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Abstract

Motivation: Biological cells operate in a noisy regime influenced by intrinsic, extrinsic, and external noise,
which leads to large differences of individual cell states. Stochastic effects must be taken into account to
characterize biochemical kinetics accurately. Since the exact solution of the chemical master equation,
which governs the underlying stochastic process, cannot be derived for most biochemical systems,
approximate methods are used to obtain a solution.

Results: In this study a method to efficiently simulate the various sources of noise simultaneously is
proposed and benchmarked on several examples. The method relies on the combination of the sigma
point approach to describe extrinsic and external variability and the r-leaping algorithm to account for
the stochasticity due to probabilistic reactions. The comparison of our method to extensive Monte Carlo
calculations demonstrates an immense computational advantage while losing an acceptable amount
of accuracy. Additionally the application to parameter optimization problems in stochastic biochemical
reaction networks is shown, which is rarely applied due to its huge computational burden. To give further
insight a MATLAB® script is provided including the proposed method applied to a simple toy example of

gene expression.
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Supplementary Information: Supplementary data are available at Bioinformatics online.

1 Introduction

Variability and heterogeneity are fundamental properties of biological
systems. Cells differ in all kinds of attributes including cell size, protein
abundances, and morphology (Spiller er al., 2010), which is caused by
various sources of noise. In this study we refer to intrinsic noise as an
inherent stochastic biochemical process, extrinsic noise as cell-to-cell
variability, and external noise as environmental fluctuations. Intrinsic
noise is very dominant for small biochemical reaction systems involving
low copy numbers of chemical species (e.g.. gene networks), whereas
extrinsic and external noise increase with system size (Patnaik, 2006).
Since the cellular abundance of numerous chemical species span all
scales from just a few (e.g., genes) to several millions (e.g., proteins)
all sources of noise contribute to biological heterogeneity. The interplay
between intrinsic, extrinsic, and external noise and their effects on system

dynamics is hardly exploited due to experimental and numericat challenges
(Spiller et al., 2010; Lencastre Fernandes er al., 2011; Delvigne et al.,
2014). Monte Carlo (MC) techniques are the standard approach to tackle
stochastic biochemical reaction networks, but they suffer from an immense
computational burden especially in optimization problems, where a system
has to be simulated numerous times. Approximations have to be used in
order to make computations feasible.

Fig. A illustrates a cell population that is corrupted by intrinsic,
extrinsic, and external noise. In this scenario, a heterogeneous population
of cells under realistic conditions, which differ in size, shape, and
number of organelles is situated in an inhomogeneous medium containing
concentration gradients (gray background). In addition to that, intrinsic
noise caused by switching of a single gene between different states
contributes to the overall variability. To clarify our understanding of
intrinsic, extrinsic, and external noise their impact on a simple decay
process P — @ describing the degradation of the protein P is shown in
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Fig. 1. Noise in biochemical systems, (A) Various sources of noise corrupt biochemical reaction systems, The influence of intrinsic noise (B), extrinsic noise (C), and inirinsic noise

combined with extrinsic noise (D) on a decay process results in differences of the probabilily densily function (PDF), the mean, and the standard deviation (std).

Fig. 1B-D. Here intrinsic noise is modeled by the Gillespie algorithm
(SSA) (Gillespie, 1977) that treats reactions as stochastic events, whereas
extrinsic noise is modeled by distributed initial conditions, which accounts
for cell-to-cell variability. Both effects rely on different mechanisms, but
result in a probability density function (PDF) characterizing the abundance
of the protein (red). Adding both effects yields a further spread of the
resulting PDF indicated by an increase of the standard deviation, see
Fig. 1D. Note that external noise was left out in the investigation of
the decay process, because in the case of a stationary random process
its mathematical treatment is identical to extrinsic noise. In case the
external noise is a stochastic dynamic process, its mathematical treatment
is identical to intrinsic noise. For simplicity we refer from now on only to
the terms extrinsic and intrinsic noise, representing a stationary random
variable or a stochastic dynamic process, respectively.

In this study we propose an approximate method to model distributed
stochastic processes by means of stochastic differential equations. The
method relies on the combination of the sigma point (SP) approach (Julier
et al., 2000) accounting for extrinsic noise and the 7-leaping algorithm
(Cao er al.,2006) capturing probabilistic reactions. The article is organized
as follows. In Sec. 2 a brief introduction to modeling of stochastic
biochemical systems and a short overview of existing methods is given.
In Sec. 3 the idea and advantages of the proposed method are described.
In Sec. 4 a detailed benchmark on an examples of gene expression is
performed followed by the application of our method on several parameter
optimization examples. Sec. 5 summarizes and discusses our results. We
provide supplementary material with additional information conceming
our methodology and the benchmark systems. The gene expression
example is illustrated with a MATLAB® script using the proposed method.

2 Theoretical Background

The simplest and most common approach to model biochemical systems
is by means of ordinary differential equations (ODEs)

S a(0) = [(2(),u(t).0) = No(@(t), u(t).60). ()

They describe the temporal evolution of the continuous state vector =
by reaction rate equations. In this context N denotes the stoichiometric
matrix, v the reaction rates, € a set of parameters, and = external
deterministic forcing. ODEs in this form neglect stochasticity introduced
by intrinsic noise and fail to model the underlying process correctly. A more
detailed description can be achieved with the chemical master equation

(CME) (Gillespie et al., 2013)

SP@0,0 =) axl@(t) - NoP((t) - Nkt — .
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taking into account the inherent stochastic nature of biochemical reactions.
The CME governs the temporal evolution of the probability P to find
the system in the discrete state @. ay, denotes the propensity of reaction
k and Ny the ks column of the stoichiometric matrix. For simplicity
« and @ are left out in Eq. (2), but they can be easily introduced by
interpretation as additional reaction channels (Sanft er al., 2011). From
the solution P for all reachable states a PDF p describing the stochastic
variable a can be reconstructed for every time point. p can be interpreted
as a vector, whose entries represent the probability of a certain abundance
interval of a chemical species. For most biochemical systems it is not
possible to find an exact solution of the CME, so approximate methods
have to be used. The SSA and its derivatives (Gillespie et al., 2013), such
as leaping (Cao et al., 2006; Fu et al., 2013) and time-scale separation
approaches (Marchetti er al., 2016) are powerful methods, which rely
on a statistical mechanics ansatz treating chemical reactions as discrete
molecular collision events. Although these algorithms are very popular
they fail to capture variability introduced by extrinsic noise. The finite state
projection algorithm (Munsky and Khammash, 2006) obtains a solution by
integration of the CME. This algorithm accounts for intrinsic and extrinsic
noise, but due to the curse of dimensionality it is not applicable to systems
with a large state space. Another approach is the method of moments
(Lakatos er al., 2015), which relies on the integration of coupled ODEs for
the statistical moments. This method incorporates intrinsic and extrinsic
noise, but does not reconstruct the state vector’s PDF and numerical
instabilities make it difficult to handle (Lee er al., 2009; Azunre ef al.,
2011). A promising approach consists of solving the CME directly via
tensor trains, but the derivation of the tensor trains is nontrivial (Kazeev
et al., 2014). To overcome these drawbacks we propose a novel method
paving the way to further understanding of variability and heterogeneity
in biochemical systems.

3 Efficient Modeling of Intrinsic and Extrinsic
Noise

A straight forward approach to model intrinsic and extrinsic noise

simultaneously is to perform MC sampling for extrinsic noise e.g..

distributed initial conditions or parameters and to compute intrinsic noise



Efficient Simulation of Intrinsic, Extrinsic and External Noise in Biochemical Systems 3

time [s]

=== — histogram
-------- kernel

SP

300 400 500

300 400 500
function evaluations

Fig. 2. Approximation of MC melhods. Histogram binning (A) and kemel smoothing {B) represent common methods to derive PDFs from MC trajectories (gray) sampled from distributed

initial conditions (red, lefu). The proposed SP approach (C) provides an ellicient simulation technique sampling from 2n¢ + 1 slarting points {red. lefl). The red distribution on the right
indicales the pseudo exact solution obtained by MC sampling combined with the SSA. The black histogram illustrates the histogram binning in (A) and the black distributions in (B) and
(C) are summed up (o obtain an approximate solution (not shown) 1o the exact solution. For better visualization all distributions are scaled. The accuracy {D) and convergence (E) elucidate

the compulational advantages of the proposed method.

i.e., the temporal evolution of a stochastic process with the SSA. In the
limit of infinite function evaluations the obtained histogram is equal to the
solution of the CME. Since both methods rely on the generation of random
numbers they are extremely time consuming and computationally intense.
Inorder to speed up the algorithm it is possible to lower the resolution of the
histograms and use fewer, broader bins or to perform kernel smoothing,
which results in the summation of kernel distributions while keeping a
high resolution. This is illustrated for the Schlogl model (Schiégl, 1972) in
Fig. 2A and B. In this study only Gaussian kernels are considered with the
bandwidth denoting the kemel’s standard deviation. The idea of the here
proposed method is to further accelerate the computation by approximating
the PDF of the extrinsic noise and propagating it through time by a
stochastic process, see Fig. 2C. We suggest using the SP approach to
account for the extrinsic noise. In contrast to MC sampling the SP approach
chooses only 2ng + 1 sigma points ¢ deterministically and estimates
mean E and covariance C of a random variable Y given by a nonlinear
transformation h (see supplementary material for further information). In
this context Y refers to the abundance of chemical species and h governs
their temporal evolution due to chemical reactions. no denotes the number
of distributed initial conditions @, but it can also include kinetic parameters
of the right hand side of Eq. (2). The samples are chosen according to

b0 E(®) 3)
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where C; denotes the ith row of the covariance matrix in the original

domain. We chose the free parameter x according to Kk = 3 — ng (see
supplementary material for more information). The transformed samples

y; = h(g;,1) (5)

are used to compute the mean and covariance
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Assuming normality, log-normality or any other appropriate PDF
characterized by mean and variance-covariance, the underlying
distribution p can be estimated from the mean and covariance (Julier er al.,
2000).

To incorporate intrinsic noise due to stochastic reactions on top of
the extrinsic variability the solution of CME at each point in time can
be attributed a corresponding transformation hcarg of a probability
function. Alternatively, when approximating the CME by sampling the
underlying stochastic process with the SSA, single realizations of the SSA
yield realizations of a transformation hgg 4 of realizations of x in R™.
Note that h¢ ps £ is a mapping between functional spaces with elements
Py(x) — Pyyae(x), whereas hgs 4 maps from R™ctne —y R,
ie. (x¢,8) — Xty To overcome the SSA’s huge computational
load we used an approximate version, which is the 7-leaping algorithm
implementation of StochKit2 (Sanft ef al., 2011). Note that by combining
intrinsic and extrinsic noise we have to deal with a distributed CME. As for
real valued stochastic variables. the corresponding ensemble of probability
functions or PDFs of the CME may be characterized by statistical moments.
To obtain an estimate of the true average PDF p the scheme is repeated n
times and the resulting distributions are used as

n n

- R 1 .

P=D wbp== bp (10)
k=1 g

where we assumed that wy = 1/n. A scheme of the algorithm is given in
Fig. 3. A corresponding pseudo code can be found in the supplementary
material.

The sigma points have been applied frequently to deterministic ODEs
e.g.. (Flassig and Sundmacher, 2012; Schenkendorf et al., 2009; Toni
and Tidor, 2013). whereas (Toni and Tidor, 2013) have proposed a
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Fig. 3. Work(low of the proposed algorithm. Note Lhat in 4, one may assume any PDF that
is characlerized by mean and covariance and also in 5 one may use different weights wy,
for each sample k. However the choice is a prioni not clear, and we therefore suggest Lo use
a Gaussian PDF and an equal weighting.

combination of sigma points and Q-expansion to describe extrinsic and
intrinsic variability. We are not aware of applications of sigma points to
stochastic ODEs, which we apply here for sampling realizations of the
CME to ultimately get an approximate solution to a distributed CME.
However, the accuracy of deterministic functions given in (Julier er af.,
2000) should also apply for each incremental time step 7 in the T-leaping
realization, since for each realization we have formally a deterministic
mapping. which we can expand into a Taylor series as done in (Julier er al.,
2000) for the accuracy analysis. We note, however, that the convergency
of p — pis in general not guaranteed. This depends on the ensemble of
hgg 4 and the choice of wy and p;.. Even though our results show that
the proposed approach works well, a thorough analysis is required at this
point which is, however, out of scope of this contribution.

4 Benchmarking
4.1 Comparison to Extensive Monte Carlo Sampling

To compare all methods illustrated in Fig. 2 the Euclidean distance

A=/(p-p)? (1)

is used as similarity measure (Cha, 2007) between the approximate solution
and the pseudo exact solution obtained by MC sampling combined with the
SSA. Since the final distribution of all methods is a random variable due to
the underlying stochastic process, which is used for temporal evolution
of the system. the computation was repeated nstar = 103 times to
derive a statistical statement. The mean and standard deviation of the
Euclidean distance of the ng¢q¢ distributions are exploited as measures for
accuracy and convergence. [n Fig. 2D and E the dependency of accuracy
and convergence on the number of function evaluations for the Schldgl
model introduced in the previous section is illustrated. For the histogram
and kemel method the number of function evaluations is given by the
number of MC samples and for the proposed method by n(2ng + 1). As
can be seen. our proposed method outperforms the others in accuracy as
well as convergence for up to 310 function evaluations, which highlights
its computational benefit. For this illustration we used a kernel bandwidth
of 10 and a histogram binwidth of 75.

To further demonstrate the computational efficiency of the proposed
method an example of gene expression resulting in multimodal probability
distributions is investigated. The gene expression system consists of the
following reactions

ky
gene,g = geNeon (12)
ko
geneon 3 geneon + A (13)
A+B X o (14)

A single gene is considered which is able to flip between an active and
inactive state. In the active state the gene produces protein A, which is
degraded by protein B. This example involves intrinsic noise due to the low
abundance of the gene, but also extrinsic noise due to the distributed initial
conditions of protein B. In Fig. 4A the proposed method is illustrated for
protein A. Several distributions of p,. (gray. dashed) are averaged to obtain
the resulting approximate distribution p (gray, solid). The approximate
solution mimics the distributed character of the pseudo reference obtained
by MC sampling combined with the SSA, which constitutes a bimodal
distribution with - regarding any approximation approach - a challenging
sharp peak for low abundances. The temporal evolution of the distributions
of protein A and B are shown in Fig. 4B and E. The approximation is
very similar to the solution obtained by MC sampling combined with
the SSA demonstrating the capability to qualitatively model intrinsic and
extrinsic noise simultaneously. Furthermore, accuracy and convergence
were investigated in comparison to the kemel approach. Since a priori the
optimal selection of the kernel bandwidth is not clear several bandwidths
were tested systematically. In Fig. 4C and F the difference of the mean
Euclidean distance of the proposed method and the kemel approach
E(Akernet) — E(Agp) is shown for the time point t = 1000 s. If this
term takes positive values (shades of red) the proposed method outperforms
the kernel approach and for negative values (white) the kemel approach
excels. The same applies to the difference of the standard deviation
of the Euclidean distance o5tq(Akernet) — Ts1a(Asp). For protein
A it can be seen that for less than 1.5 - 103 function evaluations the
accuracy of the proposed method is always higher than the accuracy of
the kernel method. For more function evaluations an optimal bandwidth
yields better results at the price of higher computational costs, see Fig. 4C.
For protein B the proposed method is superior for all bandwidths and
function evaluations, see Fig. 4F. Concerning the convergence it was
found that the proposed method outperforms the kemnel approach for both
proteins, except for kemel bandwidths much larger than the spread of the
underlying distribution resulting in very low accuracy, see Fig. 4D and G.
With this example including multimodality. low, and high copy numbers
of chemical species the strengths of the proposed method has been clearly
demonstrated. Note that a priori the optimal kemel bandwidth is not known
and changes with time meaning that this parameter has to be estimated for
the optimal representation of every PDF. The proposed method avoids this
computational demanding task making it easy to handle and applicable.

4.2 Application to Parameter Optimization

Having shown that the proposed methods yields convincing results we
utilize it for optimization of several biochemical reaction networks. In
biology it is not possible to measure all parameters directly that are
necessary for computational modeling leading to parameter estimation
problems. The exact simultaneous simulation of intrinsic and extrinsic
noise is computational extremely intense, wherefore approximate methods
are needed. In this subsection we use the proposed method to estimate the
unknown rate constants of five different example systems described in
Tab. 1. Therefore six reference measurements computed with the SSA
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Fig. 4. Comparison of performance. (A) Averaging of p,. (gray, dashed) yields an approximale solution  (gray, solid) of the CME for protein A al the time point 250 s. The pseudo exacl

solution oblained by MC sampling combined with the SSA is shown in red. For better visualization the p,. are scaled and hence smaller than the approximate distribution. The corresponding

temporal evolulion of the probability distributions for protein A and B are illustrated in (B) and (E). In (C) and (F) the difference in accuracy of lhe proposed method and the kernel approach

is shown for protein A and B. Shades of red indicate superior and white the inferior accuracy of the proposed method (all negative values are marked white). The difference in convergence

is illustrated in (D) and (G) for protein A and B with a similar color code.

and MC sampling with equal time spacing were used for comparison
with the results of our approximate method. For the example of gene
expression only protein A and B are utilized for optimization, whereas
for the other examples all chemical species were used. The objective
function was the sum of the eucledian distance between the pseudo
reference and the approximate solution for all chemical species and time
points. The optimization was performed with a genetic algorithm, since
gradient based algorithms fail for stochastic systems and get easily stuck
in local extrema (Poovathingal and Gunawan, 2010). For all example
systems 500 generations with a population size of 40 were used. In
Tab. 1 the true parameters Kirue and the optimized ones kope; are
provided. For all example systems the optimized parameters are very
close to the true parameters indicating that the proposed method yields
excellent results and depicts a promising technique for optimization of
stochastic biochemical reaction systems. I[n the supplementary material
further comments regarding the benchmarking can be found.

5 Discussion

In this study the problem of efficiently simulating biochemical reaction
systems containing intrinsic and extrinsic noise is addressed. We propose
a novel algorithm relying on the SP approach and the T-leaping algorithm,
which computes approximate solutions of the distributed CME. The
method is benchmarked on several examples illustrating its computational
benefit compared to others. Choosing only 2ng + 1 SPs deterministically
the proposed method converges very fast to an approximate solution. The
accuracy of our approximative approach is barely dependent on system
size but rather on the complexity of the stochastic mapping itself. This
can be seen when the estimated PDFs of the Schlégl are compared to the
Virus model (one vs. four states). Therefore our results are very likely
to also apply for large reaction systems. The strength of the method,
i.e., fast convergency at reduced sample size, also introduces some of
its weaknesses. Since only a few samples from the initial distribution
are chosen it might be sampled too sparsely. Additionally the choice of
PDF kemels is a priori not clear. Although the proposed method might
not converge to the exact solution of the CME (see saturation behavior
in Fig. 2D) it qualitatively describes important characteristics of the
underlying distribution (see Fig. 4A, B, E, and also additional illustrations
of approximate vs. pseudo exact solution in the supplementary material).

The method may serve as a tool for rapid analysis and optimization
of a stochastic system. For precise predictions, we suggest to use our

method as a starting point for refinement by means of numerically
demanding, but asymptotically exact methods. Although there is a lot
of development making stochastic analysis tools with state of the art
algorithms and fast implementations (Drawert et al., 2016; Fan et al.,
2016; Somogyi et al., 2015) available for a broad community the
optimization of stochastic biochemical systems is hardly performed due to
its challenging computational effort (Poovathingal and Gunawan, 2010).
With this study we demonstrated that the proposed method is capable of
describing biochemical systems containing intrinsic and extrinsic noise
and it represents a promising tool suited for optimization and analysis of
distributed, stochastic biochemical reaction systems.
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Supplementary Material

Further details on the models, our algorithm, and methods can be found in
the supplementary material. We provide a MATLAB® script, which can be
used to execute the proposed method on the example of gene expression.
This script can be casily adapted for the simulation of other models. All
models are provided in SBML format to run simulations in other software.

References

Azunre, P, Gémez-Uribe, C., and Verghese, G. (2011). Mass fluctuation kinetics:
Analysis and computation of equilibria and local dynamics. /IET Systems Biology,
5(6), 325-335.

Cao, Y., Gillespie, D. T., and Petzold, L. R. (2006). Efficient step size selection for
the tau-leaping simulation method. Journal of Chemical Physics, 124(4).

Cha, S.-H. (2007). Comprehensive survey on distance/similarity measures between
probability density functions. International Journal of Mathematical Models and
Methods in Applied Sciences, 1(4), 300-307.

Delvigne, F., Zune, Q., Lara, A. R., Al-Soud, W., and Sgrensen, S. J. (2014).
Metabolic variability in bioprocessing: Implications of microbial phenotypic
heterogeneity. Trends in Biotechnology, 32(12), 608-616.

Drawert, B., Hellander, A., Bales, B., Banerjee, D., Bellesia, G., Daigle, Jr,, B. J.,
Douglas, G., Gu, M., Gupta, A., Hellander, S., Horuk, C., Nath, D., Takkar, A.,
Wu, S., Lotstedt, P, Krinzt, C., and Petzold, L. R. (2016). Stochastic simulation
service: Bridging the gap between the computational expert and the biologist. PL0S
Computational Biology, 12(12).



D. Pischel et al.

Table I. Benchmark model description.

model initial conditions kerue Kopti
Gene Model:
gene,g A:’l geneon Non 0 k1 10~7 8.8-1073
genegn Q geneon + A Norr | ky 1073 6.6- 104
A+B My Na 0 ks 5-10-1  5.2.10-!
Np eN(p=10%0=15-10%) | ks 5-1077 35.2.1077
Schlégl Model (Schldgl, 1972):
k1 )
2X + A = 3X Ny eN(pu=275-102,06=5) |k 3-1077 3.1-1077
g .
B k: N4 10° (const.) ky 1074 1074
' Np 2-10° (const.) ka 1073 10~3
ky 3.5 3.5
Michaelis-Menten-Kinetics (Michaelis and Menten, 1913):
E+S tal ES Ng 2.5 102 ky 1074 1074
ES M p Ng N = 10% 0 = 10%) kz 5-1073  24.10°3
Ngs 0 ka 1071 1071
Np 0
Virus Model (Gupta and Rawlings, 2014):
v Ma Ny eN(p=30,0 = 3) ky 1.5-1070 1.4-107!
¢ BarwMm Ng 0 ky 2-1072  2.1-10°2
¢ Moo Nar 0 ks 5-1072  5.1.1072
M Mamep Np 0 ke 1 9.9.10"!

Yeast Model (Poovathingal and Gunawan, 2010):

PCs 8 PC3 + mRNAG Npe eN (1 = 50,0 = 10) ki 5-10-1 5.1.10-1
mRNAg 3o Ninag 0 ks 5 5.1
mRNAc % mRNAg + yEGFP Nyggrp O ks 1 1

yEGFP ™ g Nmanag O ke 21072 2.1-1072
o "8 LWRNAR Nreir O ks 5-10"! 53.10°!
mRNAR "¢ o ke 2-10"1 2.10!
mRNAg S mRNAR + TetR k7 1 1
TetR ™5 o ks 2-10-2  2.1.10-2

Fan, S.. Geissmann, Q., Lakatos, E., Lukauskas, S., Ale, A., Babtie, A., Kirk. P., and
Stumpf, M. (2016). Means: Python package for moment expansion approximation,
inference and simulation. Bioinformatics, 32(18), 2863-2865.

Flassig, R. J. and Sundmacher. K. (201 2). Optimal design of stimulus experiments for
robust discrimination of biochemical reaction networks. Bivinformatics, 28(23),
3089-3096.

Fu. J., Wu, S., and Petzold, L. R. (2013). Time dependent solution for acceleration
of tau-leaping. Jounal of Computational Physics, 235, 446-457.

Gillespie, D., Hellander, A., and Petzold, L. (2013). Perspective: Stochastic
algorithms for chemical kinetics. Journal of Chemical Physics. 138(17).

Gillespie, D. T. (1977). Exact stochastic simulation of coupled chemical reactions.
Journal of Physical Chemistry, 81(25), 2340-2361.

Gupta, A. and Rawlings, J. B. (2014). Comparison of parameter estimation methods
in stochastic chemical kinetic models: Examples in systems biology. AIChE
Journal, 60(4), 1253-1268.

Julier. S., Uhlmann, J., and Durrant-Whyte. H. F. (2000). A new method for the
nonlinear transformation of means and covariances in filters and estimators. IEEE
Transactions on Auwtomatic Control, 45(3), 477-482.

Kazeev. V., Khammash, M.. Nip. M.. and Schwab, C. (2014). Direct solution of
the chemical master equation using quantized tensor trains. PL0S Computational
Biology, 10(3).

Lakatos, E., Ale. A.. Kirk, P., and Stumpf, M. (2015). Multivariate moment closure
techniques for slochastic kinetic models. Jowrnal of Chemical Physics, 143(9),
094107.

Lee.C. H.. Kim, K.-H., and Kim, P. (2009). A moment closure method for stochastic
reaction networks. Journal of Chemical Physics, 130(13).

Lencastre Fernandes, R., Nierychlo, M., Lundin, L., Pedersen, A. E., Puentes Tellez,
P. E.. Dutta, A., Carlquist, M., Bolic, A.. Schiipper. D., Brunetti, A. C., Helmark,
S.. Heins, A.-L., Jensen, A. D., Nopens, L. Rottwitt, K., Szita, N., van Elsas, J. D.,
Nielsen, P. H., Martinussen, J., Serensen, S. J., Lantz, A. E.. and Gernaey, K. V.
(2011). Experimental methods and modeling techniques for description of cell
population heterogeneity. Biotechnology Advances, 29(6). 575-599.

Marchetti, L., Priami, C.. and Thanh, V. H. (2016). HRSSA - efficient hybrid
stochastic simulation for spatially homogeneous biochemical reaction networks.
Journal of Compwtational Physics. 317, 301-317.

Michaelis, L. and Menten, M. L. (1913). Die kinetik der invertinwirkung.
Biochemische Zeitschrift, 49, 333-369,

Munsky, B. and Khammash, M. (2006). The finite state projection algorithm for the
solution of the chemical master equation. Journal of Chemical Physics, 124(4).
Patnaik, P. R. (2006). External, extrinsic and intrinsic noise in cellular systems:
analogies and implications for protein synthesis. Biotechnology and Molecular

Biology Reviews, 1(4), 121-127,

Poovathingal. S. K. and Gunawan, R, (2010). Global parameler estimation methods
for stochastic biochemical systems. BMC Bioinformatics, 11.

Sanft, K. V., Wu, S, Roh, M., Fu, J., Lim, R, K., and Petzold, L. R. (201 1). Stochkit2:
Software for discrete stochastic simulation of biochemical systems with events.
Bivinformatics, 27(17), 2457-2458.

Schenkendorf, R.. Kremling, A.. and Mangold. M. (2009). Optimal experimental
design with the sigma point method. IET Systems Bialogy. 3(1). 10-23.



Efficient Simulation of Intrinsic, Extrinsic and External Noise in Biochemical Systems 7

Schiagl, F. (1972). Chemical reaction models for non-equilibrium phase transitions.
Zeitschrift fiir Physik, 253(2), 147-161.

Somogyi, E., Bouteiller, J.-M., Glazier, J., Kénig, M., Medley, J., Swat, M., and
Sauro, H. (2015). LibRoadRunner: A high performance SBML simulation and
analysis library. Bivinformatics, 31(20), 3315-3321.

Spiller, D. G., Wood, C. D., Rand, D. A., and White, M. R. H. (2010). Measurément
of single-cell dynamics. Nature, 465(7299), 736-745.

Toni, T. and Tidor, B. (2013). Combined model of intrinsic and extrinsic variability
for computational network design with application to synthetic biology. PLoS
Computional Biology, 9(3), ¢1002960.






