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The speech signal is inherently variable and lacks one-to-
one mapping. That is, one person’s /ɒ/ (as in hot) can be 
someone else’s /ɔ/(as in caught). In general, phonemes’ 
articulation varies according to their phonological context, 
the speech style, the identity of the speaker, and so forth. 
While, for the most part, we seem to process speech flaw-
lessly despite this lack of invariance, individual differ-
ences exist. So what makes us better or worse at interpreting 
speech? As any person who tried to learn a second lan-
guage knows, experience matters. But experience is not 
only the amount of input one receives but also its nature. 
This article will show how differences in our social net-
works influence our speech perception by influencing the 
nature of the input we receive.

People differ in their social networks. For example, Hill 
and Dunbar (2003) found that some people send Christmas 
cards to fewer than 25 people while others send Christmas 
cards to more than 350 people. This article takes a statisti-
cal perspective and tests how interacting with more people 
influences the nature of the linguistic input one receives, 
and consequently, one’s success in speech perception. In 
previous work, I have found that having a larger 

social network improves global comprehension of novel 
speakers, as reflected in better comprehension of restau-
rant and product reviews, and that this effect is causal 
(Lev-Ari, 2016). In general, people learn language from 
their environment. Furthermore, an integral part of lan-
guage learning is achieved via statistical learning. For 
example, infants are sensitive to phonological transitional 
probabilities and use them for speech segmentation (e.g., 
Saffran, Aslin, & Newport, 1996). Similarly, transitional 
probabilities between words are argued to be used in gram-
matical acquisition (Thompson & Newport, 2007). The 
distributional nature of the input can influence not only 
rate of acquisition (e.g., Huttenlocher, Haight, Bryk, 
Seltzer, & Lyons, 1991; Vosoughi, Roy, Frank, & Roy, 
2010) but also the number of categories one develops and 
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their boundaries. Thus, Maye, Werker, and Gerken (2002) 
showed that infants develop two phonological categories, 
/d/ and /t/, if they are exposed to bi-modal distribution of 
phones along the Voice Onset Time (VOT) continuum,1 
but they develop a single category collapsed over both 
phonemes if they are exposed to a uniform distribution of 
these phones.

A key aspect of the input that has been argued to facili-
tate phonological acquisition is its variability. For exam-
ple, Lively, Logan, and Pisoni (1993) have shown that 
Japanese speakers, whose native language does not have 
two distinct categories for /l/ and /ɹ/, are more successful 
at learning to identify these two English phonemes if they 
are trained by listening to productions from five speakers 
rather than a single one, despite not receiving more input 
from the multiple speakers. This finding has consequently 
led L2 training on perception and production to habitually 
use a High Variability Phonetic Training paradigm, in 
which phonetic contrasts are presented by multiple speak-
ers and in multiple phonetic contexts. Similarly, adaptation 
to foreign-accented speech improves more with exposure 
to more speakers. For example, listening to English speech 
from four Chinese-accented speakers rather than only one 
improves one’s ability to understand novel Chinese-
accented speakers, even when the amount of input is held 
constant (Bradlow & Bent, 2008). First language acquisi-
tion is also better with exposure to multiple rather than a 
single speaker. Thus, 14-month-old infants have been 
shown to struggle at perceiving /buk/ and /puk/ as two dif-
ferent words, suggesting they do not perceive /b/ and /p/ to 
be two different phonemes (e.g., Rost & McMurray, 2009; 
Stager & Werker, 1997). Yet, when exposure consists of 
productions of /buk/ or /puk/ from 18 speakers and not 
only a single speaker, they succeed at differentiating the 
two words, even though the amount of exposure is identi-
cal across conditions (Rost & McMurray, 2009). The ben-
efit that listening to multiple speakers confers is argued to 
be due to the greater variability in input from multiple 
speakers than a single speaker. In line with this argument, 
Sumner (2011) has shown that exposure to multiple tokens 
from a single speaker also leads to greater adaptation to 
that speaker than listening to a single token of that speaker 
for the same number of times. Interestingly, acoustic vari-
ability seems to boost not only acquisition at the phono-
logical level but also vocabulary learning. For example, 
Barcroft and Sommers (2005) found that English speakers 
were better at acquiring new Spanish words the more 
speakers they heard produce these words, even when the 
total amount of exposure was held constant. Similarly, 
learning was better when the words were produced in mul-
tiple rather than a few or a single speech style (e.g., neu-
tral, excited, whispered). Even in the visual domain, 
learning of categories has been shown to be better when 
the input in exposure is noisier, and therefore more varia-
ble (Posner & Keele, 1968). Taken together, the literature 

suggests that first language acquisition, second language 
acquisition, and even acquisition of visual categories, 
despite differing in many components of their underlying 
mechanism, are all influenced by the same statistical 
principle.

But how does variability in input improve learning? 
Rost and McMurray (2010) have investigated this by, in 
one study, systematically varying only the critical feature 
relevant for categorisation, VOT, while holding the rest 
constant, and, in another study, varying all other irrelevant 
aspects of the speech (e.g., prosody) but keeping the VOT 
constant. They found that it was variation along the irrele-
vant aspects that facilitated learning. According to their 
findings, variability along the irrelevant aspects allows 
learners to understand which aspects of the input are rele-
vant for categorisation and which ones are not (but see 
Iverson, Hazan, & Bannister [2005] for evidence that in 
second language acquisition the distributional patterns in 
the input might be harder to extract or apply). The same 
argument has been put forward in the visual domain, where 
the noise in the input has been argued to facilitate learning 
by enabling learners realise which aspects of the input are 
constant within the category and which aspects are allowed 
to vary within the category (Posner & Keele, 1968). 
Another possibility that has been raised is that greater vari-
ability in the input ensures that more of the sound space is 
sampled, increasing the odds that upon hearing a new 
token the listener has an existing representation to match it 
to (Sumner, 2011). In Sumner’s study, stimuli varied along 
the critical feature, VOT, and variability influenced learn-
ing. One difference between the two proposals is that the 
former mostly regards the acquisition of new categories, 
whereas the latter tries to explain tuning of existing cate-
gories. It might therefore be the case that different types of 
variability are useful at different stages of learning. Other 
mechanisms that have been proposed, but will not be dis-
cussed here at length, include the proposal that variability 
encourages the learner to generalise because it renders it 
impossible to learn all tokens (Gómez, 2002), and the sug-
gestion that variability boosts learning by increasing the 
number of connections each type has (Barcroft & Sommers, 
2005).

It might be worth mentioning that while input variabil-
ity has been shown to have a facilitatory effect on learning, 
it makes processing and identification more challenging. 
That is, processing input from multiple talkers with unpre-
dictable talker switches leads to poorer identification than 
processing the same words from a single talker (e.g., 
Pisoni, 1993). The reason for this detrimental effect is sim-
ilar to the reason that exposure to multiple talkers is bene-
ficial in the long run—the greater variability. Because 
speakers differ from one another in the way they produce 
speech, listeners need to adjust to every new talker, and 
use the neighbouring linguistic context and knowledge 
about the identity of the speaker to disambiguate and 
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identify the phonemes. Such talker differences, however, 
as mentioned beforehand, are important for the formation 
of robust representations. Therefore, input variability 
might exert additional challenges during processing, but 
this challenge will improve learning in the long run.

The goal of this article is, first, to examine whether hav-
ing a larger social network, defined here as regularly inter-
acting with more people, leads to better speech perception, 
in the same way that exposure to multiple speakers facili-
tates phonological acquisition. This is achieved by testing 
speech perception skills of people with different social net-
work sizes. At a second stage, this article uses computa-
tional simulations to explore the mechanism by which 
such an effect can come about, as well as its interactions 
with other network properties, and its dependence on the 
stage of learning. These simulations show how network 
size influences the distributional nature of the input that 
we receive, and how those changes influence phonological 
categorisation. The simulations additionally show that the 
same distributional properties can improve performance 
when the phonological categories are already known, but 
not at the earlier stage of learning, when the learner still 
needs to figure out how many categories there are.

Experiment 1

The goal of Experiment 1 is to test whether individuals 
who regularly interact with more people are better at 
speech perception, and in particular, at understanding 
vowels in noise. Success at identifying vowels in noise is 
one measure that reflects the robustness of one’s vowel 
category representations. The decision to focus on vowel 
perception was due to the fact that even though variation 
exists at all levels, research shows that variation is much 
greater across vowels than it is across consonants 
(Kleinschmidt, 2016), and even more importantly, that 
variation in vowel production is structured by indexical 
factors, whereas other types of variation, such as for  
VOTs in stops, is not (Allen, Miller, & DeSteno, 2003; 
Kleinschmidt, 2016). Correspondingly, while past research 
on vowel production showed its dependence on indexical 
properties, past research on variability in consonant pro-
duction has mostly shown its dependence on phonetic con-
text and speech style. For example, vowel production has 
been shown to be influenced by sex, vocal tract size and 
shape, and dialect (e.g., Bachorowski & Owren, 1999; 
Peterson & Barney, 1952). In contrast, Allen et al. (2003) 
discovered that sex differences in VOTs are eliminated 
once speech rate is controlled for, and Kleinschmidt (2016) 
similarly found that indexical properties did not predict 
VOT production yet did account for variation in vowel 
production. Exposure to multiple speakers might therefore 
increase input variability for vowels more than for  
consonants, and importantly, it will allow listeners to learn 
the conditioning of this variability, and thus assist in 

perception of vowels by new speakers. Vowels were 
embedded in noise, since all participants were adult native 
speakers, and are therefore expected to perform at ceiling 
in ideal conditions. Embedding speech in noise is a com-
mon practice to test more fine grained differences between 
participants (e.g., Sidaras, Alexander, & Nygaard, 2009).

One potential problem is that people who differ in their 
social network size might also differ in their cognitive 
skills, and these cognitive differences might influence 
speech perception skills. Therefore, all participants were 
also tested on a host of cognitive measures to ensure that 
any difference in speech perception performance cannot be 
explained by cognitive differences.

Method

Participants.  In total, 60 native Dutch speakers participated 
for pay. Participants’ age ranged from 20 to 57 years 
(M = 34, standard deviation [SD] = 10.6). All reported to 
have normal hearing.

Stimuli.  The experiment included a language experience 
questionnaire from which the main predictors were 
extracted, a perception of speech in noise task, and four 
cognitive measures to control for individual differences 
that might correlate with network size and could influence 
speech perception (Operation Span, Auditory Short Term 
Memory [STM], Flanker task, Trail making task). Origi-
nally, the experiment was designed to test the effect of 
social network size on two types of skills, the robustness of 
phonological categorisation, as measured by the percep-
tion of speech in noise task, and the ability to identify and 
normalise talkers, as measured by the Coordinate Response 
Measure, and a multiple talker effect in a phoneme moni-
toring task. Whereas the test of the robustness of phono-
logical categorisation was based on previous literature that 
shows that exposure to multiple speakers boosts learning 
of new phonological categories, the tests of talker normali-
sation were more exploratory in nature. Only the results 
from the speech perception in noise task are described 
here. The results of the talker normalisation tasks did not 
reveal any effect of social network properties. As it is hard 
to infer from null results, especially when the test was 
exploratory, these results are neither discussed in here nor 
followed up on in the later simulations.

Language Experience Questionnaire.  Before coming 
to the laboratory, all participants completed a linguistic 
experience questionnaire for 1 week. For seven consecu-
tive typical days (i.e., no holidays, sick days etc.), partici-
pants logged in all oral interactions with native speakers 
that lasted 5 min or longer. Participants were instructed to 
include one-to-one and multi-party face-to-face interac-
tions, as well as phone, Skype and other types of conver-
sations in which interlocutors hear each other. For each 
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interaction, participants listed the identity of the interlocu-
tor, the duration of the interaction, as well as additional 
qualitative details about the interlocutor (e.g., education, 
occupation) that were collected for future purposes. Net-
work size was calculated as the total number of different 
people with whom participants interacted. Hours of Talk 
was the sum of all reported hours of interaction. Each 
interlocutor was counted once regardless of the number 
and duration of conversations the participant had with 
them. Participants’ social network size ranged from 11 to 
74 (M = 27, SD = 11.7).

Transcription of nonwords in noise.  To test the robustness 
of participants’ phonological representations, participants 
transcribed 120 monosyllabic nonwords in noise. In total, 23 
nonwords had a CVC structure, 40 had a CCVC structure, 
and 57 CVCC. Participants were informed that the record-
ings were of nonwords. Nonwords were used to minimise 
any influence of vocabulary or grammatical knowledge. 
All nonwords were legal words in Dutch and were taken 
from Janse and Newman (2013). Nonwords were recorded 
by a native female Dutch speaker. The amplitude envelope 
of each recorded nonword was extracted with Praat, and 
white noise was generated to fit this envelope. Then, the 
original recording was combined with the generated white 
noise using Audacity, creating a file with a signal to noise 
ratio of 0. The nonwords were presented in a random order, 
and participants responded at their own pace. Participants’ 
vowel recognition was scored. Dutch has transparent 
orthography, such that each vowel and vowel combination 
can only refer to one vowel or diphthong. The diphthong 
/ɛi/ can be written in two different manners: “ij” and “ei.” 
Both were scored as correct. On average, participants tran-
scribed 66% of the vowels correctly (SD = 5.7).

Working Memory.  Unsworth, Heitz, Schrock, and 
Engle’s (2005) Operation Span was used with Dutch 
instructions. Participants evaluated whether equations were 
correct. Following each equation, participants received a 
letter to memorise. Following a stretch of between three 
and seven equation-letter pairs, participants recalled the 
memorised letters in the correct order. The time provided 
for solving each equation was adjusted to participants’ pace 
of solving equations during an initial baseline stage to pre-
vent participants from rehearsing the letters during the task.

Auditory STM.  To measure participants’ Auditory STM, 
participants heard 30 sequences of four non-musical tones. 
The first three tones in each sequence appeared at an inter-
stimulus onset interval of 750 ms, followed by a pause of 
1000 ms, and then the fourth tone. Participants’ task was 
to determine whether the last tone appeared among the 
first three tones. In total, 12 different tones were used.  
Participants’ Auditory STM was scored as the proportion 
of trials they answered correctly.

Selective Attention.  Participants’ Selective Attention 
was measured with the Flanker task (Eriksen, 1995). Par-
ticipants saw a string of five symbols on the screen. The 
middle symbol was always a chevron (<,>), and partici-
pants’ task was to indicate in which direction the chev-
ron pointed. On congruent trials, the chevron was flanked 
by four other chevrons pointing in the same direction. 
On incongruent trials, the flanking chevrons pointed in 
the opposite direction. On neutral trials, the chevron was 
flanked by four hyphens instead of chevrons. The sym-
bols remained on the screen until participants responded 
or until 1000 ms have elapsed. There were a total of 144 
trials. The Selective Attention score was calculated as the 
ratio between the Response Times (RTs) on the incongru-
ent trials and the RTs on the neutral trials. Higher scores 
indicate worse Selective Attention.

Task Switching.  Participants’ Task Switching abilities 
were measured with Reitan’s (1958) Trail making task. On 
this task participants draw a line to connect 25 circles in 
a set order. In the baseline condition, participants connect 
circles labelled with increasing numbers. In the critical 
condition, participants link circles labelled with increas-
ing numbers and letter in alternating order (i.e., “1,” “A,” 
“2” etc.). Task Switching score is calculated as the ratio 
between the completion time for the critical trial and com-
pletion time for the baseline trial. Higher score indicates 
worse Task Switching ability.

Procedure.  Participants first completed the language expe-
rience questionnaire. They were then invited for a lab ses-
sion that took about 1.5 hr. Participants performed the 
tasks in the following order: Operation Span, Trail making 
task, transcription of nonwords in noise, Auditory STM, 
Coordinate Response Measure, Flanker task, and Phoneme 
monitoring.

Results

First, the relation between participants’ cognitive abilities 
and network size was examined. Three participants were 
missing one task each, so some of the reported correlations 
were conducted on 59 or 58 participants, and the general 
analysis was conducted on 57 participants. None of the 
cognitive measures correlated with social network size (all 
rs < |0.1|; see Table 1). Therefore, people with different 
network sizes do not seem to differ in their general cogni-
tive abilities. Additionally, social network size did not sig-
nificantly correlate with the number of Hours of Talk 
(r = 0.13, n.s.).

To test whether participants’ social network size pre-
dicted their success at understanding speech in noise, a 
logistic mixed model analysis with participants and items as 
random variables and network size as a fixed factor was run. 
Despite the lack of correlations between the cognitive 
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measures and social network size, to be conservative, 
Working Memory, Auditory STM, Selective Attention, and 
Task Switching were simultaneously entered into the model 
as fixed factors. Similarly, to further ensure that any effect 
of network size was not due to greater amount of input, 
Hours of Talk was also simultaneously entered into the 
model as a fixed factor. The random structure included 
intercepts for both random variables as well as slopes for 
Working Memory, Auditory STM, Selective Attention, Task 
Switching, and network size for the Items variable.2 Results 
revealed a significant effect of network size (β = 0.02, stand-
ard error [SE] = 0.01, z = 2.01, p < .05; see Supplementary 
Appendix A for the full table of results). As Figure 1 shows, 
participants with larger social networks transcribed more 
vowels correctly.3 No other effect reached significance.4

To conclude, the results of Experiment 1 indicate that 
participants with larger social networks are better at under-
standing speech in noise, at least in terms of vowel recogni-
tion. Importantly, the experiment’s results show that this 
advantage is not due to differences in cognitive abilities 
between participants who have social networks of different 
sizes. While it cannot be completely ruled out that there is 
another factor that was not measured here, that correlates 
with social network size and is responsible for the effect, 

such a candidate does not immediately present itself. 
Similarly, nonwords were used to minimise the influence of 
any potential differences in linguistic knowledge, but such 
effects cannot be completely ruled out. Additionally, as 
with any individual differences study, it cannot be ruled out 
that the direction of the effect goes in the opposite effect, 
such that those who are better at understanding speech in 
noise have larger social networks. Nevertheless, there is no 
known evidence to suggest such an effect. It seems most 
likely, then, that, in line with previous work about the facil-
itatory effect of exposure to multiple speakers on phono-
logical acquisition, having a larger social network improves 
one’s perception in noise. Next, computational simulations 
were performed to further explore this account.

Simulation 1

Simulation 1 explores the mechanism underlying the effect 
of social network size on speech perception. Computational 
simulations allow an understanding of how social network 
size changes the nature of the input we receive, and how 
such changes influence speech perception. Furthermore, the 
use of computational simulations allows the isolation and 
crossing of different aspects of the social network that are 
difficult to isolate and measure in real life. Thus, the compu-
tational simulations reported here reveal both how and when 
social network size, as well as other properties of the net-
work, improve performance. The simulations were run on 
recognition of Dutch vowels, rendering them maximally 
similar to the task in Experiment 1. Noise was not modelled 
in the simulations, as it was only included in Experiment 1 
to prevent ceiling effects and allow examination of fine 
grained differences. As it played no theoretical role, whereas 
adding it to the simulations would require making different 
assumptions about how listeners deal with noise, the simu-
lations were of vowel categorisation in silence.

General method

The computational simulations used an agent-based model 
and were run on recognition of Dutch vowels. Each simula-
tion generated a population of 1,000 speakers. The linguistic 
productions in the simulations were sets of two formant fre-
quencies, simulating vowel production. The formant values 
for the population were set according to the averages and SDs 
of Dutch vowels from Adank, Van Hout, and Smits (2004). 

Table 1.  Correlations between the cognitive measures and social network size.

Cognitive measure Correlation with number of interlocutors Range Mean (SD)

O-Span (Working Memory) 0.01 4-75 51.2 (16.37)
Auditory STM 0.07 0.43-0.97 0.75 (0.12)
Flanker task (Selective Attention) −0.05 0.37-1.52 1.24 (0.16)
Trail making task (Task Switching) −0.03 1.29-4.41 2.15 (0.63)

STM: Short Term Memory.

Figure 1.  The effect of social network size on vowel 
perception in Experiment 1. The grey band indicates standard 
error.
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Average formant values for each speaker were randomly 
sampled from this distribution. Networks were then gener-
ated by randomly selecting individuals from the population.

Following network generation, meetings between the 
agent and members of his/her network were simulated. 
The agent started out without any tokens of any of the 
vowels. In each meeting with a member of the network, 
the agent’s interlocutor produced one vowel of each type, 
by sampling from a distribution centred around the inter-
locutor’s formant means and with a SD of 0.02 of the for-
mant’s mean. The agent stored each of these vowels with 
their appropriate labels.5 This continued for a predefined 
number of meetings. In the main set of simulations, the 
number of meetings for agents in both small and large net-
work size conditions was 500. Importantly, in all simula-
tions, the number of meetings was identical across agents 
in the small and large social network conditions.

Following the meetings, the agent was tested on recog-
nition of vowels produced by speakers outside of his/her 
network. In each test trial, one member of the population 
that is not in the agent’s network was randomly selected. 
That speaker then randomly produced one vowel. The 
agent classified the incoming vowel by calculating the 
Mahalanobis distance between the vowel’s formants and 
each of the vowel categories in his/her stored inventory, 
and labelling it with the label of the vowel category to 
which it is closest. If correct, the trial was scored as 1, and 
otherwise, it received a score of 0. In each simulation, the 
agent was tested on 100 vowels.

How does network size influence the nature of 
the input and agent’s performance?

To test whether having a larger social network improves 
vowel recognition, 100 simulations with a network of 20, 
and 100 simulations with a network of 100 were run. These 
network sizes were selected, as they reflect realistic com-
mon network sizes located towards the extremes.6 
Replicating the results of Experiment 1, an effect of social 
network size was found, t(198) = 2.34, p < .03, Cohen’s 
D = .33, such that accuracy was higher in simulations with 
networks of 100 individuals (M = 79.4%) than with simula-
tion with networks of 20 individuals (M = 78.0%).

As the effect of social network size was replicated, it is 
possible to explore its underlying mechanism by examining 
in what way the input in the two types of networks differs. 
Previous research suggested that the benefit that exposure 
to multiple speakers confers is due to the greater variability 
in the input. Figure 2 illustrates the differences between the 
typical input that agents with a network of 20 received and 
the typical input that agents with networks of 100 received. 
Visual examination suggests that the input that the agent 
with a network of 100 received is indeed spread out more 
widely. One way to measure variability is to examine the 
SD of the vowel categories. Indeed, a comparison of the 

SDs in the two types of networks shows that the two types 
of networks differed in the average SD of the vowel’s for-
mants for all formants—f1: t(198) = 3.70, p < .001; f2: 
t(198) = 5.23, p < .001—such that the SD was always higher 
in networks of 100 speakers. To test whether having greater 
input variability improves performance, the SDs of the for-
mant frequencies were z-scored by vowel category sepa-
rately for f1 and f2, and then the two scores were averaged 
to form one input variability score, such that, for every 
simulation, there was one standard measure of variability 
per vowel category. Additionally, accuracy per vowel cate-
gory at test was extracted for each simulation. These accu-
racy scores were then z-scored by vowel category as well, 
as it is not recommended to use proportions as a dependent 
measure. A mixed model regression analysis with simula-
tion and vowel as random variables and input variability as 
a fixed factor was then run to test whether variability in 
vowel category predicts accuracy at test for that category. 
The random structure included intercepts as well as slopes 
for input variability for both the simulation and vowel ran-
dom variables. Results confirmed that having greater input 
variability improves accuracy (β = 0.33, SE = 0.03, 
t = 10.11).7 To examine whether input variability is the 
underlying reason that leads larger social networks to 
improve performance, a mediation test was run using the 
mediation package in R (Tingley, Yamamoto, Keele, & 
Imai, 2014). This analysis calculates what proportion of the 
effect of a factor (network size) on the dependent measure 
(accuracy) is due to a mediator (input variability) rather 
than being a direct effect. It additionally tests whether the 
factor also has a direct effect on the dependent measure 
after the mediator has been taken into account. Results indi-
cate that the vowel categories’ variability mediates the 
effect of network size, rendering the direct effect of net-
work size non-significant. Specifically, 55% of the effect of 
network size on accuracy is due to input variability. 
Correspondingly, when both network size and input varia-
bility were entered into the same model, results showed a 
significant positive effect of input variability (β = 0.32, 
SE = 0.03, t = 9.86), but network size was no longer a sig-
nificant predictor (β = 7e−4, SE = 5e−4, t = 1.22).

To conclude, the simulations revealed that having a 
larger social network improves speech perception by 
increasing input variability.

The interactive effects of network properties on 
performance

Next, different parameters of the simulations were modi-
fied to examine if and how they influence performance and 
modulate the effect of social network size. All analyses in 
the following section compare networks of 20 speakers 
with networks of 100 speakers, as in the previous section. 
For illustration purposes, the figures also plot results from 
networks of 10 and 50 speakers.
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Most of the literature on the importance of input varia-
bility focused on its contribution to learning. As stated ear-
lier, language learning continues throughout our lives. 
Nonetheless, one may wonder whether input variability 
plays a larger role when input is scarce, and the more expo-
sure one has, the less of a boost input variability provides. 
The results of Experiment 1 did not find such an effect, as 
the total number of Hours of Talk did not predict perfor-
mance there. Still, to examine whether that is the case, 
identical simulations were run in which only the number of 
meetings the agent had varied between 100, 500, and 
5,000. Results show that agents who received more input 
did not perform any better. In contrast, the effect of net-
work size was significant at all input levels: 100 meetings: 
77.5% versus 78.9%, t(198) = 2.28, p < .03; 500 meetings: 
78% versus 79.4%, t(198) = 2.34, p < .03; 5000 meetings: 
76.9% versus 78.6%, t(198) = 2.74, p < .01.

Another factor that could potentially modulate the effect 
of network size is the heterogeneity of the population. 
Therefore, another set of simulations was run in which the 

heterogeneity of the population, defined as the SD of the 
vowel formant frequencies across the population, was 
either doubled (heterogeneous condition) or cut in half 
(homogeneous condition).8 As Figure 3 illustrates, perfor-
mance is better the more homogeneous the population is—
network size 20: baseline versus homogeneous, 78% versus 
97%, t(198) = 40.17, p < .001; baseline versus heterogene-
ous, 78% versus 47.25%, t(198) = 43.73, p < .001; network 
size 100: baseline versus homogeneous, 79.4% versus 
97.5%, t(198) = 41.78, p < .001; baseline versus heterogene-
ous, 79.4% versus 50.2%, t(198) = 46.91, p < .001. The 
effect of network size, however, is significant at all levels 
of population heterogeneity—homogeneous: t(198) = 2.55, 
p < .02, Cohen’s D = .36; heterogeneous: t(198) = 4.02, 
p < .001, Cohen’s D = .57—though the effect size is numeri-
cally larger when the population is more heterogeneous. In 
other words, predictably, it is more difficult to understand 
novel speakers if the population is very heterogeneous. 
When speakers are very similar to each other, there is less 
ambiguity in the signal, and it is easy to generalise from one 
to the other. The more speakers there are, the more likely 
there is to be ambiguity in the signal due to category over-
lap across speakers, and the less representative each speaker 
is. Thus, it precisely when such variability exists that hav-
ing a larger social network is most helpful. When speakers 
differ from one another, there is need to encounter more of 
them to understand the speech patterns in the population 
and the structure of the speech categories.

Similarly, one may wonder how the effect of network 
size depends on individuals’ consistency within them-
selves. Results show that increasing the SD of the produc-
tions of each speaker led to a drop in accuracy—network 
size 20: baseline versus inconsistent, 78% versus 74.4%, 
t(198) = 5.79, p < .001, inconsistent versus highly inconsist-
ent, 74.4% versus 66.9%, t(198) = 11.84, p < .001; network 
size 100: baseline versus inconsistent, 79.4% versus 76%, 

Figure 2.  Illustration of typical input that agents with a network size of 20 (left) and a network size of 100 (right) receive. Axes 
represent the first and second formant frequencies. Each colour represents a different vowel category.

Figure 3.  The effect of population variability on accuracy at 
different network sizes.
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t(198) = 5.66, p < .001, inconsistent versus highly inconsist-
ent, 76% versus 68.7%, t(198) = 11.36, p < .001. This result 
is also predictable as lower intra-speaker consistency, simi-
larly to greater inter-speaker heterogeneity, increases the 
ambiguity in the input. Even when individual consistency 
was lower, however, having a larger network led to better 
performance—inconsistent: t(198) = 2.59, p < .02, Cohen’s 
D = .37; highly inconsistent: 68.71% versus 66.9%, 
t(198) = 2.71, p < .01, Cohen’s D = .38.

To conclude, the simulations reveal that having a larger 
social network can indeed causally improve speech per-
ception, and that it achieves this by its increased variabil-
ity. The simulations further show that the positive effect of 
network size holds across different levels of amount of 
input and holds even if speakers are less consistent within 
themselves. At the same time, its beneficial effect seems to 
depend on the community’s heterogeneity. Having a larger 
social network seems to be particularly helpful when the 
population is variable.

The results of these simulations are in line with Sumner’s 
(2011) results, which show that input variability along the 
relevant dimension boosts learning. They are at odds though 
with the results of Rost and McMurray (2010), who found 
that the facilitatory effect of multiple speakers is due to the 
variability they provide along the irrelevant, rather than rel-
evant, dimension. As mentioned earlier, one potential reason 
for the difference between the studies is that Rost and 
McMurray (2010) studied infants, who are yet to establish 
categorical distinction along the VOT continuum, whereas 
Sumner (2011) tested adults who already use VOT to catego-
rise phonemes but needed to adjust their category boundary.

The situation in Simulation 1 is more similar to the 
adult than the infant case, as the learners knew how many 
categories there are, and to which category each token that 
they received belonged. In this case, learners benefit from 
having a wide spread in each category, as it assists in cor-
rectly categorising atypical tokens. In contrast, if the learn-
er’s task is still to figure out how many categories there are 
and where in the space they are located then category 
spread might hinder performance. In this case, input that is 
characterised by scattered clusters, as is the case when the 
social network is small, might be more useful for separat-
ing categories. Simulation 2 takes a first stab at this 
hypothesis by simulating learners who are unaware of the 
number of categories and the identity of each incoming 
token. Instead, these learners try to figure out the number 
of categories that there are from the distribution of the 
input they receive from either small or large networks.

Simulation 2

Simulation 2 examines whether having greater input varia-
bility along the dimension that is critical for categorisation 
is less helpful at the earliest stage of learning, when the 
categories are not known yet and still need to be learned.

General method

To test the effect of input variability at the earliest stage of 
learning, the simulations from Simulation 1 were repeated 
with the following change: the input that the agent received 
was not labelled. As in Simulation 1, social networks 
included either 20 or 100 interlocutors, and the agent met 
with people from his/her network a predefined number of 
times, each time receiving one token of each vowel. This 
time, those tokens were not labelled and the agent stored all 
of them together. After all meetings have concluded, a cluster 
analysis was run on the input that each agent received using 
“mclust” package in R, which uses Gaussian mixture models 
(Fraley, Raftery, Murphy, & Scrucca, 2012). Separate simu-
lations were run for different number of meetings to examine 
whether the results differ depending on amount of input. 
Therefore, for each network size, five simulations were run 
for each of the following number of meetings: 100, 300, 500, 
and 1,000. The number of simulations per condition was 
kept low as the results were highly consistent within each 
combination of network size and meetings.

Results

To examine whether clusters are harder to perceive when 
input variability is high, and whether this difference 
depends on amount of input, a t-test was run comparing the 
number of estimated clusters in the small and large social 
network conditions for each number of meetings. Results 
show that, as predicted, for each number of meetings, the 
number of estimated clusters was significantly higher in 
the small network condition than in the high network con-
dition—100 meetings: M = 18.4, SD = 0.89 versus M = 4, 
SD = 0, t(8) = 36, p < .0001; 300 meetings: M = 26, SD = 2.45 
versus M = 10.4, SD = 1.14, t(8) = 12.91, p < .0001; 500 
meetings: M = 29.6, SD = 0.89 versus M = 12, SD = 2, 
t(8) = 17.96, p < .0001; 1,000 meetings: M = 29.2, SD = 1.79 
versus M = 21, SD = 4.58, t(8) = 3.73, p < .01.

Figure 4 illustrates what the clusters in each type of net-
work look like after 100 meetings. As can be seen, when 
the input comes from a small network, often a single real 
category is divided into several categories, and outliers 
often form separate categories as well. Interestingly, the 
estimated number of categories was always larger than the 
real number of vowels when the social network was small. 
In contrast, when the input is provided by a large network, 
there are large categories, each comprised of several real 
categories.

Research on second language acquisition indicates that 
it is hardest to acquire a new distinction if it requires you to 
divide one category you have into two (e.g., Best, 
McRoberts, & Goodell, 2001). This suggests that in the 
process of learning, it might also be easier to merge distinct 
categories into one category than to split existing categories 
into several smaller ones. Therefore, at the earliest stage of 
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learning, input variability along the relevant dimension 
might indeed not be useful but instead, it might even hinder 
the acquisition of the categories. At the same time, input 
from more speakers often increases variability along both 
the relevant and irrelevant dimensions. Therefore, receiv-
ing input from multiple speakers might still be useful also 
at the earliest stage of learning, as Rost and McMurray 
(2009) found, but for a different reason. Having a larger 
social network then might boost performance via different 
mechanisms at different stages of learning.

General discussion

The goal of this article was to understand how individual 
differences in social networks can influence speech per-
ception. Previous research suggested that phonological 
acquisition is influenced by the distributional nature of the 
linguistic input (Maye et  al., 2002). In particular, it has 
been proposed that learning is better when the input is 
more variable, and input variability was often manipulated 
by increasing the number of speakers one is exposed to 
(Bradlow & Bent, 2008; Lively et  al., 1993; Rost & 
McMurray, 2009, 2010). As people differ in the number of 
people they regularly interact with (Hill & Dunbar, 2003), 
this article examined whether individual differences in 
people’s social network size influences speech perception 
abilities.

Experiment 1 tested this hypothesis exploiting the natu-
ral variation in social network size. Results indicated that 
individuals with larger social networks are better at under-
standing vowels embedded in noise. Importantly, partici-
pants were tested on several cognitive abilities, and the 
beneficial effect of social network size on vowel percep-
tion was not driven by differences in any of the tested cog-
nitive abilities among participants with different social 
network sizes, suggesting that the effect of social network 
size might be causal.

Simulation 1 systematically explored the mechanism 
underlying the beneficial effect of social network size as 
well as its interaction with other network properties. The 
results indicated that having a larger social network 
increases the variability in the input, and this greater input 
variability leads to better phoneme categorisation. 
Simulation 2 showed that this positive effect of input vari-
ability might not apply at the earliest stage of learning, as 
it renders the categories harder to distinguish.

These results reconcile Sumner’s (2011) results with 
those of Rost and McMurray (2010). They suggest that dif-
ferent types of variability are useful at different stages of 
learning. During the initial stage, when the learner still 
needs to learn which properties to attend to and how to 
categorise them, variation in the irrelevant aspects of the 
input is more useful, but once the learner has learned what 
he/she should attend to and what the categories in the lan-
guage are, it is the distributional properties of the relevant 
aspect of the input that are crucial for improving ability to 
classify input from new speakers. Thus, in Rost and 
McMurray’s (2010) study, infants did not benefit from 
variation along the relevant dimension. Simulation 2 sug-
gests that at that stage, input variability at the relevant 
dimension makes it harder to distinguish between catego-
ries. In contrast, once the categories are already known and 
the tokens can be identified when processed, as is the case 
of adult native speakers, input variability increases learn-
ing and category robustness. Therefore, having larger 
social networks had a beneficial effect in both Experiment 
1 and Simulation 1, and increased input variability had a 
positive effect in Sumner’s (2011) study.

The effect of social network size in both Experiment 1 
and Simulation 1 was significant but small. This is partly 
due to the fact that the participants, as well as the simu-
lated agents, were adult native speakers who are proficient 
in the language. It is therefore impressive but its contribu-
tion at this point is more theoretical than practical. Future 

Figure 4.  Illustration of estimated number of clusters after 100 meetings. The left panel demonstrates the case with a network of 
20, and the right panel demonstrates the case of a network of 100.
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research should extend the study of the effect of social net-
work size to populations with poorer linguistic perfor-
mance, such as children with a language gap and second 
language learners, where social network size might 
account for a greater part of performance. Similarly, future 
research should examine which other phonological aspects 
the effect extends to, and how this relates to their role in 
providing indexical information about the speakers.

Simulation 1 also examined the role of other properties 
of the network, as well as investigated their moderating 
role on the effect of social network size. Thus, it was dis-
covered that, in line with the experimental results of 
Experiment 1, receiving more input can only be of limited 
help, if any, and having a larger social network improves 
performance independently of amount of input received. 
In contrast, the heterogeneity of the population plays an 
important role, and moderates the effect of social network 
size. Having a larger social network is more useful if the 
population is more heterogeneous.

These results also raise new questions. First, one may 
wonder whether social network size causally influences 
speech perception. After all, Experiment 1 did not 
manipulate social network size but exploited the natural 
variation in it. As is the case with any individual differ-
ences study, non-causal explanations cannot be ruled out 
completely. Several factors, however, make such alter-
native explanations unlikely. First, participants were 
tested on a host of cognitive measures, and these did not 
correlate with social network size, as well as were con-
trolled for. Even more importantly, Simulation 1 repli-
cated the positive effect of social network size. While 
computational simulations only show what’s possible 
rather than necessarily the processes that take place, they 
show that having a larger social network should influ-
ence the distribution of the linguistic input one receives 
in a manner that facilitates later phoneme categorisation. 
Finally, these studies were inspired by experimental 
results that showed that exposure to multiple speakers 
leads to better phonological acquisition. Therefore, a 
causal explanation for the role of social network size 
seems the most plausible one.

Another potential caveat is that the actual variability in 
the input that participants in Experiment 1 received was 
never measured. Therefore, while the results of Simulation 
1 suggest that input variability accounts at least partially 
for this effect, it is theoretically possible that the benefit of 
exposure to multiple speakers is due to another aspect of 
the input rather than its variability. That said, Experiment 
1 was inspired by studies that varied the number of speak-
ers with the goal of manipulating variability (e.g., Bradlow 
& Bent, 2008; Rost & McMurray, 2009). These studies 
assumed that increasing the number of speakers increases 
the variability of the input but did not measure it. The 
results of the simulations reported here support that 
assumption, as they show that larger networks provide 

more variable information even when all speakers speak 
the same dialect.

The simulations examined the influence of several dif-
ferent network properties. At the same time, there are addi-
tional network properties whose role has not been 
simulated. For example, network density, that is, the inter-
connectivity of network members, might play a role as 
well. Future research should therefore measure individu-
als’ network density, and include simulations that allow 
network members to interact with each other, and thus, 
influence each other. Additionally, future research should 
examine not only how many members people have in their 
social network but how the interaction with them is distrib-
uted. For example, social network size might play a differ-
ent role if individuals interact a similar amount of time 
with most members of their network, than if the interac-
tional pattern is skewed, such that they interact with a few 
for the large majority of the time and very little with eve-
ryone else.

To conclude, this article shows that the nature of our 
social network can influence the nature of the input we 
receive, and consequently, our speech perception. It thus 
opens the door for research on how aspects of our lifestyle 
can influence our linguistic performance.
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Notes

1.	 Voice Onset Time is the temporal distance between the 
release of the consonant (the burst) and the beginning of 
voicing. It is a feature that contrasts voiced and voiceless 
stops, such as /d/ and /t/ in English.

2.	 A slope for Hours of Talk was not included because when 
included, the model failed to converge. Considering that 
slopes are included to prevent spurious effects, and Hours 
of Talk did not have a significant effect, its omission does 
not influence the results.

3.	 An identical model using log-transformed network size 
instead of raw network size was run to examine whether the 
effect of network size is logarithmic rather than linear. The 
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effect of log network size was smaller and did not reach sig-
nificance (β = 0.8, SE = 0.51, z = 1.60, p = .11) indicating that 
the effect of network size on performance is linear in nature.

4.	 One of the reasons that none of the cognitive measures 
showed a significant effect is due to the high correlation 
between the Working Memory measure (O-Span) and 
Auditory STM (r = 0.52, p < .0001). When each cognitive 
measure was tested in the absence of others, Auditory STM 
predicted better transcription of speech in noise (β = 1.7, 
SE = 0.7, z = 2.43, p < .02). Social network size remained sig-
nificant in this analysis (β = 0.02, SE = 0.01, z = 2.24, p < .03).

5.	 The choice of setting variability to 0.02 of the formants’ 
mean was somewhat arbitrary, due to the lack of large 
enough corpora that provide information about intra-speaker 
variability with the same phoneme within the same phonetic 
context (the simulation ignores variability due to phonetic 
context and ability to use that information to disambigu-
ate the sound, even though social network size might also 
improve this ability). Importantly, as reported in the next sec-
tion, simulations that varied intra-speaker variability showed 
that the benefit of having a larger social network also extends 
to both lower and higher levels of intra-speaker variability.

6.	 The network size of participants in Experiment 1 tended to 
be smaller, 11-74, but this is due to the fact that most par-
ticipants who volunteer for such a time-intensive study do 
not work full time and engage in relatively few social activi-
ties. Earlier pilot studies suggest that 20-100 is a more com-
mon range. Furthermore, Figure 3 shows the effects along a 
range of network sizes.

7.	 Here and later, significance is determined using the com-
mon criterion of t >= 2.

8.	 The original means and standard deviations of the vowels 
were taken from Adank et  al. (2004) and are as follows: 
oe:273 (35),872 (136), ie: 286 (26), 2343 (276), o: 410 (57), 
869 (135), a: 668 (139), 1226 (151), aa: 791 (157), 1499 
(128), e: 505 (62), 1865 (180), i: 380 (37), 2098 (241), uu: 
282 (42), 1826 (187), u: 391 (48), 1713 (171).
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