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Abstract

Convolutional networks reach top quality in pixel-level
object tracking but require a large amount of training data
(1k ! 10k) to deliver such results. We propose a new train-
ing strategy which achieves state-of-the-art results across
three evaluation datasets while using20"! 100" less an-
notated data than competing methods. Our approach is
suitable for both for single and multiple object tracking.

Instead of using large training sets hoping to generalize
across domains, we generate in-domain training data using
the provided annotation on the Þrst frame of each video to
synthesize (Òlucid dreamÓ1) plausible future video frames.
In-domain per-video training data allows us to train high
quality appearance- and motion-based models, as well as
tune the post-processing stage. This approach allows to
reach competitive results even when training from only
a single annotated frame, without ImageNet pre-training.
Our results indicate that using a larger training set is not
automatically better, and that for the tracking task a smal-
ler training set that is closer to the target domain is more
effective. This changes the mindset regarding how many
training samples and general ÒobjectnessÓ knowledge are
required for the object tracking task.

1. Introduction

In the last years the Þeld of object tracking in videos has
transitioned from bounding box [5] to pixel-level tracking
[11, 17, 15]. Given a Þrst frame labelled with the object
masks, one aims to Þnd the corresponding object pixels in
future frames. Tracking objects at the pixel level enables a
Þner understanding of videos and is helpful for tasks such
as video editing, rotoscoping, and summarisation.

Top performing results are currently obtained using con-
volutional networks (convnets) [8, 1, 9, 5]. Like most deep
learning techniques, convnets for pixel-level object tracking
beneÞt from large amounts of training data. Current state-
of-the-art methods rely, for instance, on pixel accurate fore-
ground/background annotations of! 2k video frames[8, 1]
or ! 10k images[9]. Labelling videos at the pixel level is
a laborious task (compared e.g. to drawing bounding boxes
for detection), and creating a large training set requires sig-

1In a lucid dream the sleeper is aware that he or she is dreaming and is
sometimes able to control the course of the dream.

Figure 1: Starting from scarce annotations we synthesize in-
domain data to train a specialized pixel-level object tracker.

niÞcant annotation effort.
In this work we aim to reduce the necessity for such large

volumes of training data. It is traditionally assumed that
convnets requires large training sets to perform best. We
show that for video object tracking having a larger training
set is not automatically better and that improved results can
be obtained by using20" ! 100" less training data than
previous approaches [1, 9]. The main insight of our work is
that for pixel-level object tracking using few training frames
(1 ! 100) in the target domain is more useful than using
large training volumes across domains (1k! 10k).

To ensure a sufÞcient amount of training data close to the
target domain, we develop a new technique for synthesizing
training data tailored for the object tracking scenario. We
call this data generation strategy Òlucid dreamingÓ, where
the Þrst frame and its annotation mask are used to generate
plausible future video frames. The goal is to produce a large
training set of reasonably realistic images which capture the
expected appearance variations in future video frames, and
thus is, by design, close to the target domain.

Our approach is suitable for both for single and multiple
object tracking. Enabled by the proposed data generation
strategy and the efÞcient use of optical ßow, we are able
to achieve high quality results while using only! 100
individual annotated training frames. Moreover, in the
extreme case with only a single annotated frame (zero
pre-training), we still obtain competitive tracking results.

2. Related work

Pixel-level tracking. In this paper we focus on generating
a foreground versus background pixel-wise object labelling
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Figure 2: Data ßow examples.I t , F t , M t ! 1 are the inputs,
M t is the resulting output.

for video starting from a Þrst manually annotated frame.
Multiple strategies have been proposed to solve this task.

Mask propagation: Appearance similarity and motion
smoothness across time is used to propagate the Þrst frame
annotation across the video [12, 21].

Video saliency:These methods extract the main fore-
ground object pixel-level space-time tube[20, 7].

Convnets: Recently convnets have been proposed for
pixel-level tracking.[1] trains a generic object saliency net-
work, and Þne-tunes it per-video to make the output sens-
itive to the speciÞc object instance being tracked.[9] uses
a similar strategy, but also feeds the mask from the previ-
ous frame as guidance for the saliency network. Finally[8]
mixes convnets with ideas of bilateral Þltering.

Our network architecture is similar to [1, 9]. However,
we use a different strategy for training: [1, 8] rely on video
training frames and [9] uses an external saliency dataset,
while our approach focuses on using the Þrst frame annota-
tions provided with each targeted video benchmark without
relying on external annotations.

Synthetic data. Like in our approach, previous works have
also explored synthesizing training data. Synthetic render-
ings [13] and video games [18] have shown promise, but
require 3d models. Compositing real images provides more
realistic results, e.g. for text localization [4]. The closest
work to ours is [14], which also generates video-speciÞc
training data using the Þrst frame annotations. They use hu-
man skeleton annotations to improve pose estimation, while
we employ mask annotations to improve object tracking.

3. LucidTracker

3.1. Architecture

Approach. We model the pixel-level object tracking prob-
lem as a mask reÞnement task (mask: binary foreground/
background labelling of the image) based on appearance

(a) Two stream architecture, where imageI t and optical ßow informa-
tion !F t ! are used to update maskM t ! 1 into M t . See equation1.

(b) One stream architecture, where 5 input channels: imageI t , optical
ßow information!F t ! and maskM t ! 1 are used to estimate maskM t .

Figure 3: Overview of the proposed one stream and two
stream architectures. See ¤3.1.

and motion cues. From framet $ 1 to frame t the es-
timated maskM t ! 1 is propagated to framet, and the new
maskM t is computed as a function of the previous mask,
the new imageI t , and the optical ßowF t , i.e. M t =
f (I t , F t , M t ! 1). Since objects have a tendency to move
smoothly through space in time, there are little changes
from frame to frame and maskM t ! 1 can be seen as a rough
estimate ofM t . Thus we require our trained convnet to
learn to reÞne rough masks into accurate masks. Fusing
the complementary imageI t and motionF t cues exploits
the information inherent to video and enables the model to
segment well both static and moving objects.

Note that this approach is incremental, does a single for-
ward pass over the video, and keeps no explicit model of the
object appearance at framet. We also consider adapting the
modelf per video, using the annotated Þrst frameI 0, M 0.

First frame. In the video object tracking task the mask for
the Þrst frameM 0 is given. This is the standard protocol of
the benchmarks considered in Section5.

RGB image I . Typically a semantic labeller generates
pixel-wise labels based on the input image (e.g.M =
g(I )). We use an augmented semantic labeller with an in-
put layer modiÞed to accept 4 channels (RGB + previous
mask) so as to generate outputs based on the previous mask
estimate, e.g.M t = f I (I t , M t ! 1). Our approach is gen-
eral and can leverage any existing semantic labelling archi-
tecture. We select the DeepLabv2 architecture with VGG
base network [2], which is comparable to [8, 1, 9]; Fusion-
Seg[7] uses ResNet.

Optical ßow F . We use ßow in two complementary ways.
First, to obtain a better estimate ofM t we warpM t ! 1 us-
ing the ßowF t : M t = f I (I t , w(M t ! 1, F t )) . Second, we
use ßow as a direct source of information about the mask
M t . As can be seen in Figure2, when the object is moving



relative to background, the ßow magnitude#Ft # provides
a very reasonable estimate of the maskM t . We thus con-
sider using convnet speciÞcally for mask estimation from
ßow: M t = f F (F t , w(M t ! 1, F t )) , and merge it with the
image-only version by naive averaging

M t = 0 .5 áf I (I t , . . .) + 0 .5 áf F (F t , . . .) . (1)

We use the state-of-the-art optical ßow method
FlowNet2.0 [6], which itself is a convnet that computes
F t = h (I t ! 1, I t ).

In our experimentsf I and f F are trained independ-
ently. Our two stream architecture is illustrated in Figure
3a. We also explored expanding our network to accept 5
input channels (RGB + previous mask + ßow magnitude)
in one stream:M t = f I + F (I t , F t , w(M t ! 1, F t )) , but
did not observe much difference in the performance com-
pared to naive averaging. Our one stream architecture is
illustrated in Figure3b.

Multiple objects. The proposed framework can be exten-
ded to multiple object tracking. Instead of one additional
channel for the previous frame mask we provide masks
for each object in a separate channel, expanding the net-
work to accept3 + N input channels (RGB +N object
masks): M t = f I

!
I t , w(M 1

t ! 1, F t ), ... , w(M N
t ! 1, F t )

"
,

whereN is the number of objects.
For multiple object tracking task we employ

one-stream architecture for the experiments and
also explore using optical ßowF and semantic
segmentation S as additional input channels:
M t = f I + F + S

!
I t , F t , St , w(M 1

t ! 1, F t ), ... , w(M N
t ! 1, F t )

"
.

This allows to leverage the appearance model with semantic
priors and motion information.

We use the state-of-the-art semantic segmentation
method PSPNet [23], which itself is a convnet that com-
putesSt = h (I t ).

We additionally experiment with ensembles of
different variants, that allows to make the system
more robust to the challenges inherent in videos.
For our main results for multiple object track-
ing task we consider the ensemble of four models:
M t = 0.25áf I + F + S + 0 .25áf I + F + 0 .25áf I + S + 0 .25áf I ,
where we merge the outputs of the models by naive
averaging. See Section6 for more details.

Post-processing.As a Þnal stage of our pipeline, we reÞne
the generated maskM t using DenseCRF [10] per frame.
This adjusts small image details that the network might not
have captured. It is known by practitioners that DenseCRF
is quite sensitive to its parameters and can easily worsen
results. We will use our lucid dreams to handle per-dataset
CRF-tuning too, see Section3.2.

We refer to our full system asLucidTracker , and as
LucidTracker ! when no post-processing is used.

3.2. Training modalities

Multiple modalities are available to train a tracker.
Training-free approaches (e.g. BVS[12]) are fully hand-
crafted systems with hand-tuned parameters, and thus do
not require training data. They can be used as-is over differ-
ent datasets. Supervised methods can also be trained to gen-
erate adataset-agnosticmodel that can be applied over dif-
ferent datasets. Instead of using a Þxed model for all cases,
it is also possible to obtain specializedper-datasetmodels,
either via self-supervision [22] or by using the Þrst frame
annotation of each video in the dataset as training/tuning
set. Finally, inspired by traditional tracking techniques, we
also consider adapting the model weights to the speciÞc
video at hand, thus obtainingper-video models. Section5
reports results over these four training modalities (training-
free, dataset-agnostic, per-dataset, and per-video).

Our LucidTracker obtains best results when Þrst pre-
trained on ImageNet, then trained per-dataset using all data
from Þrst frame annotations together, and Þnally Þne-tuned
per-video for each evaluated sequence.

Training details. Models using pre-training are initialized
with weights trained for image classiÞcation on ImageNet
[19]. We then train per-dataset for 40k iterations. Mod-
els without ImageNet pre-training are initialized using the
ÒXavierÓ strategy [3]. The per-dataset training needs to be
longer, using 100k iterations. For per-video Þne-tuning 2k
iterations are used forf I .

4. Lucid data dreaming

To train the functionf one would think of using ground
truth data forM t ! 1 andM t (like [1]), however such data is
expensive to annotate.[1] thus trains on a set of30 videos
(! 2k frames) and requires the model to transfer across
multiple tests sets.[9] side-steps the need for consecutive
frames by generating synthetic masksM t ! 1 from a large
saliency dataset of! 10k images with their corresponding
maskM t . We propose a new data generation strategy to
reach better results using only! 100training frames.

Ideally training data should be as similar as possible to
the test data, even subtle differences may affect quality. To
ensure our training data is in-domain, we propose to gener-
ate it by synthesizing samples from the provided annotated
Þrst frame in each target video. This is akin to Òlucid dream-
ingÓ as we intentionally ÒdreamÓ the desired data, by creat-
ing images that are plausible hypothetical future frames of
the video. The outcome of this process is a large set (2.5k
images) of frame pairs in the target domain with known op-
tical ßow and mask annotations, see Figure4.

Synthesis process.The target domain for a tracker is the
set of future frames of the given video. Traditional data
augmentation via small image perturbation is insufÞcient



(a) Original imageI 0 and mask annotationM 0

(b) Generated imageI ! ! 1

(c) Generated imageI !

(d) Generated ßow magnitude!F ! !

Figure 4: Lucid data dreaming examples.

to cover the expect variations across time, thus a task spe-
ciÞc strategy is needed. Across the video the tracked ob-
ject might change in illumination, deform, translate, be oc-
cluded, show different point of views, and evolve on top
of a dynamic background. All of these aspects need to
be captured when synthesizing future frames. We achieve
this by cutting-out the foreground object, in-painting the
background, perturbing both foreground and background,
and Þnally recomposing the scene. This process is applied
twice with randomly sampled transform parameters, result-
ing in a pair of frames (I ! ! 1, I ! ) with ground-truth pixel-
level mask annotations (M ! ! 1, M ! ), optical ßowF ! , and
occlusion regions, as the undergoing transformations are
known. The object position inI ! is uniformly sampled,
but the changes betweenI ! ! 1, I ! are kept small to mimic
the usual evolution between consecutive frames.
In more details, starting from an annotated image:
1. Illumination changes:we globally modify the image by
randomly altering saturation S and value V (from HSV col-
our space) viax" = aáxb+ c, wherea %1± 0.05, b %1± 0.3,
andc % ±0.07.
2. Fg/Bg split: the foreground object is removed from the
imageI 0 and a background image is created by inpainting
the cut-out area.
3. Object motion:we simulate motion and shape deform-
ations by applying global translation as well as afÞne and
non-rigid deformations to the foreground object. ForI ! ! 1

the object is placed at any location within the image with a
uniform distribution, and inI ! with a translation of± 10%
of the object size relative to! $ 1. In both frames we apply
random rotation± 30#, scaling± 15%and thin-plate splines
deformations of± 10%of the object size.
4. Camera motion:We additionally transform the back-
ground using afÞne deformations to simulate camera view
changes. We apply here random translation, rotation, and

Method
# training Flow Dataset, mIoU
images F DAVIS YoutbObjs SegTrckv2

MP-Net [20] ~22.5k 69.7 - -
FusionSeg [7] ~95k 71.5 67.9 -

BVS [12] 0 66.5 59.7 58.4
ObjFlow [21] 0 71.1 70.1 67.5

VPN [8] ~2.3k 75.0 - -
OSVOS [1] ~2.3k 79.8 72.5 65.4

MaskTrack [9] ~11k 80.3 72.6 70.3

LucidTracker 24~126 84.8 76.2 77.6

Table 1: Results across three datasets. See ¤5.2.

scaling within the same ranges as for the foreground object.
5. Fg/Bg merge: Þnally (I ! ! 1, I ! ) are composed by
blending the perturbed foreground with the perturbed back-
ground using Poisson matting. Using the known transform-
ation parameters we also synthesize ground-truth pixel-
level mask annotations (M ! ! 1, M ! ) and optical ßowF ! .
Figure4 shows example results. Albeit our approach does
not capture appearance changes due to point of view, nor
shadows, we see that already this rough modelling is effect-
ive to train our tracking models.

The same data synthesis strategy can be employed for
multiple object tracking. Instead of manipulating one object
we handle multiple objects at the same time, applying dif-
ferent transformations to each of them. In addition we also
model partial and full occlusions between objects, mimick-
ing plausible interactions of objects in the future frames.

5. Single object tracking

We present here results for single object tracking task:
given a Þrst frame labelled with the object mask, the goal is
to Þnd the corresponding object pixels in future frames.

5.1. Experimental setup

We evaluate our method on three video object segment-
ation datasets: DAVIS [15], YouTubeObjects [17], and
SegTrackv2 [11]. These datasets provide diverse challenges
with a mix of HD and low-res web videos, single or mul-
tiple salient objects per video, videos with ßocks of similar
looking instances, as well as the usual tracking challenges.

To measure the accuracy we use the mean intersection-
over-union overlap (mIoU) between the ground truth and
the predicted segmentation, averaged across all sequences.

5.2. Key results

Table1 presents our main result and compares it to pre-
vious work. Our full system,LucidTracker , provides
the best tracking quality across three datasets while being
trained on each dataset using only one frame per video
(50 frames for DAVIS,126 for YouTubeObjects,24 for
SegTrackv2), which is20" ! 100" less than the top com-
peting methods. Ours is the Þrst method to reach>
75mIoU on all three datasets.
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Figure 5: LucidTracker results. Frames sampled along the video duration (e.g.50%: video middle point).

Variant
ImgNet

pre-train.

per-dataset

training

per-video

Þne-tun.

Dataset, mIoU

DAVIS YoutbObjs SegTrckv2

LucidTracker! 83.7 76.2 76.8
(no ImgNet) 82.0 74.3 71.2
No per-video

tuning
82.7 72.3 71.9
78.4 69.7 68.2

Only per-
-video tuning

79.4 - 70.4
80.5 - 66.8

Table 2: Ablation study. Even with one frame annotation
for only per-video tuning we obtain good results. See ¤5.3.

Compared to ßow propagation methods such as BVS,
ObjFlow, we obtain better results as we build per-video a
stronger appearance model of the tracked object (embod-
ied in the Þne-tuned model). Compared to convnet learning
methods such as VPN, OSVOS, MaskTrack, we require sig-
niÞcantly less training data, yet obtain better results.
Conclusion. We show that less training data does not ne-
cessarily lead to poorer results and report the best known
results for this task while using24! 126training frames.

5.3. Ablation study

Table2 compares the effect of different ingredients in the
LucidTracker ! training. Results are obtained using RGB
and ßow, with warping, no CRF;M t = f (I t , w(M t ! 1 , F t )) .

We see that ImageNet pre-training does provide2 !
5 percent point improvement (e.g.82.0 & 83.7 mIoU
on DAVIS). Per-video Þne-tuning (after doing per-dataset
training) provides an additional1 ! 2 percent point gain
(e.g.82.7& 83.7 mIoU on DAVIS).

In the bottom row ("only per-video tuning"), the model
is trained per-video without ImageNet pre-training nor per-
dataset training, i.e. using asingle annotated training
frame. Even with such minimal amount of training data,
we still obtain a surprisingly good performance (compare
80.5 on DAVIS to others in Table1). This shows how ef-
fective is, by itself, the proposed training strategy based on
lucid dreaming of the data.
Conclusion. Both ImageNet pre-training and per-video
tuning of the models provide complementary gains over the
default per-dataset training. Per-video training by itself,
despite using a single annotated frame, provides already
much of the needed information for the tracking task.

Method
test-dev set

global mean

voigtlaender (5) 56.5
lalalaÞne123 (4) 57.4

wangzhe (3) 57.7
lixx (2) 66.1

LucidTracker (1) 66.6

(a) Results on test-dev set.

Method
test-challenge set

global mean

voigtlaender (5) 57.7
haamooon (4) 61.5
vantam299 (3) 63.8

LucidTracker (2) 67.8
lixx (1) 69.9

(b) Results on test-challenge set.

Table 3: DAVIS 2017 challenge results.

6. Multiple object tracking

We present here an empirical evaluation of LucidTracker
for multiple object tracking task: given a Þrst frame labelled
with the masks of several object instances, one aims is to
Þnd the corresponding masks of objects in future frames.

6.1. Experimental setup

For multiple object tracking we experiment on DAVIS
2017 [16]. This is a larger, more challenging dataset, where
the video sequences have multiple objects in the scene. We
evaluate our method on two test sets, the test-dev and test-
challenge sets, each consists of30new videos.

To measure the accuracy of multiple object tracking we
use the region (J) and boundary (F) measures [16]. As an
overall measure the average of the J and F measures over all
object instances is used.

6.2. Key results

Tables3aand3bpresents the results of the 2017 DAVIS
Challenge on test-dev and test-challenge sets [16].

Our main results are obtained via an ensemble of four
different models. All models are initialized with weights
trained for image classiÞcation on ImageNet and then tuned
per-video.LucidTracker provides the best tracking qual-
ity on the test-dev set and shows competitive performance
on the test-challenge set. The full system is trained using
only one annotated frame per video,30 frames overall.

Conclusion. We show that top results for multiple object
tracking can be achieved using only the available annotation
of the Þrst frame for training.



Variant I F S ensembleCRF tuning

DAVIS 2017

test-dev

global mean mIoU mF

LucidTracker

(ensemble)

66.6 63.4 69.9
65.2 61.5 69.0
64.2 60.1 68.3

I + F + S 62.0 57.7 62.2
I + F 61.3 56.8 65.8
I + S 61.1 56.9 65.3

I 59.8 63.1 63.9

Table 4: Ablation study. DAVIS 2017, test-dev set.

6.3. Ablation study

In Table4 we explore in more details how the different
ingredients contribute to our results.

We see that adding extra channels to the system, either
optical ßow magnitude or semantic segmentation, or both
provides1! 2 percent point improvement.

Combining in ensemble four different models
(f I + F + S + f I + F + f I + S + f I ) enhances the res-
ults, bringing3 percent point gain. CRF-tuning allows to
further improve the results (65.2& 66.6 mIoU).

Conclusion. The results show that both ßow and semantic
priors provide a complementary signal to RGB image only.
Despite its simplicity our ensemble strategy provides addi-
tional gain and leads to competitive results.

7. Conclusion

We have described a new convnet-based approach for
pixel-level object tracking in videos. In contrast to previ-
ous work, we show that top results for single and multiple
object tracking can be achieved without requiring external
training datasets (neither annotated images nor videos). Our
experiments indicate that it is not always beneÞcial to use
additional training data, synthesizing training samples close
to the test domain is more effective than adding more train-
ing samples from related domains.

Showing that training a convnet for object tracking can
be done with only few (! 100) training samples changes the
mindset regarding how much general "objectness" know-
ledge is required to approach this problem [9, 7], and more
broadly how much training data is required to train large
convnets depending on the task at hand.

We hope these new results will fuel the ongoing evolu-
tion of convnet techniques for pixel-level object tracking.
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