Impacts of Atmospheric Anthropogenic Nitrogen on the Open Ocean

R. A. Duce,^{1*} J. LaRoche,² K. Altieri,³ K. R. Arrigo,⁴ A. R. Baker,⁵ D. G. Capone,⁶ S. Cornell,⁷ F. Dentener,⁸ J. Galloway,⁹ R. S. Ganeshram,¹⁰ R. J. Geider,¹¹ T. Jickells,⁵ M. M. Kuypers,¹² R. Langlois,² P. S. Liss,⁵ S. M. Liu,¹³ J. J. Middelburg,¹⁴ C. M. Moore,¹¹ S. Nickovic,¹⁵ A. Oschlies,² T. Pedersen,¹⁶ J. Prospero,¹⁷ R. Schlitzer,¹⁸ S. Seitzinger,³ L. L. Sorensen,¹⁹ M. Uematsu,²⁰ O. Ulloa,²¹ M. Voss,²² B. Ward,²³ L. Zamora¹⁷

Increasing quantities of atmospheric anthropogenic fixed nitrogen entering the open ocean could account for up to about a third of the ocean's external (nonrecycled) nitrogen supply and up to ~3% of the annual new marine biological production, ~0.3 petagram of carbon per year. This input could account for the production of up to ~1.6 teragrams of nitrous oxide (N₂O) per year. Although ~10% of the ocean's drawdown of atmospheric anthropogenic carbon dioxide may result from this atmospheric nitrogen fertilization, leading to a decrease in radiative forcing, up to about two-thirds of this amount may be offset by the increase in N₂O emissions. The effects of increasing atmospheric nitrogen deposition are expected to continue to grow in the future.

 $\sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{j$

*To whom correspondence should be addressed. E-mail: rduce@ocean.tamu.edu

N2. Most organisms can only assimilate forms of reactive nitrogen (fixed nitrogen, Nr), including oxidized and reduced inorganic and organic forms. The availability of Nr limits primary production, the conversion of inorganic carbon to organic carbon (1), in much of the ocean. Reactive nitrogen enters the ocean via rivers, N₂ fixation, and atmospheric deposition. It is removed via N₂ formation by denitrification and anaerobic ammonium oxidation (anammox), nitrous oxide (N₂O) and ammonia emissions, and burial of organic matter in sediments. Human activities have severely altered many coastal ecosystems by increasing the input of anthropogenic nitrogen through rivers and groundwater, direct discharges from wastewater treatment, atmospheric deposition, and so forth, resulting in increasing eutrophication. Human activities have also added large quantities of atmospheric Nr to central ocean regions.

Riverine input of Nr to the oceans is estimated as 50 to 80 Tg N year⁻¹ (2–4). However, much is either lost to the atmosphere after N2 conversion or buried in coastal sediments, never reaching oceanic regions (5). We assume that riverine N_r has a negligible impact on the open ocean nitrogen inventory, and we do not consider it further. Estimates of global ocean N2 fixation range from 60 to 200 Tg N year⁻¹ (2, 6–8). Although impacts of the amplified nitrogen inputs to terrestrial systems are being continuously evaluated (3, 9), here we show that atmospheric transport and deposition is an increasingly important pathway for N_r entering the open ocean, often poorly represented in analyses of open ocean anthropogenic impacts (10–16). Atmospheric N_r input is rapidly approaching global oceanic estimates for N₂ fixation and is predicted to increase further due to emissions from combustion of fossil fuels and production and use of fertilizers. Our objective is to highlight the growing importance of anthropogenic atmospheric N_r (AAN) deposition to the oceans and evaluate its impact on oceanic productivity and biogeochemistry.

Atmospheric Emission and Deposition of Nitrogen Species

Atmospheric emissions of Nr are primarily oxidized nitrogen species, NO_x (NO + NO₂) and NH₃. Recent studies suggest that atmospheric water-soluble organic nitrogen is far more abundant than conventionally thought, constituting $\sim 30\%$ of total N_r deposition (13, 17–20). Given the uncertain origins and complex composition of this material, the importance of direct emissions and secondary formation of organic nitrogen is unclear. However, measurements suggest that an important fraction is anthropogenic (13, 17). We therefore assume that in 1860, the relationship between organic and inorganic nitrogen deposition was the same as it is today and increase our 1860 estimate so that organic nitrogen represents 30% of total Nr deposition. The uncertainties associated with this assumption emphasize the need for further research on atmospheric organic nitrogen.

Estimated total Nr and AAN emissions in 1860, 2000, and 2030 (Table 1) show that anthropogenic emissions have significantly increased since the mid-1800s and future increases are expected (21). Over the next 20 to 25 years, the proportion of NH3 emissions will likely increase due to enhanced atmospheric emission controls predicted to be more effective for NOx than NH3 (Table 1) (21). An important fraction of atmospheric Nr emissions is deposited on the ocean (Table 1). In 1860, this amounted to ~20 Tg N year⁻¹, of which ~29% was anthropogenic. By 2000, the total Nr deposition to the ocean had more than tripled to $\sim 67 \text{ Tg N year}^{-1}$, with $\sim 80\%$ being anthropogenic. This is greater than the 39 Tg N year⁻¹ reported by (14), in part because our estimate includes water-soluble organic nitrogen. Estimates of anthropogenic emissions for 2030 indicate a ~4-fold increase in total atmospheric Nr deposition to the ocean and an ~11fold increase in AAN deposition compared with 1860 (22).

The spatial distribution of atmospheric deposition has also changed greatly (Fig. 1, A and B). Deposition to most of the ocean was <50 mg N m⁻² year⁻¹ in 1860, with very few areas >200 mg N m⁻² year⁻¹. Most oceanic deposition was from natural sources; anthropogenic sources impacted only a few coastal regions. By 2000, deposition over large ocean areas exceeded 200 mg N m⁻² year⁻¹, reaching >700 mg N m⁻² year⁻¹ in many areas. Intense deposition plumes extend far downwind of major population centers in Asia, India, North and South America, around Europe, and west of Africa (Fig. 1B). A direct comparison of deposition in 1860 and 2000 shows almost all ocean surface areas now being affected by AAN deposition (Fig. 1, A and B). Predictions for 2030 (fig. S1) indicate similar patterns, but with

¹Departments of Oceanography and Atmospheric Sciences, Texas A&M University, College Station, TX 77843, USA. ²Leibniz-Institut fuer Meereswissenschaften, 24105 Kiel, Germany. ³Institute of Marine and Coastal Sciences, Rutgers University, Rutgers/NOAA CMER Program, New Brunswick, NJ 08901, USA. ⁴Department of Environmental Earth System Science, Stanford University, Stanford, CA 94305, USA. ⁵School of Environmental Sciences, University of East Anglia, Norwich NR4 7TJ, UK. ⁶Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA. ⁷QUEST-Earth Sciences, University of Bristol, Bristol BS8 1R], UK. 8 European Commission, Joint Research Centre, Institute for Environment and Sustainability, TP290, I-21020, Ispra (Va), Italy. ⁹Department of Environmental Sciences, University of Virginia, Charlottesville, VA 22904, USA. ¹⁰John Murray Laboratories, The King's Buildings, Edinburgh EH9 3JW, UK. ¹¹Department of Biological Sciences, University of Essex, Colchester CO4 3SQ, UK, and National Oceanography Centre, University of Southampton, Southampton SO14 3ZH, UK. ¹²Max Planck Institute for Marine Microbiology, Celsiusstrasse 1, D-28359 Bremen, Germany. ¹³Key Laboratory of Marine Chemistry Theory and Technology Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, Peoples Republic of China. 14 Netherlands Institute of Ecology, Korringaweg 7, 4401 NT Yerseke, Netherlands. ¹⁵Atmospheric Research and Environment Programme, World Meteorological Organization, BP2300, 1211 Geneva 2, Switzerland. ¹⁶University of Victoria, Post Office Box 3055 STN CSC, Victoria, BC V8W 3P6, Canada. ¹⁷Rosenstiel School of Marine and Atmospheric Sciences, University of Miami, Miami, FL 33149, USA. ¹⁸Alfred Wegener Institute for Polar and Marine Research, 27568 Bremerhaven, Germany. ¹⁹National Environmental Research Institute, Aarhus University, Denmark. ²⁰Ocean Research Institute, University of Tokyo, Tokyo 164-8639, Japan. ²¹Departamento de Oceanografía. Centro de Investigación Oceanográfica. COPAS, and Nucleo Milenio EMBA, Universidad de Concepción, Casilla 160-C, Concepción, Chile. ²²Leibnitz Institute for Baltic Sea Research, Warnemünde, 18119 Rostock, Germany. ²³Department of Geosciences, Princeton University, Princeton, NJ 08544, USA.

REVIEWS

increased deposition further into open ocean regions (21, 22). The ratio of 2030-to-2000 deposition rates (Fig. 1C) shows up to a factor of 2 increase in Southeast Asia, the Bay of Bengal, and the Arabian Sea; up to a 50% increase off western Africa; and up to 30% across essentially all the mid-latitude North Atlantic and North Pacific. As Galloway *et al.* (9) conclude, controlling NO_x emissions using maximum feasible reductions could substantially decrease future emissions, so the increases we predict on deposition rates (Fig. 1C) may represent upper limits.

Impact on New Primary Production and the Biological Pump

Present global open ocean primary production is estimated at ~50 Pg C year⁻¹ (23), equivalent to ~8800 Tg N year⁻¹, assuming Redfield stoichiometry (Table 2). Because ~78% of this production is driven by regeneration of N_r within surface waters (24) (*a* in Fig. 2), it is more relevant to evaluate the impact of AAN deposition on oceanic productivity and biogeochemistry by comparing AAN with global new production, estimated at ~11 Pg C year⁻¹ (24–26). New production (*b* in Fig. 2 and Table 2) is dominated by nitrate regenerated at depth from sinking organic matter and subsequently returned to the euphotic zone via physical transport (*b'* in Fig. 2) (27). Over sufficiently large space and time scales

that in 2000. (**D**) Nitrate concentrations (μ M) in the surface (0 to 1 m) waters of the ocean (43). (**E**) Similar to (B), but with regions where surface nitrate >4 μ M has been masked out. Total atmospheric N_r deposition in 2000 to the nonmasked areas was ~51 Tg N year⁻¹, AAN was ~41 Tg N year⁻¹. (**F**) Ratio of total N_r deposition to dissolved inorganic nitrogen (DIN) supply into the upper 130 m as diagnosed from a model fitted to oceanic tracer observations (44). To reduce noise, computation of the ratio has been limited to areas with DIN supply exceeding 0.05 mol m⁻² year⁻¹. (1 to ~1000 years), nitrate-driven new production is balanced by the biologically mediated export of particulate and dissolved organic matter from the surface layer (b'' in Fig. 2). On a similar time scale, this component of new production is almost neutral in terms of carbon assimilation (28) because degradation processes release Nr and CO2 in stoichiometric amounts equivalent to the initial elemental composition of the organic matter. In the absence of denitrification and other fixed nitrogen losses in the ocean interior, nitrate-based new production can be considered a closed loop within which the biologically mediated carbon export (b'') is balanced by a return flux of dissolved inorganic carbon (b'), resulting in near-zero net air-sea CO2 exchange.

Only external (to the ocean) sources of N_r that reach the surface mixed layer can affect the steady-state balance of the biologically mediated flux of CO₂ across the air-sea interface. The two known open ocean sources of external N_r are biological N₂ fixation (*c* in Fig. 2) and atmospheric deposition (*d*). Together these contribute a net oceanic input of N_r that can support "completely new production" and hence influence global oceanic N_r and the net atmosphere-to-ocean exchange of CO₂, assuming an adequate supply of other nutrients (P, Fe). Although N₂ fixation must have dominated the flux of external new nitrogen in the preindustrial world, atmospheric N_r deposition is now approaching N₂ fixation as a result of the dramatic increase in the anthropogenic component (Table 2).

Can this atmospheric Nr deposition be rapidly assimilated into primary production? It will impact the biogeochemistry of oceanic areas that are either perennially or seasonally depleted in surface nitrate, but will have little effect in highnutrient, low-chlorophyll (HNLC) regions where the concentration of surface nitrate is always high. Comparing surface nitrate concentrations (Fig. 1D) and total Nr deposition (Fig. 1B) shows the relatively small overlap between high Nr deposition and significant surface nitrate concentrations. In regions where surface nitrate is seasonally depleted (i.e., where productivity is nitrogen limited), atmospheric deposition would likely be assimilated during the year. Although Nr generally is seasonally exhausted in regions where mean annual nitrate is <7 µM, a more conservative value of <4 µM is used to calculate the distribution of the atmospheric Nr deposition in present-day nitrogen-depleted waters (Fig. 1E). The calculated global Nr deposition to regions with mean nitrate $<4 \mu M$ is $\sim 51 \text{ Tg N year}^{-1}$, or \sim 76% of the total atmospheric N_r deposited in the ocean, compared to $\sim 56 \text{ Tg N year}^{-1}$ ($\sim 84\%$ of total deposition) if <7 µM is used as a threshold. Corresponding values for AAN are ~41 and ~45 Tg N year⁻¹. Using the areas delineated by the <4 µM and <7 µM nitrate concentrations above, we calculate that ~ 67 to 75% of oceanic

Fig. 2. Schematic of the processes supplying nutrients for surface primary production. See text for detailed description.

surface waters are potentially seasonally nitrogen limited, although some of these areas may not be exclusively nitrogen limited but rather colimited (1). It has recently been assumed that only 40%of the ocean is nitrogen limited (14), although this estimate did not allow for N/P colimitation such as seen in the North Atlantic and other areas designated P-limited in (14). These are likely underestimates because much of the Nr is deposited upstream of Nr-depleted regions (e.g., HNLC Southern Ocean) and will eventually be advected into thermocline waters of nitrogenlimited regions of the Southern Hemisphere and North Atlantic and thus are important to future (decades to centuries) productivity and biogeochemistry (29).

The total atmospheric deposition plus N2fixation flux to the ocean is ~167 Tg N year (Table 2). Assuming complete assimilation, these external N_r sources can support a maximum biologically mediated flux of ~1.0 Pg C year⁻¹, of which $\sim 0.4 \text{ Pg C year}^{-1}$ is from atmospheric deposition. Deposition of AAN alone could support up to ~ 0.3 Pg C year⁻¹, or $\sim 3\%$ of all new production, including that from nutrients upwelled from deep waters, and $\sim 32\%$ of the productivity derived from external Nr supply (Table 2). In 1860, AAN supported a biologically mediated carbon flux of only $\sim 0.03 \text{ Pg C year}^{-1}$, so from 1860 to the present the potential impact of AAN on net primary productivity has increased ~10-fold. An earlier lower estimate (0.16 Pg C year⁻¹) of new (export) production generated by AAN deposition (14) assumed a different nitrogen-limited area, lower atmospheric fluxes, and the assumption that N enhancement will result in the replacement of diazotrophs by other phytoplankton.

Increased new production due to AAN fertilization coincides with the anthropogenic perturbation of the global carbon cycle and penetration of anthropogenic carbon in the ocean. The current anthropogenic CO2 uptake by the ocean is ~2.2 \pm 0.5 Pg C year⁻¹ (30), primarily attributed to physical-chemical processes (the "solubility pump"). Assuming that new production draws down atmospheric CO2 according to Redfieldian stoichiometry, up to ~10% of the present anthropogenic carbon uptake could be attributed to anthropogenic nitrogen fertilization This potentially significant enhancement of the oceanic uptake of anthropogenic carbon indicates the need to incorporate this factor in future Earth system assessments and models, as has already been done for terrestrial ecosystems (31). This estimate may be lower if the dissolved organic carbon or particulate organic carbon produced is regenerated at shallow depths (32). The efficiency and longevity of this anthropogenic nitrogen fertilization effect depend on temporal uncoupling of the new Nr inputs (N2 fixation and atmospheric deposition) from Nr removal (e.g., denitrification/anammox and burial). Assuming that all other essential nutrients are in adequate supply, it will be operational as long as the increase in new N_r (and associated additional CO₂ uptake) is not balanced by increased regeneration of N₂ and CO₂ and release at the ocean-air interface. Eventually, if AAN deposition levels off, the ocean may reach a new steady state with respect to nitrogen gains and losses that is neutral with respect to CO₂ uptake over time scales similar to the oceanic N residence time (~1000 years).

The future impact of AAN on productivity must be evaluated in the context of predicted changes in productivity caused by other variables. For instance, elevated concentrations of atmospheric CO₂ may have resulted in excess carbon consumption and export because of shifting C:N stoichiometry (*33*), and it is unclear whether projected AAN and high CO₂ concentrations have synergy or compensate. El Niño– Southern Oscillation (ENSO)–induced higher water temperatures and the associated increased stratification in low-latitude oceans may have reduced productivity by 60% in some regions (34). Thus, in a warmer climate, decreases in productivity due to restricted injection of nutrientrich deep water would only accentuate the importance of AAN contributions to new production in low-latitude oligotrophic oceanic areas where AAN already has a strong effect. Assuming that all Nr deposition is assimilated into primary production, this Nr-driven new production could contribute as much as 20% of the total new (or export) production in such regions where upwelling is limited, e.g., the North Atlantic gyre (Fig. 1F). The contribution of Nr deposition to new production is higher in the Atlantic than the Pacific and can reach magnitudes comparable to export production along some continental areas.

Table 1. Atmospheric nitrogen emissions and deposition to the ocean. Assumed uncertainties—emissions: 1860: \pm 50%; 2000: NO_x \pm 30%, NH₃ \pm 50%; 2030: see text and (*20*). Deposition: 1860: \pm 50%; 2000: NO_y/NH_x \pm 40%, organic N \pm 50%; 2030: see text and (*20*).

	1860 [*] (Tg N year ⁻¹)	2000 [†] (Tg N year ⁻¹)	2030 [†] (Tg N year ⁻¹)
	Emission to the atmos	phere	
Total NO _x	13 (7–20)	52 (36–68)	54 [‡]
Anthropogenic NO _x	2.6 (1.3-4)	38 (27–49)	43
Total NH3	21 (11–32)	64 (32–96)	78 [‡]
Anthropogenic NH ₃	7.4 (3.7–11)	53 (27–80)	70
Total atmospheric N emissions	34 (18–52)	116 (68–164)	132
Total anthropogenic N _r (AAN)	10 (5–15)	91 (54–129)	113
	Deposition to the oc	ean	
Total NO _y	6.2 (3.1–9.3)	23 (14–32)	25
Anthropogenic NO _y	1.2 (0.6-1.8)	17 (10–24)	18
Total NH _x	8 (4–12)	24 (14–34)	29
Anthropogenic NH _x	2.4 (1.2-3.6)	21 (13–29)	25
Total organic N _r	6.1 (3.0-9.1)	20 (10–30)	23
Anthropogenic organic N _r	2.1 (1.0-3.1)	16 (8–24)	19
Total N _r deposition	20 (10–30)	67 (38–96)	77
Total anthropogenic N _r (AAN)	5.7 (2.8-8.5)	54 (31–77)	62

*From (3). †Derived from (21); see text and (26). $\ddagger NO_x$ and NH_3 based on ~80% and ~90% anthropogenic, respectively [from (3)].

Table 2. Atmospheric nitrogen deposition to the ocean in 2000 and its impact on productivity. Globalscale estimates of total primary production (23); new production (24–26); N_2 fixation (2, 6–8). Most letters in italics refer to flux pathways in Fig. 2.

	Global ocean nitro (Tg N year ⁻¹)	ogen	Resultant global ocean productivity (Pg C year ⁻¹)
Total primary production (<i>a+b+c+d</i>)	~8800 (7000–10	,500)	~50 (40–60)
New production (NP) (b)	~1900 (1400–26	00)	~11 (8–15)
Marine N_2 fixation (c)	~100 (60–200)		~0.57 (0.3–1.1)
Total net N_r deposition (d) ($NO_v + NH_x + Org. N_r$)	~67 (38–96)		~0.38 (0.22–0.55)
Total external nitrogen supply $(c+d)$	~167 (98–296)		~0.95 (0.56–1.7)
Anthropogenic N _r deposition (AAN) (e)	~54 (31–77)		~0.31 (0.18–0.44)
Marine N_2 fixation as % NP N_r	= <i>c/b</i>	~5.3%	(2.3–14.3%)
Total N _r deposition as % NP N _r	= d/b	~3.5%	(1.5–6.9%)
AAN as % NP N _r	= e/b	~2.8%	(1.2–5.5%)
Total N _r deposition as % external N supply	= d/(c+d)	~40%	(13–98%)
AAN as % external N supply	= e/(c+d)	~32%	(10-79%)

On the basis of future scenarios for anthropogenic emissions, AAN contribution to primary production could approach current estimates of global N₂ fixation by 2030. Fertilization of the surface layer by atmospheric deposition, primarily AAN, could even lead to a decrease in N₂ fixation due to biological competition (14). However, atmospheric Nr deposition has a very small effect on the surface seawater ambient Nr concentrations, too little to inhibit nitrogenase activity directly [e.g., we estimate that an extremely rare and large atmospheric deposition event distributed over a 25-m mixed-layer depth could increase the Nr concentration by only \sim 45 nM (35), which is too small to suppress N₂ fixation (36)]. Atmospheric Nr deposition more likely represents a long-term low-level fertilization of the ocean that has consequences for the natural biogeochemical cycles of nitrogen and carbon and their ongoing anthropogenic perturbations. Biological evidence suggests that phytoplankton communities in oceanic gyres are presently nitrogen limited (1). Atmospheric Nr deposition, in the absence of significant atmospheric deposition of phosphorus, may exacerbate phosphorus limitation of N₂ fixation. The long-term effect of AAN deposition on N2 fixation depends on whether P or Fe limits N2 fixation and on the supply ratio of bioavailable N:P:Fe derived from atmospheric deposition (37). Atmospheric deposition of phosphorus is much less perturbed by human activity than N_r (13, 37). Hence, the overall impact of atmospheric deposition is likely to be a shift in the N/P balance of surface waters. Some marine diazotrophs can exploit dissolved organic phosphorus pools and may obtain an adequate P supply by degrading compounds such as phosphonates (38).

Changes in species composition and productivity can lead to changes in the export of nitrogen and carbon to deep ocean water, resulting in a shift of deep ocean N/P ratios away from Redfield stoichiometry, which could then influence the chemistry of upwelled waters remote from the loci of atmospheric depositions. Remineralization of this extra organic carbon flux in deep waters may reduce the deepwater O_2 concentration, and the resultant microbial N_2 production will act to restore the N/P ratio toward the Redfield value, as suggested to have happened in the past (39). (See Supporting Online Material, including fig. S2).

Impact on N₂O Emissions from the Ocean

Another important issue is whether increasing atmospheric N_r inputs to the ocean can alter marine emissions of nitrous oxide (N₂O), a major greenhouse gas. Estimates of global sea-to-air N₂O fluxes vary considerably. Two recent estimates are the Intergovernmental Panel on Climate Change (IPCC) assessment (*30*) (3.8 Tg N year⁻¹ as N₂O) and the calculation by Bange of the mean from data in (*40*) (6.2 Tg N year⁻¹). Using the mean (5.0 Tg N year⁻¹) and the range of these two estimates, and assuming that the nitrogen in

this "recent" N₂O flux originally entered the N₂ fixation as a source of marine reactive nitrogen. Although local AAN deposition seems unlikely to alter significantly local phytoplankton species composition, the phytoplankton community could be affected by the slow long-term fertilization of surface waters by AAN. Moreover, AAN inputs to the ocean have potentially important climatic implications. Up to about a tenth of the anthropogenic atmospheric carbon uptake by the ocean (as CO_2) may result from this fertilization. In addition, AAN inputs may stimulate N2O emissions, with possibly about two-thirds of the decrease in radiative forcing from increased CO2 uptake by the ocean being offset by the increase in radiative forcing from increased N2O emissions. There is clearly much we do not know about the extent and time scale of the impacts of AAN deposition on the oceans and the feedbacks to the

climate system. The issues are complex and interactive, and they must be considered in climate scenarios. Areas of particular importance include understanding more fully the sources, chemical speciation, reactivity, and availability of atmospheric organic nitrogen; developing more realistic models of Nr deposition to the ocean, coupled with measuring Nr deposition over extended periods of time in open ocean regions; understanding the relationships between, and impacts of, the atmospheric deposition of bioavailable N, P, and Fe; and understanding the mechanisms and time scales involved in the oceanic response to N_r deposition, coupled with a new generation of Earth system models that take into account longterm low-level nitrogen fertilization of the ocean and evaluate the effect on N2O emissions and the duration of the enhanced (anthropogenic) CO₂

References and Notes

uptake.

- 1. M. M. Mills, C. Ridame, M. Davey, J. La Roche, R. J. Geider, Nature 429, 292 (2004).
- 2. N. Gruber, J. Sarmiento, in The Sea: Biological-Physical Interactions, A. R. Robinson, I. F. McCarthy, B. Rothschild, Eds. (Wiley, New York, 2002), vol. 12, pp. 337-399.
- 3. J. N. Galloway et al., Biogeochemistry 35, 3 (1996).
- 4. S. P. Seitzinger, J. A. Harrison, E. Dumont, A. H. W. Beusen, A. F. Bouwman, Global Biogeochem. Cvcles 19, GB4S01 (2005).
- 5. S. Seitzinger et al., Ecol. Appl. 16, 2064 (2006).
- 6. C. Mahaffey, A. F. Michaels, D. G. Capone, Am. J. Sci. 305, 546 (2005).
- 7. J. K. Moore, S. C. Doney, K. Lindsay, N. Mahowald, A. F. Michaels, Tellus 58B, 560 (2006).
- 8. C. Deutsch, J. L. Sarmiento, D. M. Sigman, N. Gruber,]. P. Dunne, Nature 445, 163 (2007).
- 9. J. N. Galloway et al., Science 320, 889 (2008).
- 10. R. A. Duce et al., Global Biogeochem. Cycles 5, 193 (1991).
- 11. J. M. Prospero et al., Biogeochemistry 35, 27 (1996).
- 12. C. M. Duarte et al., J. Geophys. Res. 111, G04006 (2006).
- 13. T. Jickells, Biogeosciences 3, 271 (2006).
- 14. A. Krishnamurthy, J. K. Moore, C. S. Zender, C. Luo, J. Geophys. Res. 112, G02019 (2007).
- 15. H. W. Paerl, Nature 315, 747 (1985).
- 16. S. C. Doney et al., Proc. Natl. Acad. Sci. U.S.A. 104, 14580 (2007).
- 17. S. E. Cornell, T. D. Jickells, J. N. Cape, A. P. Rowland, R. A. Duce, Atmos. Environ. 37, 2173 (2003).
- 18. K. A. Mace, R. A. Duce, N. W. Tindale, J. Geophys. Res. **108**, 4338 (2003).
- 19. T. Nakamura, H. Ogawa, D. K. Maripi, M. Uematsu, Atmos. Environ. 40, 7259 (2006).

- 20. If the assumption that in 1860 the relationship between organic and inorganic N in deposition was the same as today, i.e., that organic nitrogen is ~30% of the total Nr, is in error, then it is likely that both the total and the anthropogenic nitrogen deposition in 1860 would have been less than indicated in Table 1.
- 21. F. Dentener et al., Global Biogeochem. Cycles 20, GB4003 (2006)
- 22. The deposition estimates for 2030 are based on the S2 simulation of NO_x and NH₃ emissions to the atmosphere presented in (21), which uses an IIASA CLE 2030 current emission regulation scenario, termed "likely" in that paper. We estimate that the atmospheric emission and deposition values shown in Table 1 for 2030 have uncertainties of ~40 to 50%. Dentener et al. (21) also discuss results using the "optimistic" IIASA Maximum Feasible Reduction (MFR) scenario and the "pessimistic" IPCC SRES A2 scenario. Depending on the regional development path of Nr emissions, Nr depositions may be lower by 10 to 70% (MFR) or higher by 30 to 200%.
- 23. M. E. Carr et al., Deep-Sea Res. Part II 53, 741 (2006).
- 24. E. A. Laws, P. G. Falkowski, W. O. Smith, H. Ducklow, J. J. McCarthy, Global Biogeochem. Cycles 14, 1231 (2000)
- 25. A. Oschlies, Deep-Sea Res. Part II 48, 2173 (2001).
- 26. H. W. Ducklow, Rev. Geophys. 33, 1271 (1995).
- 27. R. C. Dugdale, J. J. Goering, Limnol. Oceanogr. 12, 196 (1967).
- 28. W. S. Broecker, Global Biogeochem. Cycles 5, 191 (1991). 29. J. L. Sarmiento, N. Gruber, M. A. Brzezinski, J. P. Dunne, Nature 427, 56 (2004).
- 30. K. Denman et al., in Climate Change 2007: The Physical Science Basis, S. Solomon et al., Eds. (Cambridge Univ. Press, Cambridge, 2007), pp. 544-547.
- 31. F. Magnani et al., Nature 447, 849 (2007).
- 32. A. Gnanadesikan, J. L. Sarmiento, R. D. Slater, Global Biogeochem. Cycles 17, 1050 (2003).
- 33. U. Riebesell et al., Nature 450, 545 (2007).
- 34. M. J. Behrenfeld et al., Nature 444, 752 (2006).
- 35. A. F. Michaels, D. A. Siegel, R. J. Johnson, A. H. Knap,]. N. Galloway, Global Biogeochem. Cycles 7, 339 (1993).
- 36. C. M. Holl, J. P. Montoya, J. Phycol. 41, 1178 (2005). 37. A. R. Baker, S. D. Kelly, K. F. Biswas, M. Witt,
- T. D. Jickells, Geophys. Res. Lett. 30, 2296 (2003).
- 38. S. T. Dyhrman et al., Nature 439, 68 (2006).
- 39. R. S. Ganeshram, T. F. Pedersen, S. E. Calvert, G. W. McNeill, M. R. Fontugne, Paleoceanography 15, 361 (2000).
- 40. H. W. Bange, Atmos. Environ. 40, 198 (2006).
- 41. X. Jin, N. Gruber, Geophys. Res. Lett. 30, GL18458 (2003).
- 42. S. Solomon et al., in Climate Change 2007: The Physical Science Basis, S. Solomon et al., Eds. (Cambridge Univ. Press, Cambridge, 2007).
- 43. M. E. Conkright et al., World Ocean Atlas 2001, vol. 4, Nutrients, S. Levitus, Ed., NOAA Atlas NESDros. Inf. Serv. 52 (U.S. Government Printing Office, Washington, DC, 2002).
- 44. R. Schlitzer, J. Phys. Oceanogr. 37, 259 (2007).
- 45. We acknowledge the leadership of the Surface Ocean-Lower Atmosphere Study (SOLAS) project (www.solas-int.org) and the International Nitrogen Initiative (www.initrogen.org) of SCOPE and the International Geosphere-Biosphere Programme (IGBP: www.igbp.kva.se) for conceiving this synthesis. We thank the Scientific Committee on Oceanic Research, IGBP, the U.S. National Oceanic and Atmospheric Administration, and the European Science Foundation for partial support of the work. We thank J. Hare of the SOLAS International Project Office for help in organizing the workshop and E. Breviere of that office for help in making the Nitrogen Workshop in Norwich, UK, a success. We acknowledge two anonymous reviewers for constructive feedback.

Supporting Online Material

www.sciencemag.org/cgi/content/full/320/5878/893/DC1

- SOM Text
- Figs. S1 and S2
- Table S1

References

10.1126/science.1150369

oceans from N₂ fixation (100 Tg N year⁻¹) and atmospheric deposition (67 Tg N year⁻¹), then the emission of 5.0 Tg N year⁻¹ as N₂O results from nitrification and denitrification of part of this 167 Tg N year⁻¹ entering the surface ocean. This assumes that N2O production in the near-surface ocean is at steady state and there are no significant time lags between atmospheric input and $\mathrm{N_2O}$ formation. Normalizing the N2O flux to the atmosphere by the "completely new" nitrogen input (5.0:167) can then be used to estimate that AAN deposition has resulted in the production of up to ~1.6 Tg N₂O-N year⁻¹, or about a third of total oceanic N2O emissions. This approach suggests that in 1860, only ~ 0.2 Tg N year⁻¹ (\sim 5%) of the sea-to-air flux of N₂O was driven by atmospheric anthropogenic inputs, assuming simplistically that N₂O production is linearly related to N supply. [We use linear scaling due to the lack of experimental and modeling studies that address the spatial and nonlinear response of N2O emissions to N deposition, although important regional variations are likely (41).] This suggests that from 1860 to the present, the increase in AAN has led to nearly an order of magnitude increase in anthropogenic N2O emission from the oceans. Calculations and estimates of increases for 2030 are in table S1.

While oceanic AAN deposition may result in increased N₂O emissions, increasing radiative forcing, AAN also increases primary production (up to $\sim 0.3 \text{ Pg C year}^{-1}$ detailed above) and export production to the deep ocean, removing CO2 from the atmosphere and therefore decreasing radiative forcing. With a Global Warming Potential of 298 for N_2O (42), the net balance suggests that about two-thirds of the decrease in radiative forcing from CO2 uptake could be offset by the increase due to N2O emissions. The uncertainty in our estimates is considerable; however, the estimates suggest the potential importance of AAN to N₂O emissions and therefore the need for future research in regions such as oceanic Oxygen Minimum Zones (OMZs), which, although small in area, are potentially important for N₂O emissions. The future role of OMZs will be influenced not only by AAN but also by climate and other global changes.

Conclusions

This analysis emphasizes the potential importance of the growing quantity of atmospheric reactive (fixed) nitrogen that enters the open ocean as a result of human activities and its impact on the present marine nitrogen cycle. Considering the increasing demand for energy and fertilizers, the emissions of AAN are expected to grow over the coming decades. Atmospheric deposition of anthropogenic nitrogen to the ocean may account for up to $\sim 3\%$ of the annual new oceanic primary productivity, but about a third of the primary productivity generated as a result of the external input of nitrogen to the ocean. The input of AAN is approaching that of

Impacts of Atmospheric Anthropogenic Nitrogen on the Open Ocean

R. A. Duce, J. LaRoche, K. Altieri, K. R. Arrigo, A. R. Baker, D. G. Capone, S. Cornell, F. Dentener, J. Galloway, R. S. Ganeshram, R. J. Geider, T. Jickells, M. M. Kuypers, R. Langlois, P. S. Liss, S. M. Liu, J. J. Middelburg, C. M. Moore, S. Nickovic, A. Oschlies, T. Pedersen, J. Prospero, R. Schlitzer, S. Seitzinger, L. L. Sorensen, M. Uematsu, O. Ulloa, M. Voss, B. Ward and L. Zamora

Science **320** (5878), 893-897. DOI: 10.1126/science.1150369

ARTICLE TOOLS	http://science.sciencemag.org/content/320/5878/893
SUPPLEMENTARY MATERIALS	http://science.sciencemag.org/content/suppl/2008/05/15/320.5878.893.DC1
RELATED CONTENT	http://science.sciencemag.org/content/sci/320/5878/889.full
REFERENCES	This article cites 39 articles, 3 of which you can access for free http://science.sciencemag.org/content/320/5878/893#BIBL
PERMISSIONS	http://www.sciencemag.org/help/reprints-and-permissions

Use of this article is subject to the Terms of Service

Science (print ISSN 0036-8075; online ISSN 1095-9203) is published by the American Association for the Advancement of Science, 1200 New York Avenue NW, Washington, DC 20005. The title *Science* is a registered trademark of AAAS.

American Association for the Advancement of Science