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Convolutional networks reach top quality in pixel-level N : !1., '!
object tracking but require a large amount of training data g , A
(1k! 10k) to deliver such results. We propose a new train- Tk /\«;\6\“() W ~ E'
ing strategy which achieves state-of-the-art results across g N . |
three evaluation datasets while usigg'! 100" less an- -
notated data than competing methods. Our approach is LucidTracker

suitable for both for single and multiple object tracking.

Instead of using large training sets hoping to generalize
across domains, we generate in-domain training data using Object Tracking

the provided annotation on the brst frame of each video to Figyre 1: Starting from scarce annotations we synthesize in-

synthesize (Olucid dreaﬁ)_cpjlausible future video frames.  gomain data to train a specialized pixel-level object tracker.
In-domain per-video training data allows us to train high

quality appearance- and motion-based models, as well asniPcant annotation effort.

tune the post-processing stage. This approach allows to In this work we aim to reduce the necessity for such large
reach competitive results even when training from only volumes of training data. It is traditionally assumed that
a single annotated frame, without ImageNet pre-training. CONVNets requires large training sets to perform best. We
Our results indicate that using a larger training set is not Show that for video object tracking having a larger training
automatically better, and that for the tracking task a smal- Set is not automatically better and that improved results can
ler training set that is closer to the target domain is more be obtained by using0'! 100" less training data than
effective. This changes the mindset regarding how manyPrevious approaches,[9]. The main insight of our work is

training samples and general OobjectnessO knowledge aréhat for pixel-level object tracking using few training frames
required for the object tracking task. (1! 100 in the target domain is more useful than using

large training volumes across domaidk { 10k).

To ensure a sufbcient amount of training data close to the
target domain, we develop a new technique for synthesizing
training data tailored for the object tracking scenario. We

In the last years the beld of object tracking in videos has call this data generation strategyi€d dreaming, where
transitioned from bounding box] to pixel-level tracking the prst frame and its annotation mask are used to generate
[11, 17, 15]. Given a brst frame labelled with the object plausible future video frames. The goal is to produce a large
masks, one aims to bPnd the corresponding object pixels intraining set of reasonably realistic images which capture the
future frames. Tracking objects at the pixel level enables aexpected appearance variations in future video frames, and
Pner understanding of videos and is helpful for tasks suchthus is, by design, close to the target domain.

1. Introduction

as video editing, rotoscoping, and summarisation. Our approach is suitable for both for single and multiple
Top performing results are currently obtained using con- object tracking. Enabled by the proposed data generation
volutional networks (convnetsp] 1, 9, 5]. Like most deep  strategy and the efbcient use of optical Bow, we are able

learning techniques, convnets for pixel-level object tracking to achieve high quality results while using only 100
benebt from large amounts of training data. Current state-individual annotated training frames. Moreover, in the
of-the-art methods rely, for instance, on pixel accurate fore- extreme case with only a single annotated frame (zero
ground/background annotations!ofk video framegs, 1] pre-training), we still obtain competitive tracking results.
or! 10k images[9). Labelling videos at the pixel level is

a laborious task (compared e.g. to drawing bounding boxes

for detection), and creating a large training set requires sig-2. Related work

1n a lucid dream the sleeper is aware that he or she is dreaming and isPiXel-level tracking. In this paper we fOC_US on .generatin.g
sometimes able to control the course of the dream. a foreground versus background pixel-wise object labelling
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(a) Two stream architecture, where imdgeand optical Row informa-
tion!F ¢! are used to update mabk;: 1 into M. See equatiofi.
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(b) One stream architecture, where 5 input channels: irhageptical
Figure 2: Data Bow examplek;, F, My, 1 are the inputs, Bow information!F ! and maskM ¢, 1 are used to estimate makk; .
My is the resulting output. Figure 3: Overview of the proposed one stream and two

for video starting from a Prst manually annotated frame. stream architectures. Se@.&

Multiple strategies have been proposed to solve this task.

Mask propagation Appearance similarity and motion
smoothness across time is used to propagate the prst fra
annotation across the videdZ 21].

Video saliency: These methods extract the main fore-
ground object pixel-level space-time tupe, 7].

Convnets: Recently convnets have been proposed for
pixel-level tracking[1] trains a generic object saliency net-
work, and Pne-tunes it per-video to make the output sens-
itive to the specibc object instance being trackpd.uses
a similar strategy, but also feeds the mask from the previ-
ous frame as guidance for the saliency network. Firfally
mixes convnets with ideas of bilateral bltering.

Our network architecture is similar td,[9]. However,
we use a different strategy for trainingd:, ] rely on video

and motion cues. From frante$ 1 to framet the es-
mtémated maskVl¢, 1 is propagated to framg and the new
maskM is computed as a function of the previous mask,
the new imagd ¢, and the optical BowF;, i.e. M; =
f (¢, Ft, My 1). Since objects have a tendency to move
smoothly through space in time, there are little changes
from frame to frame and ma$i, ; can be seen as a rough
estimate ofM. Thus we require our trained convnet to
learn to rePne rough masks into accurate masks. Fusing
the complementary image and motionF; cues exploits
the information inherent to video and enables the model to
segment well both static and moving objects.

Note that this approach is incremental, does a single for-

ward pass over the video, and keeps no explicit model of the

training frames and9] uses an external saliency dataset, object appearance at frameWe also consider adapting the

while our approach focuses on using the brst frame annotaMOUel per video, using the annotated Prst fraige Mo.

tions provided with each targeted video benchmark without First frame. In the video object tracking task the mask for
relying on external annotations. the pbrst framéV ; is given. This is the standard protocol of

Synthetic data. Like in our approach, previous works have the benchmarks considered in Section

also explored synthesizing training data. Synthetic render-RGB image | . Typically a semantic labeller generates
ings [L9 and video games1f] have shown promise, but pixel-wise labels based on the input image (el =
require 3d models. Compositing real images provides mored (I )). We use an augmented semantic labeller with an in-
realistic results, e.g. for text localizatiori][ The closest  put layer modiPed to accept 4 channels (RGB + previous
work to ours is [4], which also generates video-specibc Mmask) so as to generate outputs based on the previous mask
training data using the Prst frame annotations. They use hu€stimate, e.gM = f, (I, My 1). Our approach is gen-
man skeleton annotations to improve pose estimation, whileeral and can leverage any existing semantic labelling archi-
we employ mask annotations to improve object tracking.  tecture. We select the DeepLabv2 architecture with VGG
base networkd], which is comparable to3 1, 9]; Fusion-
3. LucidTracker Seg[7] uses ResNet.

. Optical Bow F . We use Bow in two complementary ways.
3.1. Architecture First, to obtain a better estimate ®f; we warpMy, 1 us-
Approach. We model the pixel-level object tracking prob- ing the BowF:: M = f| (I, w(My, 1, F¢{)). Second, we
lem as a mask rebPnement task (mask: binary foregroundiuse Bow as a direct source of information about the mask
background labelling of the image) based on appearanceM;. As can be seen in Figuts when the object is moving



relative to background, the Bow magnitudE # provides  3.2. Training modalities
a very reasonable estimate of the masgk We thus con-
sider using convnet specibcally for mask estimation from
RBow: M = fr (F¢, w(My 1, Ft)), and merge it with the
image-only version by naive averaging

Multiple modalities are available to train a tracker.
Training-free approaches (e.g. BVB?]) are fully hand-
crafted systems with hand-tuned parameters, and thus do
not require training data. They can be used as-is over differ-

M; =0.54f (I(,..)+0.54 ¢ (Fi,...). 1) ent datasets. Supervi;ed methods can also b(_e trained tg gen-
erate alataset-agnostianodel that can be applied over dif-

We use the state-of-the-art optical Row method ferentdatasets. Instead of using a bxed model for all cases,
FlowNet2.0 [], which itself is a convnet that computes it iS also possible to obtain specializpdr-datasetmodels,
Fo=h(la ). either via self-supervision?f] or by using the prst frame

In our experiments, andfg are trained independ- ~annotation of each video in the dataset as training/tuning
ently. Our two stream architecture is illustrated in Figure Set. Finally, inspired by traditional tracking techniques, we
3a We also explored expanding our network to accept 5 &lS0 consider adapting the model weights to the specibc
input channels (RGB + previous mask + Row magnitude) video at hand, thus obtainimger-video models. Sectios
in one stream:M; = f,.¢ (I, Ft, W(My 1, Fy)), but reports results over these four training modalities (training-
did not observe much difference in the performance com- fré€, dataset-agnostic, per-dataset, and per-video).

pared to naive averaging. Our one stream architecture is Our LucidTracker obtains best results when brst pre-
illustrated in Figuresb. trained on ImageNet, then trained per-dataset using all data

from Prst frame annotations together, and Pnally bne-tuned

Multiple objects. The proposed framework can be exten—I per-video for each evaluated sequence.

ded to multiple object tracking. Instead of one additional

channel for the previous frame mask we provide masks Training details. Models using pre-training are initialized

for each object in a separate channel, expanding the netwith weights trained for image classibcation on ImageNet

work to accept3 + N input channels (RGB N object [19). We then train per-dataset for 40k iterations. Mod-

masks):M; = f; Iy, WM& 1, Fo), .., w(M) |, Fy) , els without ImageNet pre-training are initialized using the

whereN is the number of objects. OXavierO strategy][ The per-dataset training needs to be
For multiple object tracking task we employ longer, using 100Kk iterations. For per-video bne-tuning 2k

one-stream architecture for the experiments and iterations are used fdy .

also explore using optical RBowF and semantic

segmentation S as additional input channels: 4, Lucid data dreaming

Mt=f|+|:+s |t,Ft,St,W(MtJi l,Ft),...,W(Mt’\!ll,Ft) . . . . )

This allows to leverage the appearance model with semantic  To train the functiorf one would think of using ground

priors and motion information. truth data fOﬂ\At! 1 anth (|Ike [ ]), however such data is
We use the state-of-the-art semantic segmentation€Xpensive to annotat¢l] thus trains on a set &0 videos

method PSPNet’[], which itself is a convnet that com- (! 2k frames) and requires the model to transfer across

putesS; = h(l,). multiple tests sets[9] side-steps the need for consecutive
We additionally experiment with ensembles of frames by generating synthetic masis, ; from a large

different variants, that allows to make the system Saliency dataset df 10k images with their corresponding

more robust to the challenges inherent in videos. Ma@skM;. We propose a new data generation strategy to

For our main results for multiple object track- reach betterresults using orllylOOtraining frames.

ing task we consider the ensemble of four models: Ideally training data should be as similar as possible to

M=0.254, . r.s +0.254f ,.r +0.254 ,, s +0.254 , the test data, even subtle differences may affect quality. To
where we merge the outputs of the models by naive €nsure our training data is in-domain, we propose to gener-
averaging. See Sectighfor more details. ate it by synthesizing samples from the provided annotated

prst frame in each target video. This is akin to Olucid dream-
ingO as we intentionally OdreamO the desired data, by creat-

the generated madW; using DenseCRF1[] per frame. Lo . .
: . . : . ing images that are plausible hypothetical future frames of
This adjusts small image details that the network might not . . i
the video. The outcome of this process is a large 26k (

have captured. It is known by practitioners that DenseCRF. oo o
: . o . . images) of frame pairs in the target domain with known op-
is quite sensitive to its parameters and can easily worsen,. : .
. . tical Bow and mask annotations, see Figlire
results. We will use our lucid dreams to handle per-dataset
CRF-tuning too, see Sectich2 Synthesis processThe target domain for a tracker is the
We refer to our full system akucidTracker , and as set of future frames of the given video. Traditional data

LucidTracker ' when no post-processing is used. augmentation via small image perturbation is insufpcient

Post-processing.As a bnal stage of our pipeline, we rebne



# training Flow Dataset, mloU

Method images F |DAVIS YoutbObjs SegTrcko
MP-Net20] ~225k + | 69.7 - -
(a) Original imagd o and mask annotatioM o FusionSeg{] -95k v | 715 67.9 _
BVS [17] 0 X 1665 597 58.4
ObjFlow[21] 0 v | 711 701 67.5
VPN [9] ~23k X | 750 - -
OSVOS[] ~23k X |798 725 65.4
MaskTrackp] ~11k ¢ | 803  72.6 70.3
LucidTracker 24~126 v/ | 84.8 76.2 77.6

Table 1: Results across three datasets. Seg o

scaling within the same ranges as for the foreground object.
5. Fg/Bg merge: Pnally (., 1, 1) are composed by
blending the perturbed foreground with the perturbed back-
ground using Poisson matting. Using the known transform-
ation parameters we also synthesize ground-truth pixel-
level mask annotation®A; , 1, M, ) and optical RowF, .

Figure 4: Lucid data dreaming examples. Figure4 shows example results. Albeit our approach does

not capture appearance changes due to point of view, nor

to cover the expect variations across time, thus a task speshadows, we see that already this rough modelling is effect-
cibc strategy is needed. Across the video the tracked ob-ve to train our tracking models.
ject might change in illumination, deform, translate, be oc-  The same data synthesis strategy can be employed for
cluded, show different point of views, and evolve on top multiple object tracking. Instead of manipulating one object
of a dynamic background. All of these aspects need towe handle multiple objects at the same time, applying dif-
be captured when synthesizing future frames. We achieveferent transformations to each of them. In addition we also
this by cutting-out the foreground object, in-painting the model partial and full occlusions between objects, mimick-
background, perturbing both foreground and background,ing plausible interactions of objects in the future frames.
and Pnally recomposing the scene. This process is applied
twice with randomly sampled transform parameters, result- 5. Single object tracking
ing in a pair of framesl( 1, |1 ) with ground-truth pixel-
level mask annotationd\,, 1, M, ), optical BowF, , and
occlusion regions, as the undergoing transformations ar
known. The object position i, is uniformly sampled,
but the changee betweén, 1, |, are kept small to mimic g 1. Experimental setup
the usual evolution between consecutive frames.
In more details, starting from an annotated image: We evaluate our method on three video object segment-
1. lllumination changeswe globally modify the image by ~ ation datasets: DAVISI[J], YouTubeObjects 17], and
randomly altering saturation S and value V (from HSV col- SegTracl;, [11]. These datasets provide diverse challenges
our space) via' = a&P+ c, wherea %1+ 0.05, b %1+ 0.3, with a mix of HD and low-res web videos, single or mul-
andc % +0.07. tiple salient objects per video, videos with 3ocks of similar
2. Fg/Bg split: the foreground object is removed from the looking instances, as well as the usual tracking challenges.
imagel ¢ and a background image is created by inpainting To measure the accuracy we use the mean intersection-
the cut-out area. over-union overlap (mloU) between the ground truth and
3. Object motion:we simulate motion and shape deform- the predicted segmentation, averaged across all sequences.
ations by applying global translation as well as afbPne and
non-rigid deformations to the foreground object. For ;
the object is placed at any location within the image witha  Tablel presents our main result and compares it to pre-
uniform distribution, and i, with a translation oft 10% vious work. Our full systemlucidTracker , provides
of the object size relative to$ 1. In both frames we apply  the best tracking quality across three datasets while being
random rotatiort 307, scalingt+ 15%and thin-plate splines  trained on each dataset using only one frame per video
deformations o 10%of the object size. (50 frames for DAVIS, 126 for YouTubeObjects24 for
4. Camera motion:We additionally transform the back- SegTrack,), which is20'! 100" less than the top com-
ground using afPne deformations to simulate camera viewpeting methods. Ours is the Prst method to reach
changes. We apply here random translation, rotation, and75mloU on all three datasets.

(c) Generated |mage

(d) Generated Row magnitudie | !

We present here results for single object tracking task:
egiven a brst frame labelled with the object mask, the goal is
to bnd the corresponding object pixels in future frames.

5.2. Key results



1st frame, GT segment 20% 40% 60% 80% 100%

Figure 5: LucidTracker results. Frames sampled along the video duratio(&4gvideo middle point).

Variant ImgNet per-datasetper-video Dataset, mloU test-dev set test-challenge set
anan pre-train. training  Pne-tun.|DAVIS YoutbObjs SegTrcly Method — Method jrestehatenge
- - % 7 % 837 52 258 global mean global mean
L?ﬁ;d;:ailk;r) X v v 82.0 74'3 71'2 voigtlaender (5) 56.5 voigtlaender (5 57.7
g - . . . lalalabnel23 (4) 57.4 haamooon (4) 61.5
No per-video| v X |87 723 71.9
. wangzhe (3) 57.7 vantam299 (3) 63.8
tuning X v X |784 697 68.2 : .
oni / X / 5.4 =54 lixx (2) 66.1 LucidTracker (2 67.8
only per- ' i ' LucidTracker (1) 66.6 lixx (1) 69.9
-video tuning| X X v 80.5 - 66.8

(a) Results on test-dev set.  (b) Results on test-challenge set.

Table 2: Ablation study. Even with one frame annotation
Table 3: DAVIS 2017 challenge results.

for only per-video tuning we obtain good results. See r

Compared to Row propagation methods such as BvS,6. Multiple object tracking
3?3’;'0:;’ ;ve gak:rt;nc:ﬁs;(;?SolfjI:f]eafr;vci:duIl)db'peec;_\(lcladmego?i— We present here an empirical evaluation of LucidTracker
strong PP ) . for multiple object tracking task: given a brst frame labelled
ied in the Pne-tuned model). Compared to convnet learning

methods such as VPN, OSVOS, MaskTrack, we require sig-Wlth the masks of sgveral object m_stancgs, one aims Is to
. . . Pnd the corresponding masks of objects in future frames.
nibcantly less training data, yet obtain better results.

Conclusion. We show that less training data does not ne- g 1 Experimental setup
cessarily lead to poorer results and report the best known

results for this task while usingd! 126training frames. For multiple object tracking we experiment on DAVIS
) 2017 [L6]. This is a larger, more challenging dataset, where
5.3. Ablation study the video sequences have multiple objects in the scene. We

Table compares the effect of different ingredients in the evaluate our method on two test sets, the test-dev and test-
LucidTracker ' training. Results are obtained using RGB Cchallenge sets, each consists36iew videos.

and Row, with warping, no CRA=f (I,w(Mq 1,Ft)). To measure the accuracy of multiple object tracking we
We see that ImageNet pre-training does provile use the region (J) and boundary (F) measul&} [As an
5 percent point improvement (e.9g82.0 & 83.7 mloU overall measure the average of the J and F measures over all

on DAVIS). Per-video bne-tuning (after doing per-dataset object instances is used.
training) provides an additiondl! 2 percent point gain
(e.9.82.7& 83.7 mloU on DAVIS). 6.2. Key results

In the bottom row (“only per-video tuning’), the model  1apia5  and  presents the results of the 2017 DAVIS
is trained per-video without ImageNet pre-training nor per- Challenge on test-dev and test-challenge < [
dataset training, i.e. using single annotated training

frame Even with such minimal amount of training data,
we still obtain a surprisingly good performance (compare
80.5 on DAVIS to others in Table). This shows how ef-
fective is, by itself, the proposed training strategy based on
lucid dreaming of the data.

Our main results are obtained via an ensemble of four
different models. All models are initialized with weights
trained for image classibcation on ImageNet and then tuned
per-video.LucidTracker provides the best tracking qual-
ity on the test-dev set and shows competitive performance

i . . on the test-challenge set. The full system is trained using
Conclusion. Both ImageNet pre-training and per-video only one annotated frame per vid&f) frames overall.
tuning of the models provide complementary gains over the

default per-dataset training. Per-video training by itself, Conclusion. We show that top results for multiple object
despite using a single annotated frame, provides alreadytracking can be achieved using only the available annotation
much of the needed information for the tracking task. of the brst frame for training.



DAVIS 2017
Variant || F S |ensemblg¢CRF tuning test-dev
global mean mloU mF [3] X. Glorot and Y. Bengio. Understanding the difbculty of
_ S v 66.6 634 699 training deep feedforward neural networks. AISTATS
LucidTracker| -, /1 X 652 615 69.0 2010.
(ensemble) | /x| x X 64.2 60.1 68.3 [4] A. Gupta, A. Vedaldi, and A. Zisserman. Synthetic data for
l+F+s |V V/ V| X X 62.0 57.7 62.2 text localisation in natural images. GVPR 2016.
I +F XX X 61.3 56.8 65.8 [5] D. Held, S. Thrun, and S. Savarese. Learning to track at 100
l+s |V XV/| X X 611 56.9 65.3 fps with deep regression networks. BCCV, 2016.
' XXX X 59.8  63.1 63.9 [6] E. llg, N. Mayer, T. Saikia, M. Keuper, A. Dosovitskiy, and
Table 4: Ablation study. DAVIS 2017, test-dev set. T._ Brox. Flownet 2.0: Evolution of optical Row estimation
with deep networks. ICVPR 2017.
6.3. Ablation study [7] S D. Jain, B Xiong, and K. Grauman. Fusionseg: Learr_1-
ing to combine motion and appearance for fully automatic
In Table we explore in more details how the different segmention of generic objects in vide@sXiv:1701.05384
ingredients contribute to our results. 2017. ,

We see that adding extra channels to the system, either [8] V. Jampani, R. Gadde, and P. V. Gehler. Video propagation
optical Row magnitude or semantic segmentation, or both  networks.arXiv:1612.054782016. , _
providesl! 2 percent point improvement. [9] A. Khor_eva, F. Perazzi, R._ Ber_1enson,_ B. Schiele, a_nd

Combining in ensemble four different models A. Sorklr?e-_Hornung. L_earnlng video object segmentation
(fi.pos + f1.e + fi.s + f, ) enhances the res- from static images. larXiv:1612.026462016. , , , ,

ults. bringina3 percent point gain. CRE-tuning allows to [10] P. KrShenbYhl and V. Koltun. Efbcient inference in fully
S gings p P gain. 9 connected crfs with gaussian edge potentialNIPS 2011.
further improve the result$6.2& 66.6 mloU).

Conclusion. The results show that both Bow and semantic [11] F. Li, T. Kim, A. Humayun, D. Tsai, and J. M. Rehg. Video

priors provide a complementary signal to RGB image only. segmentation by tracking many Pgure-ground segments. In

Despite its simplicity our ensemble strategy provides addi- ICCV, 2013. ,

tional gain and leads to competitive results. [12] N. Maerki, F. Perazzi, O. Wang, and A. Sorkine-Hornung.
Bilateral space video segmentation.GWPR 2016. ,

7. Conclusion [13] N.Mayer, E.llg, P.HSusser, P.Fischer, D.Cremers,
A.Dosovitskiy, and T.Brox. A large dataset to train

We have described a new convnet-based approach for  convolutional networks for disparity, optical Row, and scene

pixel-level object tracking in videos. In contrast to previ- Row estimation. IlCVPR 2016.
ous work, we show that top results for single and multiple [14] D. Park and D. Ramanan. Articulated pose estimation with
object tracking can be achieved without requiring external tiny synthetic videos. '€VPR Workshop2015.

training datasets (neither annotated images nor videos). Oufld] F. Perazzi, J. Pont-Tuset, B. McWilliams, L. V. Gool,
experiments indicate that it is not always benebcial to use M. Gross, and A. Sorkine-Homung. A benchmark dataset
additional training data, synthesizing training samples close ?ng\%ﬂ“;é'fg methodology for video object segmentation.
to the test domain is more effective than adding more train- 4 = . i
. . . Pont-Tuset, F. Perazzi, S. Caelles, P. Arbeltez, A. Sorkine-
ing samples from related domains [16] J. Pont-T P S. Caelles, P. Arbeltez, A. Sork
- L ) . . Hornung, and L. Van Gool. The 2017 davis challenge on

Showmg that training a con\_/n.et for object tracking can video object segmentatioarXiv:1704.006752017.

be done with only few!( 100) training samples changes the 17]

g ) W ) A. Prest, C. Leistner, J. Civera, C. Schmid, and V. Fer-
mindset regarding how much general "objectness” know- rari. Learning object class detectors from weakly annotated

ledge is required to approach this probledn{], and more video. INCVPR 2012. ,
broadly how much training data is required to train large [18] S.R. Richter, V. Vineet, S. Roth, and V. Koltun. Playing for
convnets depending on the task at hand. data: Ground truth from computer gamesEGCV, 2016.

We hope these new results will fuel the ongoing evolu- [19] K. Simonyan and A. Zisserman. Very deep convolutional
tion of convnet techniques for pixel-level object tracking. networks for large-scale image recognition. IGLR, 2015.
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