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Abstract 

To make inferences about the frequency of events in the 
world (e.g., the prevalence of diseases or the popularity of 
consumer products), people often exploit observations of 
relevant instances sampled from their personal social network. 
How does this ability to infer event frequencies by searching 
and relying on personal instance knowledge develop from 
childhood to adulthood? To address this question, we 
conducted a study in which children (age 8–11 years) and 
adults (age 19–34 years) judged the relative frequencies of 
first names in Germany. Based on the recalled instances of the 
names in participants’ social networks, we modeled their 
frequency judgments and the underlying search process with a 
Bayesian hierarchical latent-mixture approach encompassing 
different computational models. We found developmental 
differences in the inference strategies that children and adults 
used. Whereas the judgments of most adults were best 
described by a noncompensatory strategy that assumes limited 
and sequentially ordered search (social-circle model), the 
judgments of most children were best described by a 
compensatory strategy that assumes exhaustive search and 
information aggregation (availability-by-recall). Our results 
highlight that already children use instance knowledge to infer 
event frequencies but they appear to search more exhaustively 
for instances than adults. One interpretation of these results is 
that the ability to conduct ordered and focused search is a 
central aspect in the development of noncompensatory 
instance-based inference. 

Keywords: child development; sampling; probabilistic 
inference; heuristics; availability 

Introduction 

The relative frequency of events in the world is an important 

ecological characteristic that impacts many actions and 

decisions. For instance, the relative frequency of other 

people’s behaviors hints at social norms that should be 

followed; the number of people having bought different 

products may indicate differences in product quality that 

influence consumer choice; and the prevalence of diseases 

hints at health risks that may guide precautionary actions. 

Decision makers commonly do not have access to summary 

tables of these frequency statistics but need to infer them. 

An easily accessible but informative indicator for event 

frequencies in the population is their occurrence among the 

people one knows personally. That is, by searching for 

relevant instances in their personal social network people 

can collect a variety of information about the frequency of 

events in the world, and use this information to form 

subjective frequency judgments. In this paper, we examine 

how this ability to search proximate social spaces to judge 

the relative frequency of events develops from childhood to 

adulthood.  

Previous work has garnered much insight into how adults 

make instance-based inferences. Most prominently, 

according to Tversky and Kahneman’s (1973) availability 

heuristic, adults judge the frequency of events by assessing 

the ease with which instances of the events can be brought 

to mind. More recent research has elaborated the specific 

mechanisms guiding this search in and retrieval from 

mnemonic sample spaces. For instance, it has been shown 

that adults often restrict search to directly experienced 

instances in their social circles and that these social circles 

are searched sequentially (e.g., Hertwig, Pachur, & 

Kurzenhäuser, 2005; Pachur, Hertwig, & Rieskamp, 2013). 

Yet, currently only little is known about how search for 

information in proximate social spaces develops 

ontogenetically. Do already children exploit their social 

memories to draw inferences about the frequency of events 

in the world? And if so, how much do they sample, in which 

order do they consult social circles, and how do they 

integrate the information to draw inferences? Existing 

developmental work on judgment and decision making is 

consistent with opposing predictions. On the one hand, 

working memory limitations may confine young children to 

using information-frugal strategies because processing and 

integrating large amounts of evidence may be difficult (e.g., 

Bereby-Meyer, Assor, & Katz, 2004). On the other hand, 

limitations in the ability to selectively focus attention on 

relevant information may lead young children to use more 

exhaustive but unsystematic search strategies (e.g., 

Davidson, 1991; Mata, von Helversen, & Rieskamp, 2011).  

To disentangle these opposing predictions, we first 

introduce the social-circle model, a cognitive process model 

that parameterizes key components of the inference 

process—including search order, evidence threshold, and 

response noise. Second, we take a Bayesian hierarchical 

mixture approach to modeling the inferences of children and 

adults in a task in which they made judgments about the 

relative frequency of common first names in Germany. 

The Social-Circle Model 

To model people’s inferences based on recalled instances, 

Pachur et al. (2013) proposed that people search 
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sequentially through the circles of their social network—

defined as self, family, friends, and acquaintances—and 

stop search as soon as the instance evidence in a circle 

allows them to make an inference. It is thus assumed that 

people’s search for relevant instances is guided by the well-

documented hierarchical structure in the ordering of discrete 

social groups that make up a person’s social network (e.g., 

Hill & Dunbar, 2003; Milardo, 1992), which has also been 

shown to be important for search in social memory (e.g., 

Hills & Pachur, 2012). Adults’ frequency judgments have 

been found to be equally well described by a model that 

assumes such a noncompensatory strategy and by a more 

exhaustive, compensatory search strategy (Pachur et al., 

2013). Here, we formalize and extend the assumptions in 

Pachur et al.’s (2013) analysis and propose a generalized 

social-circle model (SCM) that allows for variability in the 

order in which circles are inspected and for probabilistic 

aspects in the search, stopping, and decision stages of 

inference.  

The SCM assumes that in order to judge which of two 

events, A or B, is more frequent in the population, decision 

makers search distinct social circles, defined as self, family, 

friends, and acquaintances. At each inspected circle i the 

evidence, ei, is represented as the difference in the number 

of instances recalled for each event, expressed as a 

proportion:  

�� = ���
�������

− ���
�������

.  (1) 

Search Rule 

The order in which the circles are inspected is represented 

by circle-weight parameters, one for each circle (wi; 

constrained by ∑ �� = 1; see Bergert & Nosofsky, 2007), 

that can be estimated from the data. These weights represent 

the probability that a circle is inspected as 

�������	�������� = ��
∑ ��

�
.  (2) 

Once a circle has been inspected, it is not considered further 

(i.e., the denominator is calculated only over circles that 

have not yet been inspected). Note that search is thus 

assumed to be probabilistic. The probability of following a 

particular search order �������� is given by the product of 

the individual probabilities of circle inspection, 

�������� = ∏ �������	��������� . (3) 

Stopping Rule 

In the SCM it is assumed that the proportional evidence 

obtained from each circle is compared against a decision 

threshold, d. If the evidence from the recalled instances 

reaches or exceeds the threshold, a choice is made; if it is 

lower than the threshold, the next circle is inspected. The 

SCM implements a probabilistic version of this stopping 

rule by assuming normally distributed error for each circle, 

denoted as εi, generated from a normal distribution with 

mean zero and standard deviation σ. Specifically, it is 

assumed that, if the evidence in a given circle (with added 

error) meets or exceeds d, then the decision maker selects 

option A (i.e., |�� + "�| ≥ �); if the evidence meets −d, then 

the decision maker selects option B (i.e., |�� + "�| ≤ −�). 

Thus, the probability of making a choice after inspection of 

circle i is given by 

���ℎ����� = 	�|�� + "�| ≥ ���  

                  	= 	��� + "� ≥ ��� + ��� + "� ≤ −��� 

                   = Φ '(�)*�
+ , + Φ ')(�)*�

+ ,,        (4) 

where Φ(·) is the standard normal cumulative distribution 

function.  

Decision Rule 

The probability of selecting option A based on a particular 

order, ��-|-.�, follows from combining the choice 

probabilities resulting from circle inspection in that order 

(cf. Rieskamp, 2008). For example, for the order j = 1,2,3,4: 

�/0,2,3,4�-|-.� = 0�-|-.� + 51 − 0��ℎ�����6 × 

							2�-|-.� + 51 − 0��ℎ�����6 × 51 − 2��ℎ�����6 × 

							3�-|-.� + 51 − 0��ℎ�����6 × 51 − 2��ℎ�����6 × 

						51 − 3��ℎ�����6 × 4�-|-.�.          (5) 

The total probability of selecting option A is defined as the 

sum of all ��-|-.�, each weighted by the probability of 

the decision maker following the order (see Equation 3): 

�-|-.� = ∑ ��-|-.� × ��������8!
�/0 .  (6)  

In sum, the SCM parameterizes three key components of 

instance-based inference: the decision maker’s preferred 

search order (circle weight parameters, wi), evidence 

threshold (d), and response noise (σ). Thus, depending on its 

parametrization, the model can capture various 

noncompensatory inference processes. In what follows, we 

apply the SCM to inference data from an experiment in 

which children and adults were asked to judge the relative 

frequency of common first names in Germany, and examine 

how well it accounts for participants’ inferences compared 

to a compensatory strategy and a guessing strategy.  

Experiment 

Method 

Participants Forty children (age 8–11 years; 18 female) and 

40 adults (age 19–34 years; 19 female) who were recruited 

via the subject pool of the Max Planck Institute for Human 

Development participated in the experiment. The data of 

five additional children were excluded from the analysis 

because the children showed insufficient reading-

comprehension (two children aged 7 years); did not recall 

any or only one instance for each name in the same social 

circle, yielding a guessing prediction for instance-based 

models on every trial (two children); or terminated the 

experiment prematurely (one child). Participants received a 

performance-based payment (earning 0.04 EUR for each 
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correct inference but losing the same amount for each 

incorrect inference; 1 EUR ≈ 1.12 USD at the time of the 

experiment), and an additional flat fee of 10 EUR. 

Materials Table 1 lists the 22 first names (11 female) that 

were used in the experiment. Because no census data about 

the frequency and distribution of first names in Germany 

was available, we approximated a frequency ranking by 

weighting popular baby names between 1911 and 2010 

(Bielefeld, 2016) with each cohort’s proportion in the 

population to date (Statistisches Bundesamt, 2014).
1
 We 

constructed a set of all possible 231 paired comparisons of 

the names, and informed participants that the accuracy of 

their inferences was judged on the basis of the available 

data. Participants were instructed to ignore the particular 

spelling of each name and to judge the relative frequency of 

names by taking possible variants of a name into account. 

Procedure The experiment consisted of two tasks, an 

inference and a retrieval task, that were completed by all 

participants in this order. In the inference task, participants 

were asked to judge which of two first names is more 

frequent in Germany for each of the 231 name pairs. The 

pairs were presented sequentially on a computer screen in 

blocks of 23 pairs (24 pairs in the final block). The order in 

which name pairs were presented was randomized across 

participants; the order of names in each pair was 

predetermined so that correct and incorrect inferences 

(according to our statistics) were distributed equally across 

the two response alternatives. Each trial started with the 

display of a fixation cross at the center of the screen, 

followed by the presentation of two black silhouettes (either 

male or female) which were labeled with the respective 

names in the comparison (see Figure 1A). Participants made 

a selection by pressing one of two designated keys on the 

keyboard. After each choice, the selected name’s silhouette 

was shown on a podium at the center of the screen to 

confirm the selection to the participant. There was no trial-

by-trial feedback about the accuracy of decisions. 

Participants were encouraged to make as many correct 

judgments as possible. There was a self-paced pause after 

each block and participants completed two training trials 

with fictitious names before the start of the inference task. 

In the retrieval task, participants were asked to recall how 

                                                           
1 We scored the top 30 male and top 30 female first names 

between 1911 and 2010 in Germany (Bielefeld, 2016) on a scale 

from 30 (for the most popular male/female name in a year) to zero 

(for names not listed during a year). These scores were then 

weighted, for each gender separately, by the proportion of people 

in the German population who belong to the cohort (Statistisches 

Bundesamt, 2014). We selected the most popular male and female 

name in each decade based on the summed raw scores each name 

received across these ten-year periods. In addition to these 20 most 

popular names from each decade, we selected the most frequent 

male and female name in the population (that was not already in 

the list) based on the total sum of the weighted scores across all 

years. Finally, the 22 selected names were ranked based on the 

sum of their weighted scores across all years. 

Table 1: The 22 first names used in the experiment, their 

approximated frequency rank in Germany, and the total 

number of instances children and adults recalled from their 

own social networks. 

 

Name Gender Rank 

Total number of recalled 

instances 

Children Adults 

Michael m 1 35 66 

Thomas m 2 34 72 

Peter m 3 29 45 

Andreas m 4 34 65 

Jan m 5 40 67 

Hans m 6 22 26 

Christian m 7 29 76 

Karin f 8 14 24 

Ursula f 9 4 15 

Julia f 10 34 78 

Anna f 11 41 70 

Sabine f 12 29 44 

Stefanie f 13 24 58 

Renate f 14 19 20 

Helga f 15 18 17 

Günter m 16 11 16 

Tim m 17 40 43 

Horst m 18 11 17 

Angelika f 19 16 27 

Lukas m 20 39 46 

Hannah f 21 42 44 

Gertrud f 22 6 9 

 

many people with each of the 22 names shown in Table 1 

they knew personally. For each name, participants counted 

each person among their family, friends, and acquaintances 

with that name by dragging and dropping pictorial 

representations of family members, friends, and 

acquaintances on a black silhouette labeled with the 

respective name (see Figure 1B). Following the retrieval of 

a person, participants were also asked to indicate their 

contact frequency with that person on a scale from one (less 

than once every six months) to five (multiple times per 

week). Additionally, participants could allocate a pictorial 

person labeled “self” to indicate the shown name was their 

own. Each recalled person was listed on the screen and 

counted toward an overall tally of persons with a particular 

name also shown on the screen. Before the start of the 

retrieval task, a training trial familiarized participants with 

the controls of this task. At the end of the experiment, 

participants were informed about their overall accuracy on 

the inference task and paid in cash by the experimenter. 

Bayesian Hierarchical Mixture Modeling Based on the 

instances of names that each participant recalled from their 

social network in the retrieval task, we modeled each 

participant’s decisions in the inference task with a Bayesian 

latent-mixture approach (see, e.g., Bartlema, Lee, Wetzels, 

& Vanpaemel, 2014). Hierarchical mixture modeling allows 
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Figure 1: Illustration of the task screen and controls used 

during the inference task (A) and retrieval task (B). 

 

us to simultaneously estimate discrete classes of participants 

who use categorically different inference strategies and to 

robustly model variation within each group of strategy-

users, thus combining the advantages of pooling continuous 

individual differences hierarchically and assuming discrete 

differences among groups of individuals. We assumed three 

latent subgroups of participants, each using a different 

inference strategy: (a) the social-circle model, (b) 

availability-by-recall, which assumes a compensatory 

process (Hertwig et al., 2005; Pachur, Hertwig, & 

Steinmann, 2012), and (c) a random guessing strategy. 

According to availability-by-recall, all instances of an 

event are tallied across the entire social network and the 

option with the larger summed instance-evidence is chosen. 

For comparability, we applied the same response noise 

mechanism as for the SCM, which gives the probability of 

choosing option A as  

:;<�-|-.� = Φ '��)��
+ ,,  (7) 

where nA denotes the number of instances recalled for event 

A across all circles and σ is a response noise parameter. For 

the guessing strategy, we assumed that participants 

randomly selected one of the two names in each pair with 

probability .50. With this approach, we can estimate the 

proportion of participants using each strategy based on 

inference and recall data while taking into account the 

uncertainty surrounding such a classification. We modeled 

participants’ inferences for all paired comparisons on which 

a participant’s instance knowledge allowed each strategy to 

make an unambiguous prediction. The two instance-based 

strategies did not make a prediction, if a participant recalled 

no or equal numbers of instances for both names in a 

comparison. The posterior distributions of model parameters 

were estimated via Gibbs sampling methods implemented in 

JAGS (Plummer, 2003). We used reasonably uninformative 

priors: For the wi and d parameters of the SCM we assumed 

uniform priors on the group-level mean (beta distributions 

with shape parameters of 1) and gamma priors (with a shape 

parameter of 1.1051 and a scale parameter of 0.01051; see 

Bartlema et al., 2014) on the group-level precision. For the σ 

parameters of the SCM and availability-by-recall we 

assumed uniform distributions constrained between 0.01–40 

on the group-level mode and standard deviation. For the 

latent-mixture indicator variable we assumed a categorical 

prior that assigned equal weight to each strategy.
2
 To ensure 

efficient mixing, we used pseudo-priors that approximate 

the posterior density for the individual-level parameters. 

These pseudo-priors were obtained from an initial Bayesian 

hierarchical estimation procedure that was performed 

separately for each model (without a mixture component). 

In the model estimation, 16 chains each with 50,000 

samples drawn from the posterior distributions were run 

after an initial burn-in period of 2000 samples. Gelman–

Rubin statistics and visual inspections of the four chains 

indicated adequate chain convergence. 

Results 

Behavioral Data We found differences between the age 

groups in inferential accuracy, t(78) = 5.17, p < .001, 

d = 1.16, BF10 = 8362, and in reported instance knowledge, 

t(60.00) = 4.68, p < .001, d = 1.05, BF10 = 1456. On 

average, adults picked the more frequent first name more 

often than children (M = .64 vs. M = .57) and recalled more 

people with any of the 22 first names in their social network 

(M = 23.63 vs. M = 14.28; see also Table 1). One possible 

reason for children’s lower inferential accuracy is that the 

instances they reported were less valid indicators of the 

actual frequency distribution of first names in the population 

(possibly because they recalled fewer instances overall). 

That is, for adults, there was a significant rank correlation 

between reported instances and actual frequency ranks, 

rS(20) = .524, p = .012, BF10 = 4.99. For children, however, 

no such correlation was found, rS(20) = .203, p = .364, 

BF10 = 0.39.
3
 

                                                           
2 For few participants, this resulted in the mixture collapsing on 

the SCM. For these participants, we used a prior that assigned low 

initial weight to the SCM (e.g., .001) and equal weight to the other 

two strategies. To ensure unbiased estimation of latent group-

membership, these unequal priors were taken into account in the 

calculation of membership probabilities. 
3 Yet children’s inferences were well calibrated to their cohort’s 

instances. Evaluating inferences based on a ranking derived from 

children’s reported number of instances, flips the accuracy pattern 

such that children significantly outperform adults, t(78) = −2.40, 

p = .019, d = −.536, BF10 = 2.70. 
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Figure 2: Allocation of adult and children participants to three latent subgroups of strategy users. 

 

Computational Modeling Figure 2 shows the membership 

probability of each adult (left panel) and each child (right 

panel) in each group of strategy-users, as derived from the 

posterior distribution of the latent-mixture variable. The 

figure shows that the judgments of most adults were best 

described by the SCM (55% of adults compared to 38% of 

children). By contrast, the judgments of most children were 

best described by availability-by-recall (48% of children 

compared to 40% of adults). Only few participants were 

best described by the guessing strategy. Overall, there was 

greater uncertainty in the classification of children to latent 

groups than in the classification of adults. This was partly 

due to the lower number of instances children recalled 

resulting in poorer discriminability between the models. 

Next, we compared children’s and adults’ search and 

decision processes by evaluating their group-level SCM 

parameter estimates. As shown in Figure 3, children and 

adults weighted the different circles in their social network 

similarly (although adults showed greater inter-individual 

variability in the weighting of different circles), applied 

similar decision thresholds, and did not differ on the 

response noise parameter (for all parameters, 95% HDIs 

overlapped). Children’s lower inferential accuracy was thus 

not due to a more error prone execution of an instance-based 

inference strategy. This also held for inferences described 

by availability-by-recall. 

Discussion  

Our results suggest that already children systematically 

exploit their instance knowledge to make inferences about 

the frequency of events in the world. However, they do so 

differently than adults. Whereas the judgments of most 

adults were best described by a strategy that assumes limited 

information search, the judgments of most children were 

best accounted for by a strategy that assumes exhaustive 

search. This finding echoes previous research on multi-

attribute choice and cue-based inference which has found 

young children to use more exhaustive but unsystematic 

search strategies (e.g., Davidson, 1991; Mata et al., 2011). A 

possible explanation for why children use more information-

intensive strategies is that they have difficulties to 

selectively attend to relevant and diagnostic information (cf. 

Betsch, Lehmann, Lindow, Lang, & Schoemann, 2016). In 

young children, this inability to effectively focus search may 

be driven by the required executive control functions being 

not yet fully developed (see Best & Miller, 2010). In light of  

 

 
 

Figure 3: Posterior distributions of the group-level 

parameters of the SCM. Small circles and diamonds below 

the density plots show the posterior means for adults and 

children, respectively; lines show 95% HDIs. 
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children’s more limited and less ecologically valid instance 

knowledge, their greater tendency to adopt exhaustive 

sampling strategies might represent an adaptive response to 

these limiting factors. However, it should also be noted that, 

due to children’s lower instance knowledge, the 

discriminability between models was lower, which might 

have contributed to the more balanced strategy classification 

in children as well. 

Our results extend previous research that has found 

children to use availability as a cue for judging the relative 

frequency of and their own memory for names (Davies & 

White, 1994; Geurten, Willems, Germain, & Meulemans, 

2015). This prior work, however, did not use cognitive 

modeling to formalize and quantitatively analyze the 

development and use of instance-base inference strategies. 

By taking a formal computational modeling-based approach, 

our analysis enabled us to simultaneously detect 

developmental differences in the use of discrete strategies 

and parameterize the specific mechanisms underlying search 

for instances in memory. This approach highlighted that 

children search for instances more exhaustively but weight 

the subgroups in their social network similarly as do adults. 

The analysis also revealed substantial individual differences 

in the process of search for instances in memory among 

both age groups. In this respect, the social-circle model that 

we applied provides an advantage over previously proposed 

models of instance-based inference (e.g., Tversky & 

Kahneman, 1973), which are silent regarding the specific 

mechanisms and order of instance sampling. 

We conclude that the social-circle model provides an 

effective tool for capturing and illuminating individual and 

group differences in the cognitive processes that underlie 

instance-based inference. The insights gained with this 

model are consistent with the finding that search in social 

memory is guided by factors such as social proximity (Hills 

& Pachur, 2012) and suggest that one important factor in the 

development of information-frugal strategies for judging 

frequencies is the ability to limit and selectively focus 

search on relevant instance knowledge. 
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