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Abstract

Fefferman-Graham ambient construction can be formulated as sp(2)-algebra rela-

tions on three Hamiltonian constraint functions on ambient space. This formulation

admits a simple extension that leads to higher-spin fields, both conformal gauge fields

and usual massless fields on anti-de Sitter spacetime. For the bulk version of the

system, we study its possible on-shell version which is formally consistent and repro-

duces conformal higher-spin fields on the boundary. Interpretation of the proposed

on-shell version crucially depends on the choice of the functional class. Although the

choice leading to fully interacting higher-spin theory in the bulk is not known, we

demonstrate that the system has a vacuum solution describing general higher-spin flat

backgrounds. Moreover, we propose a functional class such that the system describes

propagation of higher-spin fields over any higher-spin flat background, reproducing

all the structures that determine the known nonlinear higher-spin equations.
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1 Introduction

The theory of higher-spin gravity is intimately tied to Anti de Sitter / Conformal Field theory

(AdS/CFT) correspondence [1–3] in the exotic regime of strong curvature / weak coupling [4–6].

Historically, the discovery of the deep relationship between AdS massless fields and elementary

fields living on the conformal boundary (aka “singletons”) by Flato and Fronsdal [7] anticipated

some ideas of AdS/CFT correspondence. Most presumably, both subjects (higher spins and

holography) still hold important insights worth exploring for their mutual benefit. Particular

examples where the connection between both subjects might deserve to be explored further are

the ambient construction of Fefferman and Graham and its relation to effective actions and

higher-spin gauge fields that we investigate in this work.

First of all, the Fefferman-Graham (FG) ambient construction1 is one of the most important

mathematical pillar sustaining the AdS/CFT correspondence since its very birth. In fact, it

was instrumental in the holographic prescription, see e.g. [2, 10, 11]. In its simplest version it

amounts to the flat ambient space approach [12, 13] whose underlying idea is to make conformal

and/or AdS symmetries manifest: conformal algebra acts on the projective hypercone, while

AdS algebra acts on the hyperboloid.

The FG construction can be understood as the curved generalization of the naive ambient

space approach. It can be used in several different ways: to study curved conformal geometry

with the tools of the Riemannian geometry by extending the conformal structure off the hyper-

cone; to study Einstein equations with cosmological constant on the hyperboloid in terms of the

Ricci flat ambient space geometry. Also, for odd bulk dimensions the conformal gravity equations

on the boundary arise as an obstruction to extending the conformal structure to the FG ambient

metric and can also be seen as arising from holographic Weyl anomaly [11]. In a similar way,

equations of motion/Lagrangians of conformal gauge fields arise as an obstruction/holographic

anomaly of the respective AdS gauge fields [11, 14–17].

Typically, it is assumed that in the FG construction the ambient metric is subject to Ricci

flatness condition. With this condition omitted the FG construction is equivalent to Hamiltonian

constraints: three functions on ambient phase space (with Poisson bracket {XA, PB} = δAB) that

obey the sp(2) algebra,2

{F+, F−} = F0 , {F0, F±} = ±2F± . (1.1)

and is referred to as “off-shell FG construction” in what follows. These three constraints have a

1The seminal paper is [8] but see e.g. [9] (and refs therein) for a comprehensive overview on the subject.
2The fact that there is a triplet of operators that forms sp(2) and it is closely related to the FG construction

was pointed out in [18] (see also [19–21]).
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specific form: they contain no more than two powers of momenta. More precisely, one constraint

is independent of the momenta, F−, one is linear, F0, and one is quadratic, F+. The constraints

can be shown to imply the existence of an ambient metric GAB(X) and a homothety vector

field (closely related to what is known as “compensator field” in physics literature) V A(X) that

satisfy the FG conditions, which can be summarized as the relation GAB = ∇AVB.

When the off-shell FG construction is realized as sp(2) constraints, a higher-spin (HS) ex-

tension is naturally obtained by allowing the constraints to be arbitrary functions on the phase

space.3 Since the HS extension is done in the ambient space, one can consider it either in

the vicinity of the (curved) hypercone V 2 = 0 or in the vicinity of the (curved) hyperboloid

V 2 = −1, which leads to two interpretations in terms of HS gauge fields on the conformal space

(the projectivization of the hypercone) and HS fields on the hyperboloid.

The formulations of HS fields based on the ambient space sp(2)-system have originally ap-

peared in the literature independently of FG ambient construction. In particular, in the context

of HS fields on AdS an sp(2)-system was proposed in [26] (see also [27, 28] for earlier impor-

tant contributions) where it was shown to describe off-shell HS fields upon linearizing over the

AdS vacuum solution. In the context of HS fields on the conformal space an sp(2)-system was

discussed in [19]. The same system describes [17, 29] the off-shell theory of conformal higher-

spin (CHS) fields [30–33] provided one subjects the system to certain extra algebraic gauge

symmetries.

CHS fields arise as natural sources for conserved higher-rank tensors, likewise the conformal

graviton is a source for the stress-tensor in a CFT. Infinite multiplets of CHS fields are sources for

HS currents that are present in free CFT’s [34–38]. When CHS fields are viewed as infinitesimal

sources, the effective action is simply a generating functional of the free CFT correlators. While

it is trivial to couple the free scalar field to an arbitrary gravitational background, a remarkable

fact [31] is that one can couple the free scalar field to an arbitrary CHS background as well,

i.e. to extend CHS fields beyond infinitesimal sources. This requires an intricate structure of

non-abelian symmetries that make the effective action of the free scalar field gauge-invariant on

an arbitrary CHS background. It is these gauge symmetries for the CHS sources that the sp(2)-

system describes, thereby encoding information about the effective action on any background.

Moreover, for even boundary dimension the effective action has a local log-divergent part: it is

the conformal gravity action if the background is gravitational and the action of CHS gravity if

a HS background is turned on [30–33].

On the hyperboloid, V 2 = −1, the same sp(2)-system describes off-shell nonlinear bulk HS

gauge fields. More precisely, the sp(2)-system linearized over the AdS background can be put

3The sp(2) algebra (or its extensions) plays a prominent role in the unfolded approach [22] to HS theory at
the nonlinear level [23–25], but within a rather different framework.
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on-shell, giving the ambient space description of the Fronsdal fields [39]. However, it is not clear

how to extend this beyond the free approximation: a natural suggestion to put the system on-

shell at higher orders is to introduce extra gauge symmetry factoring out the ideal generated by

the sp(2)-fields themselves. This extra gauge symmetry is precisely the one needed to describe

CHS fields on the boundary and can also be seen as a natural gauge symmetry of the constrained

system with constraints Fi, which is related to a redefinition of the constraints.4

On general grounds, putting the system on-shell by gauging away off-shell modes crucially

depends on the choice of the functional class. For instance, with naive but natural choice the

procedure yields an empty system. When formulated in such terms the problem seems to be

closely related to the issue of locality in field theory, more specifically in higher-spin theories.5

Indeed, the choice of a functional class controls the derivative expansion of interactions, which is

always strongly-coupled in higher-spin theories due to the dimensionless coupling constant and

unbounded number of derivatives starting from the quartic order, see e.g. discussion in [47].

Instrumental in investigating various properties of gauge theories (in particular the sp(2)-

system we are interested in) is the parent approach [48–51]. One of the advantages of the parent

approach in the context of the AdS/CFT correspondence is that one can jump directly between

bulk and boundary simply by changing the compensator field from timelike (V 2 = −1) to null

(V 2 = 0) [16, 17]. The parent equations of motion then rearrange themselves in accordance with

the representation structure of the AdS/conformal algebra.

In this work, with the help of the parent approach we demonstrate that the sp(2)-system

can be pushed one step further: the system has a class of exact solutions — higher-spin flat

backgrounds. We also show that one can put the HS fields on-shell over a HS-flat background,

which is not necessarily AdS and thereby probes interactions. More specifically, we propose a

suitable functional class in the auxiliary space of the parent formulation, which allows one to

put the system on-shell. The resulting equations have the correct form of a flatness condition

deformed by a two-cocycle of the HS algebra [52]. These are the data that completely determine

the Vasiliev equations [22, 25].

It has been known for decades that HS fields are hard to make propagate consistently on

anything but constant curvature backgrounds [53]. Nevertheless, we observe that special back-

grounds, those given by flat connections of HS algebras, allow for propagation of HS fields. The

flatness condition is hard to interpret from the vantage point of Fronsdal fields [54]. It is worth

4A somewhat similar factorization procedure is employed in the Vasiliev system [25] in general space-time
dimension. Precisely this gauge symmetry and its constrained system interpretation was proposed in [28].

5The degree of non-locality was quantified in [40–42] by reconstructing the quartic vertex, which revealed that
the vertex is highly non-local. It should always be possible to manufacture interactions in AdS that would give
the expected CFT correlation functions [40, 43–46], but it is unclear how to fix such interactions in the bulk
without having to invoke the AdS/CFT argument, which is due to a high degree of non-locality [41, 42], the
problem being similar to that in flat spacetime.
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mentioning that HS-flat backgrounds were shown to describe rich physics of HS black holes in

three-dimensions, see e.g. [55] and references therein/thereon.

The outline of the paper is as follows. In section 2, we discuss the off-shell FG construction

and show that it is equivalent to the sp(2) constraints (with some details delegated to appendix

A.4). In section 3, we review and discuss the on-shell FG construction. In section 4, a HS

extension is proposed and it is discussed how it is related to the known HS systems. In section

5, we show that the HS extension can describe fluctuations of massless HS fields over any HS-flat

background. Conclusions and discussion are in section 6.

2 Off-shell Fefferman-Graham Theory

By “off-shell gravity” in d + 1 dimensions, we understand a gauge theory whose fields are the

components of the metric tensor gµν (µ, ν = 0, 1, . . . , d), which is assumed invertible and only6

subject to the usual gauge transformations (infinitesimal diffeomorphisms):

δξgµν = Lξgµν := ξρ∂ρgµν + ∂µξ
ρgρν + ∂νξ

ρgµρ , (2.1)

where ξµ are the components of a gauge parameter which is assumed unconstrained.

Similarly one defines “off-shell conformal gravity” in d dimensions via an invertible metric

tensor gab (a, b = 0, 1, . . . , d − 1) by introducing the extra gauge transformations (infinitesimal

Weyl transformations):

δξ, ωgab = Lξgab + 2ω gab , (2.2)

where ξa and ω are, respectively, parameters of the infinitesimal diffeomorphisms and Weyl

transformations.

The “off-shell FG theory” defined in (d + 2)-dimensional ambient space (see Appendix A

for historical overview and technical details) parameterized by the coordinates XA requires

two ingredients: a nondegenerate ambient metric GAB (A,B = 0, 0′, 1, . . . , d) and a nowhere-

vanishing homothety vector field V A that are assumed to obey

LVGAB = 2GAB , ∂AVB − ∂BVA = 0 , (2.3)

from which it follows that VA = ∂A(V
2/2) and GAB = ∇AVB. The fields GAB and VA are subject

to usual diffeomorphisms as gauge transformations.

Equivalently, as is shown in appendix A.4, the same relations can be defined in terms of three

totally symmetric polyvector fields of rank 2, 1 and 0 : GAB(X), V A(X), and F (X) defined on

6i.e. it is “off-shell” in the sense that the fields are not subject to field equations.
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the (d + 2)-dimensional ambient space. The equations of motion can be reformulated as the

sp(2) algebra relations:

{F+, F−} = F0 , {F0, F±} = ±2F± , (2.4)

where

F+(X,P ) =
1

2
GAB(X)PAPB , F0(X,P ) = V A(X)PA , F−(X,P ) = F (X) , (2.5)

i.e. we encoded the tensor fields in the three generating functions Fi (i = +,−, 0) using extra

variables PA which are ambient momenta, conjugate to the coordinates XA. The Poisson bracket

{ , } is defined by {
XB, PA

}
= δBA . (2.6)

The gauge symmetries in the FG ambient theory are given by

δξFi = {ξ, Fi} , (2.7)

where ξ = ξA(X)PA is the generating function of the gauge parameters. It is clear that these

gauge transformations are nothing but infinitesimal diffeomorphisms of the ambient space. At

the same time, these are particular canonical transformations of the phase space X,P .

As explained in appendix A.4, when GAB is nondegenerate (and can thus be seen as the

inverse of a metric GAB), it follows from the three equations (2.4) on the three functions (2.5)

that

F (X) = −
1

2
GAB(X)V A(X)V B(X) (2.8)

and

∇AV
B = δBA , (2.9)

where ∇ is the Levi-Civita connection of the ambient metric GAB(X).

The off-shell FG theory in d+2 dimensions is equivalent to off-shell gravity in d+1 dimensions

provided one disregards the direction along V A(x) as a genuine spacetime dimension. Other way

around, any metric gµν in d+1 dimensions can be lifted to an ambient metric GAB and homothety

vector field V A defined on the (d+ 2)-dimensional ambient space such that the original space is

a “curved hyperboloid” determined by GABV
AV B = −1, while the original metric is a pullback

of GAB to this level surface.
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3 On-shell Fefferman-Graham Theory

We begin with the sp(2) system, i.e. (2.4) and (2.7):

{Fi , Fj} = Ck
ijFk , δǫFi = {ǫ, Fi} , (3.1)

which we write in a compact way using sp(2) structure constants Ck
ij . Following [8], let us impose

an extra condition on the ambient metric entering F±:

RAB = 0 , (3.2)

i.e. one requires the ambient metric GAB to be Ricci flat. The system (3.1)-(3.2) defines “on-

shell FG theory”. More precisely, the ambient system should be understood within a certain

expansion scheme, called the FG expansion.

There are two interpretations of the on-shell FG theory in d+ 2 dimensions:

• This system is equivalent to on-shell gravity in d + 1 dimensions with a nonvanishing

cosmological constant (in other words the metric gµν is Einstein). The spacetime manifold

can be identified with the curved hyperboloid V 2 = −1;

• This system describes conformal gravity in d dimensions. For d odd it is off-shell, while

for d even it is on-shell, the field equations resulting from the conformal anomaly.7 The

spacetime manifold can be identified with the projectivization of the curved hypercone

V 2 = 0;

There is another way to describe off-shell conformal gravity by introducing in place of (3.2)

the following gauge equivalence8

GAB ∼ GAB + λGAB + λ(AVB) + λAB V 2 , (3.3)

where λ, λA and λAB are gauge parameters. The parameter λ is related to the usual Weyl

symmetry while λA and λAB implement the equivalence relation up to components along the

homothety vector field and up to terms vanishing on the null-cone V 2 = 0.9 Both interpretations

7For d even, in the original FG approach the Ricci flatness was imposed only up to a certain power of the
defining function so that the conformal gravity was always off-shell. Another point of view is to require Ricci
flatness at all orders which results in conformal gravity equations. Note that in this case the system also describes
subleading solutions.

8A version of this description was proposed in [17, 29].
9Note that this formulation (more precisely, its parent version) of off-shell conformal gravity gives a manifestly

so(d, 2)-covariant description of the respective jet-space and BRST complex employed [56, 57] in classifying
conformal invariants.
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of the system (3.1)-(3.2) as well the system (3.1), (3.3) have simple toy model counterparts in

the context of the scalar field in ambient space, described in Appendix C.

The condition (3.2) of Ricci flatness on the ambient metric in the FG construction can be

understood as a gauge-fixing condition for the arbitrariness (3.3) in the extension of the metric

from the projective null cone to the whole ambient space. This gives a field-theoretic explanation

of the relation between the two equivalent ambient descriptions of off-shell conformal gravity.

One can even try to exploit the relation even further and to interpret the ambient system

(3.1), (3.3) as defining a field theory on the curved hyperboloid V 2 = −1. We postpone detailed

discussion of this approach till section 5.2 and only mention that there is a simple example

illustrating this idea. Consider the following ambient system:

(V A∂A +∆)Φ = 0 , Φ ∼ Φ + V 2λ , (3.4)

where Φ is a scalar field on ambient space. Interpret this system as defining a scalar field on

the curved hyperboloid V 2 = −1 rather than on the projective hypercone V 2 = 0. In so doing

one can try to assume Φ harmonic by adding terms proportional to V 2, i.e. try to pick a

representative which obeys ∇2Φ = 0. Of course, this is a subtle procedure and for it to work

properly one needs to be careful with functional issues.

To complete the discussion of the gauge equivalence (3.3) let us note that (3.3) can be

compactly written in terms of the generating functions Fi :

F+ ∼ F+ + λF+ + λAPA F0 +
1

2
λABPAPB F− . (3.5)

In this form it is clear that this equivalence corresponds to the usual equivalence of constrained

systems related to an infinitesimal redefinition of the constraints. This system (more precisely,

its BRST extension) was considered in [28, 29] in the context of AdS HS gauge theory.

4 Higher-spin Extension of Fefferman-Graham Theory

A bold guess for a HS extension of the FG construction is to remove the restriction on Fi to

contain no more than two powers of ambient momentum PA:

F+(X,P ) = Φ(X) + ΦA(X)PA +
1

2
GAB(X)PAPB + ΦABC(X)PAPBPC + . . . ,

F0(X,P ) = V (X) + V A(X)PA +
1

2
V AB(X)PAPB + . . . ,

F−(X,P ) = G̃(X) + G̃A(X)PA + . . . ,

(4.1)
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where the dots denote possible terms of higher order in the momenta. Moreover, one should

require GAB(X) and V A(X) to remain, respectively, nondegenerate and nowhere vanishing. This

requirement, or the choice of a particular vacuum, will break the apparent democracy between

the three constraints Fi(X,P ) even if one allows for arbitrary dependence on the momentum for

all the three constraints.

We assume that the equations of motion remain the same, which makes the system consistent

with an arbitrary gravitational background (i.e. GAB and V C):

{Fi, Fj} = Ck
ijFk . (4.2)

Here Ck
ij are sp(2) structure constants. The gauge symmetries are

δǫFi = {ǫ, Fi} . (4.3)

In what follows we analyze this system and relate it to other formulations of HS gauge fields.

As we are going to show, the same system with the Poisson bracket replaced with the Weyl star-

commutator is more appropriate in the context of HS fields. Although the above system has

something to do with both conformal HS fields in d dimensions and HS fields in d+1 dimensions,

here we are mostly interested in the (d+ 1)-dimensional interpretation.

The full system (4.2), (4.3) with Fi as in (4.1) is known in the literature in various versions

(see e.g. [27, 28]). In the context of HS fields in d + 1 dimensions, precisely this system was

proposed in [26] where it was proved to describe off-shell HS fields upon linearizing over the AdS

background solution. Note also that a version of this system with two generators fixed and F+

involving higher powers in P was also suggested in [19] to describe HS fields in d dimensions.

4.1 Off-shell Higher-spin Fields on Gravitational Backgrounds

Suppose we are given a triplet of ambient functions F 0
+(X,P ), F 0

0 (X,P ), F 0
−(X,P ) that are

of degree 2, 1, 0 in PA, respectively, and whose Poisson brackets satisfy the algebra sp(2). We

assume that F 0
+(X,P ) defines a nondegenerate metric and F 0

0 (X,P ) defines a nowhere-vanishing

vector field. Then, as was mentioned before, it follows that they are of the form (2.5) with the

scalar field F (X) given by (2.8) and the vector field V A(X) satisfying ∇AV
B = δAB.

As was shown by Fefferman and Graham, at least locally any metric gµν in d+1 dimensions

can be lifted to an ambient metric GAB defined on the (d+ 2)-dimensional ambient space such

that the original spacetime is a “curved hyperboloid” determined by GABV
AV B = −1, while

the original metric gµν is a pullback of GAB to this surface.

We are going to interpret Fi = F 0
i as a background solution of the full HS system, where

9



only gravitational fields are nonvanishing. In order to see that the full system indeed describes

HS fields, let us consider its linearization around Fi = F 0
i . The linearized equations and gauge

symmetries read: {
fi, F

0
j

}
+
{
F 0
i , fj

}
= Ck

ijfk , δǫfi =
{
ǫ, F 0

i

}
, (4.4)

where fi is a perturbation. In more detail, for the gauge transformations of f0 and f− one gets

δǫf0 =
{
ǫ, F 0

0

}
= (V ·D − P · ∂P )ǫ , δǫf− =

{
ǫ, F 0

−

}
= (V · ∂P )ǫ , (4.5)

where DM denotes the covariant derivative acting on generating functions: DM = ∂
∂XM +

ΓK
MNPK

∂
∂PN

(see also Appendix B). Since V A is nowhere vanishing, this implies that the gauge

f− = f0 = 0 is reachable. Indeed, by picking a suitable coordinate system one can always assume

that the homothety vector field reads V A ∂
∂XA = ∂

∂ρ
, where ρ is one of the coordinates. In such

a coordinate system it is clear that using suitable ǫ one can set both f− and f0 to zero.

Although the above argument applies to the linearized system, it extends in a usual way to

the nonlinear level provided one restricts oneself to solutions which are “sufficiently close” to

F 0
i . For such solutions, the two remaining sp(2) relations involving the perturbation f+ (not

necessarily small) imply:

(P · ∂P − V ·D − 2)f+ = 0 , (V · ∂P )f+ = 0 , (4.6)

where F+ = F 0
++f+. While the first equation uniquely determines f+ in terms of its value on the

level surface V 2 = constant, the second one implies that f+ does not depend on the components

of P along V . Finally, such f+ are in one-to-one correspondence with totally symmetric tensor

fields on the level surface V 2 = constant.

Similarly, in the gauge F0 = F 0
0 and F− = F 0

− the residual gauge symmetries read as

δǫf+ = {ǫ, F+} = (P ·D)ǫ+ {ǫ, f+} , with (V · ∂P )ǫ = 0 , (P · ∂P − V ·D)ǫ = 0 .

The global reducibility parameters ǫ0 for the linearized symmetries in (4.4) are described by the

sp(2) centralizer equations {ǫ0, F
0
i } = 0 which read more explicitly:

(P ·D)ǫ0 = (P · ∂P − V ·D)ǫ0 = (V · ∂P )ǫ0 = 0 . (4.7)

These global symmetries (= global reducibility parameters) define an “off-shell HS algebra”,

by which we simply mean the sp(2) centralizer (4.7) above, canonically equipped with a Lie

algebra structure via the Poisson bracket. More invariantly, the off-shell HS algebra arises here

in a usual way (see e.g. [58] for more details) as an algebra of gauge transformations preserving
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a given vacuum solution. Its Lie bracket comes from the commutator of the respective gauge

transformations. In particular, for the flat vacuum V A = XA we get a version of the standard

off-shell HS algebra.

We comment more on various off-shell HS algebras below when the Poisson bracket is re-

placed by the star-product. It is worth stressing that the off-shell HS algebra is defined on any

gravitational background, but it is generically trivial. In fact, the system of equations (4.7)

describes totally symmetric Killing tensors in d+1 dimensions, which may not admit nontrivial

solutions on a generic background.

To summarize, the natural HS extension of the FG off-shell system provides an elegant

description of totally symmetric tensor gauge fields in d + 1-dimension subject to nonlinear

gauge symmetries in an arbitrary gravitational background.10

4.2 Poisson Bracket vs. Star-Product

If we are interested in the on-shell fields, then the construction of the previous section is not

entirely satisfactory. Moreover, even at the off-shell level the corresponding algebra of global

symmetries coincides with the familiar off-shell HS algebra as a linear space, but is a Lie algebra

with respect to the Poisson bracket, rather than the Weyl commutator as it should. This

suggests that the construction has to be modified by replacing the Poisson bracket with the

Weyl ⋆-commutator determined by

[XA, PB]⋆ = δAB . (4.8)

Another reason for considering the “quantum” version has to do with the interpretation of

the off-shell nonlinear system as describing background conformal HS fields in d dimensions to

which a scalar field can consistently couple (for more details, see e.g. [17, 31–33, 59, 60]). Note

that from this perspective the Poisson bracket version naturally corresponds to background fields

for the point particle. This in turn is a mechanical model whose wave function is the above scalar

field. The ⋆-product is crucial for the scalar field to couple to arbitrary HS background fields.

It arises directly as a quantization of the phase space {xa, pb} = δab where HS background fields

correspond to arbitrary functions f(x, p). The sp(2)-system provides an ambient space extension

of this construction [17, 28, 61].

Therefore, we pass to the ⋆-commutator instead of the Poisson bracket and the corresponding

10This does not contradict the usual no-go theorems (such as [53]) on the propagation of HS gauge fields in
generic gravitational backgrounds since here the tensor gauge fields are off-shell. For instance, at linearized level
the covariantization of Fronsdal gauge transformations is perfectly well defined. It is only its compatibility with
the field equations which is problematic.
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version of the basic system (4.2) reads as

[Fi, Fj ]⋆ = Ck
ijFk , δǫFi = [ǫ, Fi]⋆ . (4.9)

Note that if one restricts to the spin-two version of this sp(2)-system, then the same solution

(2.5), (2.8), (2.9) that satisfies the Poisson bracket version (3.1) also solves (4.9). This system of

operators plays an important role in the ambient description of scalar fields [18] (see also [62, 63]),

in particular for the singleton (see Appendix C).

Let us now restrict ourselves to the flat vacuum solution: GAB = ηAB, V A = XA. It is

easy to see that in this case F 0
i solves the above equations and hence gives a vacuum solution.

Linearizing the equations and the gauge symmetries around F 0
i one gets

[F 0
i , fj ]⋆ + [fi, F

0
j ]⋆ = Ck

ijfk δǫfi = [ǫ, F 0
i ]⋆ . (4.10)

It follows again that f0 and f− can be gauged away, resulting in the linearized system11

(X · ∂P )f+ = 0 , (P · ∂P −X · ∂X − 2)f+ = 0 ,

δǫf+ = [ǫ, F 0
+]⋆ = (P · ∂X)ǫ , (X · ∂P )ǫ = 0 , (P · ∂P −X · ∂X)ǫ = 0 .

(4.11)

To see the relation with Fronsdal fields, let us recall their ambient space formulation. In terms

of the generating function Φ(X,P ) =
∑

s
1
s!
ΦA1...As(X)PA1

. . . PAs
, the equations of motion and

gauge symmetries read as

(∂X · ∂X)Φ = (∂P · ∂X)Φ = (∂P · ∂P )Φ = 0 , δǫΦ = (P · ∂X)ǫ , (4.12)

(X · ∂X − P · ∂P + 2)Φ = (X · ∂P )Φ = 0 , (4.13)

which is equivalent to

(∇2 −m2
s)φµ1...µs

= ∇µφµµ2...µs
= φµ

µµ3...µs
= 0 , δǫφµ1...µs

= ∇(µ1
ǫµ2...µs) , (4.14)

in terms of the fields defined on the hyperboloid, where ms is the mass of spin-s Fronsdal field

on (A)dSd+1.

It is clear from (4.12) that, in order to put the linearized off-shell system (4.11) on-shell, one

11Note that had we linearized the system around general gravitational background the linearized gauge trans-
formations for a spin s-field would in general not only involve contributions from parameters of spin s − 1 but
also those with lower spin. This mixing can be traced back to nonlinear in X terms in F 0

+ involved in the
star-commutator with the parameter. It is similar to the analogous mixing observed [59] in the case of conformal
HS fields on the boundary and is consistent with the fact that CHS fields are boundary values of the bulk ones.
We are grateful to A. Tseytlin for discussion of this point.
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has to impose the equation of motion (∂X · ∂X)f+ = 0 (the remaining divergence and trace con-

straints arise automatically as consistency conditions). The above analysis of the system (4.9)

and its relation to Fronsdal fields has been originally performed in [26] using the parent formu-

lation technique.

To draw an analogy with the FG description of gravity note that (∂X · ∂X)f+ = 0 is a

linearized HS analogue of the Ricci flatness RAB = 0 condition. To find a nonlinear HS version

of the Ricci flatness remains a tantalizing open problem in the metric-like formulation. We

pursue a different approach in the next section.

5 Towards On-shell Higher-Spin Theory

The sp(2)-system captures off-shell backgrounds, both gravitational and HS ones. In the case of

gravity, the (d+1)-dimensional Einstein equations with cosmological constant result from Ricci

flatness in the (d + 2)-dimensional ambient space. A natural question is whether it is possible

to directly put the off-shell HS system (4.9) on-shell.

One possible way would be to find nonlinear corrections to the constraints in the first line of

(4.12). However, it is not clear which structures may control such deformation and in any case

in this way there is no obvious way to reconstruct the system nonperturbatively.

An alternative is to further exploit the analogy with constrained systems. The sp(2) relations

imposed on Fi can be interpreted as a condition that Fi are first-class constraints while gauge

transformations δǫFi = [ǫ, Fi]⋆ correspond to canonical transformations. The general first-class

condition (= closure of the algebra)

[Fi, Fj ]⋆ = Uk
ij ⋆ Fk (5.1)

is preserved by the following gauge transformations

δFi = λj
i ⋆ Fj , (5.2)

in addition to δǫFi = [ǫ, Fi]⋆. The transformations (5.2) correspond to infinitesimal redefinitions

of the constraints (at classical level such symmetries preserve the constraint surface). The sp(2)

system (4.9) can be seen as a partial gauge-fixing of the system (5.1)-(5.2).12

To explain what symmetries (5.2) can be useful for, let us consider the linearization of the

system about the flat vacuum solution F 0
i corresponding to GAB = ηAB and V A = XA, i.e.

12Strictly speaking one needs to prove that such gauge is reachable. Although this is easy to see at the linearized
level and hence this is also true for the field configurations that are sufficiently close to the vacuum, a general
statement is not known.
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F 0
+ = 1

2
P · P , F 0

0 = X · P and F 0
− = −1

2
X ·X . The linearization of (5.2) reads as

δfi = λj
i ⋆ F

0
j . (5.3)

At the formal level, these symmetries can be employed to make fi satisfy the constraints in the

first line of (4.12), i.e. (∂X · ∂X)fi = (∂P · ∂X)fi = (∂P · ∂P )fi = 0. For instance, in the space of

polynomials in X,P variables this is exactly the case.

As we have seen f0 and f− can be set to zero by the gauge symmetries δfi = [ǫ, F 0
i ]⋆ (for

i = 0 ,−). As a result, there is only one field left, f+. It satisfies (4.12)-(4.13) and hence

describes the Fronsdal system (4.14). The problem with this formal argument is that the space

of polynomials in X,P is not the one where one can set to zero f0, f− (since one somehow

has to “invert” the operators X · ∂P and X · ∂X − P · ∂P ). Moreover, it is not the functional

space relevant for describing field theory configurations. Other way around, the space (natural

from the field theory perspective) of polynomials in P and smooth functions in X defined in the

vicinity of X2 = −1 allows one to eliminate f0, f− but, in this space, the gauge transformations

(5.2) can be used to set to zero all the fields fi.

It turns out that one can nevertheless use this system to describe on-shell fields by reformu-

lating the system in parent form (see section 5.1) and requiring the fields to belong to a special

functional class.

A heuristic explanation for why the extended system (5.1)-(5.2) is capable of describing

on-shell HS gauge fields in the bulk employs boundary analysis. More precisely, the extended

system in the vicinity of the hypercone V 2 = 0 is known [17, 29] to describe off-shell conformal

HS gauge fields in d dimensions. In their turn, these off-shell conformal fields are boundary

values of the on-shell bulk fields in d + 1 dimensions. However, in the ambient approach bulk

fields and their boundary values are described by exactly the same ambient system, considered

either near V 2 = −1 or near V 2 = 0 (for more details see [16, 17]). This justifies that the above

extended system has something to do with on-shell bulk fields provided one considers it near

V 2 = −1.

To give the above considerations a precise meaning it is useful to reformulate the system using

the parent approach which has proved to be instrumental in analyzing boundary values [16, 17,

64].

5.1 Parent Reformulation

The system (4.9) can be equivalently reformulated in parent form. The underlying idea is to

put the constrained systems under consideration in an auxiliary space where genuine space-time

coordinates are replaced by formal variables, typically denoted by Y A, so that the equations
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of motion and gauge symmetries become purely algebraic. The space of fields on the auxiliary

space serve as a target of the parent system and can be seen as a version of the respective jet

bundle. The equivalence with the original formulation is maintained by imposing free differential

algebra relations and their associated gauge symmetries, on top of the auxiliary space version

of the original equations of motion and gauge symmetries. More details and references can be

found in [48–51].

In the case at hand the parent reformulation is constructed by first extending XA and PB with

additional variables Y A.13 Now XA are the usual space-time coordinate, while Y A and PB are

auxiliary variables needed to conveniently pack fields into generating functions. Note however,

that Weyl ⋆-product is now in the space of Y, P variables so that spacetime coordinates are not

explicitly involved. The field content consists of the original constraints Fi(X, Y, P ) and a new

field, the connection one-form A = dXBAB(X, Y, P ) associated to the original gauge parameter.

The fields Fi, A are interpreted as generating functions for the component fields identified as

the respective coefficients in the expansion over Y, P .

Due to the fact that the parent formulation contains an infinite number of fields the specifi-

cation of the functional class of Fi and A in the Y space is part of the definition of the system.

The minimal choice to begin with is that of formal power series in Y . With this choice the parent

formulation is equivalent to (4.9). Let us for definiteness and simplicity also restrict ourselves

to polynomials in P , so that we are dealing with polynomials in P with coefficients in formal

power series in Y .

The parent form of the sp(2) system, the equations of motion we are going to study, read [26]

dA−
1

2
[A,A]⋆ = 0 , dF − [A, F ]⋆ = 0 , [Fi, Fj ]⋆ − Ck

ijFk = 0 ,

δǫA = dǫ− [A, ǫ]⋆ , δǫFi = [ǫ, Fi]⋆ ,
(5.4)

where from now on [·, ·]⋆ denotes the Weyl ⋆-commutator (in the Y, P -space). The classical limit

where the star-product commutator is replaced by the Poisson bracket in the Y, P -space also

makes sense but, as we argued above, its interpretation from the effective action point of view

is unclear.

The above parent system (5.4) is background independent and can be considered on (d +

1)-dimensional manifolds. This can be done by pulling-back the system (5.4) to the curved

hyperboloid described by V 2 = −1. The advantage of the parent formulation is that V A is non-

dynamical and can be conveniently manipulated. In particular, in the resulting theory defined

on V 2 = −1 one can gauge fix V A such that V A is constant. Furthermore, in contrast to the

X,P -space of the previous sections, the auxiliary Y, P -space is flat and it is easier to impose

13 The geometric meaning is that Y A are coordinates on the fibres of the tangent bundle over the ambient
space.
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algebraic conditions in order to put the system on-shell.

There is a parent realization for the anti-de Sitter solution of the HS extension of the FG

construction, which reads: [26, 28]

F 0
+ = 1

2
P · P , F 0

0 = 1
2
{(V + Y )A, PA}⋆ , F 0

− = 1
2
(V + Y ) · (V + Y ) , (5.5)

A0 = ωA
B (V B + Y B)PA , (5.6)

where V A is constant, { , }⋆ denotes the ⋆-anticommutator and ω is a standard so(d, 2) flat

connection such that ∇µV
B has rank d + 1. Note that there are more general solutions where,

rather than (5.6), A0 is taken to be any flat connection taking values in the off-shell HS algebra,

i.e. dA0 −
1
2
[A0, A0]⋆ = 0 and [F 0

i , A
0]⋆ = 0, so that A0 is polynomial in Y . Note that although

it is easy to check that (5.5)-(5.6) is a solution by redefining variables Y A + V A → Y A, this

redefinition is not well-defined for formal power series in Y . In particular, the shift by V

crucially affects the content of the theory.

The gauge symmetries leaving the vacuum solution (5.5)–(5.6) intact,

dǫ0 − [A0, ǫ0]⋆ = 0 , [F 0
i , ǫ

0]⋆ = 0 , (5.7)

are 1 : 1 with the off-shell HS algebra defined as the algebra of elements ⋆-commuting with

all F 0
i ’s. In contrast to section 4.1, this off-shell HS algebra is not just a Lie algebra, but is

an associative one because the ⋆-product of two sp(2)-singlets is a singlet again. This off-shell

algebra is directly related to the symmetries of the conformal Laplacian described by Eastwood

[65], i.e. it has a two-sided ideal that can be quotiented out as to get the on-shell HS algebra.

Let us consider the linearization of the parent system around (5.5). The linearized fluctua-

tions may be required to be totally traceless in which case one finds an on-shell version. This is

analogous to imposing (∂X · ∂X)f+ = 0 in section 4.2. More precisely, it can be shown [26] that

requiring the linearized fluctuations of (5.4) to be in the kernel of ∂Y · ∂Y , ∂Y · ∂P , and ∂P · ∂P

results in the free Fronsdal equations. The problem is to extend this beyond the linearized ap-

proximation. For spin-two, the Ricci flatness provides a nonlinear completion of these equations

but its HS analogue is still missing.

5.2 Factorization

We can push the on-shell HS extension of the FG construction a bit further and get equations

that describe propagation of HS fields on any HS-flat background. Indeed, there is a formally

consistent factorization of the system by the ideal generated by Fi. The factorization is obtained
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by imposing the extra gauge symmetry:

δA = λi ⋆ Fi , δFi = λj
i ⋆ Fj , (5.8)

where λi, λi
j are gauge parameters, and requiring equations of motion to hold modulo terms

proportional to Fi. The full system of equations that is suitable for describing on-shell fields

together with gauge transformations is [29] (see also [28] for earlier versions)

dA−
1

2
[A,A]⋆ = ui ⋆ Fi , δA = dǫ− [A, ǫ]⋆ + λj ⋆ Fj , (5.9a)

dFi − [A, Fi]⋆ = uj
i ⋆ Fj , δFi = [ǫ, Fi]⋆ + λj

i ⋆ Fj , (5.9b)

[Fi, Fj]⋆ − Ck
ijFk = uk

ij ⋆ Fk . (5.9c)

Here u’s are non-dynamical fields that transform under ǫ, λj
i , λ

j in an obvious way. Note that

ui
jk are not unconstrained and have to obey the relations following from the Jacobi identities.

This system is a candidate for the on-shell HS-extended FG theory.

Now we are going to study the above system perturbatively over a HS-flat vacuum solution,

where Fi = F 0
i as in (5.5) while A0 is more general. To this end we introduce an appropriate

functional class that allows one to have gauge symmetry (5.8) without trivializing the solution

space and such that the off-shell HS algebra gets reduced to the correct on-shell HS algebra.

The functional class C is that of polynomials in P with coefficients that are formal power series

in Y .14 Having formal power series in Y is important for being able to gauge away fluctuations

of F−, F0. We also require that C is of finite trace order, i.e. for any f(Y, P ) ∈ C there exists an

ℓ ∈ N such that

(∂Y · ∂Y )
ℓf = 0 . (5.10)

Note that the space of functions of finite trace order is a module over polynomials in Y, P , i.e.

we can ⋆-multiply f(Y, P ) ∈ C by a polynomial p(Y, P ) and the result, f(Y, P ) ⋆ p(Y, P ), is still

in C. It then follows that any function in C can be decomposed as

f = f0 + f i
1 ⋆ F

0
i + f ij

2 ⋆ F 0
i ⋆ F 0

j + . . . , fn – totally traceless , (5.11)

such that the number of terms is finite. Having an element f decomposed as above, we define a

14It is important to distinguish C from the space of formal power series in Y with coefficients that are polyno-
mials in P .
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projector onto the traceless part:15

Πf = f0 . (5.12)

Now we can linearize the system and put it on-shell. As anticipated above, we take a slightly

more general vacuum, where A0 does not have to be just the flat connection (5.6) linear in P ,

describing AdSd+1. The nontrivial part of the vacuum equations reads

dA0 −
1

2
[A0, A0]⋆ = ui ⋆ F 0

i , (5.13a)

[A0, F 0
i ]⋆ = uj

i ⋆ F
0
j . (5.13b)

It follows that A0 is equivalent to a flat connection of the on-shell HS algebra. Indeed, the

on-shell HS algebra of Eastwood [65] can be defined within the present framework as follows:16

χ ∈ on-shell HS-algebra : [χ, F 0
i ]⋆ = 0 , χ ∼ χ+ λi ⋆ F 0

i , (5.14)

where χ, λi are in C. The sp(2)-singlet constraints solved for χ in C imply that χ is a polynomial

in Y .

Next, for A0 entering (5.13a)-(5.13b), we can use gauge symmetry (5.8) on the vacuum

solution

δA0 = λi ⋆ F 0
i , (5.15)

as to gauge away all traces and arrive at A0(Y, P ) satisfying ∂Y ·∂YA
0 = ∂Y ·∂PA

0 = ∂P ·∂PA
0 = 0

(i.e. A0 is a collection of traceless tensors in Y and P , or equivalently ΠA0 = A0). Then the

traceless part of (5.13a)-(5.13b) implies that A0 is a flat connection of the on-shell HS algebra:

dA0 =
1

2
Π
(
[A0, A0]⋆

)
. (5.16)

The gauge symmetries preserving the vacuum solution are determined by

dǫ0 = [A0, ǫ0]⋆ + λi ⋆ F 0
i , [F 0

i , ǫ
0]⋆ + λj

i ⋆ F
0
j = 0 . (5.17)

We can again decompose ǫ0 into the trace part that is proportional to F 0
i and the traceless part.

The trace part unambiguously fixes the λ’s, while the traceless part is covariantly constant with

respect to A0. Therefore, the global symmetry parameters are parameterized by the on-shell HS

15Note that the trace decomposition is defined with respect to F 0
−

= − 1

2
(Y + V ) · (Y + V ), F 0

0 = P · (Y + V ),
and F 0

+ = 1

2
P · P i.e. this is not the usual decomposition into traceless tensors f = f0 + Y · Y f1 + ... due to the

shift by V and due to the ⋆-product.
16An oscillator realization of this algebra was given in [25].
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algebra, as it should be.

Now we can study fluctuations over A0 and F 0
i and determine the general structure of the

equations. Let us expand

A = A0 + a , Fi = F 0
i + fi , (5.18)

where a and fi are assumed to belong to the functional class C. The linearized equations read

da− [A0, a]⋆ = ui ⋆ F 0
i , δa = dǫ− [A0, ǫ]⋆ + λi ⋆ F 0

i , (5.19a)

dfi − [A0, fi]⋆ − [a, F 0
i ]⋆ = uj

i ⋆ F
0
j , δfi = [ǫ, F 0

i ]⋆ + λj
i ⋆ F

0
j , (5.19b)

[F 0
i , fj]⋆ − (i ↔ j)− Ck

ijfk = uk
ij ⋆ F

0
k . (5.19c)

We choose Πa = a, Πfi = fi as a legitimate gauge condition. Just like in X,P -space the residual

gauge symmetry δfi = [ǫ, F 0
i ]⋆ can be employed to gauge away f0, f− in Y, P -space. The only

subtlety is that now both fi and ǫ are traceless and to see this one needs extra technique (see

[49] for details).

With f0, f− set to zero the equations for a, f+ imply

da = Π
(
[A0, a]⋆

)
, (5.20a)

df+ = Π
(
[A0, f+]⋆

)
+ (P · ∂Y )a , (5.20b)

(Y + V ) ·
∂

∂P
a =

(
P ·

∂

∂P
− (Y + V ) ·

∂

∂Y

)
a = 0 , (5.20c)

(Y + V ) ·
∂

∂P
f+ =

(
P ·

∂

∂P
− (Y + V ) ·

∂

∂Y
− 2

)
f+ = 0 . (5.20d)

Note that for A0 a flat so(d, 2)-connection, the Π projector is not needed and equations (5.20)

are known [49] to describe Fronsdal fields on AdS space.

The equations (5.20) can be reduced even further down to the unfolded form using a suitable

generalization of the reduction put forward in [49]. Indeed, the procedure is purely algebraic

and allows to eliminate all the components in f+ which are in the image of the operator P · ∂
∂Y

and all the components in a which are not in the kernel of P · ∂
∂Y

. The remaining fields f̄

and ā satisfy (5.20c), (5.20d) and are such that (P · ∂Y )ā = 0 and f̄ parametrizes the quotient

f+ ∼ f+ + (P · ∂Y )ǫ. The reduced equations have the following structure

dā = Π
(
[A0, ā]⋆

)
+ µ(A0, A0, f̄) ,

df̄ = Π
(
[A0, f̄ ]⋆

)
,

(5.21)

where µ(A0, A0, f̄) is a trilinear form.
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The structure of the equations (5.20) and (5.21) becomes more clear if one reformulates them

in terms of certain modules of the on-shell HS algebra. To this end let us consider the following

two modules:

M0 = {f ∈ C : [F 0
−, f ]⋆ = [F 0

0 , f ]⋆ = 0} , (5.22a)

M1 = {f ∈ C : [F 0
−, f ]⋆ = [F 0

0 , f ]⋆ − 2f = 0} . (5.22b)

Note that these are precisely the spaces (5.20c) and (5.20d) where a and f+ belong to. It is easy

to see that for any f ∈ M0,1 and B from the on-shell HS algebra (5.14), B ⋆ f and f ⋆ B belong

to f ∈ M0,1 so that f ∈ M0,1 are bimodules over the HS algebra seen as an associative algebra.

Furthermore, it is clear that the operator S† = [·, F 0
+]⋆ = P · ∂

∂Y
defines a map M0 → M1

and moreover S†(B ⋆ f) = B ⋆ (S†f) for any B in the HS algebra. It follows, that both

m0 ≡ ker S† ⊂ M0 and m1 ≡ coker S† ⊂ M1 (i.e. the quotient of M1 modulo ImS†) are also

modules of the HS algebra as an associative algebra.

In what follows we consider M0,1 and m0,1 as modules of the HS algebra seen as a Lie algebra,

with the action being:

ρ(B)f = [B, f ]⋆ (5.23)

In particular, M0,1 and m0,1 are modules over so(d, 2) which is a Lie subalgebra of the HS

algebra. It is now clear that equations (5.20) and (5.21) are, up to an extra term, nothing but

covariant-constancy conditions with respect to the HS algebra connection A0.

Strictly speaking the above construction applies to the off-shell version of the algebra and

modules. The on-shell version is obtained by requiring all the elements to be totally traceless

and applying the projector Π when necessary. The modules m0,1 of the on-shell HS algebra are

known in the literature as, respectively, the adjoint and the twisted-adjoint modules [22] (also

as, respectively, gauge and Weyl modules). The above realization of the modules originates

from [49] (see also [64]), where they were considered as so(d, 2)-modules only.

System (5.21) describes propagation of free HS fields, encoded in ā and f̄ , over a background

described by the flat connection A0 taking values in the on-shell HS algebra. The most nontrivial

part of the system comes from the term µ(A0, A0, f̄) which is trilinear in the fields and cannot

be reduced to a product in the HS algebra. In the next section, we explain that this is a

correct structure which is completely fixed by the HS algebra. Therefore, the parent form of

the HS extension of the FG construction solves an important problem of how to make HS fields

propagate on backgrounds that differ from pure AdS space. The derivation above was quite

abstract and we do not aim at deriving the explicit form of µ(A0, A0, f̄) (its free approximation

when A0 is an so(d, 2) connection was discussed many times, see e.g. [25, 49, 66]). This is due

to the fact that the explicit form of µ(A0, A0, f̄) can be changed by field redefinitions and it is
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difficult to compare with vertices in the usual weak-field expansion.

Let us discuss if the on-shell conditions entering the full system (5.9) considered over the flat

vacuum A0, F 0
i can be extended beyond the linear order. The general feature of the formulations

that are based on jet bundles is that the field space contains infinitely many auxiliary fields

that, as a consequence of equations of motion, encode derivatives of the fields of arbitrarily

high order. The advantage is that interaction terms can then be written in an algebraic form.

However, this does not come for free and non-linear expressions can easily contain infinitely

many derivatives and make locality properties obscure. This problem becomes visible when

nonlinearities are at least bilinear in fluctuations f̄ , i.e. are of order O(f̄ 2). This is due to

the fact that the HS algebra has a well-defined grading that is mapped to polynomial degree

in Y + V , P . Therefore, expressions of order O(āf̄) or O(āāf̄) are always local once we fix

the spins (i.e. homogeneity in P ) in ā and f̄ . However, expressions of order O(f̄ 2) can have

unbounded number of derivatives.17 Such non-localities arise at the quartic order in weak-field

expansion [40, 41], i.e. O(āf̄ 3) O(āāf̄ 2) in the parent formulation (5.9). In the framework offered

by the nonlinear system (5.9) understood perturbatively over the flat vacuum A0, F 0
i the locality

problem manifest itself in that the functional class C is not closed under star-multiplication.

Although this does not affect the linearized system (5.20), at higher orders either the functional

class or even the system itself has to be amended.

5.3 Relation to Unfolded Equations

The system (5.21) can also be understood as a specific free differential algebra [67–69], unfolded

equations [22] or AKSZ sigma model [70] associated to a certain target-space Q-manifold (see

also [71]). The underlying Q-manifold can be directly related to the deformation procedure that

is relevant for higher-spin theories [22]. Our aim is to show how (5.21) arises. The field content,

or the coordinates of the Q-manifold, consists of a connection of the on-shell HS algebra ω and

a zero-form C that takes values in the on-shell HS algebra as well. The deformation procedure

starts with the flatness condition for ω and a covariant constancy condition for C:

dω = ω ∗ ω , (5.24a)

dC = ω ∗ C − C ∗ π(ω) , (5.24b)

where the automorphism π is induced by an automorphism of so(d, 2) that flips the sign of

the transvection generators and leaves Lorentz generators intact. Note that in contrast to the

17Indeed, ā contains a finite number of derivatives per spin and f̄ contains derivatives of unbounded order.
Looking at the possible contribution of the interaction vertices to a given equation we see that infinite sums over
derivatives require at least two f̄ ’s on the right-hand-side.
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previous section ω and C take values in the on-shell HS algebra from the very beginning and

the associative product is denoted ∗. As we discussed in the previous section the twisted-adjoint

covariant constancy equation for C can be systematically derived from the parent system (5.20),

which in turn arises from the HS extended FG theory upon factorization.

System (5.24) involves a HS-flat background ω and a linear fluctuation C. When considered

over AdS background, given by ω belonging to the so(d, 2) subalgebra, the equation for C

describes a scalar field and s = 1, 2, 3, ... massless fields in terms of their gauge-invariant field

strengths contained in C: Faraday tensor, Weyl tensor and higher-spin generalizations thereof

[22].

The deformation procedure has C as an expansion parameter. Therefore, the first order

deformation of (5.24) involves a vertex that violates the flatness of ω:

dω = ω ∗ ω + V(ω, ω, C) +O(C2) , (5.25a)

dC = ω ∗ C − C ∗ π(ω) +O(C2) . (5.25b)

The consistency conditions on V follow from d d ≡ 0. The solution for V can be cast into the

form [52]18

V(ω, ω, C) = Φ(ω, ω) ∗ π(C) , (5.26)

where Φ(•, •) is a Hochschild two-cocycle of the higher-spin algebra in the twisted-adjoint rep-

resentation:

a ∗ Φ(b, c) + Φ(a ∗ b, c)− Φ(a, b ∗ c) + Φ(a, b) ∗ π(c) = 0 . (5.27)

The deformation does not stop at O(C2) order and higher orders are needed. For a large class

of algebras it can be shown [52, 72] that there are no obstructions at higher orders. Therefore,

any consistent system that has (5.25) as the order-O(C) approximation can be completed to a

solution to the full non-linear deformation problem. The conclusion is that the full nonlinear

system is determined by HS algebra, its twisted-adjoint module and the vertex V(ω, ω, C).

The system that describes fluctuations of HS fields over any HS-flat background is obtained

from (5.25) by taking any flat connection A0 and expanding the system ω → A0 + ω to the first

18A crucial assumption needed to reduce a complicated problem of Chevalley-Eilenberg cohomology of higher-
spin algebra to a much simpler problem of Hochschild cohomology is to assume that higher-spin theory should
allow for Yang-Mills gaugings u(M) for any M . This assumption is justified by AdS/CFT correspondence where
higher-spin theories are dual to free CFT’s and it is always possible to take a number of free fields as to have
u(M) (times higher-spin algebra) as a global symmetry on the CFT side and hence HS algebra tensored with
matrices is a gauge symmetry on the AdS side. Having this matrix factor allows one to reduce the problem [52]
to the Hochschild cohomology.
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order in C and ω:

dA0 = A0 ∗ A0 , (5.28a)

dω = A0 ∗ ω + ω ∗ A0 + V(A0, A0, C) , (5.28b)

dC = A0 ∗ C − C ∗ π(A0) . (5.28c)

These equations are fully consistent, gauge invariant and do not require any higher order cor-

rections. They can be identified with the equations (5.16), (5.21) obtained as a linearization of

the HS-extension of the FG-construction (5.9).

To sum up, we observe that all the structures governing HS theories within the unfolded

approach are already present in the linearization over a HS-flat background. In its turn this

system and the respective structures can be extracted from the nonlinear system (5.9), which in

turn can be related to the HS-extension of the FG construction. Equations (5.16), (5.21) from

the previous section are exactly of this form. Fluctuations over a HS-flat background seems to

be the farthest one can get without facing the locality problem in this approach.

6 Conclusions and Discussion

In this work we have shown that the sp(2)-constraints on the ambient phase space are equivalent

to the off-shell Fefferman-Graham theory, if the three constraints are of degree 0, 1, 2 in the

momentum. The HS extension then follows by letting the three constraints to have arbitrary

powers of momenta. The HS extended sp(2)-system has already been studied in the past,

both in the context of bulk HS theories [26] (see also [27, 28]) and conformal HS fields on the

boundary [17, 19, 29].

It is more convenient to analyze the equations after reformulating the system in parent

form, i.e. by moving the ambient space-time to the fiber and introducing an extra gauge field

associated with ambient diffeomorphisms. In so doing the original space time coordinates XA

are promoted to the components of the compensator field V A. In particular, the bulk theory

can now be formulated in terms of intrinsic geometry of AdS space by pulling back the ambient

parent system to d+ 1 dimensions and setting V 2 = −1.

Although it was known that the linearized parent formulation of sp(2)-system can be put

on-shell by supplementing the system with extra conditions, thereby giving rise to the infinite

multiplet of on-shell Fronsdal fields, it was not clear how to implement this beyond the linearized

approximation over the AdS vacuum. In this work, we propose a procedure that allows to go one

step further such approximation. More precisely, we consider a factorized version of the parent

sp(2)-system. Although with the simplest functional class the system is empty when considered
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over AdS background, we have succeeded to find another functional class (in auxiliary space)

such that the modified system admits HS-flat vacuum solution and the respective linearized

system is nonempty and properly describes propagation of HS fields over a HS-flat background.

Even though the extension to higher orders still remains an open problem, this linearized system

already contains all the structures determining the Vasiliev equations.

It has been known for many years that free massless HS fields cannot be put on nontrivial

gravitational backgrounds as it leads to breakdown of gauge invariance. However, HS gauge

fields can propagate on nontrivial backgrounds that have other higher-spin gauge fields turned

on — backgrounds described by a flat connection of a HS algebra.19 The resulting equations

have a clear algebraic meaning of flatness condition deformed by a Hochschild two-cocycle of the

relevant HS algebra. This probes the structure of interactions, even though it is hard to directly

make a link to the vertices in the weak field expansion over anti-de Sitter space.

It can be argued [52] that, at least within the formal deformation procedure, a HS algebra

and its Hochschild cocycle determine the full non-linear completion so that the knowledge of

free fluctuations over sufficiently general backgrounds is enough to recover the full structure of

interactions. We showed that all this information is already present in the factorized version of

the parent sp(2)-system. The problem of putting the system on-shell at higher orders is clearly

related to the subtlety of higher-spin interactions in anti-de Sitter space: the interactions are

known to be non-local starting from the quartic order [40–42] and the precise characterization

of the appropriate functional class is not yet known.

The factorized version of the parent sp(2)-system employed in the paper also has a natural

interpretation in the context of CHS theories. Indeed, the same system considered on the bound-

ary, by setting V 2 = 0, describes nonlinear CHS fields at the off-shell level. More specifically, it

is equivalent (at least perturbatively) to the system from [31] underlying the nonlinear theory

of CHS fields.

It is not surprising that that the system describing off-shell conformal HS fields on the bound-

ary has something to do with on-shell HS fields in the bulk. Indeed, the former are the boundary

values of the later while in the ambient space formulation bulk fields and their boundary values

are typically described by one and the same ambient system considered, respectively, around the

hyperboloid and around the hypercone (see e.g. [17, 73] for a parent formulation). Therefore,

the parent sp(2)-system provides a direct link between the symmetries of the effective action of

the scalar field on CHS background and HS gravity in the bulk.

From this perspective, the approach advocated in this paper can be viewed as a purely

classical version of the holographic reconstruction (see e.g. [10, 40, 41] for somewhat related

19In three dimensions HS fields do not have propagating degrees of freedom but HS-flat backgrounds were
found to contain many interesting solutions, e.g. black holes and conical defects.
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approaches). Indeed, the candidate system describing nonlinear on-shell HS fields in the bulk is

obtained by pulling to the bulk the boundary system describing off-shell conformal fields. It is a

remarkable feature of the ambient space formulation that it does not only allows one to go from

bulk to boundary but also to reverse the procedure in order to reconstruct bulk theory from the

boundary values. Strictly speaking, to make it work one also employs the parent formulation as

to fine-tune the system by picking specific functional classes in the auxiliary space.

Possible generalizations and extensions of the above construction involve a number of cases:

theories of partially-massless higher-spin fields [17, 29, 74], which result from the same sp(2)-

system but making use of GJMS operators [18] for the higher-order singleton and a slightly

different factorization procedure [29, 75]. It would be also interesting to consider other algebras of

constraints. For example, osp(1|2)-constraints should describe the yet-unknown Type-B theory

that is dual to free massless fermions and Gross-Neveu model.
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A FG Ambient Construction as sp(2) Algebra of Con-

straints

A.1 Klein Flat Ambient Model

In modern conformal field theory and its holographic dual interpretation, a celebrated technique

for performing computations is the ambient formalism. Its principle goes back to Dirac’s cone

reformulation of conformal fields and their wave equations [13] corresponding to the case of flat

Lorentzian conformal geometry.

In turn, Dirac’s approach goes back to Klein’s model of flat Euclidean d-dimensional confor-

mal geometry, that is the round sphere Sd with conformal isometry algebra so(d + 1, 1). The

main idea of the ambient approach is to make conformal symmetry manifest via an embedding

of this geometry inside an “ambient” (d+ 2)-dimensional Minkowski space Rd+1,1. The (d+ 1)-

dimensional upper null cone N ⊂ R
d+1,1, generated by light-like rays through the origin, plays a

crucial role. The conformal sphere Sd is realized as the projective future light-cone PN := N/R+
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(with R+ the multiplicative group of positive real numbers) inside the (d+1)-dimensional pro-

jective ambient space PRd+1,1 := Rd+1,1/R+. The interior of the projective future light-cone

PN ⊂ PRd+1,1 is a (d+1)-dimensional hyperbolic ball Hd+1
∼= Bd+1, of which the d-dimensional

sphere Sd is the conformal boundary.

A.2 Fefferman-Graham Ambient Construction

In 1985, Fefferman and Graham generalized the ambient construction of Klein to curved confor-

mal geometry (of any signature) [8].

Conformal space: The basic data of conformal geometry is a manifold M and a conformal

metric [gab] on M , i.e. an equivalence class of Riemannian metrics for the equivalence relation

g̃ab = Ω2gab ∼ gab (A.1)

with Ω a nowhere vanishing function on M (which we will assume strictly positive Ω > 0).

Example: In the case of flat Euclidean conformal geometry, M = Sd and gab is the standard

metric of the unit sphere (which is conformally flat since the flat metric δab belongs to the same

equivalence class [gab]).

Metric bundle: The first step in the construction of Fefferman and Graham is the introduction

of a principal R+-bundle N over M , whose fiber at a point (of coordinates xa with a = 1, · · · , d)

is the collection of values at this point of all representatives g̃ab(x) = Ω2(x)gab(x) inside the

conformal class. The base manifold is recovered as the quotient M = N/R+. One may take

(xa, t) as local coordinates on N with t := Ω(x). This bundle is called the metric bundle because

its sections are the representatives g̃ab of the given conformal class [gab]. The fundamental vector

field of the principal R+-bundle N will be denoted v (= t∂t in local coordinates). The conformal

class [gab] of metrics defines a degenerate metric on N by pullback along the projection map

π : N → M ,

ds2N = t2 gab(x) dx
adxb . (A.2)

This metric is homogeneous of degree 2 under the action of R+ on N . However, this metric is

degenerate, it annihilates for instance the fundamental vector field v.

Example: In the case of flat Euclidean conformal geometry the metric bundle N , as it was

introduced, has the topology of a cylinder Sd × R+, which can be interpreted as an upper cone

(but it can be extended to a complete cone if we extend the range of values of t to all real

numbers). Together with its degenerate metric, it is indeed a null cone, as mentioned in the

section A.1.

Ambient space: The second step in the construction of Fefferman and Graham is to embed
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the (d+1)-dimensional manifold N inside a “slightly thicker” (d+2)-dimensional ambient space,

e.g. Ñ = N × I, where I ⊂ R is an open interval around zero. The natural extension to

Ñ of the fundamental vector field v on N is a vector field V on Ñ which one might call the

homothety vector field. A defining function ρ is a function on Ñ with homogeneity degree zero

under the homothety vector field V , and such that ρ = 0 but dρ 6= 0 on N . The ambient space

Ñ is endowed with local coordinates Y M = (xa, t, ρ) where ρ is a defining function. An ambient

metric GMN is a metric on ambient space Ñ such that:

• its signature has one more timelike and one more spacelike direction with respect to gab,

• it is homogeneous of degree two with respect to the homotheties: LVGMN = 2GMN ,

• it is an extension to Ñ of the degenerate metric (A.2) on N ,

• the one-form VM = GMNV
N is closed.

There exists a local choice of coordinates such that the ambient metric reads [9]

ds2
Ñ

= t2 gab(x) dx
adxb + 2 ρ dt2 + 2 t dt dρ (A.3)

and the vector field ∂/∂ρ is geodesic. The square of the homothety vector field is proportional to

the defining function ρ since, from (A.3), one has GMNV
MV N = t2ρ . Taking (A.3) into account

gives VMdY M = 2ρ t dt+ t2 dρ = d(t2ρ) in local coordinates.

Up to the well-known subtleties in the holographic reconstruction related to conformal anomalies,

the ambient metric is essentially uniquely specified (in an infinitesimally thick neighborhood

around N or, more precisely, as a formal power series in the variable ρ) if one further requires

GMN to be Ricci flat: RMN = 0.

Example: In the case of flat Euclidean conformal geometry, the ambient space is the Minkowski

spacetime Ñ = Rd+1,1 with ambient metric ηMN = diag(-1,+1,...,+1) in the Cartesian coordinates

XM with M = 0, 1, · · · , d + 1. The homothety vector field reads V = XM∂M and the metric

bundle N is embedded as the light-cone through the origin V 2 = 0 ⇔ ηMNX
MXN = 0. The

relation between the Cartesian coordinates XM and the FG coordinates Y M = (xa, t, ρ) is as

follows: Xa = t xa, X0 − Xd+1 = t and X0 + Xd+1 = t ( δabx
axb − 2ρ ) . In such case, ds2

Ñ
=

ηMNdX
MdXN reproduces (A.3) with gab = δab .

Bulk: The third step in the construction of Fefferman and Graham provided its holographic

interpretation, cherished by theoretical physicists. The bulk space is the (d+1)-dimensional

manifold M̃ := (Ñ − N)/R+. One may take (xm, ρ) as local coordinates on the bulk space M̃

which can be realized as the level hypersurface t2ρ = constant. It is endowed with a metric gµν
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which has [gab] as conformal class at conformal infinity (i.e. at ρ = 0). If the ambient metric

GMN is Ricci flat (RMN = 0), then the bulk metric is Einstein (Rµν = 1
d+1

Rgµν).

Example: In the case of flat Euclidean conformal geometry, to be more precise the (d + 2)-

dimensional ambient space is the interior future light-cone Ñ inside the Minkowski spacetime

Rd+1,1. Then the bulk space is the (d + 1)-dimensional hyperbolic space Hd+1 realized as one

sheet of a two-sheeted hyperboloid ηMNX
MXN = −1 of time-like vectors of constant square in

ambient space. This corresponds to the level hypersurface t2ρ = −1
2
in the FG coordinates. Up to

the change of coordinate z = 1/ t , this leads to the standard form ds2
M̃

= z−2 ( δab dx
adxb + dz2 )

of the hyperbolic space metric in Poincaré coordinates.

A.3 Properties of the Ambient Metric and of the Homothety Vector

Field

The two main ingredients of Fefferman-Graham construction are the ambient metric GAB and

the homothety vector field V A. They are closely related to each other due to the two following

properties:

(I) The ambient metric is of homogeneity degree two with respect to the homothety vector

field:

LVGAB = 2GAB . (A.4)

(II) The homothety one-form is closed:

∂[AVB] = 0 . (A.5)

In particular, the property (II) implies that, locally, VA = ∂Af . In particular, the homothety

vector field V A is hypersurface orthogonal to the level surfaces f = constant.

The properties (I) and (II) are equivalent to the following useful property:

(III) The ambient metric is equal to the covariant derivative of the homothety one-form:

GAB = ∇AVB = ∇BVA . (A.6)

Equivalently,

∇AV
B = δBA . (A.7)

Proof: While the relation (A.4) is equivalent to

∇AVB + ∇BVA = 2GAB , (A.8)
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the relation (A.5) is equivalent to ∇[AVB] = 0, i.e.

∇AVB − ∇BVA = 0 . (A.9)

Summing the equations (A.8) and (A.9) gives (A.6).

In turn, the property (III) implies the following corollary:

(IV) The homothety one-form is equal to half the gradient of the homothety vector field squared:

VA = ∂A

(V 2

2

)
. (A.10)

Proof: Contracting GAB = ∇AVB with V B gives the relation VA = V B∇AVB which implies

(A.10).

In particular, the homothety vector field is hypersurface orthogonal to the level surfaces V 2 =

constant.

A.4 Hypersurface Orthogonality and Homogeneity as sp(2) Algebra

Consider the cotangent bundle T ∗Ñ of the ambient space. Local coordinates on T ∗Ñ read

(XM , PN) and the canonical Poisson bracket on the algebra of functions on T ∗Ñ is such that

{XM , PN} = δMN . In the main text, we need the relation between the Fefferman-Graham ambient

construction and the sp(2) algebra of constraints.

Consider as data, three Hamiltonian constraints which are respectively quadratic, linear,

independent, of the momenta:

F+ =
1

2
PMPNG

MN(X) (A.11)

F0 = PMV M(X) (A.12)

F− = F (X) (A.13)

The first Hamiltonian constraint is quadratic in the momenta, thus its coefficients define a

covariant symmetric tensor GMN(X), which can be interpreted as an inverse metric if it is

nondegenerate. This fact will be called the nondegeneracy condition. The second Hamiltonian

constraint is linear in the momenta, thence its coefficients define a vector field V M(X). The

third Hamiltonian constraint is a scalar field F (X).

Proposition: Under the assumption of nondegeneracy, the property that the three functions
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(A.11)-(A.12) on the ambient phase space form the sp(2) algebra

{F+, F−} = F0 , {F0, F+} = +2F+ , {F0, F−} = − 2F− , (A.14)

under the Poisson bracket is equivalent to the fact that

• the scalar field is equal to F (X) = −1
2
V M(X)GMN(X) V N (X),

• the symmetric tensor field GMN(X) and the vector field V M(X) obey the properties (I)-

(IV).

Proof: Since h = P ·V (X) is linear in the momenta, the adjoint action of the constraint h via the

Poisson bracket is related to the Lie derivative along the homothety vector field, {h, ·} = −LV .

Therefore, the second relation in (2.5) is equivalent to the condition LVG
MN = − 2GMN ⇔

LVGMN = 2GMN , i.e. it is equivalent to (A.4). The first relation in (A.14) gives the relation

∂MF = −VM , i.e. it implies the property (II) in the section 2. Together with property (I),

it implies the properties (III)-(IV) of the section 2. In particular, the relation (A.10) implies

∂MF = − ∂M
(
V 2

2

)
. This leads to F (X) = C − 1

2
V M(X)GMN(X)V N(X), where C ∈ R an

arbitrary constant which is enforced to vanish by the third relation in (A.14). Then, the third

relation in (A.14) is equivalent to the homogeneity property LVGMN = 2GMN .

B Covariant Derivatives

Suppose we are given with the ambient metric gMN(X) and the compensator V M(X) such

that ∇MVN = GMN , where ∇ denotes the covariant derivative determined by the Levi-Civita

connection.

Introduce the covariant derivative acting on functions in X,P as follows:

DMf(X,P ) := ∂M + ΓR
MNPR

∂

∂PN

so that e.g.

DM(V NPN) = (∇MV N)PN .

It is easy to check that the Poisson bracket of functions in X,P can be written in terms of the

covariant derivative:

{F ,G} :=
∂F

∂XM

∂G

∂PM

−
∂F

∂PM

∂G

∂XM
= DMF

∂G

∂PM

−
∂F

∂PM

DMG .
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For instance, for the adjoint action of sp(2) generators we have:

{
V MPM , f

}
= (∂NV

M)PM

(
∂

∂PN

f
)
− V M∂Mf

= (∇NV
M)PM

(
∂

∂PN

f
)
− ΓM

NRV
RPM

(
∂

∂PN

f
)
− V M∂Mf

= (∇NV
M)PM

(
∂

∂PN

f
)
− V ADAf

=
(
PM

∂

∂PM

− V ADA

)
f . (B.1)

Similarly for the other generators.

C Off-shell vs On-shell, Boundary vs Bulk

The different physical interpretations of the FG ambient construction, mentioned in sections

2 and 3, can be illustrated in the simple case of a scalar field, which is an inspiring toy

model.20 This simple example is actually of interest on its own, since it corresponds to the

first-quantization of the sp(2) Hamiltonian constraints. To be more precise, we consider an

ambient scalar field in a background of off-shell FG theory.

Off-shell boundary scalar field. The null cone V 2(X) = 0 quotiented by the integral lines

of the vector field V = V A∂A is a d-dimensional conformal space. A scalar primary conformal

field of conformal weight ∆ on this d-dimensional conformal space can be lifted uniquely to a

scalar field on the null cone V 2 = 0 with homogeneity degree −∆. However, the latter does

not determine a unique scalar field Φ(X) in the vicinity of the null cone, but only up to the

following equivalence relation Φ ∼ Φ + V 2 λ . This can be summarized by saying that an off-

shell conformal scalar field in d dimensions is equivalently described by an ambient scalar field

obeying to the following set of one equation and one equivalence relation:

(V A∂A +∆)Φ(X) = 0 , Φ(X) ∼ Φ(X) + V 2(X) λ(X) . (C.1)

The consistency of the above equations amounts to the fact that the operators V A∂A and V 2

form a Lie algebra (the lower-triangular subalgebra of sp(2)).

Spin-two analogue: Off-shell conformal gravity determines the value of the ambient metric on

the null cone. The ambient metric in off-shell FG theory has homogeneity degree two and its

extension beyond the null cone is completely undetermined.

20For more details on the ambient formulation of the scalar field and its holographic interpretation (in the case
of the flat ambient space) see e.g. [16, 17].
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On-shell bulk scalar field. An on-shell scalar field on the d + 1 dimensional level manifold

V 2(X) = −1, i.e. a scalar field obeying to Klein-Gordon equation in the bulk, can be lifted

uniquely to a scalar field Φ(X) on the region V 2 < 0 of the ambient space. The lift is unique if

the scalar field is of fixed homogeneity degree, say −∆ ∈ R, along the homothety vector field V ,

i.e. LVΦ = −∆Φ . More precisely, the ambient scalar field obeys the following two equations:

(V A∂A +∆)Φ(X) = 0 , ∇2Φ(X) = 0 , (C.2)

where ∇2 = GAB∇A∇B is the Laplacian for the ambient metric. The consistency of the two

conditions in (C.2) can be checked by using ∇AV
B = δBA and its consequence RAB|CDV

D = 0 .

Moreover, these two operators form the upper-triangular subalgebra of sp(2).

When the scalar field Φ(X) admits a regular extension to the whole region V 2 6 0 of the

ambient space, then its restriction to the null cone V 2 = 0 corresponds to the asymptotic

boundary data of the on-shell bulk scalar field, with scaling behavior prescribed by ∆ (see e.g.

[16] for more details). To be more precise, two scaling behaviours are actually possible (∆+ = ∆

and ∆− = d − ∆), corresponding to the two branches of solutions of the bulk Klein-Gordon

equation.

Spin-two analogue: The Ricci flatness of the ambient metric is the analogue of the harmonicity

of the ambient scalar field, while Einstein equation with a cosmological constant of bulk gravity

is the analogue of Klein-Gordon equation of the bulk scalar field. The holographic reconstruction

of the (d + 1)-dimensional spacetime metric from the d-dimensional conformal boundary data

via the (d+ 2)-dimensional ambient space is the essence of FG construction.

On-shell boundary scalar field (aka singleton). For generic values of the conformal di-

mension ∆, the harmonicity ∇2Φ = 0 is incompatible with the gauge equivalence Φ ∼ Φ+V 2 λ .

In such cases, the harmonicity can be interpreted as a gauge-fixing condition for the gauge

equivalence. This can be summarized by saying that the off-shell boundary scalar field can

be equivalently described as the ambient scalar satisfying (C.1) or (C.2). However, when the

conformal dimension takes the value ∆ = (d− 2)/2 one can impose consistently

∇2Φ = 0 ,

(
V A∂A +

d− 2

2

)
Φ = 0 , Φ ∼ Φ+ V 2 λ . (C.3)

The consistency of the system follows from the fact that (as was originally observed in [18]) the

operators ∇2, V A∂A+ d+2
2
, V 2 form the algebra sp(2). Note that these operators can be thought

as first-quantized versions of the sp(2)-constraints F+, F0, F−.

Identifying an equivalence class determined by the second and the third relations in (C.3)
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with an off-shell boundary scalar field, the first equation imposes the Yamabe equation for this

conformal scalar field in d dimensions. Another interpretation of the same fact is that the first

two constraints describe the bulk Klein-Gordon equation with critical mass. Considered in the

vicinity of the boundary, the equivalence relation described by the third relation in (C.3) then

eliminates the subleading solutions. From this perspective, the Yamabe equation appears as

an obstruction in extending the unconstrained boundary value to an on-shell bulk field (or,

equivalently, as an obstruction in the near-boundary expansion of the on-shell bulk scalar field).

Spin-two analogue: Consider d = 4 for simplicity (but similar discussion holds for any even

d). The Bach tensor appears as an obstruction (related to the holographic anomaly) in the

FG expansion of bulk gravity in five dimensions. This obstruction is absent if and only if four-

dimensional conformal gravity is on-shell.
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