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Pseudoskalarinflation, Baryogenese und Gravitationswellen

Diese Arbeit beschäftigt sich mit einer Klasse von Inflationsmodellen, in der das
Inflaton φ ein Pseudoskalar ist und an das Hyperladungseichfeld des Standard-
modells durch die Wechselwirkung L ⊃ φ/ (4Λ)FF̃ koppelt. Diese Kopplung
sorgt für eine explosionartige Erzeugung von Eichfeldern maximal helikaler, also
einer Polarisation, was Baryogenese durch dessen Zerfall um den Zeitpunkt der
elektroschwachen Symmetriebrechung erlaubt. Außerdem beeinflussen diese Eich-
felder das Spektrum der Tensorfluktuationen, so dass der durch Inflation erzeugte
stochastische Gravitationswellenhintergrund verstärkt wird. Unsere Arbeit wird
hier präsentiert, in der wir die neusten Ergebnissen von Baryogenese durch Hy-
permagnetfeldzerfall um die elektroschwache Symmetriebrechung auf Pseudoska-
larinflation anwenden und die Auswirkungen auf das Gravitationswellenspektrum
untersuchen. Es zeigt sich, dass, um Baryogenese erfolgreich zu realisieren, die
Kopplungsskala circa Λ ∼ 3× 1017 GeV betragen muss. Da dies einer kleinen
Kopplung entspricht, ist die Eichfeldproduktion bis zum Ende der Inflation nicht
relevant, was wiederum zum Folge hat, dass das Gravitationswellenspektrum ein
Maximum bei hohen Frequenzen rund um 1 MHz oder höher aufweist. Innerhalb
des betrachteten theoretischen Modells ist ein messbares Gravitationswellensi-
gnal nur auf Kosten einer Baryonüberproduktion zu erzielen, was nur durch eine
Wiedererwärmungstemperatur des Universums unterhalb der elektroschwachen
Skala zu erzielen wäre.

Pseudoscalar Inflation, Baryogenesis and Gravitational Waves

In this work we focus on a particular family of inflationary models, pseudoscalar
inflation, in which the inflaton φ couples to the Standard Model hypercharge
gauge field via an anomalous interaction term, L ⊃ φ/ (4Λ)FF̃ . This coupling
results in an explosive production of gauge fields during inflation. These fields
are maximally helical, which allows for baryogenesis via decaying hypermagene-
tic fields at the time of the electroweak crossover. Moreover, the gauge fields
backreact on the inflationary dynamics, sourcing tensor perturbations and the-
reby enhancing the spectrum of the stochastic gravitational wave background
coming from inflation. Our latest work is collected here, where we update the
study of baryogenesis via decaying hypermagenetic fields produced during infla-
tion and investigate the implication of this on the gravitational wave background.
We work in the instant reheating approximation and find that, for successful ba-
ryogenesis, the coupling must be weak, with about Λ ∼ 3× 1017 GeV. The
production of gauge fields is therefore only relevant towards the end of inflation,
resulting in a peak at high frequencies in the MHz range or above in the gravitati-
onal wave spectrum, out of reach of current detectors. A detectable gravitational
wave signal at ongoing experiments implies an overproduction of baryon number
with this theoretical set up, unless the reheating temperature of the universe is
higher than the electroweak scale.
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The Big Bang theory is a very successful theory of the formation and evolution of the
observable universe as we know it. There are however a few pieces of evidence that
cannot be explained by this theory. Inflation comes in as a way of solving some of
these mismatches, such as the horizon problem or the flatness problem. In this master
thesis, a particular family of models of inflation is investigated, with special focus on
the resolution of yet another problem: the baryon asymmetry of the universe. This
model presents a minimal way of solving a few cosmological problems at once just by
coupling the inflaton field to the U(1) gauge field of the Standard Model.

For this study it will be enough to represent the four forces of nature we know
via a minimal coupling of matter to gravity. Matter and its interactions are up to
this date best described by the Standard Model (SM) of particle physics. Albeit it is
known to be incomplete, is a very successful theory exceptionally describing nature
so far, and we take advantage of the tools and principles of which the SM makes use,
that is quantum field theory. Gravity on the other hand arises as a consequence of a
curved geometry of spacetime, as formulated in General Relativity.

This can be all put together in the context of field theory into one action

S = SEH + Smatter , (1)

SEH being the Einstein-Hilbert action, responsible for the curvature contributions to
the dynamics, and Smatter meaning to contain the relevant matter contributions to the
universe’s dynamics. The action S in (1) contains all the physics and we will make
use of the principle of least action to extract it.

This first part will take care of introducing the different terms and conventions
used in this work. Chapter 1 takes care of giving an overview of the implications of
equation (1), with special attention on the Einstein-Hilbert action SEH; it also gives
an insight to the horizon and flatness problems of the conventional Big Bang theory.
Chapter 2 motivates the paradigm of inflation, giving a particular value to Smatter,
and introduces pseudoscalar inflation, i.e. a minimal extension of the standard slow-
roll inflation. Chapter 3 then closes this introductory part with a general view of
baryogenesis.
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Chapter 1

Cosmology

The universe is a complex system formed of complex objects, each of which undergoes
its own reactions and processes. But as we zoom out and start averaging small indi-
vidual objects with their neighbours and observing everything as a whole, it becomes
more and more simple. As we zoom out stars get lost in their host galaxies. Zoom
out further and galaxies’ size and shapes then start losing their importance and just
become one more of the components of a cluster. Go to further scales and clusters
start difuminating as well within superclusters. In the end the distribution of these
objects as a whole seems to be independent of from where and in which direction you
look. The universe becomes homogeneous and isotropic. This is a pillar of modern
cosmology.

1.1 Coordinates

In order to treat the evolution of the universe as a whole throughout its history, we
first need to know its geometry. General relativity is a geometrical theory in which
spacetime is nothing but a Lorentzian manifold characterised by its metric tensor.
The most general isotropic (and thus homogeneous) metric is the famous Friedman-
Lemâıtre-Robertson-Walker (FLRW) metric (see e.g. [2]), whose components are given
by the line element

ds2 = gµνdxµdxν = −c2dt2 + a2(t)dr2 = −c2dt2 + a2(t)

[
dr2

1−Kr2
+ r2dΩ2

]
. (1.1)

Here, we used spherical coordinates with the usual solid angle element dΩ2 = dθ2 +
sin2 θ dϕ2 and the radial coordinate r; c is the speed of light in vacuum.

This metric consists of a static spatial geometry multiplied by a dimensionless,
non-negative, time-dependent factor a(t) called scale factor. The constant K can
take one of three values which defines the curvature of the spatial hypersurfaces:
K = 0 corresponds to a spatially flat (Euclidean) spacetime, K = +1 to a positive

5



6 CHAPTER 1. COSMOLOGY

spatial curvature and therefore closed universe (with necessarily finite volume), and
K = −1 to a negatively-curved 3-geometries and consequently open universe. We keep
it mostly general for the remaining of this chapter. From chapter 2 on, however, we
mostly limit ourselves to the case K = 0 which most faithfully describes our universe1.

To simplify the metric component grr and to facilitate the study of light propaga-
tion (causality), it is common to transform coordinates

dr → dχ ≡ dr√
1−Kr2

(1.2)

such that [
dr2

1−Kr2
+ r2dΩ2

]
→
[
dχ2 + ΣK(χ) dΩ2

]
(1.3)

with

r2 = ΣK(χ) =


sinh2 χ K = −1
χ2 K = 0
sin2 χ K = +1 .

(1.4)

Another common change of coordinates affects the time coordinate

dt→ dτ ≡ dt

a(t)
, (1.5)

defining the conformal time τ . This allows us to write the FLRW in a neat (and
convenient) form

ds2 = a2(τ)
(
−c2dτ2 + dχ2 + ΣK(χ) dΩ2

)
. (1.6)

Note that for the case of flat 3-geometries K = 0 the metric in this form is conformal
to that of Minkowski space. This makes the study of light propagation easier.

1.2 Causal structure of the universe

Light propagation is best studied with the two-dimensional line element

ds̃2 = a(τ)
(
−c2dτ2 + dχ2

)
(1.7)

since we are interested in the propagation in the radial direction. Photons travel on
null geodesics, that is, trajectories such that ds̃2 = 0, which is satisfied as long as

dχ = c dτ =
c dt

a(t)
. (1.8)

1The latest experimental results from Planck measuremtnes of the cosmic microwave background
(CMB) temperature anisotropies, CMB polarisation, CMB lensing, combined with baryon accoustic
oscilations (BAO) measurements, give the constraint |ΩK | < 0.005 with 95% CL [3]; see eqn. (1.59).
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For a given point in spacetime, i.e. an event, it is interesting to find what past
events have been in causal contact with it and which future events will potentially be
affected by it. That is, what events fall inside the past and future light-cones. For
defining the past light-cone, we integrate eqn. (1.8) from a certain “initial” time tini

(or τini) to the time coordinate of the event t (or τ),

χph(τ) =

∫ τ

τini

c dτ = c (τ − τini) =

∫ t

tini

c dt

a(t)
=

∫ a

aini

c da

ȧ a
=

∫ ln a

ln aini

c (aH)−1 d ln a (1.9)

which defines the particle horizon χph. We introduced the Hubble parameter H(t) ≡
ȧ(t)/a(t) and the shorthand notation ˙ ≡ d/dt for the time derivative. Only events
at a comoving distance χ ≤ χph fall inside the past light-cone and can exchange
information. For the future light-cone, we analogously define the event horizon

χeh(τ) =

∫ τmax

τ
c dτ = c (τmax − τ) (1.10)

by integrating from the time of the event τ to a “maximum” conformal time τmax

in the far future which could be finite or infinite (the end of the universe so to say).
Observers at χ > χeh(τ) will never receive a signal sent at τ .

Hubble Law

Another quantity relevant to causality in cosmology is the Hubble radius or Hubble
length. Think of a physical radial distance d (e.g., the distance between two galaxy
superclusters, or from us to a far enough galaxy) at a given time t. It is given by the
radial line element dl=gχχdχ2,

d(t) =

∫
dχ
√
gχχ = a(t) χ . (1.11)

The expansion rate of that distance, or, in other words, the relative speed of the two
objects separated by d is then given by the Hubble law

ḋ(t) = ȧ(t) χ = H(t) d(t) . (1.12)

This speed is an expansion speed and it does not involve any information transmission,
that is to say it can easily bigger than the speed of light if, e.g., the distance is big
enough. This condition is given by

ḋ(t) > c ⇒ d(t) >
c

H(t)
⇔ χ >

c

a(t)H(t)
≡ χH(t) . (1.13)

We therefore define c (aH)−1 [cH−1] as the comoving [physical] Hubble radius at a
given time t. Given an observer, the light emitted from a distance greater than the
Hubble radius is slower than the expansion itself and thus never reaches the observer.
Therefore, we talk about a Hubble sphere of the size of the Hubble radius, which
defines the observable universe.
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The main difference between the particle horizon χph(t) and the Hubble radius
χH(t) is that the particle horizon defines a comoving distance out of which an event
would never reach the observer (placed at some coordinates (t,x)), while the Hubble
radius defines the causally-connected region around the observer at any given moment
t. In more practical terms, consider two events separated by a comoving distance χ:

• χ > χph means they never were in causal contact,

• χ > χH means they are not in causal contact now.

Note, however, that in the context of inflation (see chapter 2) it is common to refer
to the Hubble sphere as horizon.

In the following, we derive some expression for a(t), such that we can compute χph.
From now on we switch to natural units such that c = 1 = ~, while explicitly keeping
track of mass dimensions using the reduced Planck mass MPl = 4.341× 10−9 kg =
2.435× 1018 GeV (see next paragraph for its definition).

1.3 The action

Retrieving equation (1) we look further into its different elements

S = SEH + Smatter =

∫
d4x
√
−g
{
M2

Pl

2
R+ Lmatter

}
. (1.14)

We will define the different symbols below but let us first have a look at the equation
itself. It tells us that matter is coupled to gravity by the explicit product

√
−gLmatter,

and that geometry couples to itself in a similar way
√
−g R (R is nothing but a

collection of first and second derivatives of the metric components gµν) with a coupling
constant characterised by the reduced Planck mass M2

Pl = ~c/(8πG) which is just a
rescaling of the universal constant of gravity G. When computing the equations of
motion of the different fields (geometry and matter fields) upon applying the principle
of least action we will see how all the different terms affect the dynamics of each other.

Now, let us define the different symbols.

• g ≡ det gµν is a short-hand notation for the determinant of the metric. For
example, in the case of the metric in eqn. (1.1), g = −a6.

• R is the Ricci scalar, defined as the contraction of the two indices of the Ricci
tensor Rµν

R =
∑
α

Rαα ≡ Rαα = gαβRβα (1.15)

Rµν = ∂αΓαµν − ∂νΓαµα + ΓαβαΓβµν − ΓαβνΓβµα (1.16)
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being Γµνσ the Christoffel symbols

Γµνσ =
1

2
gµα
(
∂σgαν + ∂νgασ − ∂αgνσ

)
. (1.17)

Note that we use Einstein summation convention, that ∂µ ≡ ∂
∂xµ and that gµν

are the components of the inverse of the metric such that gµαg
αν = δνµ (where

δνµ = 1 if µ = ν, and 0 otherwise, is the Kronecker delta).

• Finally, the Lagrangian density Lmatter = Lmatter(Φi) refers to the matter contri-
bution to the evolution of the universe. Φi is just a generic representation of the
Nfields matter fields, with i = 1, . . . , Nfields. In different stages it is dominated
by some certain species such as photons (radiation) during the most part of the
conventional Big Bang cosmology; the rest of the matter components are then
neglected. In this chapter we only make a general approach assuming only that
the universe can be treated as a perfect fluid, that is a fluid with no shear stress,
viscosity nor heat conduction. In the next chapter we will give it a definite form
for the period of inflation.

1.4 Principle of least action

A system evolves accordingly such that the action is minimised. This is mathemati-
cally summarised as

δS = 0 (1.18)

or, in more detail,

M2
Pl

2

∫
d4x δ[(−g)1/2R] +

∫
d4x δ[(−g)1/2Lmatter] = 0 . (1.19)

Since we are interested in the dynamics inferred by geometry, in this section we focus
on the variation of the action with respect to the metric components gµν . For the
dynamics of a given field Φi, i.e., for its equations of motion, we need to perform the
variation w.r.t. Φi. Now, on one hand, the variation of the geometry term can be
written as

δ[(−g)1/2R] =
(
δ(−g)1/2

)
R+ (−g)1/2

(
δgµν

)
Rµν + (−g)1/2gµν

(
δRµν

)
= (−g)1/2

(
−1

2
R gµν +Rµν

)
δgµν + (−g)1/2gµν

(
δRµν

)
(1.20)

using the identity δg = −g gµν δgµν , coming from the derivative of the determinant.
For a Riemannian geometry, for which equation (1.17) holds, the term proportional
to δRµν gives no contribution to δSEH [4]. On the other hand, the variation of the
matter Lagrangian turns to be

δ[(−g)1/2L] =

(
−1

2
(−g)1/2gµνL+ (−g)1/2 ∂L

∂gµν

)
δgµν (1.21)
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assuming that L contains only the metric components gµν themselves and no deriva-
tives of those. We drop the subscript ‘matter’ for brevity.

This allows us to write eqn. (1.19) as∫
d4x (−g)1/2

{
M2

Pl

2

(
Rµν −

1

2
R gµν

)
− 1

2
gµνL+

∂L
∂gµν

}
δgµν = 0 (1.22)

which must hold for all δgµν , hence

Rµν −
1

2
R gµν =

1

M2
Pl

(
gµνL − 2

∂L
∂gµν

)
(1.23)

or, equivalently,

Gµν =
1

M2
Pl

Tµν (1.24)

where we defined the Einstein Gµν and energy-momentum Tµν tensors. Equati-
ons (1.24) are the so-called Einstein field equations which describe the non-trivial
interactions between geometry and matter. Note that for each tensor component
{µ, ν} we obtain an equation. Of all the ten differential equations in (1.24) (both ten-
sors are symmetric, by definition), only up to six are independent in the most general
case once a coordinate system {xµ} is chosen.

1.5 Energy-momentum tensor

In order to be able to write the energy-momentum tensor components we first need
to choose a frame of reference (observer). In the perfect fluid approximation, the
energy-momentum tensor can be fully described by its proper energy density ρ and
its pressure p in the fluid’s rest frame

Tµν = ρ uµuν + p (gµν + uµuν) (1.25)

where uµ = gµνu
ν is the four-velocity of a given observer, which must satisfy gαβu

αuβ =
uαu

α = −1. We choose an observer comoving with the fluid such that ui = 0. The
value of u0 is given by the metric component g00, according the normalisation condi-
tion of uµ, i.e. u0 = ±(−g00)−1/2. We choose the positive solution. It can be brought
to the the convenient form Tµν = gµαTαν , for which for any metric gµν its non-zero
components are

T 0
0 = −ρ and T ij = p δij . (1.26)

In this form, the energy-moment tensor of a perfect fluid is diagonal and independent
of the metric.

This parametrisation of Tµν allows us to study the dynamics of the universe wit-
hout giving any particular form to the Lagrangian L. As soon as we have it in terms
of the matter fields Φi, we will be able to derive ρ and p in terms of Φi and, through



1.6. FRIEDMAN EQUATIONS 11

Einstein field equations (1.24), relate geometry and matter fields and study the com-
bined dynamics in that particular case. For the rest of this chapter we will forget
about the Lagrangian L and the fields Φi, and work exclusively with energy density
ρ and pressure p.

Furthermore, we can think of the universe as composed of different species, each
of which have their density ρi and pressure pi, related through an equation of state

pi = wi ρi , (1.27)

where in general the equation of state parameter wi is considered to be constant. In
general we assume the interaction among different species to be negligible and treat
the dynamics of each individually. This is actually true for most of the evolution
of the universe except for the period around matter-radiation equality, moment in
which the energy contribution of matter and radiation is of the same order. With this
picture ρ =

∑
i ρi (p =

∑
i pi) is the total background energy density (pressure) of the

universe.

1.6 Friedman equations

Now, it is time to derive the dynamical equations describing the evolution of the
geometry of the universe. If we plug in the metric (1.1) into the definition of the
Einstein tensor Gµν we find2

G0
0 = −3

[(
ȧ

a

)2

+
K

a2

]
(1.28)

Gij = −

[
2
ä

a
+

(
ȧ

a

)2

+
K

a2

]
δij (1.29)

while all other components vanish. We see that as well as with Tµν , this tensor
consists of essentially two independent components. This is due to the symmetry
of the metric because of the imposed homogeneity and isotropy in space. Thus, the
Einstein field equations (1.24) give in this case only two independent equations. These
are the Friedman equations:(

ȧ

a

)2

= H2 =
1

3M2
Pl

ρ− K

a2
, (1.30)

ä

a
= Ḣ +H2 = − 1

6M2
Pl

(
ρ+ 3p

)
. (1.31)

Combining (1.31) with (1.30), one obtains the continuity equation

ρ̇+ 3H(ρ+ p) = 0 , (1.32)

2We used Gµν = gµαGαν to make the expressions simpler; Gµν = M−2
Pl Tµν and Gµν = M−2

Pl T
µ
ν

are of course completely equivalent.
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which must hold component-wise as well

ρ̇i + 3H(ρi + pi) = ρ̇i + 3
ȧ

a
ρi (1 + wi) = 0 , (1.33)

since it also follows from the energy-momentum conservation

∇µ Tµν =
∑
i

∇µ T (i)µ
ν = 0 , with ∇µ T (i)µ

ν = 0 . (1.34)

Together with the fact that ∇µGµν = 0, we see that the continuity equation (1.32)
already drops from the Einstein field equations (1.24). Here ∇µ denotes the covariant
derivative on the FLRW manifold, which applied on a scalar is just the coordinate
derivative, ∇µϕ ≡ ∂µϕ, but applied on tensors the curvature sneaks in in the form of
Christoffel symbols

∇µSνρ...σ... = ∂µS
νρ...

σ...+S
αρ...

σ...Γ
ν
αµ+Sνα...σ...Γ

ρ
αµ+. . .−Sνρ...α...Γασµ−. . . (1.35)

Solving equation (1.33) we find a relation between the background energy density and
the scale factor

ρi(a) = const.× a−3(1+wi) . (1.36)

1.7 Thermodynamics of an expanding universe

Let us have an overview of the thermal evolution of the energy density (and, indirectly,
of the pressure) throughout the expansion of the universe. If the expansion of the
universe is slow enough, the different components of the universe (particles) can settle
close to local thermal equilibrium. Since the universe is homogeneous, local is also
global. This allows us to use statistical mechanics and describe the universe as a whole
(macroscopic universe) in terms of the particle behaviour (microscopic universe). In
this section we tune again our units such that the Boltzmann constant is set to one,
kB = 1, and thus temperature is given in units of energy.

We can imagine the universe as a thermal plasma or thermal bath at a temperature
T , composed of different particles with a given mass mi. As the universe expands it
cools down, and some reactions stop having place since the reaction rate decreases
as temperature drops such that it becomes of a comparable size of the expansion
rate ∼ H. Particles do not encounter each other any more and so reactions among
them shut down. When this happens to a certain species and interactions with the
thermal bath cease, we say the species is decoupled. They will therefore have a different
temperature Ti 6= T , while coupled species have Ti = T (and T ≡ Tγ since photons
are the dominant species).

If mi � Ti the particles are non-relativistic, which in cosmology is usually called
matter. Both baryonic matter (in late times) and dark matter fall into this category.
Their energy density is simply given by the number of particles Ni, their mass mi and
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the (proper) volume they occupy V . From these three quantities, only the volume
changes with the expansion as V ∝ a3.

ρm =
∑

non-rel

ρi =
∑

non-rel

miNi

V
≡
∑

non-rel

mini with ρi ∝ a−3 , (1.37)

where we defined the number density of the i-th species, ni (∝ a−3). Note that since
they share the same volume V , and Ni and mi do not change with expansion, also
the total energy density ρm scales as a−3

ρm =
1

V

∑
non-rel

miNi ∝ a−3 . (1.38)

Comparing this to eqn. (1.36), we find

pm =
∑

non-rel

pi = 0
(
wnon-rel
i = 0 = wm

)
. (1.39)

If mi � Ti then we deal with ultra-relativistic particles, which one refers to as
radiation in cosmology. As a first approximation, let us make a rough estimate to
find out the equation of state parameter. For simplicity, consider Nγ photons, each
with an energy ~ω, again, in a proper volume V . This time also the frequency ω is
redshifted by expansion by ω ∝ a−1, such that, ignoring all interactions with other
particles,

ργ ∼
Nγ~ω
V

∼ nγ~ω ∝ a−4 . (1.40)

This provides together with eqn. (1.36) the equation of state for photons, which holds
for any relativistic species too3,

pγ =
1

3
ργ

(
wγ =

1

3

)
. (1.41)

Yet all species with mi � Ti contribute to the radiation energy density at a given T ,
each in a particular way. In a more quantitative study using statistical mechanics one
finds4

ρr =
∑
rel

ρi =
π2

30
g∗(T ) T 4 . (1.42)

g∗(T ) is the effective number of relativistic degrees of freedom at a given temperatrue
T and is nothing but precisely a count of species that participate in ρr, weighted with
their internal degrees of freedom (DOFs) gi (and their temperature Ti relative to that
of the thermal plasma T ≡ Tγ , in case they are decoupled)

g∗(T ) =
∑

bosons

gi

(
Ti
T

)4

+
7

8

∑
fermions

gi

(
Ti
T

)4

. (1.43)

3See e.g. equation (3.2.43) in [2] and the discussion therein.
4See e.g. equation (3.2.54) in [2] and the discussion therein.
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At T & 100 GeV all particles in the Standard Model are relativistic:

gtot∗ = (1 + 3 + 8)× 2 + 4 +
7

8
× 2× 3× (3× 2× 2 + 2 + 1) =

427

4
= 106.75 . (1.44)

This corresponds to the unbroken phase, i.e., before the electroweak symmetry bre-
aking (EWSB), when all vector bosons BY , W a, Ga are massless and therefore have
g = 2 internal DOFs, and the Higgs boson is still a doublet with four scalar DOFs
g = 4. We do not include right-handed neutrinos in the SM. Today, on the other
hand, only photons are relativistic5

g∗(T0) ≡ g0
∗ = 2 . (1.46)

The subscript 0 (or superscript 0) denotes quantities evaluated today (at t = t0).

Another thermodynamic quantity of interest to track the evolution of the universe
is the entropy density s ≡ S/V . As stated by the second law of thermodynamics, the
total entropy of the universe S either increases or stays constant dS ≥ 0, with dS = 0
corresponding to equilibrium. The entropy is dominated by the thermal bath of rela-
tivistic particles, since photons are much more numerous than baryons. All processes
out of equilibrium induce a negligible change to the total entropy S, such that the
expansion of the universe can be considered adiabatic to a good approximation. This
translates to

S = const. ⇒ s ∝ a−3 (1.47)

during the whole evolution of the universe. Moreover, from the second law of thermo-
dynamics

s =
ρ+ p

T
=
∑
rel

ρi + pi
Ti

=
4

3

∑
rel

ρi
Ti

=
2π2

45
g∗S(T ) T 3 (1.48)

with

g∗S(T ) =
∑

bosons

gi

(
Ti
T

)3

+
7

8

∑
fermions

gi

(
Ti
T

)3

(1.49)

defined as the effective number of relativistic degrees of freedom contributing to the
entropy. This shows that for the entire course of evolution of the universe,

g∗S(T ) a3 T 3 = const. , (1.50)

is required by conservation of entropy. This is a key result in cosmology, essential to
relate temperature and scale factors at different times.

5It is possible that one of the neutrinos is still relativistic today, which together with the photon
would provide

g0∗ = 2 +
7

8
(2× 1)

(
Tν0
T0

)4

= 2 +
7

8
× 2×

(
4

11

)4/3

' 2.45 (1.45)

(see below for the computation of Tν/Tγ). However, for simplicity, we consider all neutrinos relativistic
today.
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Again for T & 100 GeV, the Standard Model yields

gtot∗S = gtot∗ = 106.75 , (1.51)

and for today

g0
∗S = 2 +

7

8
× 2×Neff ×

4

11
=

43

11
' 3.94 . (1.52)

Here, the neutrinos contributed6 as a decoupled species to g0
∗S with a temperature

Tν0 different from the thermal bath (today only photons). We also replaced the 3
relativistic neutrinos by an effective Neff = 3.046 given by the Standard Model, which
takes into account the fact that neutrino decoupling is not instantaneous.

At around T ∼ 1 MeV the rate of the weak interactions that kept neutrinos in
thermal equilibrium with the plasma drops below the Hubble rate and neutrinos de-
coupled. Tν decreases parallel to Tγ until electron-positron annihilation at around
Tγ ∼ me ∼ 0.5 MeV, when the thermal production of electrons and positrons stops
and their annihilation transfers all their energy into that of the photons, putting the
decline of Tγ on hold briefly, and effectively lowering Tν relative to Tγ .

Now, let us compute some numbers. In this process, the effective number of degrees
of freedom in entropy of the thermal bath of coupled species changed

from g∗S = 2 +
7

8
× 2× 2 =

11

2
at T & me to g∗S = 2 at T < me .

According to eqn. (1.50)7 this implies an increase of aTγ overall

(
aTγ

)
T<me

=

(
11/2

2

)1/3(
aTγ

)
T&me

(1.53)

while aTν remains constant—the entropy of neutrinos is also conserved a3sν = const.
Additionally, the gas of neutrinos and that of photons went through the same evolution
up to this point, hence Tν =

(
Tγ
)
T&me

. Consequently,

(
4

11

)1/3 (
aTγ

)
T<me

=
(
aTγ

)
T&me

=
(
aTν

)
T&me

=
(
aTν

)
T<me

, (1.54)

i.e., after e+e−-annihilation,

Tν
Tγ

=

(
4

11

)1/3

(1.55)

6Even though we assumed all three neutrinos to be non-relativistic today, they still contribute to
the total entropy (density) of the universe: They were relativistic at the time of decoupling and since
then no interaction changed their entropy significantly. Thus, they still count as relativistic degrees of
freedom in entropy. Their energy density, however, is affected by expansion and eventually reaching
mνinνi as Tν � mνi .

7Strictly speaking eqn. (1.50) was derived for the total entropy, of all species. However, it also
holds separately for the coupled and for each of the decoupled contributions, since decoupled means
precisely (almost) non-interacting and therefore no (significant) entropy transfer.
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Figure 1.1: Temperature dependence of the effective number of relativistic degrees of freedom
in energy density g∗ and entropy density g∗S (dotted line). They are identical up to the
point of e−e+-annihilation, when the temperature of decoupled relativistic neutrinos starts
differing from that of photons. They decrease as the particles in the Standard Model become
non-relativistic. Taken from [2], where they use the SM with three massless neutrinos, and
therefore they contribute to g0

∗ (numbers on the right), even though the plot only shows up to
T = 10 keV, temperature at which neutrinos are still relativistic. Moreover, instead of using
3 massless neutrinos they use the Standard Model’s effective number of relativistic neutrinos
Neff.

This is exact for massless neutrinos. For massive neutrinos it is a good approximation
justified but the small masses and the temperatures of the process.

Figure 1.1 shows the evolution of g∗ and g∗S from the total value in the early
universe till today’s value.

1.8 Solving the Friedman equations

The principle of least action provided us with two independent equations (1.30) and
(1.31), from which we derived the continuity equation (1.32), with solution (1.36)
for each species. Now there is one equation left, whose solution should describe the
fullevolution of the scale factor a(t).

First, we rewrite the first Friedman equation (1.30) to a more meaningful form,
in terms of quantities accessible today by experiments, i.e. Ωi, (see discussion and
eqn. (1.58) below). We then extract all evolution information of the energy density ρ
in terms of a and the effective number of DOFs with help of eqns. (1.39), (1.42) and
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(1.50).

From the first Friedman equation we see that the value of the Gaussian curvature
K depends on the energy density ρ of the background, in particular

K = a2

(
1

3M2
Pl

ρ−H2

)
. (1.56)

This means that for a particular value of ρ the universe is (spatially) flat (i.e. K = 0).
Since observables cannot be measured for an arbitrary time in the universe’s evolution,
in cosmology one takes today’s values as reference. Therefore, we define the critical
density ρ0

crit as the density the universe would need to have today to make K = 0

ρ0
crit ≡ 3M2

PlH
2
0 . (1.57)

ρ0
crit is commonly used as unit to express today’s energy densities, such that we get a

dimensionless, constant density parameter

Ωi ≡
ρ0
i

ρ0
crit

. (1.58)

Evaluating the first Friedman equation (1.30) today and rewriting it in terms of Ωi,
we find

1 =
∑
i

Ωi −
K

(a0H0)2
≡
∑
i

Ωi + ΩK , (1.59)

i.e., deviations from
∑

i Ωi = 1 means deviations from a flat universe. This is es-
sentially how the constraint

∣∣ΩK

∣∣ < 0.005 in footnote 1 was obtained by the Planck
Collaboration [3]. Talking about experiments, one usually finds the quantities Ωih

2 as
a given experimental result. This is meant to track and in some way exclude the errors
that today’s Hubble rate (or Hubble constant) H0 introduces on such a quantity, since
it usually carried quite sizeable uncertainties. Therefore, it is conventional to define
a dimensionless rescaled Hubble constant h,

H0 = 100h km s−1 Mpc−1 . (1.60)

Planck results [3] claim H0 = (67.8± 0.9) km s−1 Mpc−1, that is to say h = 0.678 ±
0.009.

Let us proceed with the decomposition of the total energy density ρ of the universe
relative to the critical density today ρ0

crit, first component by component. For non-
relativistic species, we simply have

ρm(a)

ρ0
crit

=
ρm(a)

ρ0
m

ρ0
m

ρ0
crit

=

(
a0

a

)3

Ωm , (1.61)

since all contribute equally. For relativistic species, though, the weight of each species
contained in g∗ plays a role such that

ρr(a)

ρ0
crit

=
ρr(a)

ρ0
r

ρ0
r

ρ0
crit

=
g∗(T ) T 4

g0
∗ T

4
0

Ωr =
g∗(a)

g0
∗

(
g0
∗S

g∗S(a)

)4/3(
a0

a

)4

Ωr , (1.62)
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where we expressed the ratio of temperatures in terms of the scale factor from the
entropy conservation condition (1.50). There is finally one last possibility we did not
discuss so far. There might be some type of energy density which remains constant
during all the evolution, ρΛ = const. or ΩΛ = const. From the continuity equa-
tion (1.33) it is evident that pΛ = −ρΛ, i.e., that wΛ = −1. This is called vacuum
energy in cosmology, and it is part of the standard model of cosmology ΛCDM with
which e.g. the Planck Collaboration performs most of the CMB data analysis. It is
not only important because of that, but also because it dominates our universe today
(see eqn. (1.64)).

Finally, take eqn. (1.30), divide by today’s Hubble rate H0, consider the general
case ρ = ρr + ρm + ρΛ and find(

H

H0

)2

= Ωr
g∗
g0
∗

(
g0
∗S
g∗S

)4/3(
a0

a

)4

+ Ωm

(
a0

a

)3

+ ΩΛ + ΩK

(
a0

a

)2

(1.63)

which is eqn. (1.59) generalised to any time. The density parameters according to [3,5]
are

Ωr ' 5.4× 10−5 , Ωm ' 0.31 , ΩΛ ' 0.69 , |ΩK | < 5× 10−3 . (1.64)

Looking at this, we realise that at early times radiation dominates the expansion when
the scale factor is the smallest relative to today, a/a0 . 10−6, and that the vacuum
energy dominates at late times (today). Note that the factor in front of Ωr taking
care of the changes in degrees of freedom are important quantitatively, since it can
vary between

0.65 ' gtot∗
g0
∗

(
g0
∗S

gtot∗S

)4/3

≤ g∗
g0
∗

(
g0
∗S
g∗S

)4/3

≤ g0
∗
g0
∗

(
g0
∗S
g0
∗S

)4/3

= 1 (1.65)

Qualitatively, however, it does not have so much impact on the evolution of ρr.

As we can clearly see from figure 1.2, there are three distinct phases in the evo-
lution of the universe: the radiation domination (RD), matter domination (MD) and
the dark energy domination (ΛD). For each of these, we can simply neglect all ot-
her contributions in equation (1.63), and simply solve the one-component Friedman
equation:

H(a) = H0

√
ρi(a)

ρ0
crit

= H0

√
Ωi

(a0

a

)3
2

(1+wi)
(1.66)

or, equivalently, solving for a(t) (recall H = ȧ/a),

a(t) = a0

[
1− 3

2
(1 + wi)H0

√
Ωi (t0 − t)

] 2
3(1+wi)

∼ t
2

3(1+wi) for wi > −1 (1.67)

a(t) = a0 eH(t−t0) with H = H0

√
ΩΛ = const. for wi = −1 (1.68)

where in the case of RD i = r we ignore the change of degrees of freedom, since it is
not relevant for the qualitative discussion here. The latter case for which wi = −1 and
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Figure 1.2: Evolution of each of the terms in the Friedman equation (1.63). It reflects the
respective contribution to the Hubble rate H(a)/H0 of the different components ρr, ρm and

ρΛ, as well as of curvature. The curvature contribution
∣∣∣ K
a2H2

0

∣∣∣ =
∣∣∣(a0a )2 ΩK

∣∣∣ is depicted with

ΩK = −0.005, to show the biggest possible contribution allowed by the CMB constraints. We
see that radiation dominates at early times, until the non-relativistic matter takes over and
finally dark energy took control of the expansion recently. Curvature never dominates the
dynamics of the expansion. The right panel is a zoomed-in region highlighted in the left panel
for the latest times, when the transition from matter to dark energy takes place.

H = const. (with the metric (1.1)) is the so-called de Sitter space. For completeness,
we solve eqn. (1.66) for conformal time as well (recall ȧ = da/(adτ) ≡ a′/a, see
eqn. (1.5)),

a(τ) = a0

[
1− 1

2
(1 + 3wi)H0

√
Ωi (τ0 − τ)

] 2
1+3wi

∼ sgn (1 + 3wi) τ
2

1+3wi . (1.69)

1.9 Cosmological Problems

The conventional Big Bang theory brought a unique explanation to the universe as
we observe it today. However, there are also observations that are not fully explained.
This section collects some of them, for which we will explore a solution in the next
two remaining chapters of this part.

1.9.1 Horizon Problem

The cosmic microwave background (CMB) is relic radiation from the evolution of the
universe. As the hot plasma of particles cools down, nuclei start forming (essentially
hydrogen, some helium and a bit of other slightly heavier nucleus) and eventually
(some hundred thousand years or a billion of degrees later) electrons start attaching
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to them, forming neutral atoms. This period is called recombination. At this point,
380 000 years after the Big Bang, when the hot plasma has a temperature of around
T ∼ 0.25 eV ∼ 2900 K [2], photons can finally freely travel without being scattered by
electrons or protons, usually referred to as photon decoupling. This is the radiation
we observe today as the CMB, expanded and therefore cooled down to today’s T0 '
0.235 meV ' 2.73 K [5]. This radiation is the oldest light we have from the early
universe, and its discovery and observation opened a new chapter in cosmology.

Remarkably, the CMB is isotropic, after removing the dipole anisotropy due to
our relative motion w.r.t. the CMB photons. It is mostly uniform, with temperature
anisotropies smaller than a few parts in one hundred thousand [6]. Which means
that any two photons of the last scattering surface (the set of points from where the
CMB photons we observe today that were emitted after photon decoupling) must
have been in causal contact. One finds out that the math does not add up, as there
was simply not enough time for that to happen. In other words, the comoving dis-
tance of two CMB photons is smaller than the particle horizon at the time of photon
decoupling—according to the conventional Big Bang, with conventional matter gover-
ning the dynamics.

In view of figure 1.2, it seems sensible to assume that the early universe always
expanded dominated by “conventional” matter, i.e., matter that satisfies the strong
energy condition (SEC)

trT (i)µ
ν = ρi + 3pi = ρi (1 + 3wi) > 0 or simply wi >

1

3
. (1.70)

Under this condition the comoving Hubble radius is (see eqns. (1.13) and (1.66))

(aH)−1 =
(a0H0)−1

√
Ωi

(
a

a0

)1
2

(1+3wi)

(1.71)

which implies an always-growing Hubble sphere. The particle horizon, in turn, takes
the form (see eqn. (1.9))

χph =
2 (a0H0)−1

(1 + 3wi)
√

Ωi

[(
a

a0

)1
2

(1+3wi)

−
(
aini

a0

)1
2

(1+3wi)
]
≡ τ − τini . (1.72)

τini corresponds to the Big Bang singularity aini → 0 such that, for an expansion
always dominated by a fluid with wi > −1/3,

τini
aini→0−−−−→ 0 (1.73)

and thus χph is finite and gets its main contribution from late times

χph =
2 (a0H0)−1

(1 + 3wi)
√

Ωi

(
a

a0

)1
2

(1+3wi)

=
2

1 + 3wi
(aH)−1 , for wi > −

1

3
, (1.74)

which implies a finite particle horizon.
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Figure 1.3: Our past lightcone tracking back to the origin of CMB. The past lightcones of
points p and q on the last scattering surface in opposite directions in the sky do not overlap,
meaning they were never in casual contact. In other words, the comoving distance between
them is bigger than the comoving time τCMB − τini = τCMB. Figure from [2].

This shows a problem, because photons at decoupling τ = τdec are only causally
connected with finitely far neighbours, not being able to communicate with all CMB
photons. Figure 1.3 shows how, if the Big Bang singularity occurred at τini → 0, the
past lightcones of two CMB photons opposite in the sky do not overlap. However,
all CMB photons show the same temperature, so either the initial conditions of the
universe are very specific—what in physics is called a fine-tuning problem—or the
dynamics were different such that all CMB photons have in fact been in causal contact
at some point. In section 2.1 we introduce inflation as a mechanism that gives an
explanation to the isotropy as well as to the anisotropies of the CMB.

1.9.2 Flatness Problem

A monotonically growing Hubble sphere also involves some issues with flatness. As
already mentioned (e.g. in footnote 1), experiments suggest the universe is essentially
flat. However, flatness is an unstable point in the dynamics of the universe, and if it
expanded just with matter satisfying the SEC (up to the dark energy-matter equality)
then the initial conditions would have needed to be oddly particular, namely K = 0
or extremely close to zero. This is another fine-tuning problem, for which inflation
gives an elegant solution.
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Chapter 2

Inflation

2.1 General features of inflation

As we saw in the previous section, there are some problems associated with a universe
in which the Hubble sphere has always been growing. What about adding a period
in the universe history in which the Hubble sphere shrinks? We retrieve eqn. (1.71)

(aH)−1 ∝ a
1
2

(1+3wi) ⇒ d(aH)−1

da
∝ 1

2
(1 + 3wi)a

1
2

(3wi−1) (2.1)

to see that in order to have a shrinking Hubble sphere we need

d(aH)−1

da
< 0 ⇔ 1 + 3wi < 0 ⇔ wi =

pi
ρi
< −1

3
. (2.2)

Indeed, the particle horizon χph(τ) = τ − τini (see eqn. (1.72)) is now dominated by
the initial contribution

τini ∝ a
1
2

(1+3wi)

ini
aini→0−−−−→ −∞ ⇔ wi < −

1

3
. (2.3)

Now CMB photons have plenty of time (infinite) to get into causal contact, mea-
ning that no matter at what comoving distance they are from each other their past
lightcones are due to overlap inevitably. This is illustrated in figure 2.1.

Furthermore, in a universe dominated by a fluid with wi < −1/3, the universe
undergoes an accelerated expansion. Take the equation of state (1.27) and the se-
cond Friedmann equation (1.31), and assume this fluid is the only component in the
universe. Then,

ä

a
= − 1

6M2
Pl

ρi

(
1 + 3

pi
ρi

)
= −H

2

2

(
1 + 3

pi
ρi

)
> 0 ⇔ pi

ρi
< −1

3
. (2.4)

23



24 CHAPTER 2. INFLATION

1100 10 3 1 0 1 1100

0.2

0.4

0.6
0.8
1.0

0.01

0.1

0.001

Hu
bb

le 
sp

he
re

now

lig
ht 

con
e

sc
al

e 
fa

ct
or

co
nf

or
m

al
 ti

m
e 

[G
yr

]
50

40

30

20

10

3 10

CMB
reheating

-10

-20

-30

-40

in
fla

tio
n

causal contact

Figure 2.1: Diagram showing the new picture after introducing a period of accelerated ex-
pansion (see eqn. (2.4)), called inflation. Where previously (see fig. 1.3) the origin of conformal
time was at τini = 0 and corresponded to the Big Bang singularity, now it corresponds to the
epoch of reheating τrh = 0. Past lightcones from the last scattering surface at τCMB now over-
lap, meaning CMB photons are in fact in casual contact. Of course the vertical axis continues
downwards towards minus infinity, when the Big Bang singularity occurs τini → −∞, or up
to the regime where new physics are expected to arise. The evolution of the Hubble radius is
also shown for reference. Figure from [2].

We can also rewrite the second derivative of the scale factor in terms of the Hubble
parameter

ä

a
= H2 + Ḣ ≡ H2(1− ε) > 0 ⇔ ε ≡ − Ḣ

H2
=

3

2

(
1 +

pi
ρi

)
< 1 (2.5)

where we defined the non-negative parameter ε as the variation rate of the Hubble
parameter. Its smallness remarks H(t) must not vary too quickly.

This period in the history of the universe is called inflation. It is nothing but a pe-
riod of accelerated expansion, so rapid it rips apart patches of the universe, away from
each other, leaving them causally disconnected, and expands—or inflates—quantum
fluctuations of the primordial universe to macroscopic sizes, some of which are im-
printed in the spectrum of the CMB photons. It does not only successfully predict the
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isotropy of the CMB as well as the presence of anisotropies, but also provides seeds
for structure formation, i.e., provides a spectrum of density inhomogeneities which
with time turn into large scale structures of the universe we observe today. To sum
up, when talking about inflation, we talk about a period

• of accelerated expansion ä > 0

• with a slowly-varying Hubble rate ε = −Ḣ/H2 < 1,

• modelled by a fluid that violates the SEC, trT (i)µ
ν < 0, and has a negative

enough pressure pi < −ρi/3,

• during which the (comoving) size of the “instantaneous” observable universe
shrinks d(aH)−1/da < 0

• which therefore extends the particle horizon of any event to infinity χph → ∞,
or at least to a size big enough to solve the horizon problem.

All statements are equivalent.

Some first models of inflation [7,8] were based on the idea of a de Sitter expansion,
for which p = −ρ and therefore H = const. as discussed in section 1.8. Solving
H = ȧ/a for a(t) during inflation t ≤ tend,∫ aend

a

da

a
=

∫ tend

t
dtH ⇒ a(t)

aend
= e−H(tend−t) ≡ eNend−N (2.6)

where we defined the number of e-folds N before the end of inflation1,

dN ≡ −Hdt , (2.7)

as just another measure of time which counts the number factors of the natural number
e by which the scale factor varied. We set Nend = 0 at the end of inflation, such that
a(N) = aende−N . Note that (2.6) is just a redefinition of (1.68) with more convenient
integration limits. During de Sitter expansion, the conformal time is

τend − τ =

∫ tend

t

dt

a(t)
=

1

aend

(
− 1

H

)[
1− eH(tend−t)

]
= − 1

Haend
+

1

Ha
. (2.8)

Shrinking the Hubble radius to a small enough size would mean

(aendH)−1 → 0 ⇒ τend → 0 , (2.9)

defining a zero point in conformal time. In standard cosmology without inflation
the origin of conformal corresponded to the Big Bang singularity tini = 0. However,
an inflationary period effectively pushes it back to negative conformal time (towards

1When we say, for example, N = 60, we mean ‘60 e-folds before the end of inflation.’
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τini → −∞ in the extreme case). τ = 0 now corresponds to reheating, a transi-
tion phase between inflation and the radiation-dominated early universe (the hot Big
Bang). The energy of inflation must therefore decay into Standard Model particles
during this phase. We can, moreover, identify the conformal time τ < 0 during de
Sitter expansion as

τ = −(aH)−1 . (2.10)

Such early models, however had some problems such as they would not reheat
properly or they would last for too long. These became then the “old” inflation
and new models [9, 10] of “new” inflation appeared. They feature a quasi-de Sitter
expansion in which H is not completely constant. We generally call these models
single-field slow-roll inflation.

2.2 Single-field slow-roll inflation

The most common way of describe inflation is with a homogeneous scalar field φ = φ(t)
(or φ(τ)), named the inflaton. It is coupled to gravity as in equation (1.14), with its
dynamics given by the Lagrangian density

Lφ = −1

2
gαβ ∂αφ ∂βφ− V (φ) = −1

2
g00(∂0φ)2 − V (φ) , (2.11)

where V (φ) is the inflaton potential density. Different models of inflation give different
forms to the potential V , each of which shows different features in different observables,
such as the spectrum of the CMB photons or stochastic gravitational waves.

Even if it seems that the inflaton is just another component of the matter content
of the universe, the scalar field φ is just a modellisation of the mechanism. One of the
first models of inflation, in fact, was originally proposed as some correction of gravity
for high energies via an extra term ∝ R2 in the Einstein-Hilbert action. This is called
Starobinski inflation [11]. It can be modelled through a scalar field and written as Lφ
in eqn. (2.11), with the potential

VStarobinsky(φ) = V0

(
1− eγsφ

)2
, φ < 0 , (2.12)

with some parameters V0 and γs. For the following, however, we will keep V (φ)
unspecified and do a model-independent study of inflation via scalar fields.

2.2.1 Equations of motion for the inflaton

The equation of motion of the inflaton field is the Klein-Gordon equation in a curved
spacetime, with the FLRW metric (1.1) (or (1.6))2

φ̈+ 3Hφ̇+
dV

dφ
= 0

(
φ′′ + 2

a′

a
φ′ + a2 dV

dφ
= 0

)
(2.13)

2Eqn. (2.13) is derived imposing the action in eqn. (1.14) to be an extremum for any field confi-

guration φ(z), i.e. δS/δφ(z)
!
= 0.
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with H given by the Friedman equations derived in section 1.6 and computed for
inflation in the following subsection. Eqn. (2.13) differs from the Klein-Gordon equa-
tion in Minkowski space in the friction term 3Hφ̇ introduced by the expansion of the
universe.

2.2.2 Friedman Equations during inflation

We shall now compute the energy and pressure of the inflaton in order to study the
dynamics derived in the previous chapter. We know from section 1.4 that the energy-
momentum tensor can be obtained from the Lagrangian

Tµν = δµνL − 2gµσ
∂L
∂gσν

. (2.14)

In this case,
∂Lφ
∂gσν

= −1

2
∂σφ ∂νφ = −1

2
(∂0φ)2δ0

σδ
0
ν (2.15)

and
T (φ)µ

ν = δµνLφ + g00(∂0φ)2δµ0δ0
ν . (2.16)

Therefore, the energy density and pressure are given by

ρφ = −T 0
0 =

1

2
g00(∂0φ)2 + V (φ)− g00(∂0φ)2 , (2.17a)

pφ =
1

3
T ii =

δii
3

(
−1

2
g00(∂0φ)2 − V (φ)

)
≡ Lφ (2.17b)

for which after specifying some coordinates we get

ρφ =
1

2
φ̇2 + V (φ) =

1

2

(
φ′

a

)2

+ V (φ) , (2.18a)

pφ =
1

2
φ̇2 − V (φ) =

1

2

(
φ′

a

)2

− V (φ) , (2.18b)

in cosmic time t and conformal time τ , respectively, and with the short-hand notations
˙ ≡ d

dt and ′ ≡ d
dτ for the time derivatives. For the rest of this section we work

exclusively with cosmic time t.

This gives a equation of state parameter wφ

wφ =
pφ
ρφ

=
1
2 φ̇

2 − V
1
2 φ̇

2 + V
< −1

3
⇒ 1

2
φ̇2 <

1

2
V (2.19)

which implies that the potential energy must be at least twice as big as the kinetic
energy.

The first Friedman equations is

3M2
PlH

2 = ρφ =
1

2
φ̇2 + V (φ) , (2.20)
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while the second is simply eqn. (2.5), from where we can find

ε =
1

2M2
Pl

(
φ̇

H

)2

. (2.21)

In other words, inflation, i.e., ε < 1, only takes place if the kinetic energy 1
2 φ̇

2 contri-
bution to the total energy ρφ is less than a third.

2.2.3 The slow roll approximation

One usually takes a de Sitter limit, in which

pφ → −ρφ ⇔ 1

2
φ̇2 � V . (2.22)

That is, the potential energy dominates over the kinetic energy, such that we can
rewrite the first Friedman equation (2.20) as

H2 ' V (φ)

3M2
Pl

(2.23)

in this limit. ε→ 0 is equivalent to the de Sitter limit.

Furthermore, it is also often considered the case

φ̈� 3Hφ̇ (2.24)

such that the friction term dominates in the Klein-Gordon equation (2.13), which now
takes the form

3Hφ̇+
dV

dφ
' 0 . (2.25)

To parametrise this approximation, we define a second dimensionless parameter η

η ≡ − φ̈

φ̇H
= ε+

1

2ε

dε

dN
, (2.26)

where for the second step we used the time derivative of eqn. (2.21),

ε̇

ε
= 2

H

φ̇

(
φ̈

H
− Ḣ

H2
φ̇

)
, (2.27)

and dN = −Hdt.

These approximations are what is called the slow roll approximation and is valid
as long as the slow roll parameters ε and η are small, ε, |η| � 1. Inflation will take
place as long as ε < 1, regardless of the value of η, but this approximation holds
for certain choices of the potential [6] and makes the computations easier. η gives
information about how ε evolves during inflation, relevant for quantifying how long ε
stays under 1, i.e., how long the inflationary period is.
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We can rewrite the slow roll parameters in terms of the potential and its derivatives
using eqns. (2.23) and (2.25),

ε ' 1

2M2
PlH

2

(
dV

dφ

)2 1

9H2
' 1

2M2
Pl

(
dV

dφ

)2(M2
Pl

V

)2

=
M2

Pl

2

(
1

V

dV

dφ

)2

≡ εV (2.28)

and, since

3Ḣφ̇+ 3Hφ̈+ φ̇
d2V

dφ2
' 0 , (2.29)

η = − φ̈

φ̇H
' 1

3H2

dV

dφ
+

Ḣ

H2
'M2

Pl

1

V

d2V

dφ2
−
M2

Pl

2

(
1

V

dV

dφ

)2

≡ ηV − εV . (2.30)

We see εV is some measure of the steepness of the potential relative to its magnitude,
while ηV indicates its curvature. The slow roll conditions εV , |ηV | � 1 are equivalent
to ε, |η| � 1. Slow roll does not necessarily mean a potential which is flat for a
period long enough, but also a steep potential with high enough values V satisfies
these conditions. In any case, the picture is still quite straight forward: the field φ
rolls slowly down the potential, till its speed is too big and inflation stops. As soon
as ε reaches 1, inflation finishes and reheating starts.

The advantage of the slow roll parameters in terms of the potential, εV and ηV , is
that once the potential V (φ) is specified, εV and ηV can be directly computed. This
is useful, for example, to compute the value of the field at the end of inflation φend

from the condition

εV (φend) = 1 , (2.31)

which is then helpful to compute the number of e-foldsremaining,

N = −
∫ tend

t
Hdt = −

∫ φend

φ

H

φ̇
dφ = − 1√

2M2
Pl

∫ φend

φ

dφ√
εV (φ)

. (2.32)

Quantities predicted by inflation that will be introduced in the next section will also
be computable from these parameters.

In order to solve the horizon and flatness problems, inflation has to last for long
enough. From a thermodynamic argument, using entropy conservation, one finds [6]
that the universe must inflate for a minimum of

Nmin ∼ 60 (2.33)

or, more precisely, assuming a realistic range of reheating temperatures Trh between
103 GeV and 1016 GeV, we obtain [12,13]

46 . Nmin . 60 . (2.34)

Note that there are no upper limits on the number of e-folds inflation must last.
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Comoving 
 Horizon

Time [log(a)]

Inflation Hot Big Bang

Comoving Scales  

horizon exit horizon re-entry

density fluctuation

Figure 2.2: Evolution of perturbations in an inflationary universe. Fluctuations exit the
horizon, staying causally disconnected and “frozen” till re-entry. In a universe without infla-
tion the comoving horizon would be strictly increasing, and therefore we could not speak of
horizon exit nor re-entry. Here comoving horizon refers to the comoving Hubble sphere. Note
that it is equivalent to figure 2.1 rotated 90◦. Figure from [21].

2.3 Quantum fluctuations during inflation

The universe is not homogeneous at small scales. It is full of galaxies, stars, planets.
They grew from initial inhomogeneities in the early universe, seeds that through
gravitational interaction evolved into complex structures we observe today. They are
initial conditions for which the Big Bang cosmology does not have an explanation but
inflation provides a mechanism to generate fluctuations in even larger scales than the
horizon [14–20].

The general idea behind the mechanism is that a certain inhomogeneity of a certain
(physical) scale3 grows with expansion. During inflation, the physical Hubble sphere
does not grow as fast, and the perturbation is left outside of the horizon, being causally
disconnected from then on. Until during the Big Bang cosmology the Hubble sphere
grows again faster than the scale factor and thus the perturbation falls again inside or
re-enters the horizon. If we switch to comoving distances, then the comoving scale of
a certain perturbation (the comoving wavelength) will remain always constant along
expansion and the comoving Hubble radius shrinks and grows again when inflation
comes to an end. This can be seen in figure 2.2. Note that if the perturbations are
larger than today’s Hubble sphere, are (and will probably always be) inaccessible to
us, since they are still outside of the horizon (and we currently live in a de Sitter
universe, dominated by dark energy, with a shrinking Hubble sphere). That limits

3Think of an inhomogeneity as a wave or perturbation in the cosmic fluid and its scale as its
wavelength λ.
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the observational information we can get from the early universe. Namely, we can
only see up to the last 60 e-folds of inflation: From the smallest scales that re-entered
the horizon just at the end of inflation N = 0, to the biggest scales, corresponding to
perturbations re-entering the horizon today.

But inflation also predicts how the inhomogeneities are produced in the first place.
In the following we will make a brief overview of how these perturbations are computed
and how they translate into observables. For that, we follow the treatment done in [21],
which is in turn based on [20,22–29].

In the scalar field picture, φ evolves classically on its potential V (φ), but it is also
subject to quantum fluctuations δφ about the classical trajectory φ(t). Formally,

δφ(t,x) = φ(t,x)− φ̄(t) , (2.35)

where we explicitly write a bar on the classical field φ̄(t) in order to highlight the fact
that it is a classical background field, and φ(t,x) is simply the total field. One expects
as well perturbations around the background (spatially flat) FLRW metric

δgµν(t,x) = gµν(t,x)− ḡµν(t) . (2.36)

Fluctuations are considered to be small, δφ � φ̄, δgµν � ḡµν , such that the linear
order of the Einstein equations expansion in perturbations

δGµν = M−2
Pl δTµν (2.37)

determine the evolution of these to very high accuracy. Since the scalar field dominates
the energy-momentum tensor during inflation, its fluctuations δφ will directly affect
those of the metric δgµν and viceversa. This is called backreaction.

We can decompose the perturbations into independent scalar, vector and tensor
components. Inflation does not generate vector fluctuations and they are diluted with
expansion, thus we will ignore them here. We focus on scalar and tensor perturba-
tions, which are observed today as density (and thus temperature) fluctuations and
gravitational waves, respectively. On one hand, we obtain from the field fluctuations
δφ scalar perturbations in the energy density δρ and pressure δp4. On the other hand,
metric fluctuations δgµν present both scalar Φ, B, Ψ and E , and tensor hij fluctuations,

ds2 = −(1 + 2Φ)dt2 + 2 a ∂iB dtdxi + a2
[
(1− 2Ψ)δij + (2 ∂i∂jE + hij)

]
dxidxj , (2.38)

with hij transverse (∇ihij = 0) and traceless (hii = 0).

2.3.1 Scalar perturbations

The tensor perturbations are automatically gauge-invariant but the scalar ones are
not. In other words, if we change our coordinates the perturbations δφ will in ge-
neral change as well. Hence the importance of defining gauge-invariant quantities to

4There is also a tensor contribution to δTij from the anisotropic stress Σij , with ∂iΣij = 0 = Σii,
but it is negligible to a good approximation.
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study the evolution of these. The most relevant gauge-invariant quantity for us is the
comoving curvature perturbation

R ≡ Ψ− H

ρ̄+ p̄
(δρ+ δp) = Ψ +

H
˙̄φ
δφ , (2.39)

where we replaced the matter perturbations by those of the scalar field during inflation.

In general, we will work in Fourier space

R(t,x) =

∫
d3k

(2π)3/2
Rk(t) eik·x , (2.40)

with Fourier modes Rk(t), which represent the fluctuations at a comoving scale λ =
2πk−1. Fourier modes do not interact with each other since the linear equations of
motion (2.37) are translation invariant5. Thus we can study them independently. The
evolution of Rk is given by the perturbed Einstein equations (2.37) as

Ṙk = − H

ρ̄+ p̄
δpen +

k2

(aH)2

(
. . .
)
, (2.41)

where

δpen ≡ δp−
˙̄p
˙̄ρ
δρ (2.42)

is the non-adiabatic component of the pressure perturbation and is a gauge-invariant
quantity. Therefore, for adiabatic matter perturbations (δpen = 0), R is conserved on
superhorizon scales k−1 � (aH)−1, where k = 2πλ−1 is the comoving wavenumber of
a perturbation—with λ a comoving wavelength. This means that computing Rk at
horizon exit automatically gives the perturbation mode at horizon re-entry. Figure 2.3
illustrates this.

Fluctuations, however, are quantum during inflation. That means, they have to
be treated as such. In order to do that we proceed as follows:

1. Start with the action (1.14) with L = Lφ, for a (non-homogeneous) scalar field
φ(t,x) (or φ(τ,x)). Expand it to first order in perturbations. This will provide
us with the right normalisation.

2. Derive the equations of motion, redefine the fields in terms of the Mukhanov
variable v and go to Fourier space to get the Mukhanov-Sasaki equation of the
Fourier modes vk,

v′′k +

(
k2 − z′′

z

)
vk = 0 . (2.43)

3. Perform the mode expansion of the modes vk to promote them to quantum
operators, imposing canonical commutation relations.

5Proof in Appendix A of [21].
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Figure 2.3: Evolution of a scalar perturbation of a comoving size k−1 during and after
inflation, quantified by the quantities δφ andR. At the time of recombination the perturbation
induces a fluctuation in the temperature ∆T of the CMB spectrum, which can be measured
in the primordial spectrum given in a multipole expansion with coefficients C`. From [2].

4. Choose a vacuum. A known result of quantum field theory in curved spacetimes
is that there is no unique vacuum. Each observer may have a different one. The-
refore, match the solutions to that of a Minkowski (flat) vacuum of a comoving
observer in the infinite (far) past, τ → −∞, or, equivalenty, when the mode is
deep inside the horizon k � aH. That is the so-called Bunch-Davies vacuum.

5. Finally, express the Mukhanov-Sasaki equation in the limit of de Sitter expan-
sion, ε → 0, where we can solve it exactly using the constraints obtained via
quantisation and the initial conditions. We then obtain unique Bunch-Davies
mode functions, with which we can compute the two-point correlation functions,
that is to say the power spectrum of perturbations.

Note that procedure is the same for both scalar and tensor perturbations. They will
just differ on the action6 and thus in the equations of motion, but they can be both
brought to the same form of the Mukhanov-Sasaki equation through the corresponding
field redefinition.

If one follows this procedure for computing Rk, one arrives to the Bunch-Davies
mode functions

vk(τ) =
e−ikτ

√
2k

(
1− i

kτ

)
(2.44)

6For instance, the scalar perturbations are sourced by both field and metric fluctuations, while
tensor perturbations are just those from the metric (neglecting anisotropic stress).
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which are the coefficients of the Fourier expansion of the (already-quantised) Mukha-
nov variable v̂, or

v̂k(τ) = vk(τ) âk + v∗k(τ) â†−k ≡
∫

d3x

(2π)3/2
v(τ,x) e−ik·x , (2.45)

for the modes, with the creation â†−k and annihilation âk operators satisfying the
canonical commutation relation[

âk, â
†
k′
]

= δ(3)
(
k − k′

)
(2.46)

if and only if the mode functions are normalised as

〈vk, vk〉 ≡
i

~
(
v∗kv
′
k − v∗k

′vk
)

= 1 . (2.47)

The Mukhanov variable is related to Rk via

v ≡ zR with z2 ≡ a2 φ̇
2

H2
= 2M2

Pla
2ε . (2.48)

Scalar power spectrum

The quantisation allows us to properly compute the two-point correlation functions
in de Sitter space,

〈v̂kv̂k′〉 = 〈0|v̂kv̂k′ |0〉 = vkv
∗
k〈0|âkâ

†
−k′ |0〉 = |vk|2δ(3)

(
k + k′

)
≡ Pv(k) δ(3)

(
k + k′

)
,

(2.49)
where we used eqns. (2.45) and (2.46). The power spectrum Pv(k) is the quantity
of interest, so we shall evaluate it at superhorizon scales k−1 � (aH)−1, where the
scalar perturbations do not evolve anymore. Recalling (2.10) that in de Sitter space
τ = −(aH)−1, and making use of eqn. (2.44),

Pv(k) = lim
kτ→0

|vk(τ)|2 = lim
kτ→0

1

2k

(
1− 1

(kτ)2

)
=

(aH)2

2k3
. (2.50)

This power spectrum was derived for any field satisfying the Mukhanov-Sasaki equa-
tion in de Sitter space. One just needs to rescale the Mukhanov variable correspon-
dingly to obtain the power spectrum of any field.

In perfect de Sitter space, ε = 0, and therefore z = 0, so that the curvature per-
turbation R = v/z would be ill-defined. In a perfect de Sitter universe expansion is
eternal, and perturbations make little sense. However, we know inflation will even-
tually end and therefore perturbations will become meaningful, while the spacetime
during inflation departs slightly from the idealised de Sitter spacetime. Therefore, we
take this deviation as a expansion on the small slow roll parameter ε.
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Considered that, we can compute now the power spectrum of the comoving cur-
varture perturbations

PR(k) =
1

z2
Pv(k) =

1

4M2
Plk

3

H2

ε
=

1

2k3

H4

φ̇2
(2.51)

which remains constant (for a fixed k) once the k-mode exited the horizon, i.e., when
k = aH. That means, we can evaluate H and φ̇ at the time when aH = k, and
therefore all quantities in PR(k) will depend only on k. This will also be the spectrum
of perturbations at horizon re-entry. It is also conventional to express the power
spectrum in its dimensionless form

∆2
s(k) ≡ k3

2π2
PR(k) =

1

8π2M2
Pl

H2

ε

∣∣∣∣
k=aH

. (2.52)

H and ε are still expected to evolve slightly with time, therefore the amplitude of
the spectrum will not be the same for all scales, since bigger scales exit the horizon at
early stages of inflation, while the smallest exit the horizon just before reheating. To
measure the (small) scale dependence of the spectrum, one defines the scalar spectral
index ns

ns − 1 ≡ d ln ∆2
s

d ln k
, (2.53)

with ns = 1 corresponding to scale invariance. Usually the spectrum is expressed as
a power law, simply integrating eqn. (2.53),

∆2
s(k) = As(k?)

(
k

k?

)ns(k?)−1

(2.54)

where k? is the pivot scale or reference scale (one of the integration limits). This
pivot scale is usually taken to be the CMB scales, since it is for that scale for which
we can measure the amplitude As and the spectral index ns. Think of it as some
kind of Taylor expansion around a value accessible by experiments, valid to a good
approximation for slowly varying H and ε.

We can split the right hand side of eqn. (2.53) into two factors

d ln ∆2
s

d ln k
=

d ln ∆2
s

dN
× dN

d ln k
. (2.55)

The first one is7

d ln ∆2
s

dN
=

d

dN

[
2 lnH − ln(8π2)− ln ε

]
=

2

H

dH

dN
− 1

ε

dε

dN
= 2ε− 2(η − ε) = 4ε− 2η

(2.56)

7We recover the definitions of the slow roll parameters in eqns. (2.5) and (2.26). In the case of the
first one

ε = − Ḣ

H2
= − 1

H

dH

Hdt
=

1

H

dH

dN
.
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while for the second we use the fact that k = aH and retrieve a(N) from (2.6)

d ln k = d ln a+ d lnH = −N + d lnH (2.57)

and so

dN

d ln k
=

[
d ln k

dN

]−1

=

[
−1 +

d lnH

dN

]−1

= [−1 + ε]−1 = −1− ε+O(ε2) . (2.58)

We can therefore express the spectral index exclusively in terms of the slow roll pa-
rameters as

ns = 1+(4ε−2η)
(
−1− ε+O(ε2)

)
= 1−4ε+2η+O(ε2, εη) ' 1−6εV +2ηV (2.59)

as well as in terms of the potential slow roll parameters defined in eqns. (2.28) and
(2.30). Note that all these quantities must be evaluated at the time when the mode
exits the horizon, aH = k, to give ns(k) as just a function of k.

2.3.2 Tensor perturbations

The only tensor perturbation was that of the metric of the 3-hypersurfaces hij , whose
Fourier decomposition is

hij(τ,x) =
∑
κ

∫
d3k

(2π)3/2
hκk(τ) εκij(k) eik·x , (2.60)

where hκk(τ) are the Fourier or polarisation modes, εκij(k) the polarisation tensors,
and κ = + or × the plus or cross polarisations. The polarisation tensors form an
orthogonal basis for each k, such that kiεij = 0 and εκij(k)εκ

′
ij (k) = 2δκκ′ . As hij , the

εij(k) are traceless: εii = 0.

As discussed before, the quantisation procedure works analogously for the scalar
ones, with the difference that now we have two Mukhanov fields vκk (τ), one for each
polarisation, related to the Fourier modes hκk(τ) through

vκk =
MPl

2
a hκk . (2.61)

Tensor power spectrum

The power spectrum of tensor perturbations Pt(k) is given by the sum of both pola-
risations, each of which contributes equally

Pt(k) = 2 Ph(k) = 2

(
2

aMPl

)2

Pv(k) =
4

k3

H2

M2
Pl

∣∣∣∣
k=aH

, (2.62)
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or in its dimensionless version

∆2
t (k) =

2

π2

H2

M2
Pl

∣∣∣∣
k=aH

. (2.63)

Analogously to the scalar spectral index, we can define a tensor spectral index nt,
again, with all quantities evaluated at the time when k = aH,

nt(k) ≡ d ln ∆2
t

d ln k
=

d ln ∆2
t

dN
× dN

d ln k
= 2ε×

(
−1− ε+O(ε2)

)
= −2ε+O(ε2) ' −2εV .

(2.64)

A conventional way of normalising the amplitude of tensor perturbations is with
respect to the scalar perturbations,

r ≡ ∆2
t

∆2
s

= 16ε ' −8nt . (2.65)

2.4 Pseudoscalar Inflation

Let us now study a particular family of inflationary models: pseudoscalar inflation.
It is a minimal modification of the standard single-field slow-roll inflation, by just
adding a coupling of the inflaton field φ to agauge field, described by the Lagrangian

L = −1

2
gµν ∂µφ ∂νφ− V (φ)− 1

4
FµνF

µν − 1

4Λ
φ FµνF̃

µν , (2.66)

where
Fµν ≡ ∇µAν −∇νAµ = ∂µAν − ∂νAµ (2.67)

is the field strength tensor of the gauge field Aµ, F̃µν ≡ 1
2 ε̃
µνρσFρσ is its dual, and

ε̃αβγδ = (−g)1/2[αβγδ] and ε̃αβγδ = g−1ε̃αβγδ are the generalised totally antisymmetric
Levi-Civita tensors in curved spacetimes [4]. Since we will mostly work with the
metric (1.6) conformal to flat space, we will usually work with the flat Levi-Civita
tensors εαβγδ and factor out the determinant, such that ε̃αβγδ = (−g)−1/2εαβγδ, with
ε0123 = +1.

In this work we will identify the gauge group with the hypercharge sector U(1)
of the Standard Model. This will allow generate baryons as we will see in the next
chapters.

In the next part, we change notation. Given the pseudoscalar nature of the cou-
pling, we identify it with an pseudo-Nambu-Goldstone boson. Therefore, we label the
inflaton with a. We then accordingly relabel the scale factor as R(t) or R(τ).
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Chapter 3

Baryogenesis

Antimatter exists and is a direct consequence of combining two very fundamental
theories in physics: quantum mechanics and the theory of relativity. In a universe
with a thermal expansion, such as one ours, there is a point in time at which the tem-
peratures are high enough to have both matter and antimatter, in pair-creation and
annihilation processes in thermal equilibrium. When the temperature drops enough,
the pair-creation processes stop and particles and antiparticles annihilate each ot-
her until only photons are left1. Or at least that would be the case in a symmetric
universe. But here we are. So our universe cannot be a symmetric one.

Let us call ourselves matter, as it is conventional; more precisely, we are made
of baryons. Then, there must have been an asymmetric initial condition before the
baryon-antibaryon—or, rather, quark-antiquark—annihilation, at temperatures T &
1 GeV, with more baryons than antibaryons. Let us measure that asymmetry as the
difference in number of baryons and antibaryons relative to the total number

NB −NB̄

NB +NB̄

∣∣∣∣
T&1 GeV

. (3.1)

This would be the baryon asymmetry of the universe (BAU) in the primordial plasma.

However, the sum of baryons and antibaryons NB +NB̄ is not directly accessible
to us, so we need a better quantity to measure the BAU. Particles and antiparticles
annihilate into photons, and, in a universe with just expansion, the ratio

NB −NB̄

Nγ
(3.2)

would be of the same order than that in eqn. (3.1), with expansion just diluting the
density (not the number) of (anti)baryons and photons with expansion. However,
processes such as electron-positron annihilation and the annihilation of baryons and

1And a few lonely particles and antiparticles which could not find each other because of the
expansion of the universe.
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antibaryons itself changes Nγ all the way from T ∼ 1 GeV till today T0 ∼ 0.2 meV.
Despite that, the change is altogether not so relevant and we can still define

η0
B ≡

NB −NB̄

Nγ

∣∣∣∣
T0

' NB −NB̄

Nγ

∣∣∣∣
T0

∼ NB −NB̄

NB +NB̄

∣∣∣∣
T&1 GeV

. (3.3)

Typically, the number of baryons and photons is divided by the volume, such that ηB
is given in terms of number densities instead

η0
B =

nB − nB̄
nγ

. (3.4)

At the time in the evolution of the universe in which the lightest nuclei are for-
med, called the Big Bang nucleosynthesis (BBN) at temperatures TBBN ∼ 1 MeV, the
abundance of baryons (more precisely, nucleons), is a key parameter of the thermo-
nuclear reactions. From the measured present-day abundance of primordial nuclei,
mostly from that of deuterium, we find some bounds for this baryon asymmetry of [5]

5.8× 10−10 ≤ ηbbnB ≤ 6.6× 10−10 (95% CL) . (3.5)

On the other hand, the baryon asymmetry also affects the power spectrum of
temperature fluctuations in the CMB. Seeded in principle by inflation, inhomogeneities
in density create certain gravitational potential wells of dark matter around which the
baryon-photon plasma oscillates, what is called baryon acoustic oscillations. These
oscillations can be measured through the relative hight of the peaks of the CMB
temperature spectrum. The latest CMB observations give a density parameter for
baryons Ωbh

2 = 0.0223± 0.0002 [3] which corresponds to [5]

ηcmbB = (6.09± 0.06)× 10−10 . (3.6)

This shows a nice agreement in this quantity at two different epochs (energy scales),
which points out the reliability of these values.

3.1 General conditions for baryogenesis

So now we are sure there is an asymmetry, let us have a look at how it must be
originated. There are three necessary conditions for producing more baryons than
antibaryons, i.e., for successful baryogenesis. These are the so-called Sakharov condi-
tions [30]:

(i) baryon number B violation,

(ii) C and CP violation,

(iii) deviation from thermal equilibrium.
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The first condition is straightforward—without a baryon number violating process, it
is not possible for a system to go from a B = 0 to a B 6= 0 state. Second, if C (or
CP) hold, then all process involving the creation of particles would have a C (or CP)
conjugate which creates antiparticles with the same probability. And third, thermal
equilibrium correspond to time translation invariance and therefore the expectation
values do not change; if we want B to change, we need to depart from equilibrium.

The Sakharov conditions can be fulfilled within the Standard Model and cosmology
[31]. The baryon number is violated by non-perturbative effects. C and CP violating
interactions are present: the weak interactions violate parity, and the complex phase of
the Cabibbo-Kobayashi-Maskawa violates CP. The expansion of the universe, finally
is a deviation from thermal equilibrium itself.

However, given the nature of these couplings and the thermal evolution of our
universe2, the Standard Model (and cosmology) fail to produce enough baryon asym-
metry.

In section 4.2 a mechanism is presented which uses physics of the Standard Model
only, but succeeds producing the right amount of baryons. It relies on the chiral
anomaly of the standard model as well as on an particular initial condition: maximally
helical hypermagnetic fields at the time of electroweak symmetry breaking. This initial
condition is automatically given by models of pseudoscalar inflation coupled to the
Standard Model U(1) gauge group.

2Here we refer to the second order phase transition that undergoes our universe, instead of first
transition which would allow successful baryogenesis via sphaleron processes.
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Chapter 4

Introduction

In this paper, we are going to study general models of pseudoscalar inflation and their
implications for the present-day spectrum of gravitational waves as well as for baryo-
genesis via primordial hypermagnetic fields around the time of electroweak symmetry
breaking (EWSB). In the following, we will review the status of gravitational waves
from pseudoscalar inflation in Sec. 4.1 and baryogenesis after primordial magnetoge-
nesis in Sec. 4.2. Readers familiar with both subjects may directly skip to Sec. 4.3,
where we outline the philosophy behind our analysis.

4.1 Gravitational waves from an anomalous inflaton cou-
pling to gauge fields

The celebrated detection of gravitational waves (GWs) from a binary black hole mer-
ger by the LIGO/Virgo collaboration [32] (see also [33,34]) has literally ringed in the
era of gravitational-wave astronomy. In the near future, GW experiments will develop
into standard observational tools, allowing us to routinely observe — or better: listen
to — a variety of astrophysical phenomena. But also from the perspective of particle
physics and cosmology, the observation of GWs bears a huge potential. In particular,
the stochastic background of cosmological GWs emitted during the early universe car-
ries invaluable information on physical processes at extremely high energies that are
hard or even impossible to access by other means [35]. Among the different possible
mechanisms to generate GWs in the early universe, a prime example is cosmic infla-
tion [7–11], which unavoidably results in the amplification of the quantum vacuum
fluctuations of the gravitational field [14, 36, 37]. In fact, the direct observation of
relic GWs from the epoch of inflation would represent a powerful probe of the earliest
moments of our Universe, complementary to other observables that are sensitive to
the dynamics of inflation, such as, e.g., the temperature anisotropies of the cosmic
microwave background (CMB). Standard single-field slow-roll inflation, however, pre-
dicts a present-day GW spectral energy density, Ω0

GWh
2 (f), that falls short of the
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current experimental sensitivity by many orders of magnitude,1

Ω0
GWh

2 (f) ∼ 10−16
( r

0.1

)
, (4.1)

where the primordial tensor-to-scalar ratio r is bounded from above by the CMB
observations of the PLANCK satellite, r < 0.11 (95 % C. L.) [40]. This estimate needs
to be contrasted with the sensitivity of the Advanced LIGO detector after its first run,
Ω0

GWh
2 (f) ∼ 10−7 (95 % C. L., at its most sensitive frequencies, f ' 20 · · · 86 Hz) [41].

This sensitivity is certainly an achievement, but still at least nine orders of magnitude
away from the expected signal from inflation. Meanwhile, future satellite experiments
such as DECIGO [42, 43] and BBO [44, 45] promise to reach sensitivities that might
suffice to detect GWs from inflation at O (0.1 · · · 1) Hz. But the realization of these
experiments is still uncertain and possibly several decades away.

In view of this situation, one is tempted to ask what mechanism could potenti-
ally enhance the GW signal from inflation. Here, an interesting possibility — that
has recently received renewed attention in the literature [46,47] — is the boosted pro-
duction of GWs in models of pseudoscalar inflation [48,49]. This class of inflationary
models is built upon the idea that inflation is driven by the dynamics of a pseudos-
calar pseudo-Nambu-Goldstone boson (PNGB) [50, 51].2 Such fields correspond to
pseudoflat directions in field space, the flatness of which is protected against radiative
corrections by an approximate shift symmetry. For this reason, axion-like directions
provide a natural opportunity to realize slow-roll inflation. The axionic shift symme-
try in models of pseudoscalar inflation may, in particular, correspond to the nonlinear
realization of an approximate, Peccei-Quinn-like global symmetry Gglobal. Further-
more, if this global symmetry is anomalous under some local gauge symmetry Ggauge,
the inflaton, a, will couple to the field strength tensor of the corresponding gauge field
via an effective Chern-Simons term,

Leff ⊃ −
a

4 Λ
FµνF̃

µν , (4.2)

where F̃µν denotes the dual field strength tensor, F̃µν = 1
2 (−g)−1/2 εµνστFστ , and

where the suppression scale Λ is related to the spontaneous symmetry breaking scale
of Gglobal. Similarly, an effective coupling such as in Eq. (4.2) may arise in com-
pactifications of string theory [56]. In heterotic string theory, e.g., the Green-Schwarz
mechanism of anomaly cancellation [57] gives rise to several (model-dependent as
well as model-independent) axions that couple to the gauge fields of the theory as in
Eq. (4.2); see [58] for a discussion in the context of pseudoscalar inflation.

1This estimate depends on the reheating temperature, Trh, after inflation. For Trh . O
(
109

)
GeV,

one expects that the GW energy density at frequencies in the O (10 · · · 100) Hz range is further
diluted — and hence suppressed w.r.t. Eq. (4.1) — during the stage of expansion dominated by the
coherent oscillations of the inflaton field [38,39].

2The typical example for a PNGB in physics beyond the standard model is the QCD axion [52,53]
in the Peccei-Quinn solution to the strong CP problem [54,55]. PNGBs in extensions of the standard
model are, therefore, also often referred to as axion-like particles or simply axions. In the following,
we will use these terms interchangeably.
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The anomalous coupling in Eq. (4.2) now has important implications for the dy-
namics of inflation and, eventually, for the present-day spectrum of GWs. To see
this, one first has to note that the axion-gauge-field coupling in Eq. (4.2) results in
the explosive production of gauge quanta during inflation [59–61] (see also [62, 63]).
Depending on the sign of the inflaton velocity, ȧ, one of the two helicity modes of
the gauge field is exponentially amplified, such that the resulting field configuration
is maximally helical. This is a direct consequence of the fact that the time-dependent
vacuum expectation value (VEV) of the inflaton field breaks parity invariance du-
ring inflation, 〈ȧ〉 6= 0. As the energy transmitted to the gauge field increases, the
gauge field begins to back-react on the evolution of the inflaton, effectively contri-
buting another friction term (next to the Hubble friction term) to its equation of
motion [64–66]. At the same time, fluctuations in the gauge field configuration result
in additional source terms for the primordial scalar and tensor perturbations. To-
gether, these effects have a variety of phenomenological consequences, ranging from
modified predictions for various CMB observables [58, 67–69], over the production of
primordial black holes [69–72], to — and here we finally are — an enhanced spectrum
of GWs [46–49].

Recently, it has been pointed out that the GW signal from pseudoscalar inflation
may be even amplified to such an extent that it falls into the sensitivity reach of
upcoming GW interferometer experiments [46, 47]. Here, a particularly promising
inflation model appears to be Starobinsky inflation [11], which could potentially lead
to observable GWs over a vast range of frequencies. This prediction, however, relies
on the assumption of a strong axion coupling, MPl/Λ ∼ O (100), such that the energy
stored in the gauge field begins to dominate the total energy budget towards the
end of inflation. As long as the backreaction from the gauge field on the inflationary
dynamics remains at a perturbative level at all times, a significantly weaker GW signal
is expected.

4.2 Baryogenesis from decaying (hyper)magnetic helicity

The prospect of a sizable GW signal from pseudoscalar inflation entails the question
as to what other observable signatures one might hope for. Thanks to the rich pheno-
menology of this inflationary scenario, it should be possible to correlate the strength
of the expected GW signal to other observables. In particular, one would like to
know in which case one should either expect a strong or only a rather weak signal in
GWs. In this context, an interesting feature of pseudoscalar inflation supplemented
by a coupling to gauge fields is the production of primordial gauge fields towards the
end of inflation [59–61]. In fact, if the gauge symmetry Ggauge is identified with the
standard model hypercharge gauge group, U(1)Y , the primordial hypermagnetic fields
generated during inflation might act as seeds for the ubiquitous, intergalactic magne-
tic fields that permeate our Universe today [73, 74]. Interestingly enough, deficits of
secondary cascade photons from TeV blazars have recently been identified, which can
be explained by intergalactic magnetic fields [75–81]. Pseudoscalar inflation coupled
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to the standard model hypercharge sector, therefore, offers an exciting opportunity
for primordial magnetogenesis [82], which can in principle be tested by more detailed
observations of intergalactic magnetic fields.

Moreover, the primordial (hyper)magnetic fields generated during pseudoscalar in-
flation allow to generate a primordial baryon asymmetry around the time of EWSB [83–
85]. The key ingredient in this scenario of baryogenesis is the chiral triangle anomaly
in the standard model, which relates changes in the global baryon number B as well
as in the global lepton number L to changes in the Chern-Simons numbers in the
electroweak sector,3

∆B = ∆L = Ng

(
∆NW

CS −∆NY
CS

)
, ∆NY

CS =
g2
Y

16π2
∆H . (4.3)

Here, Ng = 3 denotes the number of fermion generations in the standard model,
while NW

CS and NY
CS stand for the Chern-Simons numbers associated with the SU(2)W

and U(1)Y gauge fields, respectively.4 Eq. (4.3) illustrates the well-known fact that
SU(2)W instanton and sphaleron transitions, which correspond to jumps in the non-
Abelian Chern-Simons number NW

CS, violate both B and L. But at the same time,
Eq. (4.3) also indicates that both B and L can be generated (or destroyed) by changes
in the hypermagnetic helicity H. And in fact, in the presence of a maximally heli-
cal hypermagnetic field generated during pseudoscalar inflation, this is exactly what
happens at temperatures around the electroweak scale: The hypermagnetic field is
converted into the electromagnetic (EM) field and, as a consequence, the helicity car-
ried by the hypermagnetic field is transferred to the one carried by the EM field. This
corresponds to the decay of the net hypermagnetic helicity H, which, in turn, genera-
tes a nonzero baryon number according to the relation in Eq. (4.3). This mechanism
of baryogenesis via primordial (hyper)magnetic fields has recently received quite some
attention in the literature [88–92] (see also [93,94]).

In the following, we will adopt the results of [91], which represents the most
comprehensive study of this scenario of baryogenesis at the electroweak scale so far.
The authors of [91] use recent results from magnetohydrodynamic (MHD) simulati-
ons [74,95] to model the evolution of the magnetic field. In particular, they account for
the inverse cascade behavior of the magnetic field below a certain critical temperature,
which is characterized by the transfer of power from small scales to large scales [96–98].
Moreover, they include all of the standard model Yukawa interactions as well as the
chiral magnetic effect [61, 99]. This is essential to correctly assess the efficiency of
SU(2)W sphaleron processes in washing out the previously generated baryon number.

3Both baryon and lepton number also exhibit a gravitational anomaly, which can likewise be used
to construct scenarios of baryogenesis [86,87]. In our analysis, the gravitational anomaly will, however,
play no role.

4Of course, only NW
CS represents a Chern-Simons number in the actual sense, for only the weak

isospin gauge sector with non-Abelian gauge group SU(2)W possesses a topologically nontrivial va-
cuum structure. In the hypercharge gauge sector, the Chern-Simons number NY

CS is, by contrast,
understood to be related to the hypermagnetic helicity H, which accounts for topologically nontrivial
configurations (knots) of the hypermagnetic gauge field.
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Finally, the authors of [91] model the gradual conversion of the hypermagnetic field
into an EM field during EWSB, i.e., during the electroweak crossover, BY → BEM,
in terms of a temperature-dependent weak mixing angle θW (T ). In this respect, the
analysis in [91] differs drastically from related works, which simply assume that both
the generation of baryon number as well as the SU(2)W sphalerons shut off simultane-
ously at temperatures around the electroweak scale. As shown in [91], this assumption
turns out to be an oversimplification, which basically corresponds to treating the elec-
troweak crossover as a first-order phase transition. In actual fact, the conversion of
the hypermagnetic field into the EM field is accompanied by a strong variation in the
hypermagnetic helicity and, thus, responsible for an enhanced generation of baryon
number. Likewise, one must take into account that also the emerging EM field still
participates in redistributing the total baryon number, as it communicates B viola-
tion in the left-handed fermions to the right-handed fermions. Taken all together, the
authors of [91] find that successful baryogenesis is feasible, as long as the present-day
magnetic field exhibits a certain physical strength, B0

p , as well as a certain physical
correlation length, λ0

p,

B0
p ∼ 10−17 · · · 10−16 G , λ0

p ∼ 10−3 · · · 10−2 pc , (4.4)

and a positive maximal helicity. Note that these values satisfy the relation one
expects for magnetic fields that undergo the direct/inverse cascade process, B0

p =
10−14 G

(
λ0
p/0.3 pc

)
[100].5 At the same time, they, however, come with an uncer-

tainty of at least one order of magnitude because of the current theoretical uncertain-
ties in modeling the exact evolution of the electroweak crossover. In the following, we
will use the numbers in Eq. (4.4) as a benchmark, keeping in mind that they merely
convey an idea of the correct orders of magnitude. Besides that, our final results can
be readily carried over to other values of B0

p .

4.3 Correlation between gravitational waves and success-
ful baryogenesis

As outlined in Sec. 4.1, pseudoscalar inflation anomalously coupled to the gauge fields
of some gauge group Ggauge results in the enhanced production of primordial GWs.
Here, the identification of Ggauge with some non-Abelian group results in the scenario
of chromo-natural inflation [101–104] (see also Ref. [105]). The description of an
inflaton coupling to non-Abelian fields is, however, slightly more challenging; and
hence we shall focus on the Abelian case in this work, for simplicity. Furthermore,

5In this paper, we are going to work in natural Lorentz-Heaviside units, in which ~ = c0 =
ε0 = 1. These are the typical units of particle physics, where the electrical charge e is sup-
posed to be related to the fine structure constant α as e =

√
4πα. This means that 1 G =

6.91×10−20 GeV2 (4πε0)−1/2 (~c0)−3/2 = 1.95×10−20 GeV2. In natural Gaussian CGS units, one has
by contrast ~ = c0 = 4πε0 = 1, such that e =

√
α and 1 G = 6.91× 10−20 GeV2. To convert from our

units to CGS units, one simply has to replace 1 G → (4π)−1/2 G. Meanwhile, the conversion from
parsec to inverse GeV is unambiguous and identical in both unit systems, 1 pc = 1.56× 1032 GeV−1.
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among all conceivable Abelian gauge groups that the inflaton could couple to, the
standard model hypercharge, U(1)Y , certainly plays a preeminent role. With U(1)Y
being the only Abelian gauge group in the standard model, an inflaton coupling to the
hypercharge sector may be regarded as a most minimal departure from the standard
model. A coupling to any other gauge symmetry, such as, e.g., U(1)B−L, would by
contrast require the introduction of new gauge degrees of freedom (DOFs). Moreover,
coupling pseudoscalar inflation to the hypercharge sector also offers an intriguing
possibility for primordial magnetogenesis, which can be tested by the observations of
the present intergalactic magnetic fields, as well as for baryogenesis from the decay
of (hyper)magnetic helicity; see the discussion in Sec. 4.2. For these reasons, we
deem the identification Ggauge → U(1)Y the most interesting choice. In contrast to
any hidden gauge symmetries beyond the standard model, an inflaton coupling to
U(1)Y is slightly less speculative and, at the same time, more predictive in terms of
observable consequences.

In this paper, we are, therefore, going to focus on general models of pseudoscalar
inflation supplemented by a Chern-Simons-type interaction between the inflaton and
the hypermagnetic gauge field. In particular, we are going to address the following
two questions:

(1) Under what conditions does pseudoscalar inflation result in a (hyper)magnetic
field of just the right magnitude, such that primordial magnetogenesis at the end of
inflation sets the stage for successful baryogenesis at the electroweak scale? That is,
how does one need to choose the parameters of pseudoscalar inflation in order to satisfy
the two conditions in Eq. (4.4)? In this part of our analysis, we are basically going
to update previous studies of baryogenesis from pseudoscalar inflation [88, 92] (see
also [106]). By employing the results presented in [91], we make sure to include several
important effects that had been neglected up to this point (such as, e.g., the inverse
cascade regime, the chiral magnetic effect, and the role of the standard model Yukawa
interactions). In doing so, we will work in the approximation of instant reheating, for
simplicity. In principle, both magnetic fields and gravitational waves are also produced
during the stage of reheating [106–108]. The correct description of this phase, however,
requires a dedicated numerical simulation that includes both nonperturbative particle
production and MHD. In particular, one should take into account the backreaction on
the gauge field production from the hypercharged particles in the emerging plasma.
Such a study is not yet available, which is why we will ignore the details of the
reheating phase altogether. On the one hand, the approximation of instant reheating
introduces some (perhaps very large) uncertainties into our analysis.6 On the other

6The lattice simulation in [106], e.g., indicates a large enhancement of hypermagnetic fields at the
stage of reheating. On the contrary, the authors of [108] point out the necessity of a relatively low
reheating temperature in order to avoid high electric conductivity, which would otherwise prevent
hypermagnetic helicity from developing during reheating. However, a low reheating temperature
automatically comes with a large dilution of the hypermagnetic field. From this perspective, one
would therefore rather expect a suppression than an enhancement from reheating. In the following,
we will evade the (still on-going) debate which of these conclusions is correct and simply neglect any
contributions to the hypermagnetic field from reheating. Instead, we will simply focus on the gauge
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hand, it allows us to remain absolutely model-independent, as far as the concrete
dynamics of inflation and reheating are concerned. Against this background, we hope
that our analysis may motivate further studies of reheating after pseudoscalar inflation
that account for the complicated interplay between gauge field production and the
properties of the emerging charged plasma.

(2) What are the implications of successful baryogenesis for the present-day GW
spectrum? Assuming that primordial magnetogenesis results in magnetic fields in
accord with Eq. (4.4), is there still a chance to obtain GWs that could be detected in
GW experiments in the near future?

To answer these questions, we will now proceed as follows: In Sec. 5, we will first
review the production of hypermagnetic fields in models of pseudoscalar inflation.
We will discuss in particular the dependence on the suppression scale Λ as well as
the backreaction on the inflationary dynamics. In Sec. 6, we will then study the
evolution of the primordial hypermagnetic fields from the time of their production
all the way to the present epoch. In Sec. 7, we will in turn study the implications
for baryogenesis as well as for the GW spectrum. Here, our main interest will be to
establish a connection between successful baryogenesis and the expected strength of
the GW signal from inflation. In Sec. 8, we will finally illustrate some of our main
results numerically by means of a concrete example, based on the original model of
natural inflation [50,51]. Sec. 9 contains our conclusions as well as a brief outlook on
how our work could be continued.

field production during inflation. In this sense, our estimate is a quantitatively conservative one.
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Chapter 5

Gauge field production during
inflation

We begin by reviewing the mechanism of gauge field production in models of pseu-
doscalar inflation [59–61]. This will also serve the purpose to establish our notation
and conventions.

5.1 Equations of motion for the inflaton and gauge fields

For an arbitrary model of pseudoscalar inflation coupled to the standard model hy-
percharge sector via an effective Chern-Simons term, the relevant Lagrangian takes
the following form,

L ⊃ −1

2
∂µa ∂

µa− 1

4
FµνF

µν − V (a)− a

4Λ
FµνF̃

µν . (5.1)

Here, the field a denotes the axion-like pseudoscalar inflaton; Fµν = ∂µAν − ∂νAµ
is the field strength tensor belonging to the hypercharge gauge field Aµ; and F̃µν is

the dual field strength tensor, F̃µν = 1
2 (−g)−1/2 εµνστFστ . For the time being, we

remain as model-independent as possible and do not specify the concrete form of the
inflaton potential V (a). Only in Sec. 8, we will become more explicit and identify
V (a) with the scalar potential of particular models of inflation. The last term in
Eq. (5.1) represents the anomalous Chern-Simons interaction between the inflaton
and the hypercharge gauge field. The parameter Λ denotes an effective suppression
scale, the magnitude of which is related to the energy scale at which the anomalous
coupling is generated. In the following, we will treat it as a free parameter. The
combination a/Λ, i.e., the prefactor of the topological term 1

4FµνF̃
µν , may be regarded

as an effective, field-dependent vacuum angle in the hypercharge sector, θ = a/Λ. If
we replaced a by a constant, θ would become unphysical and could be transformed
away by a fermion rotation. However, with a being a dynamical field, the vacuum
angle θ is physically meaningful; see also [109].
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Given the Lagrangian in Eq. (5.1), one obtains for the homogeneous Friedmann
equation,

H2 =

(
Ṙ

R

)2

=
ρ

3M2
Pl

, ρ =
1

2
ȧ2 + V (a) +

1

2

〈
E2
〉

+
1

2

〈
B2
〉
. (5.2)

Here, H is the Hubble rate; R denotes the scale factor in the Friedmann-Lemâıtre-
Robertson-Walker metric, ds2 = −dt2+R2 (t) dx2 = −R2 (t)

(
dτ2 − dx2

)
; ρ represents

the total energy density; and MPl = (8πG)−1/2 = 2.44 × 1018 GeV is the reduced
Planck mass. Ṙ stands for the derivative of the scale factor w.r.t. physical time
t. Below, we will also encounter derivatives w.r.t. conformal time τ , which will be
denoted by a prime. The total energy density ρ can be obtained from the stress-
energy tensor. In addition to the usual contributions from the inflaton field, it now
also receives contributions from the hyperelectric and hypermagnetic fields E and B.
We are going to work in radiation gauge, which combines the gauge fixing conditions
of Coulomb (or transverse) gauge, ∇ ·A = 0, and Weyl (or temporal) gauge, A0 = 0.
The fields E and B are then related to the components of the hypercharge vector
field Aµ as follows,

Aµ = (A0,A) , E = − 1

R2
∂τA = − 1

R2
A′ , B =

1

R2
∇×A . (5.3)

E and B are understood to represent physical field strengths, whereas Aµ is a como-
ving quantity that needs to be determined in dependence of the comoving coordinates
xµ = (τ,x). The angle brackets in Eq. (5.2) denote the expectation values of E2

and B2, respectively. During inflation, these expectation values correspond to quan-
tum mechanical vacuum expectation values. In order to determine the classical field
strengths after inflation, we identify these quantum expectation values with the en-
semble averages of the classical fields just at the end of inflation,

〈·〉quantum vacuum
end of inflation−→ 〈·〉classical ensemble . (5.4)

Similarly as the Friedmann equation, the equation of motion for the homogeneous
inflaton field also turns out to receive corrections in presence of the anomalous axion-
gauge-field coupling,

ä+ 3Hȧ+
dV

da
=

1

Λ
〈EB〉 . (5.5)

Here, the new source term on the right-hand side may be regarded as an additional
friction term (next to the usual Hubble friction term, 3Hȧ). In the case of strong
gauge field production, the source term eventually dominates over the Hubble friction
term, which alters the inflationary dynamics towards the end of inflation [64–66] (see
also [46,47]). As we will see later on, this regime will be less relevant for our purposes,
i.e., as long as we require successful baryogenesis.
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The dynamics of the vector field are governed by the following wave equation,

�A = −A′′ + ∇2A = −a
′

Λ
∇×A , (5.6)

where the axion-gauge-field coupling induces again a source term on the right-hand
side. To find the solution of this equation, it is convenient to perform a Fourier
transform and work in momentum space. Upon quantization of the individual Fourier
modes, A may be written as

A (τ,x) =
∑
λ=±

∫
d3k

(2π)3/2

[
Aλ (τ,k) ελ (k) âλ (k) eikx + h.c.

]
. (5.7)

Here, λ = ± labels the two possible helicity states; A± denote the corresponding mode
functions; ε± are the two polarization vectors; and â± stand for the corresponding
annihilation operators, which annihilate states |k, λ〉 with 3-momentum k and pola-
rization λ. The vectors ε± for given momentum k form an orthonormal basis in the
complex vector space perpendicular to k,

ελ (k) · ε∗λ′ (k) = δλλ′ , ελ (k) · k = 0 , ik × ελ (k) = λ k ελ (k) , (5.8)

where k = |k|. Meanwhile, the annihilation and creation operators, âλ (k) and â†λ (k),

satisfy the usual canonical commutation relations,
[
âλ (k) , â†λ′ (k

′)
]

= δλλ′ δ
(3) (k − k′).

Inserting the Fourier expansion in Eq. (5.7) into the equation of motion in Eq. (5.6)
and using the relations in Eq. (5.8), one then obtains the following mode equations in
momentum space,[

∂2

∂τ2
+ k2

(
1− xλ (ξ)

x (τ, k)

)]
Aλ (τ,k) = 0 , x (τ, k) = −kτ , xλ (ξ) = 2λ ξ , (5.9)

where we have defined the instability parameter ξ as follows,

ξ =
1

2H

ȧ

Λ
. (5.10)

The mode equations are isotropic in momentum space, which is why we will label the
mode functions only by their absolute momenta from now on, Aλ (τ,k) → Akλ (τ).
The parameter x in Eq. (5.9) quantifies whether, at a certain conformal time τ , a
given mode with wavenumber k has a spatial extent (i.e., physical wavelength λp =
2πR/k) larger or smaller than the Hubble radius, H−1. To see this, one simply has
to recall that during inflation, i.e., in quasi-de Sitter space, τ is approximately given
as τ ' −1/ (RH). This readily implies x ' 2πH−1/λp. The magnitude of x needs to
be compared with xλ, which is defined in terms of the instability parameter ξ. The
parameter xλ = λ θ̇/H in Eq. (5.9) hence measures the rate of variation of the effective
vacuum angle θ = a/Λ in relation to the Hubble rate H. With the above definitions,
one also finds that xλ/x = λ kcrit/k, where kcrit = R θ̇ is a certain critical (comoving)
momentum scale. From the perspective of gauge field production, the quantities xλ,
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ξ, and kcrit vary only slowly with time. This is a direct consequence of the slow-roll
motion of the field a during inflation. When solving the mode equations in Eq. (5.9),
we will, therefore, treat xλ at any given moment in time as a constant. This will
provide us with solutions for the vector-field modes that are respectively valid during
certain periods of inflation, when xλ takes particular, approximately constant values.
Other than that, we will make no further approximations when solving Eq. (5.9).

From Eq. (5.9), it is evident that, for x < |xλ|, the helicity modes corresponding to
positive xλ become tachyonically unstable. A positive baryon asymmetry requires a
positive (hyper)magnetic helicity [89–91]. In the following, we will therefore consider
the case where ȧ > 0, such that x+ > 0 and x− < 0. In this case, the positive-
helicity modes Ak+ will be tachyonically unstable at x < x+.1 Once x has dropped
down to values smaller than x+, the modes Ak+ begin to exponentially grow. The
negative-helicity modes Ak− experience, by contrast, only a shift in their dispersion
relation towards effectively larger momenta, k2 → k2

(
1 + kcrit/k

)
. They, thus, always

stay at the quantum level. For constant ξ, the exact solutions for Ak± are given
in terms of Whittaker W functions (which are related to confluent hypergeometric
functions) [113]. This is because Eq. (5.9) can be brought into a particular form of
Whittaker’s equation,(

d2

dz2
− 1

4
+
κλ
z

)
Akλ (z) = 0 , z = −2ix = 2ikτ , κλ =

xλ
2i

= −iλ ξ . (5.11)

We require that the modes Ak± reduce to the usual Bunch-Davis solution in the asymp-
totic past,

lim
−kτ→∞

Akλ (τ) =
e−ikτ√

2k
. (5.12)

With this boundary condition, the Whittaker equation in Eq. (5.11) has the following
solution,

Akλ (τ) =
eλπξ/2√

2k
W−iλ ξ,1/2 (2ikτ) , (5.13)

where W−iλ ξ,1/2 is the Whittaker function Wκ,µ with indices κ = κλ = −iλ ξ and
µ = 1/2. This function grows exponentially as a function of τ for λ = + and remains
oscillatory for λ = −.

5.2 Backreaction on the inflationary dynamics

In the previous section, we have seen how the axion-induced source term on the right-
hand side of Eq. (5.6) manages to excite vector-field modes with positive helicity; see

1Conversely, in the case of negative inflaton velocity, ȧ < 0, we would have to deal with x− > 0 and
x+ < 0. This would result in a negative helicity and, consequently, in a negative baryon asymmetry.
For the inflationary dynamics, the sign of the induced helicity does not matter. Moreover, as long
as the inflaton potential is invariant under parity, a↔ −a, the sign of the inflaton velocity does not
affect the inflationary dynamics as well.
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Eq. (5.13). We shall now examine the consequence of this nonperturbative gauge field
production for the inflationary dynamics. In the presence of a macroscopic gauge field
configuration, the Friedmann and Klein-Gordon equations in Eqs. (5.2) and (5.5) need
to be supplemented by the following expressions,

ρEE =
1

2

〈
E2
〉

=
1

2R4

∫
d3k

(2π)3

∣∣∣∣ ∂∂τ Ak+
∣∣∣∣2 , (5.14)

ρBB =
1

2

〈
B2
〉

=
1

2R4

∫
d3k

(2π)3 k
2
∣∣∣Ak+∣∣∣2 ,

ρEB =
1

2
〈EB〉+

1

2
〈BE〉 = − 1

2R4

∫
d3k

(2π)3 k
∂

∂τ

∣∣∣Ak+∣∣∣2 ,
where we neglect the vacuum contributions from the negative-helicity modes. The
quantities ρEE and ρBB have a direct interpretation in the sense that they corre-
spond to the energy densities stored in the hyperelectric and hypermagnetic fields,
respectively. The quantity ρEB is the corresponding cross term. We note that the
E and B fields do not commute at the quantum level, which is why ρEB is defined
as the symmetrized version of 〈EB〉. Technically, the right-hand side of Eq. (5.5) is
understood to correspond to ρEB/Λ. In the classical limit, the commutator [E,B],
however, vanishes and ρEB and 〈EB〉 become equivalent to each other.

The energy densities in Eq. (5.14) are functions of the inflationary Hubble rate H
as well as of the instability parameter ξ; see Eq. (5.10). To extract the dependence
on these two parameters, it turns out convenient to rewrite the momentum integrals
in Eq. (5.14) as follows,

ρEE = IEE (ξ)
e2πξ

ξ3
H4 , ρBB = IBB (ξ)

e2πξ

ξ5
H4 , ρEB = −IEB (ξ)

e2πξ

ξ4
H4 ,

(5.15)

with the integral functions IEE , IBB and IEB being defined as

IEE (ξ) =
ξ3

8π2
e−π ξ

∫ xUV

0
dxx3

∣∣∣∣ ∂∂xWκ+,1/2 (−2ix)

∣∣∣∣2 , (5.16)

IBB (ξ) =
ξ5

8π2
e−π ξ

∫ xUV

0
dxx3

∣∣Wκ+,1/2 (−2ix)
∣∣2 ,

IEB (ξ) =
−ξ4

8π2
e−π ξ

∫ xUV

0
dxx3 ∂

∂x

∣∣Wκ+,1/2 (−2ix)
∣∣2 .

Here, we choose a sign convention such that all three functions are positive. The fact
that ρEB actually takes negative values is accounted for by the explicit minus sign
in Eq. (5.15). In principle, the momentum integrals in Eq. (5.14) are UV-divergent,
as they receive vacuum contributions from an infinite number of high-frequency mo-
des (i.e., modes deep inside the Hubble horizon). To regularize this divergence, we
introduce a UV cut-off scale, xUV = kUV/ (RH), which allows us to integrate over
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only those modes that are excited above the vacuum level. The natural choice for
xUV is consequently xUV = x+ = 2ξ, such that the momentum cut-off kUV coincides
with kcrit, i.e., the highest wavenumber that still leads to a tachyonic instability in
Eq. (5.9).

In view of Eq. (5.16), it is also interesting to note that we absorbed the explicit
time dependence of the vector-field modes Ak± (τ) in Eq. (5.14) into the integration
variable x = −kτ . The remaining time dependence is then canceled by the time
dependence of R−4 in front of the integrals in Eq. (5.14). At first glance, this renders
all of the three quantities in Eq. (5.15) constant in time. However, there remains an
implicit time dependence encoded in the parameters ξ and H, which actually slowly
vary during inflation. In the following, we will determine ρEE , ρBB, ρEB at any time
t during inflation simply by evaluating Eq. (5.15) for the respective values of ξ (t) and
H (t). If we were to treat the time dependence of ξ and H more carefully, we would
have to solve Eqs. (5.2), (5.5), and (5.9) simultaneously. Such an analysis is beyond
the scope of this paper.

The advantage of the parametrization in Eq. (5.15) is that all of the three functions
IEE , IBB, and IBE asymptotically approach constant values at ξ � 1. This is
depicted in Fig. 5.1, where we also demonstrate the sensitivity of the three integral
functions to variations in the UV cut-off. As can be seen from Fig. 5.1, all three
functions become insensitive to the exact choice for xUV as soon as they approach
their respective asymptotic values. For ξ & 4, it is, therefore, safe to approximate
IEE , IBB, and IBE by the constant values shown in Fig. 5.1,

ρEE ' 1.3× 10−4 e
2πξ

ξ3
H4 , ρBB ' 1.5× 10−4 e

2πξ

ξ5
H4 , ρEB ' −2.6× 10−4 e

2πξ

ξ4
H4 .

(5.17)

These results are consistent with the approximate solution for the excited mode functi-
ons, Ak+ (x) = (2k)−1/2 (x/x+)1/4 exp

[
πx+/2− 2

√
xx+

]
, which is often employed in

the literature.

With Eq. (5.17) at our disposal, we are now able to assess the relative importance
of the new terms in Eqs. (5.2) and (5.5). We are mainly interested in the following
two ratios,

δF =
ρEE + ρBB

3H2M2
Pl

, δKG =

∣∣∣∣ρEB/Λ3Hȧ

∣∣∣∣ =

∣∣∣∣ ρEB
6ξΛ2H2

∣∣∣∣ . (5.18)

Here, δF quantifies the hyper-EM contributions to the Friedmann equation, while
δKG measures the importance of the source term in the Klein-Gordon equation in
comparison to the Hubble friction term. For 4 . ξ . 10, these two ratios are well fit
by the following numerical expressions,

δF ' 2.8× 10−4 exp [0.90× 2π (ξ − 5)]

(
H

1013 GeV

)2

, (5.19)

δKG ' 7.6× 10−4 exp [0.83× 2π (ξ − 5)]

(
H

1013 GeV

)2(3× 1017 GeV

Λ

)2

.
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Figure 5.1: Dependence of the integral functions IEE (upper left panel), IBB (upper
right panel), IEB (lower left panel), and Iλ (lower right panel), on the instability
parameter ξ; see Eqs. (5.10), (5.16), and (5.24). For each function, we illustrate the effect
of varying the UV cut-off scale (parametrized in terms of the upper integration boundary
xUV) within roughly one order of magnitude. At any given value of ξ, the parameter x+

corresponds to x+ = 2ξ; see Eq. (5.9). The red numbers and horizontal lines indicate the
respective asymptotic values at ξ � 1.

These relations are the first important results of our analysis. We stress that they
represent numerical fit functions, which we obtain by fitting δF and δKG as functions
of e2πξ, H2, and Λ−2. The factors 0.90 and 0.83 in front of 2πξ in Eq. (5.19) account
for the competition between the exponentials (e2πξ) and the inverse powers (ξ−3,
ξ−4, and ξ−5) of ξ in Eq. (5.15). In Fig. 5.2, we compare our fit functions with the
corresponding exact expressions for δF and δKG in Eq. (5.18).

From Eq. (5.19), we see that the backreaction from the gauge field on the inflati-
onary dynamics is negligible, at least for the chosen reference values. This conclusion
drastically changes as soon as we go to larger values of ξ and H as well as to smaller
values of Λ. Here, we find in particular an upper bound on ξ, such that the ratio δF

does not take values larger than unity; see Fig. 5.2,

δF ≤ 1 ⇒ ξ ≤ ξmax (H) ' 6.4− 0.82 log10

(
H

1013 GeV

)
. (5.20)
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Figure 5.2: Backreaction parameters δF (left panel) and δKG (right panel) as functions of
the instability parameter ξ and the Hubble rate H. The parameter δF quantifies the amount
of backreaction in the Friedmann equation, while the parameter δKG quantifies the amount of
backreaction in the Klein-Gordon equation; see Eq. (5.18). The black solid contours represent
the exact expressions for δF and δKG, including the complicated ξ dependence of the integral
functions in Eq. (5.16). The red dashed contours represent the numerical fit functions in
Eq. (5.19). In the right panel, the suppression scale Λ is fixed at Λ = 3 × 1017 GeV. The
scaling of δKG with Λ is trivial, δKG ∝ Λ−2. By definition, values of δF larger than unity are
unphysical; see Eq. (5.20). For values of the Hubble rate greater than H ' 8× 1013 GeV, the
PLANCK constraint on the tensor-to-scalar ratio, r . 0.11, is violated.

This bound is model-independent and needs to be obeyed by any model of pseudos-
calar inflation coupled to an Abelian gauge sector. For ξ values beyond this bound,
one formally finds that more than 100 % of the total energy density is stored in the
hyper-EM field. This signals that the backreaction from the excited gauge fields is
no longer negligible in the Friedmann equation; and hence the above solutions are no
longer trustable.2 Meanwhile, the ratio δKG can be varied independently, even if ξ
satisfies Eq. (5.20), simply by adjusting the strength of the axion-gauge-field coupling.
According to Eq. (5.19), lowering the suppression scale Λ by a factor 10 readily incre-
ases δKG by two orders of magnitude. For the same values of ξ and H as in Eq. (5.19),
ξ = 5 and H = 1013 GeV, but with Λ = 3 × 1016 GeV, the source term in Eq. (5.5)
begins to compete with the Hubble friction term, δKG ∼ 0.1. As we will see in the
following, such small values of Λ, however, turn out to be incompatible with the idea
of baryogenesis from pseudoscalar inflation.

2Recently, it is claimed that there are other upper bounds for ξ where the evaluation of the gauge
field production in the previous section is valid, coming from the perturbativity [110,111] and possible
thermalization [112]. We expect that our analysis is qualitatively correct even taking into account
these constraints. Note that in the parameter we are interested in the value of ξ reaches the bound
only at the last stage of inflation as we will see in Sec. 8.
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5.3 Hypermagnetic field at the end of inflation

As long as we stay sufficiently far away from the maximal ξ value in Eq. (5.20)
and as long as the suppression scale Λ is not chosen too small, the effect of gauge
field production merely represents a small (and most often completely negligible)
perturbation of the inflationary dynamics. In this regime, we can therefore safely
trust our analysis in the previous section. In particular, we can use our result for
the hypermagnetic field energy density, ρBB, in Eq. (5.15) to estimate the physical
hypermagnetic field strength, Bp, at any given time during inflation,

B2
p = 2 ρBB =

〈
B2
〉

=
1

R4

∫
d3k

(2π)3 k
2
∣∣∣Ak+∣∣∣2 = 2 IBB (ξ)

e2πξ

ξ5
H4 , (5.21)

where we again neglect the vacuum contributions from the negative-helicity modes.
This field strength is the evident manifestation of primordial magnetogenesis in models
of pseudoscalar inflation coupled to the hypercharge gauge field. For typical values of
ξ and H, one finds

Bp ' 1.1× 1049 G

(
fBB (ξ)

fBB (5)

)1/2( H

1013 GeV

)2

, fBB (ξ) = IBB (ξ)
e2πξ

ξ5
. (5.22)

In the next section, we will discuss the postinflationary evolution of this primordial
hypermagnetic field, arguing that it is not completely erased during the radiation-
dominated era. The primordial hypermagnetic field may, in fact, survive all the way
up to the present epoch and contribute to the intergalactic magnetic fields that we
observe today.

Another important quantity that characterizes the primordial hypermagnetic field
is the physical correlation length, λp. To estimate λp, we compute the average of all
relevant wavelengths, weighted by their respective contributions to the energy density
ρBB,

λp =
1

ρBB

1

2R4

∫
d3k

(2π)3

2πR

k
k2
∣∣∣Ak+∣∣∣2 = ξ

Iλ (ξ)

IBB (ξ)

2π

H
. (5.23)

Here, the integral function Iλ is defined in analogy to the three functions in Eq. (5.16)

Iλ (ξ) =
ξ4

8π2
e−π ξ

∫ xUV

0
dxx2

∣∣Wκ+,1/2 (−2ix)
∣∣2 . (5.24)

Similarly as the other integral functions, Iλ becomes insensitive to the exact choice of
xUV as soon as it approaches its asymptotic value. For ξ & 4, it is well approximated
by Iλ ' 8.7 × 10−5; see Fig. 5.1. Together with the asymptotic value for IBB, this
shows that the hypermagnetic fields typically exhibit a correlation length that extends
over more than one Hubble radius,

λp ' 3.0

(
ξ

5

)
λH , λH =

2π

H
. (5.25)
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More explicitly, we find that λp typically takes values of the following order of mag-
nitude,

λp ' 1.1× 10−50 Mpc

(
fλ (ξ)

fλ (5)

)(
1013 GeV

H

)
, fλ (ξ) = ξ

Iλ (ξ)

IBB (ξ)
. (5.26)

The above expressions for Bp and λp in Eqs. (5.21) and (5.23) are valid at any time
during inflation. In the following, we are however going to be mostly interested in the
values of Bp and λp at the end of inflation, i.e., at the onset of reheating. In this paper,
we will work in the approximation of instant reheating, such that the end of inflation
coincides with the beginning of the radiation-dominated era. To find the values of Bp
and λp at this time, it is, therefore, sufficient to simply evaluate Eqs. (5.21) and (5.23)
for H = Hrh and ξ = ξrh, where Hrh and ξrh respectively denote the Hubble rate and
the instability parameter at the end of inflation. Both quantities are model-dependent,
which is why we will treat them as free parameters in the following. At this point it is
interesting to note that, for most models of interest, ξrh is entirely controlled by the
strength of the axion-gauge-field coupling. To see this, let us suppose that the end of
inflation is triggered by a violation of the first slow-roll condition. That is, inflation
ends because the Hubble parameter H is no longer quasi-constant. This condition is
conveniently quantified in terms of the slow-roll parameter ε. Let us assume for now
that the backreaction from gauge field production is negligible. In the usual slow-roll
approximation, one then has

ε =
d lnH

dNe
≈
M2

Pl

2

(
d lnV

da

)2

≈ ȧ2

2H2M2
Pl

, (5.27)

where Ne denotes the number of e-folds until the end of inflation. Next, let us rewrite
the condition ε ∼ 1 at the end of inflation in terms of ξrh and Λ. This yields

ε ≈
2 ξ2

rhΛ2

M2
Pl

∼ 1 ⇒ ξrh ∼
MPl√

2 Λ
' 5.7

(
3× 1017 GeV

Λ

)
. (5.28)

Together with Eq. (5.19), this result confirms that, for Λ & 3× 1017 GeV, the backre-
action on the inflationary dynamics is mostly negligible at all times. For smaller values
of Λ, the ratio δKG however quickly approaches values of order unity towards the end
of inflation.
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Gauge field evolution after
inflation

We now turn to the description of the postinflationary evolution of the primordial
gauge fields. We will discuss in turn the different stages until the beginning of the in-
verse cascade regime (see Sec. 6.1), until the electroweak phase transition (see Sec. 6.2),
and until today (see Sec. 6.3).

6.1 From the end of inflation to the onset of the inverse
cascade regime

As stressed several times before, we are going to work in the approximation of instant
reheating.1 That is, we make the simplifying assumption that, at the end of inflation,
the vacuum energy density driving inflation is converted instantaneously into thermal
radiation,

ρinf (trh) = 3H2
rhM

2
Pl → ρrad (trh) =

π2

30
g∗ T

4
rh , (6.1)

where g∗ = 106.75 denotes the effective number of relativistic DOFs in the standard
model. We consequently neglect the period of inflaton oscillations after inflation as
well as the gradual production of (charged) particles in inflaton decays. This assump-
tion simplifies our analysis considerably — given the fact that the charged particles
in the emerging plasma actually interfere with the evolution of the primordial gauge
fields.2 A reliable description of this complicated process however requires a dedicated

1Similarly, we also assume that there is no charged plasma even as a subdominant component of
the universe until the end of inflation. The presence of such a charged plasma component already
during the stage of inflation might prevent the hypermagnetic helicity from developing and, hence,
change our estimate.

2The oscillations of the inflaton field would enhance the production of primordial gauge fields [106].
But, at the same time, the high electric conductivity of the charged plasma would suppress the
hypermagnetic helicity [108].
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numerical simulation that takes into account both nonperturbative particle production
and MHD, which is not yet available and which is certainly beyond the scope of this
work. The assumption of instant reheating moreover allows us to eliminate the rehe-
ating temperature Trh as a free parameter in our scenario. According to Eq. (6.1), we
can simply express Trh in terms of the Hubble rate at the end of inflation, Hrh,

Trh =
√
M∗Hrh ' 2.7× 1015 GeV

(
Hrh

1013 GeV

)1/2

, M∗ =

(
90

π2 g∗

)1/2

MPl . (6.2)

By employing this relation, we choose to discard all details of the reheating process.
While this introduces an uncertainty to some degree, it also makes our analysis more
model-independent.

To describe the behavior of the primordial gauge fields after reheating, we shall
follow the discussion in [74,98,100] (see also [73,82,95]). Our first observation is that,
once the plasma is in place, the hyper-EM field begins to interact with hypercharged
particles in the thermal bath. This interaction makes the primordial hyperelectric
fields vanishingly small, E ' 0 (i.e., E becomes suppressed by the large electric
conductivity), leaving us mainly with the hypermagnetic B field. In the following, we
will assume that, initially, the backreaction from the charged particles has neither an
impact on the overall strength of the hypermagnetic field, Bp, nor on its correlation
length, λp. The starting point of our analysis are, therefore, our results for Bp and λp
that we obtained in Sec. 5.3; see Eqs. (5.21) and (5.23),

Brh
p = (2 IBB)1/2 e

πξrh

ξ
5/2
rh

H2
rh ' 1.7× 10−2 e

πξrh

ξ
5/2
rh

H2
rh , λrh

p = ξrh
Iλ
IBB

2π

Hrh
' 3.7

ξrh

Hrh
.

(6.3)

We are now going to outline how these two quantities behave as functions of the
radiation temperature T , as the universe expands. Our final results are summarized
schematically in Fig. 6.1, which illustrates the time dependence of Bp and λp for
different values of ξrh and Hrh.

At early times, i.e., directly after reheating, we expect that both the field strength
Bp as well as the correlation length λp simply redshift adiabatically [89],

Bp (T ) =

(
Rrh

R (T )

)2

Brh
p , λp (T ) =

(
R (T )

Rrh

)
λrh
p . (6.4)

This expectation is justified by the fact that, initially, the correlation length λp is
much longer than the eddy scale of the velocity fields of the charged plasma, λT ' vt,
(see also the discussion in the next section) implying that the charged plasma cannot
affect the evolution of the hypermagnetic field. During radiation domination and for a
constant number of effective DOFs, the scale factor R increases in inverse proportion
to the plasma temperature, R ∝ 1/T . During the early phase of adiabatic expansion,
Bp therefore drops like T 2, while λp grows like 1/T .
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Figure 6.1: Physical field strength Bp (upper panel) and physical correlation length λp
(lower panel) of the hypermagnetic B field as functions of the radiation temperature T
for representative values of H and ξ at the end of inflation. The vertical dotted lines mark
the respective temperatures at which the adiabatic regime transitions into the inverse cascade
regime. Both plots account for the decrease in the effective number of DOFs in the course of the
expansion. The kinks around T ∼ 100 MeV correspond, e.g., to the QCD phase transition. For
T < 10 MeV, damping effects might become important (see [74, 98, 100]) and our description
of the magnetic field evolution becomes less accurate. For this reason, we only draw dashed
lines in the low-temperature regime.
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6.2 From the onset of the inverse cascade regime to the
electroweak crossover

In the course of the further evolution, the interaction of the B field and the charged
plasma (described by the velocity field v) results in a complicated co-evolution of
both fields, governed by the MHD equations: The B field induces a v field and the v
field back-reacts on the evolution of the B field, which likely results in turbulent field
configurations. If the charged plasma develops a turbulence, the scale up to which
the velocity field is capable of affecting the B field can be estimated in terms of the
turbulence (or eddy) scale λT ,

λT ' v t =
v

2H
, v = |v| . (6.5)

As long as λT � λp, the v field affects theB field only on small scales and the evolution
of Bp and λp remains unaffected. Both the turbulence scale λT and the correlation
length λp grow with time. However, λT grows faster than λp, such that, after some
finite time, the turbulence scale catches up with the correlation length, λT ∼ λp. After
that, the B field can no longer evolve adiabatically. Indeed, it has been observed
in MHD simulations that a maximally helical magnetic field generates a turbulent
plasma and that the kinetic energy of the plasma waves becomes comparable to (or
equilibrated with) the energy stored in the hypermagnetic field [98, 100], ρkin ∼ ρBB.
This means that the amplitude of the v field is comparable to the Alfvén velocity vA.
In the nonrelativistic limit, vA � 1, the Alfvén velocity is given as [114],

v ∼ vA =
v0
A√

1 +
(
v0
A

)2 ∼ v0
A , v0

A =
Bp√

ρch + pch
, ρch =

π2

30
g∗,ch T

4 , pch =
ρch

3
,

(6.6)

with ρch and pch denoting the energy density and pressure of the hypercharged particles
in the plasma. g∗,ch = 82.75 counts the effective number of relativistic DOFs carrying
nonzero hypercharge in the standard model. In the following, we will not distinguish
between vA and v0

A and simply approximate vA ≈ v0
A. Combining Eqs. (6.5) and (6.6)

and assuming that the B and v fields are equilibrated even in the adiabatic regime,
we find for λT in the adiabatic regime

λT ∝
Bp√
ρchH

∝ R2 ∝ 1

T 2
(6.7)

Indeed, this corresponds to a faster growth than in the case of λp, which simply scales
like 1/T .

Once the turbulence scale has caught up with the correlation length, λT ∼ λp, the
hypermagnetic field enters into the inverse cascade regime [96–98]. From this point
on, the growth of λp is simply driven by the turbulence scale λT , such that λT ∼ λp
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at all subsequent times,

λp ∼ λT ∝
Bp√
ρchH

⇒ λp
Bp
∝ 1
√
ρchH

∝ R4 ∝ 1

T 4
. (6.8)

This relation is, however, not yet sufficient to fully estimate the scaling behavior of
Bp and λp during the inverse cascade regime. In addition to Eq. (6.8), we need a
second, independent relation between λT and Bp. At this point, it comes in handy
that, as a consequence of the high hyperelectric conductivity of the charged plasma,
the comoving helicity density hc is approximately conserved at high temperatures;
see, e.g., [88, 89] and references therein,3

hc = lim
V→∞

1

V

∫
V
d3xAc ·Bc ∼ const . (6.9)

Here, the integral over the volume V represents nothing but a spatial average, hc =
〈AcBc〉. Moreover, we emphasize that both vector fields, Ac ≡ A and Bc = R2B,
correspond to comoving quantities. We roughly estimate the typical size of Ac as
Ac ∼ λc/ (2π)Bc ∝ RλpBp, such that

hc = R2 〈AB〉 ∝ R3λpB
2
p ∼ const . (6.10)

Together with Eq. (6.8), this relation then yields the scaling behavior of Bp and λp,

Bp ∝
1

R7/3
∝ T 7/3 , λp ∝ R5/3 ∝ 1

T 5/3
, (6.11)

which coincides with the scaling laws of the inverse cascade found in MHD simulati-
ons [98,100].

We stress that all of the relations in Eqs. (6.5), (6.6), (6.8), and (6.10) are sim-
ply rough estimates. A more careful treatment would require a full-fledged MHD
simulation [74, 95], which is beyond the scope of this work. Moreover, the study of
primordial magnetic fields in MHD simulations is still the subject of on-going work
in the literature. In anticipation of new simulations, we shall therefore settle for the
estimates above, leaving any refinement of our analysis for future work.

Next, let us determine the temperature at the onset of the inverse cascade re-
gime. We find the transition temperature, T = Tic, simply by solving the condition
λT (Tic) = λp (Tic) for Tic,

Tic

Trh
=

I3/2
BB

4
√

2π Iλ

(
g∗
g∗,ch

)1/2 eπξrh

ξ
7/2
rh

Hrh

MPl
' 1.3× 10−3 e

πξrh

ξ
7/2
rh

Hrh

MPl
, (6.12)

3Based on Ampère’s and Ohm’s laws, one can show that the time derivative of hc is suppressed
by the inverse of the hyperelectric conductivity, ḣc ∝ 1/σ. The fact that hc is conserved to good
approximation is, therefore, a direct consequence of the large (but finite) conductivity of the standard
model plasma, σ ∼ 102 T [115,116].
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where we used that Trh =
√
M∗Hrh. The Alfvén velocity vA at this temperature is

given as

vA =
I1/2
BB√
2

(
g∗
g∗,ch

)1/2 eπξrh

ξ
5/2
rh

Hrh

MPl
' 9.7× 10−3 e

πξrh

ξ
5/2
rh

Hrh

MPl
, (6.13)

Furthermore, we are now in the position to calculate the field strength as well as the
correlation length of the hypermagnetic field at T = Tic. Combining Eqs. (6.3), (6.4),
and (6.12), we obtain

Bic
p =

(
Tic

Trh

)2

Brh
p =

I7/2
BB

16
√

2π2 I2
λ

g∗
g∗,ch

e3πξrh

ξ
19/2
rh

H4
rh

M2
Pl

' 2.9× 10−8 e
3πξrh

ξ
19/2
rh

H4
rh

M2
Pl

, (6.14)

λic
p =

(
Trh

Tic

)
λrh
p =

8
√

2π2 I2
λ

I5/2
BB

(
g∗,ch
g∗

)1/2 ξ
9/2
rh

eπξrh
MPl

H2
rh

' 2.9× 103 ξ
9/2
rh

eπξrh
MPl

H2
rh

.

At temperatures below Tic, the field strength Bp behaves as follows; see Eq. (6.11),

Bp (T ) =

(
T

Tic

)7/3

Bic
p =

(
T

Trh

)7/3
[

16π Iλ
(
g∗,ch
g∗

)1/2 e2πξrh

ξ4
rh

H5
rhMPl

]1/3

(6.15)

' 0.16

(
T

Trh

)7/3(e2πξrh

ξ4
rh

H5
rhMPl

)1/3

,

whereas for the correlation length λp, we find

λp (T ) =

(
Tic

T

)5/3

λic
p =

(
Trh

T

)5/3(π Iλ
4

g∗
g∗,ch

e2πξrh

ξ4
rh

1

HrhM
2
Pl

)1/3

(6.16)

' 4.5× 10−2

(
Trh

T

)5/3(e2πξrh

ξ4
rh

1

HrhM
2
Pl

)1/3

.

Note that we assumed a constant effective number of DOFs in both Eq. (6.15) and
Eq. (6.16).

6.3 From the electroweak crossover to the present epoch

The evolution of the field strength and correlation length at late times can be described
by standard techniques with the assumption that the magnetic fields evolve according
to the inverse cascade until recombination and evolve adiabatically again after that
until today. In the usual ΛCDM model (without any additional stages of late-time
entropy production or the like), we can readily relate the values of Bp and λp around
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Figure 6.2: Present-day strength of the physical magnetic field, B0
p , as a function of the

instability parameter ξ and the Hubble rate H; see Eq. (6.18). Here, both ξ and H are
understood to correspond to the respective values at the end of inflation, ξ ≡ ξrh and H ≡ Hrh.
The green band illustrates the region in parameter space where baryogenesis around the time
of EWSB results in a baryon asymmetry ηB in accord with the observed value, ηobs

B ∼ 10−10;
see Eq. (7.11) and Fig. 7.1. The gray-shaded regions are the same as in Fig. 5.2.
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the time of EWSB to their values in the present epoch,

B0
p ' 1.1× 10−14 G

(
Bew
p

1020 G

)(
100 GeV

Tew

)7/3

, (6.17)

λ0
p ' 0.40 pc

(
λew
p

10−29 Mpc

)(
Tew

100 GeV

)5/3

,

which is consistent with the corresponding relations in [89, 90]. Here, the values of
Bew
p and λew

p simply follow from evaluating our results in Eq. (6.15) and Eq. (6.16) at
T = Tew ∼ 100 GeV, i.e., the temperature at the time of EWSB.4 We then obtain the
following final expression for the present-day strength of the physical magnetic field,

B0
p ' 6.0× 10−18 G

[
Iλ
(
g∗,ch
g∗

)1/2 e2πξrh

ξ4
rh

]1/3(
Hrh

1013 GeV

)1/2

(6.18)

' 2.5× 10−19 G

(
e2πξrh

ξ4
rh

)1/3(
Hrh

1013 GeV

)1/2

,

which we plot as a function of ξrh and Hrh in Fig. 6.2. This relation illustrates how the
explosive production of gauge fields during pseudoscalar inflation results in magnetic
fields on astrophysical scales in the present epoch. Note that B0

p in Eq. (6.18) does not
depend on the exact value of Tew. Moreover, it only depends on Iλ and is independent
of the integral function IBB. Meanwhile, we find that the present-day value of the
correlation length, λ0

p, satisfies exactly the relation which one expects for causally
generated magnetic fields [100]; see also Eq. (4.4) and footnote 5,

λ0
p ' 0.28 pc

(
B0
p

10−14 G

)
' 1.0 pc

(4π)1/2

(
B0
p

10−14 G

)
. (6.19)

We stress that this result is based on the strict relation v = vA; see Eq. (6.6). However,
there are also MHD simulations suggesting that v might in fact be slightly suppressed
compared to the Alfvén velocity, v ' O (0.1) vA [98, 100]. Thus, our above estimates
come with at least an O (10) uncertainty.5 Nonetheless, we expect our expressions to
catch the basic qualitative features of the magnetic field from pseudoscalar inflation,
in particular, the relation between the inflationary parameters H and ξ on the one
hand and the quantities Bp and λp on the other hand.

4During EWSB, the hypermagnetic BY field turns into the electromagnetic BEM field. The
amplitudes |BY | and |BEM| are, however, continuously connected [91], which is why we do not
distinguish between them here.

5Note that we also omitted possible damping effects at low temperatures, T < 10 MeV, due to
processes such as neutrino and photon free streaming. However, despite these effects, it has been
demonstrated that both the field strength and the correlation length eventually reach the same values
as in the simple inverse-cascade estimate [100].



Chapter 7

Implications for baryon
asymmetry and gravitational
waves

The primordial gauge fields generated during inflation have important phenomeno-
logical consequences. Not only do they seed the intergalactic magnetic fields that
permeate our Universe today (see Eq. (6.18)), they also lead to the generation of a
nonzero baryon number around the time of EWSB (see Sec. 7.1) as well as to a signal
in the stochastic GW background at high frequencies (see Sec. 7.2). We shall now
discuss these two phenomena in turn.

7.1 Baryogenesis from pseudoscalar inflation

The gauge fields generated during inflation are maximally helical. This can be seen
explicitly from our analysis in Sec. 5.1, where we showed that only modes in one
helicity eigenstate are exponentially amplified during inflation, while the other helicity
modes stay at the vacuum level; see Eq. (5.13). Moreover, we found that the sign of the
final helicity depends on the sign of the inflaton velocity, sgnH = sgn ȧ. In Sec. 5.1,
we chose ȧ > 0, in order to achieve positive helicity.

Changes in the comoving helicity density hc (see Eq. (6.9)) after inflation are
suppressed by the hyperelectric conductivity of the thermal plasma, ḣc ∝ 1/σ; see
footnote 3. Therefore, given the large value of σ in the standard model, σ ∼ 102 T [115,
116], hc is approximately conserved after inflation; see Eq. (6.10). At the same time, it
is important to remember that any change in the hypermagnetic helicity results in the
production of baryon number B and lepton number L. This is reflected in Eq. (4.3),
which follows from the chiral triangle anomaly in the standard model. Therefore, even
slight changes in hc, because of the finite conductivity σ, are physically relevant as
soon as we turn our attention to the time evolution of B and L. This observation is
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the basis for the scenario of baryogenesis via decaying hypermagnetic helicity [88–92].
In the following, we will illustrate how this scenario fits together with our analysis of
primordial magnetogenesis in models of pseudoscalar inflation. In doing so, we will
follow the discussion in [91] (see also [90]).

In analogy to hc in Eq. (6.9), we may define the physical helicity density hp as
follows,

hp =
hc
R3

= lim
V→∞

1

V

∫
V
d3xAp ·Bp = 〈ApBp〉 . (7.1)

Here and only here, Ap is defined as Ap = A/R, whereas Bp ≡ B is nothing but
the ordinary physical hypermagnetic B field. Again, the angle brackets in Eq. (7.1)
denote the volume average of the scalar product ApBp. One can show that the time
derivative of the helicity density hp is related to the (Abelian) Chern-Simons density
of the hypercharge gauge field,

d

dt
hp =

1

2

〈
FµνF̃

µν
〉

= −2
〈
EB

〉
. (7.2)

According to the standard model chiral anomaly, the Chern-Simons density FµνF̃
µν

contributes in turn to the divergence of the baryon and lepton number currents JµB
and JµL,

∂µJ
µ
B = ∂µJ

µ
L = Ng

(
g2
W

16π2
W a
µνW̃

µν
a −

g2
Y

32π2
FµνF̃

µν

)
. (7.3)

In combination with Eq. (7.2), the time integral of this equation results in the relation
in Eq. (4.3).

For our purposes, the important conclusion from Eq. (4.3) is that a decaying
hypermagnetic helicity, ḣp 6= 0, induces nonzero baryon and lepton number. To
properly track the evolution of baryon number B as a function of time during this
process, one needs to solve a coupled system of kinetic equations, which take into
account all relevant effects; see [90, 91] for details. As it turns out, B is fixed after
EWSB, i.e., at T ∼ 100 GeV, since after EWSB, baryon and lepton number are
no longer anomalously violated. In the kinetic equations, the generation of baryon
number because of the time-dependent hypermagnetic helicity is characterized by a
temperature-dependent source term, S = fS, which factorizes into two contributions,

f (θW , T ) = −T dθW
dT

sin (2θW ) , S (T ) =
H

sT

hp
8π2

. (7.4)

Similarly as in the case of hc (see Eq. (6.10)), we can estimate the magnitude of hp
as follows,

hp ∼
λp
2π
B2
p ⇒ S ∼ H

sT

λpB
2
p

16π3
, (7.5)
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where λp and Bp at T ∼ 100 GeV are given in Eqs. (6.15) and (6.16).1 Note that S
is proportional to the amplitude of the hypermagnetic helicity, hp. Meanwhile, f is
a function of the weak mixing angle θW , which varies as a function of temperature
during the electroweak crossover. For dθW /dT = 0, the hypermagnetic helicity does
not decay and hence the source S vanishes.

The production of baryon number because of the change in the weak mixing angle
has to compete with the usual washout processes because of electroweak sphalerons.
The effect of sphaleron washout is conveniently accounted for in the kinetic equations
by a transport coefficient γw,sph. For a Higgs mass of 125 GeV, lattice simulations of
the electroweak crossover yield [117],

γw,sph ' exp

[
−147.7 + 107.9

(
T

130 GeV

)]
, for T . 161 GeV , (7.6)

where T ' 130 GeV is just the temperature at which the electroweak sphalerons
freeze out. The resulting kinetic equations are quite complicated and need to be
solved numerically. However, as shown in [91], the final baryon asymmetry is nicely
reproduced by the following compact analytical expression,

ηB =
nB
s
' 17

37

[(
g2
W + g2

Y

) f (θW , T )S
γw,sph

]
T=TBAU

, TBAU = 135 GeV . (7.7)

Here, the baryogenesis temperature TBAU is chosen, so as to optimize the agreement
between the analytical result and the outcome of the numerical calculation.

Combining Eqs. (6.15), (6.16), (7.5), (7.6), and (7.7) and using gW ' 0.64 and
gY ' 0.35 at the electroweak scale, we obtain the following expression for the final
baryon asymmetry,

ηB ' 2.9× 10−3 Iλ

[
f (θW , T )

γw,sph

(
e2πξrh

ξ4
rh

)(
H3

rhT
2

M5
Pl

)1/2
]
T=TBAU

. (7.8)

A reliable determination of the final baryon asymmetry requires a precise understan-
ding of the function f , i.e., of the temperature dependence of the weak mixing angle.
The latest lattice studies of the electroweak crossover, however, have a relatively large
uncertainty, as far as the exact evolution of θW (T ) is concerned [118]. Moreover,
there is a relatively large discrepancy between the numerical results and the one-loop
perturbative analytical estimate [119]. For this reason, we shall follow [91] and simply
model θW in terms of a smooth step function,

cos2 θW = cos2 θ0
W +

1− cos2 θ0
W

2

[
1 + tanh

(
T − Tstep

∆T

)]
, cos2 θ0

W =
g2
W

g2
W + g2

Y

' 0.77 ,

(7.9)

1Here we consider the case where the hypermagnetic field enters the inverse cascade regime prior
to EWSB.
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Figure 7.1: Baryon asymmetry ηB = nB/s as a function of the instability parameter ξ and
the Hubble rate H; see Eq. (7.11). Here, both ξ and H are understood to correspond to
the respective values at the end of inflation, ξ ≡ ξrh and H ≡ Hrh. The black solid [gray
dashed] contours correspond to the maximally [minimally] allowed value of the function f ; see
Eq. (7.10). The green band illustrates the region in parameter space where ηB is in accord
with the observed value, ηobs

B ∼ 10−10. The gray-shaded regions are the same as in Fig. 5.2.

which we believe to cover all realistic values of the function f including its uncertain-
ties. Our phenomenological ansatz reflects the fact that, at T ∼ Tstep, the weak mixing
angle changes from its high-temperature value in the symmetric phase, cos2 θW = 1,
to its low-temperature value in the Higgs phase, cos2 θW = cos2 θ0

W . The width of
this transition in temperature space is characterized by the parameter ∆T . Rea-
listic values of Tstep and ∆T fall into the ranges 155 GeV . Tstep . 160 GeV and
5 GeV . ∆T . 20 GeV, respectively. Varying Tstep and ∆T within these ranges, we
find that the realistic values of f almost span three orders of magnitude,

5.6× 10−4 . f (θW , TBAU) . 0.32 , (7.10)

which translates into an uncertainty in the final baryon asymmetry,

ηB '
(
1.9× 10−3 · · · 1.1

)
× 10−16

(
e2πξrh

ξ4
rh

)(
Hrh

1013 GeV

)3/2

. (7.11)

This expression for ηB is one of the main results of our paper. We show ηB as
a function of Hrh and ξrh in Fig. 7.1. Evidently, the observed baryon asymmetry,
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ηobs
B ∼ 10−10 [3], can be reproduced in a large part of parameter space. In view of

Fig. 7.1, several comments are in order:

(i) For most values of the Hubble rate at the end of inflation, Hrh, the instability
parameter ξrh needs to take a value in the range 4 . ξrh . 6 to allow for successful
baryogenesis. According to Eq. (5.28), this requires the suppression scale Λ to take a
value in the following interval,

2.9× 1017 GeV . Λ . 4.3× 1017 GeV . (7.12)

In other words, the requirement of successful baryogenesis roughly fixes the value of
the suppression scale Λ in the axion-gauge-field coupling, Λ ∼ 3 × 1017 GeV. This is
within a factor of 10 of the Planck scale, which indicates that the axion needs to be
coupled rather weakly.

(ii) With Λ ∼ 3× 1017 GeV and given the location of the green band in Fig. 7.1, it
is clear that successful baryogenesis is incompatible with large values of δF and δKG;
see Fig. 5.2 and Eq. (5.19). This means that, in the case of successful baryogenesis,
the gauge field production during inflation is never going to dominate the inflationary
dynamics. Conversely, this can be rephrased by saying that inflationary scenarios
that eventually do lead to δF ∼ 1 unavoidably result in an overproduction of baryon
number.2 Of course, this problem can be trivially solved by re-interpreting the axion
coupling to the hypercharge gauge fields as a coupling to the gauge fields of some
other, hidden U(1). But this solution comes at a high cost: If we replaced U(1)Y
by some hidden U(1)′, we would have to give up on primordial magnetogenesis and
baryogenesis via decaying hypermagnetic helicity as well. That is, we might still be
able to generate a sizable signal in GWs (see Sec. 7.2); but we would loose all other
virtues of our scenario.

(iii) The parameter region consistent with successful baryogenesis is also marked
in Fig. 6.2. As can be seen from this figure, successful baryogenesis around the time
of EWSB correlates with a particular strength of the large-scale magnetic fields in
the present epoch, B0

p ∼ 10−16 GeV. Note that this is the value that we already
anticipated in Eq. (4.4).

(iv) Our result in Fig. 7.1 presents an update of earlier studies in the litera-
ture [88,92]. In comparison to these earlier works, we find that successful baryogenesis
apparently requires larger values of Hrh as well as larger values of ξrh. Otherwise, the
produced asymmetry will fall short off the observed value by several orders of mag-
nitude. The reason for this change in numbers is that we indirectly include several
effects in our analysis that had previously been neglected. By employing the analytical
expression in Eq. (7.7), we make sure to account for the gradual change of the weak

2This conclusion can be avoided if the reheating temperature after inflation is below the electroweak
scale, Trh . 100 GeV. In this case, baryon number is not anomalously violated after inflation and
the decaying magnetic (not hypermagnetic) helicity fails to generate a nonzero baryon asymmetry.
Similarly, our conclusions regarding the overproduction of baryon number may change if the dynamics
of reheating, which we did not account for in our analysis, should dramatically change our estimate
of the initial hypermagnetic field strength in Eq. (6.3).
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mixing angle during the electroweak crossover, the chiral magnetic effect, the standard
model Yukawa interactions, etc. The combination of Eq. (7.7) with our results for Bp
and λp at the time of EWSB (see Eqs. (6.15) and (6.16)) then enables us to assess
the efficiency of baryogenesis more accurately. On the other hand, it must not be for-
gotten that also our analysis still suffers from quite large uncertainties. Future work
needs to tackle in particular two issues: a better treatment of reheating after inflation
as well as a better understanding of the evolution of the weak mixing angle during the
electroweak phase transition. Moreover, to relate the efficiency of baryogenesis to the
strength of the present-day intergalactic magnetic fields more precisely, more work on
the evolution of magnetic fields at low temperature is needed.

7.2 High-frequency signal in gravitational waves

In Sec. 5.1, we discussed the equations of motion for the homogeneous background
fields a and Ak± in an exact FLRW background; see Eqs. (5.2), (5.5) and (5.9). In
addition to this, it is also essential to study the dynamics of the corresponding pertur-
bations in the inflaton field as well as in the metric tensor. Here, a crucial observation
is that the exponentially enhanced gauge field readily provides new source terms for
the primordial scalar and tensor perturbations [48,49]. As it turns out, the new con-
tributions to the scalar power spectrum are mostly controlled by the backreaction
parameter δKG; see, e.g., [69]. As long as we stay in the weak field regime, δKG � 1
(see Eq. (5.19)), the corrections to the scalar power spectrum are, therefore, more
or less negligible for our purposes. The corrections to the tensor power spectrum,
on the other hand, can become quite sizable from the point of view of observational
prospects — and that even so in the weak field regime! In fact, primordial tensor per-
turbations from the epoch of inflation give rise to a spectrum of stochastic GWs in
the present epoch over a broad range of frequencies. The amplification of the tensor
power spectrum in models of pseudoscalar inflation, therefore, has important conse-
quences for the expected signal of stochastic GWs from inflation. As shown in [46,47],
pseudoscalar inflation may even result in sizable GWs on small scales that are possibly
within the reach of direct GW observations. As we will discuss in the following, the
primordial GW signal on small scales ends up being dominated by the gauge contri-
bution rather than the vacuum contribution in a large part of parameter space. This
opens up the possibility to test our scenario, at least in principle, by means of future
GW observations.

Let us now discuss the spectral GW energy density from inflation, Ω0
GWh

2, in more
detail. We first argue that the GW spectrum is flat to first approximation. In the
presence of the axion-gauge-field coupling in Eq. (4.2), the spectral energy density
Ω0

GWh
2 receives two contributions,

Ω0
GWh

2 =
[
Ω0

GWh
2
]
vacuum

+
[
Ω0

GWh
2
]
gauge

. (7.13)
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Here,
[
Ω0

GWh
2
]
vacuum

denotes the vacuum contribution in standard single-field slow-
roll inflation,

[
Ω0

GWh
2
]
vacuum

=
Ω0

radh
2

12

(
g∗
g0
∗

)(
g0
∗,s
g∗,s

)4/3( H

πMPl

)2

, (7.14)

which scales with the square of Hubble rate during inflation. Ω0
radh

2 ' 2.5 × 10−5

is the density parameter of radiation in the present epoch, while the combination of
effective numbers of DOFs (g∗ = 106.75, g0

∗ = 2, g∗,s = 106.75, g0
∗,s ' 3.91) accounts

for the redshift behavior of the GW signal since its production.3 For typical values of
H, Eq. (7.14) yields a rather weak GW signal,

[
Ω0

GWh
2
]
vacuum

' 2.3× 10−22

(
H

1011 GeV

)2

. (7.15)

Recalling that the Hubble rate during inflation is related to the primordial tensor-to-
scalar ratio, H ' 7.9 × 1013 GeV (r/0.1)1/2, we point out that Eq. (7.15) is in fact
equivalent to Eq. (4.1).

Meanwhile, one obtains for the contribution to Ω0
GWh

2 [48, 49] from the gauge
fields,

[
Ω0

GWh
2
]
gauge

'
[
Ω0

GWh
2
]
vacuum

(
H

MPl

)2

(fL + fR) e4πξ , (7.16)

where fL and fR are two fit functions that need to be determined numerically,4

fL = 10−7 ×

{
2.6 / ξ5.7 ; ξ . 3

4.3 / ξ6.0 ; ξ & 3
, fR =

9.2

ξ6.0
× 10−10 . (7.17)

Fitting Eq. (7.16) as a function of H4 and e4πξ results in the following phenome-
nological expression, which reproduces the exact result very accurately in the entire
parameter space of interest,

[
Ω0

GWh
2
]
gauge

' 2.3× 10−22 exp [0.91× 4π (ξ − 4.61)]

(
H

1011 GeV

)4

. (7.18)

Note that, in Eqs. (7.15) and (7.18), we have chosen the reference values for H and
ξ such that both contributions to the GW spectrum are of the same size. Moreover,

3More precisely, these factors are part of the so-called transfer function, which describes the redshift
behavior of GW modes outside and inside the Hubble horizon; see, e.g., [120] and references therein.
Strictly speaking, the functional form of Eq. (7.14) only applies to those modes which cross inside the
Hubble horizon prior to matter-radiation equality. This is however the case for all GW modes that
we are going to be interested in.

4In Sec. 5.2, we solved all relevant momentum integrals by ourselves; see Eq. (5.16). However, in
our discussion of the primordial tensor perturbations, we will now rely on the numerical fit functions
available in the literature.
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Eqs. (7.15) and (7.18) also illustrate that, for H = 1011 GeV and ξ > 4.61, the gauge
contribution to Ω0

GWh
2 exceeds the vacuum contribution. This demonstrates that

the GW signal can indeed be dominated by the gauge contribution, although both
backreaction parameters, δF and δKG, actually take small values; see Eq. (5.18). In
fact, it is easy to show that the GW spectrum is always dominated by the gauge
contribution as soon as H is larger than some critical, ξ-dependent value Hcrit

GW,

Hcrit
GW = (fL + fR)−1/2 e−2πξMPl ' 1.1× 1010 GeV exp [−0.88× 2π (ξ − 5)] . (7.19)

As long as ξ and H are constant, both
[
Ω0

GWh
2
]
vacuum

and
[
Ω0

GWh
2
]
gauge

are inde-
pendent of time t and frequency f . In this limit, GWs therefore exhibit a flat power
spectrum.

Next, let us discuss the frequency dependence of this spectrum. We just saw
that the GW spectrum is flat in the limit where ξ and H are constant. However, ξ
and H are not exactly constant but slowly vary during inflation. This results in a
frequency dependence of the GW spectrum, after all. A GW signal at frequency f
corresponds to a primordial tensor perturbation with wavenumber k = 2πR0f , where
R0 denotes the present-day value of the scale factor. During inflation, the amplitude
of this perturbation mode freezes out once it is sufficiently far outside the Hubble
horizon, if there are no active sources on super -horizon scales. In standard slow-roll
inflation without any additional coupling to gauge fields, this requirement is satisfied
simply once the k mode exits the horizon at k/R (tk) = H (tk) (where tk is defined
by this very relation). In this case, one finds the GW amplitude at frequency f by
evaluating the spectral energy density ΩGWh

2 for R (tk)H (tk) = k = 2πR0f . On the
other hand, it is not a priori clear whether this statement also remains true if the
inflaton couples to gauge fields. The axion-gauge-field coupling may, e.g., affect the
evolution of the tensor modes even on super -horizon scales. However, for ξ ∼ O (1),
it turns out that the k mode of the gauge field as well as the tensor perturbations of
the metric are amplified only around the time of horizon exit. We therefore conclude
that the GW spectrum at wavenumber k is generated and fixed once the k mode exits
the horizon. For this reason, we can simply evaluate ξ and H in Eq. (7.16) at the
time of horizon exit,

ξ = ξ (tk) , H = H (tk) , R (tk)H (tk) = k = 2πR0f . (7.20)

Since both ξ and H slightly vary with time during inflation, this procedure results
in a frequency-dependent spectrum of stochastic GWs. The contribution from the
gauge fields has an exponential dependence on ξ, which results in a peak in the GW
spectrum when ξ is maximal.

The present frequency f of the GW mode with wavenumber k = 2πR0f is related
to the number of e-folds between the time of horizon exit and the end of inflation, Ne,
as follows,

Ne (f) = ln

 1

2πf

(
π2

45

g∗ g
0
∗,s

g∗,s

)1/3
T0 T

1/3
rh H

1/3
inf

M
2/3
Pl

 , (7.21)
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Figure 7.2: Present-day GW signal strength Ω0
GWh

2 as a function of the instability parameter
ξ and the Hubble rate H; see Eqs. (7.13), (7.14), and (7.16). Here, ξ and H correspond to free
parameters, which vary in the course of inflation. The green band is the same as in Figs. 6.2
and 7.1. The gray-shaded regions are the same as in Fig. 5.2.

where Hinf ≈ Hrh is the Hubble rate during inflation. In the approximation of instant
reheating, Trh =

√
M∗Hrh, this expression reduces to

Ne (f) ' 2.0 +
1

2
ln

(
Hrh

1011 GeV

)
− ln

(
f

1 MHz

)
. (7.22)

Then, we obtain the frequency-dependent GW spectrum as the following expression,

ΩGWh
2 (f) = ΩGWh

2 (ξ (Ne (f)) , H (Ne (f))) . (7.23)

The interplay between both contributions to the GW spectrum is depicted in
Fig. 7.2, where we plot the total spectral energy density Ω0

GWh
2 as a function of ξ

and H that slightly vary during inflation.5 Each inflation model defines a trajectory
γ in the ξ–H plane that may, e.g., be parametrized in terms of the number of e-folds
until the end of inflation,

γ = {(ξ (Ne) , H (Ne))∀Ne} . (7.24)

5During slow-roll inflation, ξ and H vary only very slowly, such that their time dependence does
not have a strong impact on the gauge field evolution. This is the reason why we are able to solve
Eq. (5.11) for constant ξ.
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γ passes through various values of Ω0
GWh

2 during inflation. For each model, this
results in a characteristic spectrum of stochastic GWs that could, in principle, be still
observed today.

For many models of pseudoscalar inflation, ξ grows towards the end of inflation, as
the inflaton velocity ȧ becomes larger and larger. If this growth in ξ is strong enough,
such that H > Hcrit

GW at some point (see Eq. (7.19)), the gauge contributions to ΩGWh
2

will result in an exponentially steep increase in the GW spectrum. This mechanism of
GW production will shut off as soon as inflation is over and our mechanism of gauge
field production is no longer active. All in all, we therefore expect a characteristic
feature in the GW spectrum associated with the explosive gauge field production at
the end of inflation, i.e., around Ne ' 0. According to Eq. (7.22), we estimate that
this peak should occur at frequencies in the MHz range or at even higher frequencies,

Ne (fpeak) ' 0 ⇒ fpeak ' 7.1 MHz

(
Hrh

1011 GeV

)1/2

. (7.25)

To estimate the strength of the peak in the GW spectrum, we simply need to
evaluate ΩGWh

2 in Eq. (7.13) for ξ = ξrh and H = Hrh. Or alternatively, we may
trade the dependence on ξrh and Hrh for the present-day strength of the magnetic
field, B0

p , as well as the peak frequency, fpeak. Making use of Eqs. (6.18), (7.13), and
(7.25), we then find the following numerical relation,

[
Ω0

GWh
2
]
peak
' 3.2× 10−20

(
B0
p

10−16 GeV

)6.13( fpeak

10 MHz

)1.87

, (7.26)

which is another main result of our paper. In order to eliminate the ξ dependence in
ΩGWh

2, we numerically solved Eq. (6.18) for ξ. Based on the relation in Eq. (7.26),
we plot B0

p as a function of fpeak and
[
Ω0

GWh
2
]
peak

in Fig. 7.3. In view of Eq. (7.26)
and Fig. 7.3, several comments are in order:

(i) In scenarios consistent with successful baryogenesis, the gauge field production
at the end of inflation is typically accompanied by a rather weak signal in GWs at
high frequencies. The detection of this peak is certainly out of reach of present-
day technology. On the other hand, it is an unavoidable consequence of primordial
magnetogenesis in our scenario. In the future, the detection of such a GW peak may
therefore serve as a smoking-gun signal of primordial magnetogenesis at the end of
pseudoscalar inflation. This in turn would lend support to the idea of baryogenesis
from decaying hypermagnetic helicity. In particular, one could assess whether the
strength of the observed GW signal turns out to be consistent with an inflaton coupling
to the hypercharge gauge field — or whether this assumption would lead to baryon
overproduction.

(ii) Along the diagonal line in Fig. 7.3, the GW spectrum at the end of inflation
is dominated by the (irreducible) vacuum contribution. The part of parameter space
below this line is therefore not accessible. Meanwhile, the vertical distance between
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Figure 7.3: Present-day magnetic field strength B0
p as a function of the peak frequency fpeak

and the strength of the peak in the GW spectrum associated with the gauge field production at
the end of inflation,

[
Ω0

GWh
2
]
peak

; see Eq. (7.26). In the approximation of instant reheating,

fpeak is directly related to the Hubble rate at the end of inflation; see Eq. (7.25). The green
band illustrates the region in parameter space where ηB ∼ 10−10; see Eq. (7.11).

this line and any point above indicates the extent to which the peak in the GW
spectrum sticks out of the usual vacuum background.

(iii) We stress once more that, at the quantitative level, Eq. (7.26) and Fig. 7.3
may still receive a number of corrections. After all, every quantity in our analysis
(B0

p , ηB, ΩGWh
2) comes with potentially large uncertainties. Nonetheless, we believe

that Eq. (7.26) and Fig. 7.3 convey the correct idea at the qualitative level. Our
results illustrate that pseudoscalar inflation leads to a highly nontrivial relation be-
tween initially completely independent phenomena: the present-day strength of the
intergalactic magnetic field, the baryon asymmetry of the universe, and the stochastic
background of GWs. This realization is one of our main achievements in this paper.
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Chapter 8

Explicit scenarios based on
natural inflation

All quantities that we were interested in so far (B0
p , λ0

p, ηB, and Ω0
GWh

2) solely
depend on the values of ξ and H at the end of inflation. This observation allowed
us to perform a completely model-independent analysis up to this point. We did
not specify the form of the inflaton potential V (a) and discarded all details of the
reheating process. Instead, we simply employed a model-independent parametrization
in terms of ξrh and Hrh. This means that all of our results up to this point apply
to any model of pseudoscalar inflation that is anomalously coupled to the standard
model hypercharge sector. Now, however, we shall illustrate our results by means of
concrete examples, in order to see how realistic models of inflation give rise to the
phenomenology described in the previous sections. To this end, we shall now study
the evolution of ξ and H during inflation in concrete models and illustrate how they
approach certain values towards the end of inflation. In other words: up to now, we
were only interested in certain points in the ξ–H parameter plane; now we turn to
the inflationary trajectories in this parameter plane.

Given the Lagrangian in Eq. (5.1), the inflaton field a is naturally identified as an
axion, i.e., the PNGB of a spontaneously broken global symmetry Gglobal. If this sym-
metry is anomalous under the standard model hypercharge gauge group U(1)Y , the
axion a will couple to the standard model hypercharge gauge field just as in Eq. (4.2).
Moreover, if Gglobal is in addition anomalous under some strongly coupled gauge sym-
metry Gstrong, nonperturbative effects in the Gstrong gauge sector will generate a scalar
potential for a of the following form,

V (a) = m2
a f

2
a

[
1− cos

(
a

fa

)]
. (8.1)

Here, ma and fa denote the axion mass as well as the axion decay constant. The
overall scale of the axion potential is set by the confinement scale in the strongly
coupled sector, m2

af
2
a ∼ Λ4

strong. In the following, we can treat both ma and fa as

83
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free parameters. The scalar potential in Eq. (8.1) is nothing but the scalar potential
of natural inflation [50, 51]. This is a trivial statement given the fact that natural
inflation denotes the very idea that inflation is driven by the PNGB of some sponta-
neously broken and anomalous global symmetry. In the following, we shall study the
inflationary trajectory for natural inflation in the ξ–H plane.

For any value of the inflaton field during slow-roll inflation, one can determine
(ξ,H) from Eqs. (5.2) and (5.5). Once we replace ȧ by 2ΛHξ, see Eq. (5.10), and
neglect ä, we have

3M2
PlH

2 − 1

2
(2ΛHξ)2 − V − 1

2

[
ρEE (ξ,H) + ρBB (ξ,H)

]
= 0 , (8.2)

6ΛH2ξ +
dV

da
− 1

Λ
ρEB (ξ,H) = 0 .

For a given pair of values for
(
V, dVda

)
as well as for given Λ, we can numerically solve

Eq. (8.2) for (ξ,H). The slow-roll parameter ε including the contribution of the gauge
field is [64]

ε = − Ḣ

H2
=

1

2M2
PlH

2

[
ȧ2 +

2

3

(
ρEE + ρBB

)]
, (8.3)

which can be computed once (ξ,H) has been determined. For each field value, we are
therefore able to compute the corresponding value of ε. With the aid of Eq. (8.3), we
can hence numerically determine the end point of inflation, where ε = 1. The number
of e-folds Ne is given by

Ne =

∫ a

aend

da
dNe

da
, (8.4)

where aend is the field value at the end of inflation and the integrand is a simple
function of ξ,

dNe

da
= −H

ȧ
= − 1

2Λξ
. (8.5)

In summary, for each inflaton field value, we can compute the quadruplet (ξ,H, ε,Ne),
which enables us to draw an inflationary trajectory for any given model in the ξ–H
parameter plane.

Now let us compute some explicit examples. Our variant of the natural inflation
model is characterized by three parameters: the two parameters (ma, fa) in the poten-
tial, see Eq. (8.1), as well as the suppression scale Λ in the Chern-Simons interaction.
We take the following values:1

Model A: m2
a = 4.1× 10−11M2

Pl, fa = 7.0MPl, Λ−1 = 5.6M−1
Pl . (8.6)

1The parameters fa and Λ ought to be related to each other in the UV completion of our model.
But in this study, we do not specify any UV physics, which is why we treat fa and Λ as independent
parameters.
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Figure 8.1: Trajectories of several inflation models in the ξ–H parameter plane. Trajectory A
corresponds to natural inflation, see Eqs. (8.1) and (8.6), while trajectories B and C correspond
to Starobinsky inflation, see Eq. (8.13), in the case of small and large axion-gauge-fields
coupling, respectively. Numerical details are listed in Tab. 8.1. Successful baryogenesis is
accomplished for any inflationary trajectory that ends in the green band, i.e., if the point
(ξ,H)end = (ξrh, Hrh) =

(
ξ(Ne = 0), H(Ne = 0)

)
lies in the green band; see Fig. 6.2 and

Eq. (7.11).

Here, to distinguish it from other models that will be discussed, we refer to it as model
A. Note that, to ensure successful baryogenesis, Λ cannot be chosen arbitrarily; see
Eq. (7.12). Besides, to make the model compatible with the CMB observations, we
need to chose particular values for the two parameters ma and fa. The parameters in
Eq. (8.6) have been tuned in such a way that the model is compatible with all CMB
observations and the baryon number asymmetry.

Following the procedure introduced above, we numerically compute (ξ,H) by sol-
ving Eq. (8.2) for each field value in the relevant part of the potential with a step
width of ∆a = 0.01MPl. Then we compute the slow-roll parameter ε to determine
the end of inflation, which is at

Model A: aend = −0.94MPl . (8.7)

For all field values during inflation, a < aend, the number of e-folds Ne is computed
according to Eq. (8.4). Together, these points form the trajectory corresponding to
model A in Fig. 8.1.
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Model A B C

Λ−1 5.6M−1
Pl 5.6M−1

Pl 75M−1
Pl

V (a) Eq. (8.1) Eq. (8.13) Eq. (8.13)[
m2
a

fa

]
or

[
V0

γs

] [
4.1× 10−11M2

Pl

7.0MPl

] [
6.7× 10−10M4

Pl

0.30M−1
Pl

] [
1.0× 10−9M4

Pl

0.30M−1
Pl

]


a
ȧ
H
ξ


Ne=0


−0.94MPl

4.3× 10−6M2
Pl

3.0× 10−6MPl

4.0




−0.83MPl

5.7× 10−6M2
Pl

4.0× 10−6MPl

4.0




−0.09MPl

1.3× 10−7M2
Pl

6.9× 10−7MPl

6.9




a
ȧ
H
ξ


Ne=55


−13MPl

3.0× 10−6M2
Pl

3.0× 10−5MPl

0.28




−8.7MPl

6.7× 10−7M2
Pl

1.4× 10−5MPl

0.13




−7.2MPl

1.3× 10−6M2
Pl

1.6× 10−5MPl

2.9


 Ps
ns
r


Ne=55

 2.3× 10−9

0.96
0.08

  2.1× 10−9

0.97
0.02

  2.2× 10−9

0.94
0.05


Table 8.1: Various parameters and numerical results for the three models A, B, and C.

The scalar power spectrum is evaluated according to

Ps =

(
H2

2πȧ

)2(
k

kCMB

)ns−1

, (8.8)

where kCMB = 0.05 Mpc−1 is the CMB pivot scale; and H and ȧ are evaluated at
the time when the pivot scale exits the horizon. We neglect the contribution from
the gauge fields, since it is negligibly small in the region of interest. This should be
compatible with the CMB normalization [40]:

P obs
s = (2.21± 0.07)× 10−9 . (8.9)

The CMB pivot scale exits the horizon at NCMB
e ' 55, where we obtain

Model A: a = −13.4MPl , ȧ = 3.0× 10−6M2
Pl ,

H = 3.0× 10−5MPl , ξ = 0.28 . (8.10)

With these numerical results, we can evaluate the scalar power spectrum:

Model A: Ps = 2.3× 10−9 , (8.11)



87

LIGO

LISA

A

B

C

Wedding20170709

0 10 20 30 40 50 60

-18

-16

-14

-12

-10

-8

-6

-4
10-1810-1510-1210-910-610-3100103106

Ne

lo
g 1

0
W

G
W

h2

f HHzL

A

B

0. 0.3 0.6 0.9
-18.0

-17.8

-17.6

-17.4

-17.2

-17.0

-16.8

-16.6

203040

Ne

lo
g 1

0
W

G
W

h2

f HMHzL

Figure 8.2: GW spectra of several models compared to the current (solid lines) and future
(dashed lines) constraints from advanced LIGO and LISA. The red, blue and black curves
corresponds to models A, B, and C, respectively. Model A: natural inflation; model B/C: Sta-
robinsky inflation with a small/large axion-gauge-field coupling; see Tab. 8.1 for the numerical
details. The red and blue shadows in the right panel represent the gauge contributions. To
relate the number of e-folds Ne and the frequency f we have used Eq. (7.22) with Hrh = 1012.5

GeV, which is approximately correct for the models A, B, and C.

which is compatible with Eq. (8.9). Since the gauge field contribution is very weak at
Ne = NCMB

e , the spectral index ns and the tensor-to-scalar ratio r can be evaluated
in the conventional way:

Model A: ns = 1 + 2 η − 6 ε ' 0.96 , r = 16 ε ' 0.08 . (8.12)

which agrees with the current PLANCK constraints [40]. All of the above numerical
results are summarized in Tab. 8.1.

We can further compute the GW spectrum according to Eq. (7.13), including
both the vacuum and gauge contributions. This is shown by the red curve in Fig. 8.2,
where the red shadow denotes the gauge contribution. In Fig. 8.2, we also present
the current constraints from advanced LIGO and future sensitivities from advanced
LIGO and LISA. It turns out that the GW energy density Ω0

GWh
2 produced in model

A is far below the reach of current or upcoming GW interferometers.

It has been shown [46] however that, with a strongly coupled axion, some mo-
dels could reach the sensitivity of current or upcoming GW interferometers. For the
Starobinsky model [11], e.g.,

VStarobinsky(a) = V0

(
1− eγsa

)2
, a < 0 , (8.13)

with (V0, γs) = (1.0 × 10−9M4
Pl, 0.3M

−1
Pl ) and an axion-gauge-field coupling Λ−1 =

75M−1
Pl (which is more than 10 times larger than the case we just discussed), Ω0

GWh
2

can reach the future sensitivities of advanced LIGO and LISA, as shown by the black
curve in Fig. 8.2. Such a large GW energy is due to a very strong axion-gauge-field
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coupling, which transfers almost the entire energy carried by the inflaton into the
gauge field and induces much larger tensor perturbations. But strong axion-gauge-field
couplings will always lead to baryon overproduction, as discussed model-independently
in Sec. 7; see Eq. (7.12). Indeed, Fig. 8.1 shows that the trajectory of this model (we
refer to it as model C; for numerical details, see Tab. 8.1) ends at a point far away
from the region for successful baryogenesis (the green band). Actually, this point is
very close to the bound δF = 1, which corresponds to the situation that the entire
energy of the universe is stored in the gauge field. If we reduce the axion-gauge-field
coupling of model C to the same value as in model A, then the model (now referred
to as model B) leads to successful baryogenesis; see Fig. 8.1. But it has small Ω0

GWh
2,

approximately of the same order of magnitude as model A.

It is interesting to note that the GW spectra of model A and B both peak at
the very end of inflation, where the gauge contributions become dominant (at 0 .
Ne . 0.3, corresponding to f ∼ 40 MHz, see the right panel of Fig. 8.2). This
is an important feature of these models compared to models without the inflaton-
gauge-field coupling. Although these peaks are out of reach of conventional GW
interferometers, once detected by some other new technology in the future, they may
serve as a smoking-gun signal for baryogenesis via primordial magnetic fields.



Chapter 9

Conclusions

In this paper, we revisited the implications of a Chern-Simons-like inflaton coupling
to the standard model hypercharge gauge field, L ⊃ a/ (4Λ)FF̃ , in general models of
pseudoscalar inflation. We focused in particular on two phenomenological aspects: (i)
the production of primordial gauge fields towards the end of inflation (i.e., primordial
magnetogenesis) and its consequences for baryogenesis from decaying (hyper)magnetic
fields at the time of EWSB; and (ii) the associated production of primordial tensor
perturbations and their impact on the present-day spectrum of stochastic gravitational
waves. Our main results can be summarized as follows:

1. Primordial magnetogenesis at the end of pseudoscalar inflation can result in
sizable present-day magnetic fields with a correlation length on astrophysical
scales; see Eqs. (6.18) and (6.19). These fields then contribute to the interga-
lactic magnetic fields we observe today. The main uncertainties in our estimate
are: (i) the impact of reheating on the gauge field production after the end of
inflation and (ii) the impact of damping effects at temperatures below 10 MeV.
In particular, we point out that the presence of a strong hyper-EM field during
reheating may open up new channels of particle production, such as pair pro-
duction via the Schwinger effect. This effect has recently been studied by the
authors of Ref. [121], who referred to it as Schwinger reheating. Moreover, it is
important to understand how the emerging charged plasma back-reacts on the
primordial gauge field. A better treatment of this complicated process requires
a dedicated numerical simulation that takes into account both nonperturbative
particle production as well as MHD effects. Such a study is beyond the scope
of this paper; but we certainly encourage further efforts into this direction.

2. The primordial gauge fields generated towards the end of pseudoscalar inflation
are maximally helical and can, thus, source the generation of nonzero baryon
number around the time of the electroweak crossover via the chiral anomaly in
the standard model. We updated previous studies of this mechanism of primor-
dial baryogenesis, which led us to the conclusion that successful baryogenesis is
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indeed possible in a large part of parameter space, see Eq. (7.11). We found
that the pseudoscalar inflaton must be weakly coupled to the hypercharge gauge
field, since the primordial gauge fields will otherwise result in an overproduction
of baryon number. To be more precise, successful baryogenesis requires an insta-
bility parameter ξ of around ξ ∼ 5 at the end of inflation, which translates into
a suppression scale Λ of around Λ ∼ 3×1017 GeV. Again, a main uncertainty of
our estimate is the strength of the primordial hypermagnetic field at the time of
EWSB. Besides that, the poor knowledge of the temperature dependence of the
weak mixing angle during the crossover, θW (T ), induces further uncertainties.
A better understanding of baryogenesis via decaying helicity, therefore, requires
a more careful determination of θW (T ).

3. The gauge field production at the end of inflation is accompanied by the pro-
duction of stochastic gravitational waves. We are able to show that the pro-
duction of gauge fields consistent with successful baryogenesis at later times
typically results a weak GW signal at frequencies in the MHz range or even
above; see Eq. (7.26) and Fig. 7.3. GWs at such high frequencies are extremely
hard to detect; see [122, 123] for a past measurement, [124] for an on-going ex-
periment as well as [125,126] for proposals of future techniques. However, if the
signal predicted in our scenario should eventually be measured by future experi-
ments, it would serve as a smoking gun for the explosive gauge field production
at the end of inflation (and hence provide evidence for baryogenesis via decaying
magnetic fields during the electroweak crossover). On the other hand, we are
able to conclude that any stronger GW signal would imply the overproduction
of baryon number. In this case, one would either have to give up on an inflaton
coupling to the standard model hypercharge gauge field or one would have to
assume low reheating temperature, such that Trh . Tew.

Our analysis illustrates how models of pseudoscalar inflation result in a highly
non-trivial interrelation of several, a priori unrelated phenomena: the present-day
large-scale magnetic field, the baryon asymmetry of the universe, and features in
the spectrum of stochastic GWs. In the present paper, we mainly focused on the
qualitative aspects of this interplay of phenomena and more work is needed to arrive at
more reliable and more precise quantitative predictions. In particular, the impacts of
non-perturbative effects [110,111] and possible thermalization [112] on the gauge field
production during (including the last of) the slow-roll stage of inflation for larger ξ as
well as those at the inflaton oscillation/reheating stage [106–108] must be understood
more deeply for the precise evaluation of the production of the magnetic fields and the
GWs. Such an effort requires progress on several fronts. But it also promises to lead
to a better understanding of an intriguing cosmological scenario that comes with rich
phenomenology deriving from a single additional operator in the effective Lagrangian:
L ⊃ a/(4Λ) FF̃ .
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die angegebenen Quellen und Hilfsmittel benutzt habe.

Heidelberg, den 15. August 2017 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .


	I Foundations
	Cosmology
	Coordinates
	Causal structure of the universe
	The action
	Principle of least action
	Energy-momentum tensor
	Friedman equations
	Thermodynamics of an expanding universe
	Solving the Friedman equations
	Cosmological Problems
	Horizon Problem
	Flatness Problem


	Inflation
	General features of inflation
	Single-field slow-roll inflation
	Equations of motion for the inflaton
	Friedman Equations during inflation
	The slow roll approximation

	Quantum fluctuations during inflation
	Scalar perturbations
	Tensor perturbations

	Pseudoscalar Inflation

	Baryogenesis
	General conditions for baryogenesis


	II Our work
	Introduction
	Gravitational waves from an anomalous inflaton coupling to gauge fields
	Baryogenesis from decaying (hyper)magnetic helicity
	Correlation between gravitational waves and successful baryogenesis

	Gauge field production during inflation
	Equations of motion for the inflaton and gauge fields
	Backreaction on the inflationary dynamics
	Hypermagnetic field at the end of inflation

	Gauge field evolution after inflation
	From the end of inflation to the onset of the inverse cascade regime
	From the onset of the inverse cascade regime to the electroweak crossover
	From the electroweak crossover to the present epoch

	Implications for baryon asymmetry and gravitational waves
	Baryogenesis from pseudoscalar inflation
	High-frequency signal in gravitational waves

	Explicit scenarios based on natural inflation
	Conclusions
	Bibliography


