
 
OCO-2 advances photosynthesis observation from space via 

solar-induced chlorophyll fluorescence 

 

Postprint version 
 

 

 
  Y. Sun, C. Frankenberg, J. D. Wood, D. S. Schimel, M. Jung, L. Guanter, 

 D. T. Drewry, M. Verma, A. Porcar-Castell, T. J. Griffis, L. Gu, T. S. Magney,  
P. Köhler, B. Evans, K. Yuen 

 
Published in:  Science 

 

 

Reference: Sun, Y., Frankenberg, C., Wood, J. D., Schimel, D. S., Jung, M., Guanter, 

L., et al. (2017). OCO-2 advances photosynthesis observation from space via solar-

induced chlorophyll fluorescence. Science, 358(6360): eaam5747. 

doi:10.1126/science.aam5747 

 

 

 

Web link: http://dx.doi.org/10.1126/science.aam5747 

This project has received funding from the European Union's Horizon 2020 research and innovation programme under 
grant agreement No 640176 



RESEARCH ARTICLE SUMMARY
◥

CARBON CYCLE

OCO-2 advances photosynthesis
observation from space via solar-
induced chlorophyll fluorescence
Y. Sun,* C. Frankenberg,* J. D. Wood, D. S. Schimel, M. Jung, L. Guanter,
D. T. Drewry, M. Verma, A. Porcar-Castell, T. J. Griffis, L. Gu, T. S. Magney,
P. Köhler, B. Evans, K. Yuen

INTRODUCTION:Reliable estimation of gross
primary production (GPP) from landscape to
global scales is pivotal to a wide range of eco-
logical research areas, such as carbon-climate
feedbacks, and agricultural applications, such
as crop yield and drought monitoring. However,
measuring GPP at these scales remains a major
challenge. Solar-induced chlorophyll fluores-
cence (SIF) is a signal emitted directly from
the core of photosynthetic machinery. SIF in-
tegrates complex plant physiological functions
in vivo to reflect photosynthetic dynamics in
real time. The advent of satellite SIF observa-
tion promises a new era in global photosynthe-
sis research. The Orbiting Carbon Observatory-2
(OCO-2) SIF product is a serendipitous but crit-
ically complementary by-product of OCO-2’s
primary mission target—atmospheric column
CO2 (XCO2 ). OCO-2 SIF removes some impor-
tant roadblocks that prevent wide and in-depth
applications of satellite SIF data sets and offers
new opportunities for studying the SIF-GPP
relationship and vegetation functional gra-
dients at different spatiotemporal scales.

RATIONALE: Compared with earlier satellite
missions with SIF capability, the OCO-2 SIF
product has substantially improved spatial
resolution, data acquisition, and retrieval pre-
cision. These improvements allow satellite SIF
data to be validated, for the first time, directly
against ground and airborne measurements
and also used to investigate the SIF-GPP rela-
tionship and terrestrial ecosystem functional
dynamics with considerably better spatiotem-
poral credibility.

RESULTS: Coordinated airborne measure-
ments of SIF with the Chlorophyll Fluores-
cence Imaging Spectrometer (CFIS) were used
to validate OCO-2 retrievals. The validation

shows close agreement between OCO-2 and
CFIS SIF, with a regression slope of 1.02 and R2

of 0.71. Landscape gradients in SIF emission,
corresponding to differences in vegetation
types, were clearly delineated by OCO-2, a ca-
pability that was lacking in previous satellite
missions. The SIF-GPP relationships at eddy
covariance flux sites in the vicinity of OCO-2
orbital tracks were found to be more consist-
ent across biomes than previously suggested.
Finally, empirical orthogonal function (EOF)
analyses on OCO-2 SIF and available GPP
products show highly consistent spatiotem-
poral correspondence in their leading EOF

modes across the globe, suggesting that SIF
and GPP are governed by similar dynamics and
controlled by similar environmental and bi-
ological conditions.

CONCLUSION: OCO-2 represents a major
advance in satellite SIF remote sensing. Our
analyses suggest that SIF is a powerful proxy
for GPP at multiple spatiotemporal scales and
that high-quality satellite SIF is of central im-
portance to studying terrestrial ecosystems
and the carbon cycle. Although the possibility

of a universal SIF-GPP rela-
tionship across different
biome types cannot be dis-
missed, in-depth process-
based studies are needed
to unravel the true nature
of covariations between

SIF and GPP. Of critical importance in such
efforts are the potential coordinated dy-
namics between the light-use efficiencies
of CO2 assimilation and fluorescence emis-
sion in response to changes in climate and
vegetation characteristics. Eventual syner-
gistic uses of SIF with atmospheric CO2 en-
abled by OCO-2 will lead to more reliable
estimates of terrestrial carbon sources and
sinks—when, where, why, and how carbon
is exchanged between land and atmosphere—
as well as a deeper understanding of carbon-
climate feedbacks.▪
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The marked ecological gradients depicted by OCO-2’s high-resolution SIF measurements
along a transect of temperate deciduous forests, crops, and urban area from Indiana to
suburban Chicago, Illinois.
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Quantifying gross primary production (GPP) remains a major challenge in global carbon
cycle research. Spaceborne monitoring of solar-induced chlorophyll fluorescence (SIF),
an integrative photosynthetic signal of molecular origin, can assist in terrestrial GPP
monitoring. However, the extent to which SIF tracks spatiotemporal variations in GPP
remains unresolved. Orbiting Carbon Observatory-2 (OCO-2)’s SIF data acquisition and fine
spatial resolution permit direct validation against ground and airborne observations.
Empirical orthogonal function analysis shows consistent spatiotemporal correspondence
between OCO-2 SIF and GPP globally. A linear SIF-GPP relationship is also obtained
at eddy-flux sites covering diverse biomes, setting the stage for future investigations of the
robustness of such a relationship across more biomes. Our findings support the central
importance of high-quality satellite SIF for studying terrestrial carbon cycle dynamics.

P
hotosynthesis, one of the most fundamen-
tal biological processes on Earth, provides
food and oxygen to all higher life forms and
regulates the capacity of terrestrial eco-
systems to offset anthropogenic CO2 emis-

sions. The continuing increase of atmospheric
CO2 and its impact on climate are expected to
affect photosynthesis in fundamental (1) but un-
certain ways (2, 3). This uncertainty constitutes
a critical constraint in the projection of future
crop production (4) and carbon-climate feedbacks
(5 ). However, we currently possess a limited ca-
pability to directly measure photosynthesis at
spatial and temporal scales relevant for under-
standing and predicting future agricultural risks
and roles of carbon-climate feedbacks in the
Earth system. The approach of observing solar-

induced chlorophyll fluorescence (SIF) globally
from space is an important step toward alleviat-
ing this deficiency.
SIF, an emission from chlorophyll a molecules

excited by absorbed photons, is an optical sig-
nal emanating from the core of photosynthetic
machinery and contains functional information
about photosynthesis. The terrestrial SIF emis-
sion spectrum spans 660 to 850 nm, with two
peaks centered at 685 and 740. Although ac-
tively induced fluorescence has been used for
decades to probe photosynthesis in vivo at mo-
lecular and leaf scales (6–10), passive SIF from a
vantage point in space became available only
recently (11–15). A major challenge of passive SIF
remote sensing is to discern a small SIF emission
from a much higher background signal—reflected
sunlight. This challenge is overcome by mea-
suring the in-filling of narrow solar Fraunhofer
lines using high-resolution spectrometers. With
this technique, the confounding effects of sur-
face reflectance as well as atmospheric scattering
and absorption are minimized, thereby facilitat-
ing the SIF retrieval. The first spaceborne missions
possessing the spectral and radiometric sensitivity
to enable SIF retrievals include the Greenhouse
Gases Observing Satellite (GOSAT), Global Ozone
Monitoring Experiment-2 (GOME-2) onboard
MetOp-A, and the SCanning Imaging Absorp-
tion spectroMeter for Atmospheric CHartographY
(SCIAMACHY) onboard Envisat (11–14). None of
these instruments were originally designed for
measuring SIF, but they nevertheless provided
initial data sets that revealed the feasibility of
satellite SIF retrievals, albeit at very coarse spa-
tial resolution.

The Orbiting Carbon Observatory-2 (OCO-2)
SIF product is also a serendipitous but critical
complementary by-product of OCO-2’s primary
mission target—atmospheric column CO2. The
dynamics of column CO2 reflects net fluxes of
production and consumption processes of both
natural and anthropogenic origins. Thus, the ser-
endipitous and primary products together form
independent constraints on the CO2 source and
sink distributions from the land and atmospheric
perspectives, respectively. Their joint availability
will help curb uncertainties in the estimate of
regional and global carbon budgets and advance
understanding terrestrial biosphere responses to
climate change, which will eventually lead to bet-
ter prediction of carbon-climate feedbacks.
In recent years, progress has been made in

applying spaceborne SIF to study large-scale ter-
restrial ecosystem dynamics, covering a variety
of topics such as high-latitude vegetation phenol-
ogy, tropical carbon cycle seasonality, crop yield
monitoring, and detection of impending droughts
(16–23). However, it remains unclear to what ex-
tent the spatiotemporal variations of SIF and
gross primary production (GPP) are related to
each other, as well as how and at which scales SIF
can be used to predict GPP. Here we will first dis-
cuss roadblocks in addressing these critical issues
and then show how OCO-2 SIF helps to remove
them and how it can be used to shed lights on
SIF-GPP relationships at different spatiotemporal
scales. In doing so, a variety of potential research
opportunities enabled by this distinctive space-
borne SIF data product will also be introduced.

High-resolution studies of vegetation
functional gradients with OCO-2
SIF products

Studies of the relationship between vegetation
and climate gradients are crucial to understand-
ing biosphere dynamics. It has been difficult to
use SIF retrievals from previous satellite mis-
sions to investigate heterogeneous landscapes
because of their coarse spatial resolutions and
limited sampling strategies (Fig. 1A). For ex-
ample, the native footprint of GOME-2 is 40 km
by 40 km (40 km by 80 km before 15 July 2013)
(14), whereas GOSAT has a circular footprint of
10 km in diameter, with individual samples
sparsely distributed across Earth’s surface (11, 13).
This severely masked out fine-scale variations
that are key to studying vegetation functional
gradients. In contrast, a nominal OCO-2 footprint
is 1.3 km by 2.25 km, with eight independent
across-track measurements within its 10-km-
swathwidth, yielding ~105 clear-sky SIF observations
over land each day (24). This high data-acquisition
density allows the use of averaging to effectively
minimize random measurement uncertainty and
to produce high-precision SIF products at an
unprecedented high spatial resolution, even
though the narrow swath reduces the extent of
global coverage. For regions covered by orbital
tracks of OCO-2, its SIF data sets can be used to
quantify the heterogeneity of ecosystem struc-
ture and function and to detect fine-scale eco-
physiological phenomena such as functional
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changes in ecologically and climatically sensitive
regions. These regions include human-disturbed
and heavily fragmented areas, as well as ecotones
such as southern and northern boreal tree lines
where forest expansion and contraction has been
observed due to climate change.
OCO-2 SIF is capable of capturing the spatial

gradients in SIF emission across diverse ecosys-
tems. As an example, Fig. 1B shows a marked
contrast of SIF in an August orbital track along
a transect spanning forests, crops, and developed
urban areas south of Chicago. Here we find that
SIF of croplands far exceeds that of forests, where-
as urban green areas emit a very weak signal. This
example demonstrates that with its current level
of retrieval precision, OCO-2 SIF has the capa-
bility to capture real-time photosynthetic activ-
ities. Although sharp contrasts in SIF between
different vegetation types have been reported with
ground-based measurements (25), none of the
previous satellite missions were able to resolve
such fine-scale functional transitions across eco-
systems. As the data records provided by OCO-2
grow, it will be possible to use them in conjunction
with column CO2 concentration measurements to
investigate how vegetation functional gradients
vary in response to changes in environmental con-
ditions and how these gradients are related to
spatial variations in the terrestrial carbon sink.

Coordinated spaceborne and airborne
SIF measurements for validation and
optimizing retrieval algorithms

So far, various retrieval algorithms have been
developed and applied, depending on different

spectrometer specifications. These algorithms
can be classified into two broad categories. The
first employs physically based approaches to fit
narrow spectral windows and is used for spec-
trometers with very high spectral resolution (e.g.,
<0.05 nm; GOSAT and OCO-2). The second uses
statistical approaches to fit relatively broad spec-
tral windows and is for spectrometers with mod-
erate spectral resolution (e.g., ~0.5 nm; GOME-2).
Because there is always a trade-off among spatial,
temporal, and spectral resolutions, these two ap-
proaches have pros and cons in terms of retrieval
robustness and sensitivity to atmospheric scatter-
ing and absorption, spatial resolution, and revisit
time (26). Cross-mission comparisons with differ-
ent spaceborne instruments have been performed,
yet true validation of these retrieval algorithms
with independent airborne or ground measure-
ments of SIF has lagged behind the development
of these previous spaceborne SIF products.
Toward that goal, the OCO-2 team developed

the airborne Chlorophyll Fluorescence Imaging
Spectrometer (CFIS). CFIS combines high spectral
resolution (<0.1 nm) with a wide spectral cover-
age (737 to 772 nm) (Fig. 2A), which is optimally
suited for SIF retrievals and allows for testing
both retrieval strategies mentioned above. Sev-
eral validation campaigns with CFIS were carried
out in 2015 and 2016 across a range of different
ecosystems (including crops, grassland, and forests),
under-flying the OCO-2 orbital tracks in Illinois,
Iowa, Colorado, Nebraska, Minnesota, and Califor-
nia. Figure 2B shows the initial validation flights
in 2015, revealing a strong agreement between
OCO-2 and CFIS SIF along latitudinal gradients.

The spaceborne and airborne measurements were
linearly correlated, with a regression slope of 1.02
(R2 = 0.71, fig. S1), indicating that the latitudinal
variation of SIF is well characterized by OCO-2
retrievals. Figure 2C shows fine-scale CFIS SIF
retrievals over agricultural areas in southwest Min-
nesota, including a region affected by partial cloud
cover. The Fraunhofer line-based SIF retrievals are
insensitive to atmospheric scattering, which can
be seen, as the partial cloud cover appears not to
affect the SIF retrieval. As a comparison, a four-
band [red-green-blue (RGB) + near-infrared (NIR)]
context camera was used to derive RGB imagery
and the normalized difference vegetation index
(NDVI) at a much higher spatial resolution than
CFIS. The reflectance-based NDVI is expectedly
strongly affected by clouds in general, whereas
SIF is only reduced in the optically thick parts of
the cloud as well as over cloud shadows. In the
SIF imagery, strong gradients between corn and
soybean plots can be discerned, with soybean being
more fluorescent in mid-August 2016, most likely
related to an offset in planting dates between
these two primary U.S. Midwest crops.
Such coordinated spaceborne and airborne

measurements for the purpose of SIF validation
have not been carried out for any previous satellite
instruments with SIF capabilities. The CFIS val-
idation data set will be an important step toward
bridging the scale gaps between ground-based
spectrometers—which are now being developed and
deployed to examine fine temporal- and spatial-
scale functional SIF dynamics—and satellite-based
measurements fromOCO-2 and follow-onmissions
such as the European Space Agency Fluorescence
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Fig. 1. High-resolution OCO-2 footprints and the marked ecological
gradients depicted by OCO-2 SIF along a transect from Indiana to
suburban Chicago, Illinois. (A) Spatial resolution of OCO-2 SIF (nadir
mode, 1.3 km by 2.25 km) compared with existing products from GOME-2
(40 km by 40 km) onboard MetOp-A and GOSAT–Fourier Transform
Spectrometer (10-km diameter). SIF is acquired during August overpass(es)
in 2015: 20 August for OCO-2, 5 August for GOME-2, and entire month

of August for GOSAT. (B) Visualization of the vegetation functional
gradients across a transect of temperate deciduous forests, croplands,
and urban area with OCO-2 SIF. The National Land Cover Database
2011 (NLDC 2011) (45), created by the Multi-Resolution Land Character-
istics Consortium, is used here (spatial resolution: 30 m). The rural-urban
contrast is well characterized by the high-resolution OCO-2 SIF (the
zoomed-in boxes). The asterisk indicates Alaska only.
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Explorer (FLEX) (27 ). In fact, the airborne instru-
ment HyPlant has been designed for preparing
the launch of FLEX, and a number of campaigns
have already been performed since 2012 (28, 29).
In the coming years, these HyPlant campaigns will
be continued, and potential synchronous flights
with OCO-2 will greatly advance the development
and optimization of SIF retrieval algorithms.

Using OCO-2 SIF as a shortcut
to estimating GPP

A direct linkage between satellite observation
and flux tower–based measurements is crucial
for using remotely sensed SIF to estimate GPP
at larger scales. This has not been possible in the
past because previous missions had coarse spa-
tial resolutions, low data-acquisition rates, and
high observation uncertainties, which made it
difficult to apply spaceborne and ground-based
measurements in a synergistic and integrated
fashion. For example, the spatial resolutions of

GOME-2 and SCIAMACHY (30 km by 60 km)
are much larger than a typical eddy covariance
(EC) flux tower footprint, whereas GOSAT’s sparse
data acquisition severely restricted the possibility
of reducing random retrieval errors via sample
averaging. These limitations prevented simulta-
neous uses of spaceborne SIF and ground-based
measurements for in-depth analyses of biome-
specific responses. In contrast, OCO-2’s fine spa-
tial resolution (1.3 km by 2.25 km), together with
high data-acquisition, density alleviates such lim-
itations. Thus, OCO-2 SIF data sets can be integrated
with ground-based measurements to investigate
the SIF-GPP relationship, at least for regions
covered by OCO-2 orbital tracks.
We have identified multiple FLUXNET sites

that are located in the direct or close vicinity of
OCO-2 orbits (30, 31). These sites span structurally
and functionally diverse ecosystems, including
crops, temperate deciduous forests, and grass-
lands. We related OCO-2 SIF to GPP derived from

net ecosystem exchange measured with the EC
technique (32) at these sites. We found that the
SIF-GPP relationship is consistent across dis-
tinct vegetation types (Fig. 3A). This finding is
different from previous reports that suggested
highly variable biome-dependent relationships
(13). There may be multiple explanations for the
potential divergence in their SIF-GPP relation-
ships. One possibility is the effect of the differences
across biomes in plant physiology and canopy
structure such as leaf angle orientation, leaf clump-
ing, leaf area index, and chlorophyll profiles (8).
Such effect has also been demonstrated through
model simulations (33). Yet another possibility is
the potential systematic bias in either SIF or GPP
products. To investigate this latter possibility, we
repeatedouranalysesusingbothFLUXCOM(34)and
Moderate Resolution Imaging Spectroradiometer
(MODIS) GPP products (35, 36) at flux tower–
specific pixels during the OCO-2 overpass dates.
FLUXCOM GPP is a data set derived from statis-
tically upscaled EC measurements, whereas MODIS
GPP is a data set modeled with the light-use ef-
ficiency concept. In these analyses, the obtained
SIF-GPP relationships diverge among biomes
(Fig. 3, B and C), especially for MODIS products.
This indicates that the highly biome-dependent
SIF-GPP relationships, as found in previous studies,
may at least partly result from systematic biases
in GPP data sets whose production inevitably in-
volves assumptions and models, as GPP cannot be
directly measured at regional or global scales (37).
Although it is tempting to think about a uni-

versal SIF-GPP relationship across biomes (Fig.
3A), the existence of biome-specific relationships
cannot be ruled out at present. Just a few EC sites
are located in the direct or close vicinity of OCO-2
orbits, and the OCO-2 lifetime is still short, lim-
iting our analyses. Only continued research with
more land biomes and growing data records can
reveal the true discrepancies or consistencies
underlying this relationship and the responsible
mechanisms.
The following simple equations, however, show

the possibility of variable SIF-GPP relationships
among biomes but also point to plausible mech-
anisms if a universal relationship does exist. Tradi-
tionally, the simplest way to model GPP is through
the approach of light-use efficiency of CO2 assim-
ilation (FCO2 ) (35) via the Monteith theory (38)

GPP ¼ FCO2aI ð1Þ

Here, I is the photosynthetically active radia-
tion (PAR) incident upon the canopy, and a is
the canopy absorbance of PAR. This approach
has been widely used, particularly in the field of
vegetation remote sensing (36). To effectively use
this method, measuring I is not enough; one must
also know bothFCO2 and a, which are extreme-
ly difficult to determine at large scales and can
change with environmental conditions and vege-
tation types. However, the task becomes some-
what easier if SIF is known. For SIF, a similar
relationship holds via the Berry equation (16)

SIF ¼ FFaIb ð2Þ
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Fig. 2. Instrument characteristics and SIF retrievals with CFIS. (A) Spectral coverage and SIF
retrieval windows for both OCO-2 (red) and CFIS (black). (B) Two initial validation flights for
OCO-2 SIF on 13 and 16 August 2015. Error bars represent the SE of the OCO-2 SIF retrieval.
(C) Fine-scale CFIS SIF retrievals over agricultural areas in southwest Minnesota, together with the
RGB imagery derived from a four-band (RGB + NIR) context camera and NDVI at a finer spatial
resolution (<1 m as opposed to 10 to 20 m of CFIS). Note that different resolutions between CFIS
and context camera images should not be confused with each other, as the longer exposure time
of the former results in elongated pixels along the flight track. The region affected by partial
cloud cover is highlighted by the red box.
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Here, FF is the light-use efficiency of SIF, and b
is the probability of SIF photons escaping the
canopy. Combining Eqs. 1 and 2 leads to

GPP ¼ FCO2

bFF
SIF ð3Þ

which relates SIF to GPP.
Equations 1 to 3 may not be the most mecha-

nistic way to describe the relationship between
SIF and GPP and its potential variations with a
multitude of biotic and abiotic factors across dif-
ferent climates and biomes. A more mechanistic
alternative involves the description of processes
such as energy partitioning between photosys-
tem I and II, canopy structure, stoichiometry and
fluorescing properties of these two photosystems,
photorespiration, photosynthetic pathways (C3
versus C4), linear and cyclic electron transports,
and fluorescence radiative transfer modeling in
canopies (8). Although such a complex approach
will be important for developing the knowledge
base needed to bridge the gap between bottom-
up biophysical modeling and empirical top-down
constraints, Eqs. 1 to 3 offer a convenient frame-
work for presenting and evaluating arguments and
counterarguments for the SIF-GPP relationship.
An important difference between Eqs. 3 and

1 is that the former involves a ratio of two po-
tentially covarying terms of energy-use efficiency,
whereas the latter uses the product of two in-
dependent variables. The variability of b likely
depends on canopy geometry, solar elevation,
view angle, and other conditions.FCO2 andFF are
also not constants at the leaf scale (9). FCO2varies
with photosynthetic capacities and environmen-
tal conditions (such as light, atmospheric CO2,
and humidity) in a way that is typically predicted

with the Farquhar–von Caemmerer–Berry model
of photosynthesis (39). FF changes with envir-
onmental conditions that affect photochemical
and nonphotochemical quenching (8). Thus, it
seems natural to assume that the slope of the
GPP-SIF relationship will vary across biomes.
A universal SIF-GPP linear relationship would
at least require interbiome variations in FCO2

andFF to cancel each other, a scenario that seems
difficult to realize. Clearly, more in-depth process-
based studies are needed to understand the na-
ture of the SIF-GPP relationship. A particular
emphasis should be placed on the covariation be-
tweenFCO2 andFF at different spatiotemporal
scales, which will be key to using SIF as a short-
cut to estimating GPP at large scales (40).

Consistent spatiotemporal variations
in SIF and GPP revealed by OCO-2

So far we have focused on the characteristics of
OCO-2 SIF and its relationship with GPP at fine
scales. We now address the question of to what
extent SIF can be used to predict the spatiotem-
poral dynamics of GPP. To fully address this
issue, both SIF and GPP products will have to be
improved considerably. Nevertheless, this does
not prevent us from using data already available
to gain initial insights. We therefore employed
the empirical orthogonal function (EOF) method
to decompose the complex spatial and temporal
variability of SIF and GPP into various orthog-
onal components. This analysis allows us to iden-
tify common patterns and discrepancies across
noisy data sets that are usually characterized by
nonlinearity and high dimensionality. We per-
formed an EOF analysis on monthly data sets of
OCO-2 SIF as well as FLUXCOM and MODIS GPP

products and investigated their temporal and
spatial coherences for each orthogonal compo-
nent. Figure 4A shows the four leading EOF
modes for all variables, ordered by how much
variance in the data set each mode explains (fig.
S2). For the first leading mode, all three varia-
bles closely match each other, except in tropical
South America, explaining 63, 74, and 66% of the
total variance in OCO-2 SIF, FLUXCOM GPP, and
MODIS GPP, respectively. The corresponding time
series depicts the seasonal dynamics, with all var-
iables in good agreement with each other (Fig.
4B). The Pearson correlation coefficients between
OCO-2 SIF and FLUXCOM GPP, quantifying their
spatial similarity, are consistently high across all
biomes in this first mode (Fig. 4C). Compared
with the FLUXCOM product, MODIS GPP tends
to have a lower correlation with OCO-2 SIF, espe-
cially in the tropical evergreen broadleaf forests.
From the second mode onward, interesting dis-
crepancies emerge between MODIS GPP and the
other two data sets in different regions of the
world. In South America, for example, the second
mode of OCO-2 SIF and FLUXCOM GPP identi-
fies a northeast-to-southwest stretch (the green
positive phase), which is absent in MODIS GPP
data. Similar contrast exists in the northern edge
of tropical Africa. In the third and fourth modes,
MODIS GPP shows a profound dipole in the cen-
tral Amazon, which is not present in the other
two data sets. These discrepancies have led to a
lower correlation between OCO-2 SIF and MODIS
GPP than with the FLUXCOM product (Fig. 4C),
especially for the grassland and savanna systems.
The time series of the second to fourth compo-
nents also display a closer similarity between
OCO-2 SIF and FLUXCOMGPP than withMODIS
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Fig. 3. SIF-GPP relationships. The relationship between GPP and OCO-2
SIF (daily mean value, denoted as SIF, converted from instantaneous
measurements) at three flux tower sites representative of three different
biomes: crops (Minnesota Tall Tower KCMP) (30), grass (Stuart Plain in
Australia) (31), and deciduous temperate forests [Missouri Ozark site
(US_MOz)]. The first two sites are selected because they are in the direct
underpass of OCO-2 orbital tracks; for the US_MOz site, OCO-2 SIF
retrievals are obtained from representative forests in the vicinity of the
tower. The KCMP footprint covers a mixture of corn, soybean, and grasses
but is dominated by the two major crops. Error bars represent the SE of

the OCO-2 SIF retrieval. Daily GPP in the 2015 growing season is obtained
during the OCO-2 overpasses from (A) eddy covariance measurements,
(B) FLUXCOM products, and (C) MODIS products, sampled at these three
flux sites. Both FLUXCOM and MODIS GPP are 8-day products and are
linearly interpolated to the OCO-2 overpass dates. The site-specific
FLUXCOM GPP value is extracted from the grid cell (0.083° by 0.083°) that
corresponds to the latitude and longitude of the tower location. The site-
specific MODIS (MOD17A2) GPP value is the average of nine adjacent
pixels (1 km by 1 km) centered at the tower location. Both are roughly
equivalent to ~9-km2 area.
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GPP (Fig. 4B). The highly consistent correspon-
dences, both in space and time, in the leading
EOF modes of OCO-2 SIF and FLUXCOM GPP
provide robust proof that SIF and GPP are gov-
erned by similar dynamics and controlled by
similar environmental and biological conditions.
In addition, these findings emphasize that SIF
provides additional information compared with
greenness-based productivity estimates, as the
spatiotemporal variations are markedly differ-
ent from the MODIS GPP product.

Synergistic uses of OCO-2 SIF with
other remote sensing products

Past satellite observations (e.g., NDVI) have been
largely based on surface spectral reflectance, which
contains a mixture of information about green
vegetation elements (e.g., contents of different
pigments, leaf amount, and spatial arrangement),
nongreen biomass elements, and underlying soil
(41). They represent the best structural descrip-
tions of the land surface at large scales and can
be used synergistically with the SIF functional
quantification of vegetation to understand and
predict terrestrial ecosystem dynamics under
changing environmental conditions. For exam-
ple, phenology, which is a key driver of terres-
trial carbon uptake (42), is routinely monitored
by conventional reflectance-based remote sensing
(e.g., MODIS). Therefore, remotely sensed phenol-

ogy data sets can be combined with OCO-2 SIF
products to study how vegetation phenology af-
fects the SIF dynamics, which will help to illumi-
nate the causes for the potential biome-dependent
SIF-GPP relationships at different phenological
stages. Conventional vegetation indices and SIF
products could also be used to compare effici-
encies of different farming practices around the
world and to monitor drought stress (18). In these
aspects, the OCO-2 SIF data sets will be particu-
larly valuable for synergistic use with conventional
vegetation indices obtained globally at spatial
resolutions of 30 m and finer (e.g., Landsat and
Sentinel-2).
Another potential application is to integrate

OCO-2 SIF with CO2 concentration measurements
to disentangle the net fluxes derived from atmo-
spheric CO2 data into process-specific and, thus,
information-rich gross fluxes—namely GPP, eco-
system respiration, and anthropogenic compo-
nents. Additionally, SIF could also be used as a
prior constraint on GPP for atmospheric trans-
port inversion models or in data assimilation
frameworks for such purposes (43).
With growing data records, OCO-2 SIF will

provide a robust benchmark for upcoming mis-
sions such as OCO-3, FLEX, the TROPOspheric
Monitoring Instrument (TROPOMI) (26), and
the Geostationary Carbon Cycle Observatory
(GeoCARB) (44). In addition, tracking the sub-

daily variation of SIF will be possible by combin-
ing OCO-2 products with products from these
upcoming satellite missions. These endeavors
will lead to valuable data sets that can be used
in a variety of ecological research, prediction,
and management activities. Despite the lack of
contiguous global coverage, OCO-2’s measure-
ments can be considered a cornerstone toward
more optimal SIF data sets that can fulfill even
greater requirements in terms of accuracy, spa-
tial coverage, and resolution and can thus unleash
the power of SIF in revealing global photosyn-
thetic activities.

Summary

OCO-2 provides a high-resolution SIF data set
that allows direct validation against ground-
based and airborne SIF observations. With this
data set, it is possible to resolve diverse heterog-
eneous landscape patterns in SIF emission. These
capabilities have been challenging for previous
satellite missions that produced SIF retrievals.
The EOF analyses of the validated OCO-2 SIF data
set and GPP products revealed that the spatio-
temporal variations of SIF and GPP are highly
consistent, suggesting that SIF is a powerful proxy
for GPP. We also found that the relationship be-
tween SIF and GPP, when the latter is directly ob-
tained at eddy flux sites in the vicinity of OCO-2
orbits, is more consistent across biomes than
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Fig. 4. Spatiotemporal patterns of EOF decomposition of OCO-2 SIF,
FLUXCOM GPP, and MODIS GPP for the first four leading modes
in descending order. (A) Spatial maps of EOFs from monthly data
sets. (B) Corresponding time series of each EOF. (C) Quantification of
the spatial resemblance of OCO-2 SIF with FLUXCOM (green) and
MODIS GPP (white) across biomes, denoted as NF (needleleaf forests),

EBF (evergreen broadleaf forests), DBF (deciduous broadleaf forests),
SHR (shrublands), SAV (savannas), GRA (grasslands), and CRO
(croplands). The land cover data are from the International Satellite
Land Surface Climatology Project Initiative II biome classification
products using the International Geosphere-Biosphere Programme (IGBP)
scheme, following (11).
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was suggested by earlier studies. However, fu-
ture investigations with expanded data sets will
need to test the robustness of this finding across
all land biomes. Despite this uncertainty, it is
clear that high-quality satellite SIF is of central
importance to studying terrestrial ecosystem
dynamics and carbon cycle. Eventual synergistic
uses of SIF with atmospheric CO2 enabled by
OCO-2 will lead to more reliable estimates of ter-
restrial carbon sources and sinks and a deeper
understanding of carbon-climate feedbacks.
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