues.
χ2 Df Pr(>χ2)

index 6.84 1 0.00892 **
freq.class 55.06 1 < 0.001 ***
animacy 0.01 1 0.919

morphology 39.32 2 < 0.001 ***
position 4.07 1 0.0438 *

index:freq.class 0.80 1 0.371
index:animacy 1.96 1 0.161

freq.class:animacy 1.19 1 0.276
index:morphology 2.75 2 0.253

freq.class:morphology 11.03 2 0.00404 **
animacy:morphology 0.76 2 0.685

index:position 8.85 1 0.00293 **
freq.class:position 19.92 1 < 0.001 ***
animacy:position 0.13 1 0.722

morphology:position 23.41 2 < 0.001 ***
index:freq.class:animacy 0.50 1 0.481

index:freq.class:morphology 5.08 2 0.0787 .
index:animacy:morphology 7.62 2 0.0221 *

freq.class:animacy:morphology 5.48 2 0.0645 .
index:freq.class:position 4.47 1 0.0345 *
index:animacy:position 6.01 1 0.0142 *

freq.class:animacy:position 1.29 1 0.256
index:morphology:position 1.94 2 0.378

freq.class:morphology:position 11.79 2 0.00275 **
animacy:morphology:position 6.93 2 0.0313 *

index:freq.class:animacy:morphology 16.73 2 < 0.001 ***
index:freq.class:animacy:position 2.47 1 0.116

index:freq.class:morphology:position 0.64 2 0.725
index:animacy:morphology:position 0.76 2 0.685

freq.class:animacy:morphology:position 9.50 2 0.00863 **
index:freq.class:animacy:morphology:position 1.15 2 0.563
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Table 10: Type-II Wald tests for the model combining orthographic length, (corpus) frequency and linguistic
cues.

χ2 Df Pr(>χ2)
ortho.len 3.14 1 0.0765 .
freq.class 9.86 1 0.00169 **
animacy 0.17 1 0.68

morphology 44.45 2 < 0.001 ***
position 8.39 1 0.00377 **

ortho.len:freq.class 0.06 1 0.81
ortho.len:animacy 1.49 1 0.222
freq.class:animacy 0.30 1 0.584

ortho.len:morphology 6.04 2 0.0489 *
freq.class:morphology 10.70 2 0.00474 **
animacy:morphology 2.86 2 0.239

ortho.len:position 2.07 1 0.15
freq.class:position 6.03 1 0.0141 *
animacy:position 2.36 1 0.125

morphology:position 39.94 2 < 0.001 ***
ortho.len:freq.class:animacy 15.97 1 < 0.001 ***

ortho.len:freq.class:morphology 6.94 2 0.0311 *
ortho.len:animacy:morphology 4.70 2 0.0951 .
freq.class:animacy:morphology 3.69 2 0.158

ortho.len:freq.class:position 10.39 1 0.00127 **
ortho.len:animacy:position 6.52 1 0.0107 *
freq.class:animacy:position 1.32 1 0.251

ortho.len:morphology:position 5.31 2 0.0702 .
freq.class:morphology:position 2.96 2 0.228
animacy:morphology:position 2.60 2 0.272

ortho.len:freq.class:animacy:morphology 49.04 2 < 0.001 ***
ortho.len:freq.class:animacy:position 34.32 1 < 0.001 ***

ortho.len:freq.class:morphology:position 0.54 2 0.764
ortho.len:animacy:morphology:position 5.94 2 0.0514 .
freq.class:animacy:morphology:position 8.56 2 0.0138 *

ortho.len:freq.class:animacy:morphology:position 8.47 2 0.0145 *
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Table 11: Type-II Wald tests for the model combining linguistic cues with both corpus and relative frequency.
χ2 Df Pr(>χ2)

rel.freq.class 3.86 1 0.0495 *
freq.class 40.65 1 < 0.001 ***
animacy 0.15 1 0.702

morphology 37.05 2 < 0.001 ***
position 1.92 1 0.166

rel.freq.class:freq.class 9.31 1 0.00228 **
rel.freq.class:animacy 10.52 1 0.00118 **

freq.class:animacy 0.00 1 0.998
rel.freq.class:morphology 2.43 2 0.296

freq.class:morphology 19.54 2 < 0.001 ***
animacy:morphology 7.67 2 0.0217 *
rel.freq.class:position 0.26 1 0.607

freq.class:position 10.12 1 0.00146 **
animacy:position 0.37 1 0.541

morphology:position 31.17 2 < 0.001 ***
rel.freq.class:freq.class:animacy 13.27 1 < 0.001 ***

rel.freq.class:freq.class:morphology 13.48 2 0.00118 **
rel.freq.class:animacy:morphology 24.83 2 < 0.001 ***

freq.class:animacy:morphology 4.68 2 0.0965 .
rel.freq.class:freq.class:position 0.16 1 0.688
rel.freq.class:animacy:position 0.03 1 0.864

freq.class:animacy:position 0.39 1 0.534
rel.freq.class:morphology:position 17.97 2 < 0.001 ***

freq.class:morphology:position 10.82 2 0.00447 **
animacy:morphology:position 8.38 2 0.0151 *

rel.freq.class:freq.class:animacy:morphology 13.64 2 0.00109 **
rel.freq.class:freq.class:animacy:position 25.67 1 < 0.001 ***

rel.freq.class:freq.class:morphology:position 2.95 2 0.229
rel.freq.class:animacy:morphology:position 3.85 2 0.146

freq.class:animacy:morphology:position 13.76 2 0.00103 **
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6. The New Old Thing: Memory,
Models, and Prediction

Whereas Newton could say, “If I have
seen a little farther than others, it is
because I have stood on the shoulders
of giants,” I am forced to say, “Today
we stand on each other’s feet.”

Richard Hamming

The results from Chapter 5 suggest a new perspective on the nature of ERP components as
indices of continuous processes modulated by information flow, which goes against tradi-
tional notions of ERPs as successive, if overlapping events (cf. Friederici 2002, 2011). As we
suggested in Alday, Schlesewsky, and Bornkessel-Schlesewsky (submitted), our account is
largely compatible with the notion of predictive coding (Friston 2005, 2009). In the following,
we use this perspective to reformulate a recent suggestion by Bornkessel-Schlesewsky and
Schlesewsky (in press) and thus provide a suggestion of the types of computational problems
(cf. Marr’s levels of description in Chapter 1) indexed by language-related ERP components.

6.1. A Neurocomputational Proposal

Although these suggestions are to a limited extent informed by the neuroanatomic prin-
ciples suggested in recent formulations of the eADM (Bornkessel-Schlesewsky and Schle-
sewsky 2013, in press) and a mathematical formalism believed to be neurobiologically plau-
sible (Friston 2005, 2009), they are formulated in computational and cognitive terms and
should not be taken as having a one-to-one mapping to brain structures. Rather, the main
goal is provide another perspective and thus insight on the types of computations which we
have examined throughout this dissertation.
In the sense of a Lakatosian research programme (see Chapter 1), we suggest as a first pro-
posal the following (semi-)hard core:

6.1.1. Supporting Assumptions and Hypotheses

Hypothesis 1 (Continuity of processing in a cascading architecture). Neurocomputation is a
continuous process. Information is processed as soon as it is available; moreover, processed informa-
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tion is immediately passed along the processing pipeline in a cascade. (cf. Alday, Schlesewsky, and
Bornkessel-Schlesewsky submitted; Bornkessel-Schlesewsky and Schlesewsky 2009)

In other words, neurocomputation is incremental in the most extreme sense. This pro-
posal is similar to the cascading architecture proposed by Bornkessel-Schlesewsky and Schle-
sewsky (2009) and has previously been described as non-strict seriality.

Corollary (Hierarchy-time-scale correspondence). The canonical latency of an ERP component
reflects not only its place in the processing stream but also its temporal resolution and thus the time-
scale of information and level of hierarchical organization it operates upon. (cf. Alday, Schlesewsky,
and Bornkessel-Schlesewsky submitted; Bornkessel-Schlesewsky and Schlesewsky 2013, in press)

For example, the N200 and N400 reflect similar processes but at the time scales associated
with increasingly complex information, e.g. individual phonemes and individual words
(cf. Bornkessel-Schlesewsky and Schlesewsky 2013; Alday, Schlesewsky, and Bornkessel-
Schlesewsky submitted), and a similar proposal has been suggested for the P3b and P600 (cf.
Coulson, King, and Kutas 1998b,a; Sassenhagen, Schlesewsky, and Bornkessel-Schlesewsky
2014).1 This correspondence is not strict, due to the two-way flow of information in the
processing streams (cf. Bornkessel-Schlesewsky and Schlesewsky 2013; see also Friston
2005, and Section 6.1.3, below). Moreover, a single information unit at a particular time
scale may have implications that are first problematic for information processing at larger
time scales.

In Alday, Schlesewsky, and Bornkessel-Schlesewsky (submitted), we suggested that this
correspondence is compatible with recent proposals that the discrete time scales seen
in language processing (e.g. phoneme, prosodic word, prosodic sentence) are deeply tied
to the division of oscillatory rhythms in the brain into discrete bands (cf. Giraud and
Poeppel 2012; Bornkessel-Schlesewsky and Schlesewsky in press; see also Bornkessel and
Schlesewsky 2006, for related considerations on the scale of language processing). As such,
it may be the case that the apparent division of processing into discrete stages as evidenced
by rank-ordering especially for early components, may be an epiphenomenon emerging
from the interaction of these more fundamental aspects of the processing architecture.

1There is one critical difference between the proposal here and that of Coulson, Sassenhagen and their respec-
tive colleagues, namely that we are not suggesting that the P600 is a special instance of the P3 (the so-called
identity hypothesis). Rather, we are claiming that positivities reflect a “family” of computationally similar
yet temporally and hierarchically distinct processes. As such, the P600 is not a delayed P3b, but rather a
distinct component with distinct neural generators yet similar properties. Indeed, the whole notion of com-
ponents is a term of convenience reflecting clusters of emergent phenomena with similar computational and,
as suggested by Coulson, Sassenhagen and their respectives colleagues, underlying neurobiological princi-
ples. Similarly, it is equally problematic to speak of “the” N400, both generally and in light of several stud-
ies demonstrating distinct groups of N400-like components (Roehm et al. 2004; Kretzschmar, Bornkessel-
Schlesewsky, and Schlesewsky 2009; Dröge, Schlesewsky, and Bornkessel-Schlesewsky 2012; Van Petten and
Luka 2012; Knoeferle, Urbach, and Kutas 2014). The difference in nomenclature emphasizes our perspective
that scalp ERP patterns likely reflect a dynamic mixture of neural generators (cf. Bornkessel-Schlesewsky
and Schlesewsky in press).
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6.1.2. Central Proposal

Combining these assumptions with characterizations of the major components from the lit-
erature, we arrive at the following parsimonious account:

Hypothesis 2 (Neurocomputational basis of cognitive ERP components). The endogeneous
ERP components related to language can be broadly divided into two computational categories along
the line of their polarity. Negativities are indicative of neurocomputational processes related to
phenomena which are best termed “model adaptation” or “representation activation”. Positivities
are indicative of neurocomputational processes related to phenomena which in traditional cognitive-
psychological models would be termed “evaluation” or “decision making”. (cf. Bornkessel-Schlesewsky
and Schlesewsky in press; Brouwer, Fitz, and Hoeks 2012)

Predictive Coding

Especially the negativity-related portion of this proposal is perhaps best understood in light
of predictive coding (Friston 2005), and as such, we begin with a very brief summary.

Predictive coding posits that basic neural computation implemented by the brain is an
expectation-maximization approach to an empirical and hierarchical Bayesian model (Fris-
ton 2005). In particular, “the” model is actually a collection of models such that constituent
submodels (in Friston’s account, cortical areas) have directed, i.e. hierarchical, connections
to other models, roughly corresponding to the notion of a partial order.2 This model is
generative and projects its predictions backwards, i.e. from top to bottom, while errors in
predictions are projected forwards, i.e. from bottom to top. At the lowest level, predictions
are compared against sensory input and the resulting error is propagated upwards, which
has a two-fold effect: (1) it generates additional predictions, or equivalently, adapts the
current set of predictions, which are then propagated back to the source of the error,
i.e. the source of the mismatch, and (2) it subserves an additional comparison, which then
generate additional errors, resulting in a cyclic, almost co-recursive series of updates across
the entire model hierarchy.

Following this perspective, Friston and colleagues (Friston 2005; Garrido et al. 2009) explain
the mismatch negativity (MMN; an early ERP component which, amongst other conditions,
arises for “mismatched” tones during unattended listening to a series of matched tones). In

2An ordering in mathematical terms is a relation such as “less than” or “contains”. Formally, we call a relation⊆ on a set � a partial order if for all ֓, ֔ ∈ �, the following hold:

1. (Reflexivity) ռ ⊆ ռ
2. (Antisymmetry) If ռ ⊆ ս and ս ⊆ ռ, then ռ = ս.
3. (Transitivity) If ռ ⊆ ս and ս ⊆ վ, then ռ ⊆ վ.

This corresponds to the usual intuition of operations like “less than [or equal to]”, “contains”, “greater
than [or equal to]”, but does not require that an ordering exist between any two elements. If we add the
restriction that the order is defined for every pair of elements, i.e. ռ ⊆ ս or ս ⊆ ռ for all ֓, ֔ ∈ �, then we
have a total order.
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particular, the MMN reflects the large error for a deviant tone following a period of con-
tinuous model refinement on the standard tones. Thus, the MMN reflects less the absolute
deviance of the mismatched tone and more the contrast to the extremely restricted and
hence extremely predictable standard tones, and as such is perhaps better characterized as
an attenuation of the error signal for the other tones.

In Alday, Schlesewsky, and Bornkessel-Schlesewsky (submitted), we applied these principles
to explain the absence of early perceptual components in auditory studies as well as the
continuous modulation of the ERP in a naturalistic context as a series of “drifts” instead of
a series of “peaks”.

Negativities

Following and extending this predictive-coding perspective, we claim that negativities re-
flect “model adaptation” in the sense of indexing the amount of error in previous predic-
tions, or equivalently, indexing the extent of the mismatch between top-down and bottom-
up influences (cf. Lau, Phillips, and Poeppel 2008; Lotze et al. 2011). Although our account
shares some similarities to the model proposed by Lau, Phillips, and Poeppel (2008), we do
not assume static a priori or symbolic levels, but rather a dynamic, interactive interplay of
subsymbolic influences.

In this sense, we can also say that negativities reflect “representation activation” as we un-
derstand that representations are models. Default representations, e.g. less dynamic entities
such as the semantic field of a word, reflect in the Bayesian account a default, possibly mini-
mally informative prior (cf. “Frequency is Dynamic” in Alday, Schlesewsky, and Bornkessel-
Schlesewsky submitted), which can be dynamically adapted and modified.3 In particular,
activated representations are continuously updated and adjusted to fit the current (stimu-
latory) context.

In this sense, this account is similar to activation-based accounts of working memory (cf.
Jonides et al. 2008),4 and indeed negativities have been shown to correlate with visual work-
ing memory (Vogel and Machizawa 2004; Luck and Vogel 2013). Activation-based accounts
of working memory have also been applied to language processing as skilled retrieval mod-
ulated by cue interference (Lewis and Vasishth 2005; Lewis, Vasishth, and Van Dyke 2006).
However, as Alday, Schlesewsky, and Bornkessel-Schlesewsky (2014) (see Chapter 3) showed,
the lack of feature weighting in such working memory accounts is somewhat problematic.
In the Bayesian predictive coding framework, this can be viewed as not yet properly formu-
lated marginal (conditional) distributions for the priors on individual features.

3This is superficially similar to prototype-based models of semantics, but we note that traditional linguistic
models of such phenomena are not necessarily easily mapped onto a neurocomputational framework.

4Friston (2005) discusses a possible neural mechanism for short and long term memory based on different neu-
rotransmitters and physiological changes, which is largely compatible with Jonides et al. (2008)’s theoretical
synthesis of existing research, but examining this claim and its implications in detail exceeds the bounds of
this dissertation.
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In other words, we can also describe model adaptation as memory access, in that it refers to
the dynamics of making information available for further processing. In language research,
this has been best described as a pattern of spreading activation in the neuropsychological
architecture and is broadly compatible with the dynamical accounts given by Kutas and Fe-
dermeier (2011) and Brouwer, Fitz, and Hoeks (2012). The amplitude of a negativity thus
correlates (subject to all the usual issues concerning component overlap, conductive cancel-
lation, etc.) broadly with the cost of memory access, i.e. the extent to which information
must be activated, or equivalently, to which a model must be updated.

At this point, a metaphor will help present a comparison of these different, yet deeply re-
lated perspectives. We can understand “spreading activation” as being like a stone dropped
in water — the ripples are largest closest to the point of impact but extend potentially in-
definitely with decreasing strength. Moreover, like a stone in water, certain configurations
can result in oscillatory behavior, which can either enhance the original effect (constructive
interference) or decrease it (destructive interference).5 In unweighted feature models, the
body of water is a simple, symmetric reservoir, and so the effect of a single cue (including
interference) propagates in a smooth, symmetric way. In weighted feature models, the body
of water is a lake with an uneven bottom and jagged coast, shaped by evolutionary and de-
velopmental demands, and so the effect of a single cue reflects in a chaotic way with some
stable (attractor) and some unstable (repulsor) configurations.

In summary, the neurocomputational mechanism proposed for negativities can be seen as a
generalization of several current theories related broadly to prediction and representation
activation.

Positivities

As in Chapter 2, we can understand evaluation in a computational sense, i.e. in the sense of
function evaluation, which aligns loosely with evaluation in the sense of ‘value judgment’ be-
cause executing a model reveals aspects about its fit to the data, i.e. reality. Decision making
fits into this scheme because evaluation often leads to action in a broad sense, whether phys-
ical action coordinated by the motor system and realized by the body, or “mental” action in
the sense of “thought”, whether subconscious or conscious. In some sense, positivities turn
models into behavior.

Bornkessel-Schlesewsky and Schlesewsky (in press), building on the work of Sassenhagen
(Sassenhagen 2014; Sassenhagen, Schlesewsky, and Bornkessel-Schlesewsky 2014), provide
a broadly compatible view, namely that positivities reflect a re-orientation towards “moti-
vationally significant events”. Combining our computational perspective with this neuro-
biological one, evaluation could potentially viewed as model re-structuring, in the sense of
forced updates in the predictive-coding framework.6

5It is quite felicitous that “interference” here refers both to the physics of the metaphor and to actual phenom-
ena in working memory research.

6This would also conveniently explain the early positivity found in Lotze et al. (2011): meaningful physical
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This proposal is in line with previous proposals (for the P300, cf. “context updating”,
Donchin 1981; Donchin and Coles 1988; “stimulus evaluation”, Kutas, McCarthy, and
Donchin 1977; “event categorization”, Kok 2001; for the P600, cf. “model representation
composition”, Brouwer, Fitz, and Hoeks 2012; “event-structure updating”, Schumacher
2011, but we note that many of these proposals are not completely compatible in all their
details). Although we assume that decision making exhibits threshold-based behavior
(i.e. an all-or-nothing response upon reaching a certain “tipping point”), positivities are,
like negativities, continuous modulations of the ERP signal. Thresholds can be reached
either by accumulated signal change (i.e. “drift”) or by a forced, sudden update based on
the immediate processing window (cf. O’Connell, Dockree, and Kelly 2012). In general, only
the latter are readily apparent as ERP effects, though O’Connell, Dockree, and Kelly (2012)
have demonstrated a “continuous oddball” design for non-linguistic visual stimuli. In other
words, slow positive drifts may reflect continuous refinements, while peak-like behavior
reflects abrupt re-evaluation associated with e.g. decision making.

At this point, an additional metaphor may help highlight the difference between the evalu-
ations reflected by positivities compared to the updates reflected by negativities. Evaluation
means in some sense to attempt to answer the question, Is this an appropriate model?,7 while
update means changing the current model.

Hierarchical regression modeling provides a convenient metaphor. Negativities correspond
to the (group) variance or error terms (random effects), while positivities correspond to the
“big picture” of a given model, i.e. whether the choice of ecological predictors (fixed effects)
and dependent variable (target) is appropriate.

6.1.3. Implications

In the following, we present in brief a few possible implications of this initial proposal. In
particular, the proposed architecture strongly suggests the following corollaries:

Corollary (Prediction is pre-activation). Prediction-based processes in processing are the result
of spreading activation from a prior stimulus and the resulting processing. Equivalently, spreading
activation reflects model updates in a predictive coding sense. (cf. Friston 2005)

Corollary (Neurocomputational implementation of “top-down” vs. “bottom-up” process-
ing). Top-down influences reflect back propagation, while bottom-up influences reflect forward prop-
agation of activation along the processing stream. (cf. Friston 2005)

changes are informative enough to force model restructuring, which is reflected in an early positivity. This
restructuring subsequently decreases prediction error, and thus modulates the N400 amplitude.

7This also explains the absence of positivity effects in non-binary contexts (Bornkessel-Schlesewsky, Kretzsch-
mar, et al. 2011). Because there is no immediate, clean answer, the positivity only appears as a small modu-
lation the ERP signal and not as a classical, peaky components (see above and Chapter 5).
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Although specific predictions are often seen as distinct from spreading activation in working-
memory accounts, this is not necessary in our view of spreading activation. If we consider
the metaphor of a stone dropped into water (see Section 6.1.2, above), then we can arrive
at strong, focal activation by an appropriately constrained initial configuration, where the
ripples of activation are shaped and guided by environmental factors. In particular, predic-
tions that are ecologically salient, such as those required by the task, are stronger and longer
lasting because the task creates a positive feedback loop.

Corollary (Mismatches are an epiphenomenon). Mismatch-related phenomena are simply the
result of insufficient pre-activation, i.e. a failed prediction. (cf. Friston 2005)

These corollaries are largely direct implications of Friston (2005)’s account and our appli-
cation of it here, where predictive coding permeates the entire processing pipeline. These
implications are also compatible with recent surprisal-based accounts of the N400 (Frank
et al. 2015), suggesting that mathematical information theory may provide the tools needed
to better quantify this proposal. Indeed, Friston (Friston 2005, 2009; Friston and Kiebel 2009)
uses free energy as a neurobiologically plausible mathematical-physical formalism,8 and free
energy is a function of entropy.

6.2. Divergence from Existing Theories

The ideas presented here are not new, as we have emphasized above. In particular, much
of the work conducted here was done in parallel to work by Sassenhagen, and so it is worth
briefly emphasizing one key difference. In particular, Sassenhagen (2014, p. 196) suggested
that there is a basic biphasic pattern consisting of a negativity followed by a positivity,
and, in particular, that negativities represent “incongruences between multiple unattended
streams” and positivities the “transitioning of the cortex to an appropriate state following
the evaluation of the incongruent event”.

Our theory differs from this latter proposal in its gradedness. Neurocomputation at the level
revealed by EEG is not all or nothing. In the case of negativities, there is always an incongru-
ency,9 albeit often very small, because every model has some level of error (cf. Friston 2005).
Positivities indeed reflect the ongoing evaluation of the stimulus, congruent or not. The
sharp difference and peaky nature of ERP components observed in experiments is a result
of experimental manipulation and discrete nature of stimulus presentation in traditional
designs (cf. Alday, Schlesewsky, and Bornkessel-Schlesewsky submitted). Compared to a
congruent stimulus, an incongruent stimulus does impose a greater computational demand,

8Free energy in thermodynamics is the energy available in physical system to do work. There are several formu-
lations of this principle in the physical science with different restrictions (Gibbs for uniform temperature
and pressure, Helhomltz for constant temperature and volume, etc.), but much like entropy, free energy
also has a statistical or information-theoretic interpretation, namely as a lower bound on “the surprise from
sampling some data, given a generative model” (Friston 2009).

9Even Kutas and Hillyard (1980) found an N400 for all words, but it was only an effect, in the sense of differing
between conditions, for certain contrasts.
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which is clearly seen in experimental manipulations, while the ongoing low-level positivities
for continuous evaluation are absorbed into the background. In this sense, Sassenhagen’s
statements are true if we restrict them to experimental effects rather than components.

6.3. Relationship to Previous Computational Work on
the Actor Heuristic

In light of these considerations, we can consider what this theory means for the central topic
of this dissertation, the actor heuristic.
In particular, ideal actors tend to elicit reduced N400s compared to poor actors (increased
N400 amplitude for object-initial constructions, Frisch and Schlesewsky 2001; increased
N400 for inanimates, Weckerly and Kutas 1999, etc.). One possibility is a purely frequency-
based account (cf. frequency as a prior, Alday, Schlesewsky, and Bornkessel-Schlesewsky
in press) — animates are more frequent than inanimates, initial nominatives are more
common than initial accusatives — but it is possible to dissociate these frequency effects
(Bornkessel, Schlesewsky, and Friederici 2002). Moreover, this account does not answer
the why, but only pushes it down a level — why are these configurations more common?
The actor heuristic grounds itself in environmental demands and thus provides a more
satisfying answer to the “why” part, but how does that influence the amplitude of the N400?
The actor, as an essential category in language processing, is a pre-activated or potentially
even default state (see also “default representation” under Negativities, above). Forcing an
argument away from actorhood takes energy (cf. attractor basin in Chapter 3, and above).
Thus prominence tends to correlate inversely with markedness in a linguistic sense.
Positivites are somewhat more complicated. For less frequent or dispreferred constructions
that are nonetheless well-formed, they could simply reflect the necessary model changes,
i.e. re-orientation, necessary to accomodate unusual input. Indeed, this matches well with
the idea that positivities also correlate with attention as part of behavioral re-orientation
and e.g. non-canonical word orders are often used to draw attention to unusual circum-
stances. “Erroneous” input (both syntactic and semantic, see below) is also equally demand-
ing of attention and thus also elicits a late positivity.
In terms of the parsing work from Chapter 2, we expect N400 amplitude to correlate with
configurations where the parser shows reduced accuracy across trials, particularly in arc-
direction, because the increased competition reflects a less clear ordering of the arguments.
Late positivities should be reflected in “double-attachment” errors, i.e. errors where the
parser generates two actor or two undergoer attachments and fails to generate the other
attachment. This follows from two major findings concerning late positivities. For “syntac-
tic” errors, which will obviously mislead the parser and from which even humans may have
trouble escaping, we can expect attachment errors as a direct result of the ill-formedness,
i.e. lack of a canonical tree representation. In severe cases, this may be reflected by dangling
elements being coerced into tree form by an attachment to the ROOT node. For “semantic”
errors, such as semantic-reversal anomalies (e.g., The ham ate Steve, for a review, see Brouwer,
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Fitz, and Hoeks 2012; but N.B. Tune et al. 2014), the parser lacks the necessary “evaluation”
or “re-orientation” mechanisms to correct a previous mistake and is forced to cut the Gor-
dian knot by a double attachment. The proposed correspondence, however, is very prelim-
inary and has not been explicitly tested, and assumes more direct mapping between parser
behavior and electrophysiology than we assumed in Chapter 2.

6.4. Review and Outlook

In this chapter, we outlined a parsimonious neurocomputational account of many ERP com-
ponents and showed that it subsumes many previous models from the literature. In par-
ticular, we claim that there are two large component groups whose differing polarity is in-
dicative of distinct computational operations. This proposal answers many long standing
debates related to the electrophysiology of language, often by showing them to be moot
or ill-formed (e.g., Does the P600 belong to the P300 family? Does the N400 belong to the
N200 family? Which neurocognitive process does the N400 index?), but does not address
questions regarding the underlying neurobiological implementation in neuroanatomy and
-physiology. Further research should focus on supplying the missing neuroanatomical and
even neurophysiological details.
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Da stehe ich nun, ich armer Thor!
Und bin so klug als wie zuvor.

Johann Wolfgang von Goethe, Faust

The work presented here unabashedly borrowed tools, methods and perspectives from a
range of fields.

We started with computational linguistics and examined the possibility of using a success-
ful parsing technique to examine the optimality of various heuristics posited for the lan-
guage system (Chapter 2). An initial application of the theory we developed to a real parser
with a restricted training set yielded somewhat disappointing performance and showed a
great sensitivity to certain free parameters (i.e. feature model specification). More research
will be required to determine sensible values for these parameters, which made apparent
the necessity of larger training corpora for future research. Nonetheless, some results were
promising in their human-like performance characteristics, which suggests that this method
may yet have more insights to offer and that the effort required for developing training cor-
pora may be worth the investment.

Using the tools of linear algebra and real analysis, we provided a simple yet rigorous for-
malism for ideas from psycholinguistics and cognitive psychology such as prominence
and distinctness (Chapter 3). We connected these measures to real human EEG data and pro-
vided a quantitative account of the influence of prominence on the EEG signal. Additionally,
we demonstrated the compatibility of this mathematical model with recent suggestions of
attractor-basins as a fundamental processing mechanism.

The development of this mathematical model unfortunately depended on a number of free
parameters, but suggested a way to estimate them. Using regression models, we were able
to estimate parameters even at the single-subject level (Chapter 4). Plugging these estimates
back into the models from Chapter 3 showed the previous results to be tenable and not just
based on favorably chosen parameter values.

Previous attempts to analyze EEG data from naturalistic contexts have suffered from the
interaction of high temporal sensitivity of EEG and the limits of traditional statistical meth-
ods. Inspired by our success in Chapter 3, we demonstrated the feasibility of analyzing EEG
in a rich, naturalistic context using hierarchical models (Chapter 5). This approach sug-
gested that the usual intuition about ERP components being discrete events was misguided.
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Moreover, examining the complex interactions of prominence features in a rich context em-
phasized the importance of a graded, holistic perspective on language processing instead of
a categorial, parametric view.

Finally, this last attempt inspired a neurocomputational theory of cognitive ERP compo-
nents based on two fundamental mechanisms, model updates and evaluation. We suggest
that more complicated processes such as prediction and conflict monitoring arise from ba-
sic properties of these two fundamental mechanisms. Attractor basins, and hence the actor
heuristic, fit cleanly within this framework.

Together, these approaches present a many-faceted exploration of the properties of both
the actor heuristic and its neurocognitive implementation. None of the methods presented
here were revolutionary, but each model revealed new insights, both in its successes and
in its failures. The complexity of language far exceeds all of our models, but even simple
models can deepen our understanding, and the more specific the model is — i.e. the more
quantitative it is or the more fully computationally implemented — the more helpful it is.
Combining simple models from multiple approaches allows us to close the gap that much
faster.

At the beginning of this dissertation, we suggested that quantitative methods were the key
to the future. Looking back, we were not always explicitly quantitative, but in general we
provided for computationally supported methods and models that will serve as the founda-
tion for future quantitative work, with each implementation revealing hidden assumptions
and underspecifications. The transition from qualitative stories to quantitative predictions
will take time. In many ways, we do not yet know what “quantitative” looks like in a partic-
ular problem domain. But we will never know if we do not try. And even if we get it wrong,
well, then we just have one more data point to work with.
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Summary in English

Quantification of existing theories is a great challenge but also a great chance for the study
of language in the brain. While quantification is necessary for the development of precise
theories, it demands new methods and new perspectives. In light of this, four complemen-
tary methods were introduced to provide a quantitative and computational account of the
extended Argument Dependency Model from Bornkessel-Schlesewsky and Schlesewsky.

First, a computational model of human language comprehension was introduced on the basis
of dependency parsing. This model provided an initial comparison of two potential mecha-
nisms for human language processing, the traditional “subject” strategy, based on grammat-
ical relations, and the “actor” strategy based on prominence and adopted from the eADM.
Initial results showed an advantage for the traditional “subject” model in a restricted con-
text; however, the “actor” model demonstrated behavior in a test run that was more similar
to human behavior than that of the “subject” model.

Next, a computational-quantitative implementation of the “actor” strategy as weighted fea-
ture comparison between memory units was used to compare it to other memory-based mod-
els from the literature on the basis of EEG data. The “actor” strategy clearly provided the
best model, showing a better global fit as well as better match in all details.

Building upon the success modeling EEG data, the feasibility of estimating free parameters
from empirical data was demonstrated. Both the procedure for doing so and the necessary
software were introduced and applied at the level of individual participants. Using empiri-
cally estimated parameters, the models from the previous EEG experiment were calculated
again and yielded similar results, thus reinforcing the previous work.

In a final experiment, the feasibility of analyzing EEG data from a naturalistic auditory stim-
ulus was demonstrated, which conventional wisdom says is not possible. The analysis sug-
gested a new perspective on the nature of event-related potentials (ERPs), which does not
contradict existing theory yet nonetheless goes against previous intuition. Using this new
perspective as a basis, a preliminary attempt at a parsimonious neurocomputational theory
of cognitive ERP components was developed.
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Zusammenfassung in deutscher
Sprache

Die Quantifizierung stellt für die Theoriebildung in der Neurolinguistik eine große Heraus-
forderung und eine große Chance dar. Denn die Quantifizierung ist nötig für die Entwicklung
von präzisen Theorien, jedoch verlangt sie neue Methoden und Perspektiven. Zu diesem
Zweck wurden vier komplementäre Versuche im Rahmen des extended Argument Depen-
dency Model von Bornkessel-Schlesewsky und Schlesewsky eingeführt.

Im Bereich der kognitiven Modellierung wurde ein computationelles Model des men-
schlichen Sprachverstehens anhand eines Dependency Parser entwickelt. Diese Mod-
ellierung dient dem Vergleich der Optimalität der Lösungen eines herkömmlichen
Sprachverarbeitungsmodells (Subjekt-Strategie) und des eADMs (Actor-Strategie). Die
Ergebnisse zeigten gewisse Vorteile für herkömmliche Modelle in einer eingeschränkten
Umgebung. Dennoch zeigte sich das Modell für die Actor-Strategie in einem Testlauf als
dem Menschen ähnlicher als das Modell für die Subjekt-Strategie.

Im Bereich der Elektrophysiologie wurde anhand von EEG-Daten eine computationell-
quantitative Implementierung der Actor-Strategie als gewichteter Eigenschaftsvergleich
zwischen Gedächtniseinheiten mit anderen gedächtnisbasierten Ansätzen aus der Literatur
verglichen. Die Actor-Strategie erwies sich als die eindeutig beste Strategie mit einer
besseren Anpassung sowohl in der globalen Form als auch in allen Einzelheiten.

Aufbauend auf dem erfolgreichen Modellierungsversuch mit EEG wurde die Umsetzbarkeit
der empirischen Parameterschätzung für die freien Parameter im computationellen Mod-
ell gezeigt. Eine Vorgehensweise und zugehörige Software zur Schätzung auf Einzelver-
suchspersonenbasis wurden eingeführt. Anhand der empirisch geschätzten Parameter wur-
den die Modelle aus dem EEG-Experiment erneut berechnet. Die Ergebnisse aus dem vorheri-
gen Versuch lassen sich mit den neuen Parametern bestätigen.

Im letzten Experiment wurde die Machbarkeit der Auswertung elektrophysiologischer
Daten in einer natürlichen Umgebgung nachgewiesen, welche bisher als nicht machbar
betrachtet wurde. Aus dieser Auswertung ergab sich eine neue Perspektive auf die Natur
ereigniskorrelierter Potenziale (EKPs), die bestehenden Theorien nicht widersprach jedoch
der gängigen Intuition. Aufbauend auf diesen Überlegungen wurde ein vorläufiger Ansatz
für eine neurocomputationelle Theorie kognitiver EKP-Komponenten vorgeschlagen.
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