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Abstract Neurocognitive deficits are frequently observed

in patients with schizophrenia and major depressive

disorder (MDD). The relations between cognitive features

may be represented by neurocognitive graphs based on

cognitive features, modeled as Gaussian Markov random

fields. However, it is unclear whether it is possible to

differentiate between phenotypic patterns associated with

the differential diagnosis of schizophrenia and depression

using this neurocognitive graph approach. In this study, we

enrolled 215 first-episode patients with schizophrenia

(FES), 125 with MDD, and 237 demographically-matched

healthy controls (HCs). The cognitive performance of all

participants was evaluated using a battery of neurocogni-

tive tests. The graphical LASSO model was trained with a

one-vs-one scenario to learn the conditional independent

structure of neurocognitive features of each group. Partic-

ipants in the holdout dataset were classified into different

groups with the highest likelihood. A partial correlation

matrix was transformed from the graphical model to further

explore the neurocognitive graph for each group. The

classification approach identified the diagnostic class for

individuals with an average accuracy of 73.41% for FES vs

HC, 67.07% for MDD vs HC, and 59.48% for FES vs

MDD. Both of the neurocognitive graphs for FES and

MDD had more connections and higher node centrality

than those for HC. The neurocognitive graph for FES was

less sparse and had more connections than that for MDD.

Thus, neurocognitive graphs based on cognitive features

are promising for describing endophenotypes that may

discriminate schizophrenia from depression.
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Introduction

Neurocognitive deficits are frequently observed in individ-

uals diagnosed with schizophrenia or major depressive

disorder (MDD). Estimates indicate that approximately

half of patients with schizophrenia have comorbid depres-

sion [1]. Although the interpretation of such neurocognitive

endophenotypes has provided some evidence for the

identification of transdiagnostic processes between

schizophrenia and MDD [2], it remains unclear whether

intrinsic associations between these neurocognitive

endophenotypes (referred to as neurocognitive graphs)

can be used to differentiate between the two disorders.
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Analysis of this distinction, related to associations between

neurocognitive phenotypes, is highly relevant in the

context of the Research Domain Criteria project of NIMH

which focuses on ‘‘new ways of classifying psychiatric

diseases on multiple dimensions of biology and behavior’’

[3]. Using this approach to advance the appropriate

differential diagnosis for schizophrenia and MDD may

represent a significant step towards increasing the under-

standing and efficacy of treatment of both disorders [4].

Neurocognitive graphs, measured as Gaussian Markov

random fields by conditional independence structure, can

be built using the links between multiple cognitive features

corresponding to different cognitive functions (and their

associated brain structures). Characterizing the interactions

between multiple neurocognitive variables in this way can

provide new insights into understanding brain functions in

the context of these psychiatric disorders. From our current

perspective, neurocognitive functions arise from the inter-

actions within and between distributed brain areas operat-

ing in large-scale structural and functional networks [5],

and both schizophrenia and MDD are considered to be

disorders of brain network disorganization [6, 7]. From

these and other findings from neuroimaging studies, it is

plausible to assume that the neurocognitive graphs of

schizophrenia and MDD have specific characteristics

which may be discriminable from those of normal controls.

To the best of our knowledge, no studies have inves-

tigated neurocognitive graphs based on cognitive features

for individuals with schizophrenia and MDD in comparison

with healthy controls (HCs). In the present study, to

construct a neurocognitive graph for each group, a large

cohort of 577 participants completed a battery of neu-

rocognitive tests. Using the performance of individuals in

these tests as variables, we adopted the graphical Least

Absolute Shrinkage and Selection Operator (LASSO)

model to learn the conditional independent structure of

neurocognitive features of individuals with first-episode

schizophrenia (FES) or MDD. The conditional independent

structure of neurocognitive features was used to explore the

neurocognitive graph for each group.

Materials and Methods

Participants

Five hundred and seventy-seven participants were recruited

for this study: 215 with FES, 125 with MDD, and 237 HCs.

All groups were matched for age, gender, and educational

level (demographic characteristics in Table S1). All

participants were right-handed Han Chinese aged 16 to

50 years. Written informed consent was given by all

participants. The current study was approved by the Ethics

Committee of West China Hospital, Sichuan University, in

accordance with the Declaration of Helsinki.

Neuropsychological Assessments

General intelligence was estimated on initial assessment of

all participants using the short version of the Wechsler

Adult Intelligence Scale – Revised in China (WAIS-RC)

[8]: the seven subtests of the WAIS-RC comprised

information, arithmetic, digital symbol, digital span test,

block design, picture completion, and similarities.

Immediate and delayed logical memory were evaluated

with the Wechsler Memory Scale – Revised in China [9].

Lower raw scores represent poorer performance in logical

memory.

The computerized Cambridge Neurocognitive Test

Automated Battery (CANTAB- http://www.cambridgecog

nition.com), comprising a series of visuo-spatial tasks, is

accepted as predictive for psychosocial functioning in

individuals with schizophrenia and other mental disorders

[10, 11]. Seven CANTAB tests are thought to be sensitive

to frontal (including frontostriatal, frontotemporal, and

frontoparietal), cingulate, and temporal brain functions

[12]. CANTAB included the following: Big Circle/Little

Circle (BLC), Rapid Visual Information Processing (RVP),

Delayed Matching to Sample (DMS), Pattern Recognition

Memory (PRM), Spatial Working Memory (SWM),

Stockings of Cambridge (SOC), and Intra/extra Dimen-

sional Set Shift (IED). Variables of interest across tasks

included latency (reaction time), percent correct, errors,

trials completed, and strategy [13–15].

Processing speed during attention and task switching

were measured with the Trail Making Test, parts A (TMA)

and B-Modified. Scores were recorded as the total time

required to complete the task. Higher scores indicate poorer

performance [16].

Fifty-four features were specified for each participant.

Detailed measures and features are listed in Supplementary

Tables S2 and S3.

Gaussian Markov Random Fields and Graphical

LASSO

Here, we represented the association among different

features for each class of instance (HC, FES, and MDD)

using an undirected graphical model, where each feature

Xi 2 X = {X1, …, X54} corresponds to a node, and edges

collectively determine the conditional independence struc-

ture. Assuming these 54 selected features follow a multi-

variate Gaussian distribution, p X1; . . .;X54ð Þ�N l;Rð Þ, a
pair of featuresXi andXj are conditionally independent given

the other features Xi?XjjX � Xi;Xj

� �� �
only if the (i, j)
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entry in the inverse covariancematrix is zero (Rij
-1 = 0) [17].

Therefore, learning the structure of the graph, known as the

Gaussian Markov random field, reduces the problem of

inputting zero entries in the inverse covariance matrix R�1

(Fig. 1).

The graphical LASSO learner learns this sparse graphical

model by estimating the inverse covariance matrixR�1 using

an L1-norm penalty [18], from a dataset S ¼ S1; . . .;
�

Sng,
where each Sk ¼ xk1; . . .; x

k
54

� �
, k 2 1; . . .; nf g. In

general, the log-likelihood of a dataset S from a Gaussian

N(l, R) is:

L Sð Þ ¼ n

2
log R�1

�� ��� �
� tr

1

n
S� lð ÞT S� lð ÞR�1

� �
þ c

	 


ð1Þ

where det Xj j represents the determinant of the matrix X,

tr Xð Þ represents the trace of the matrix X, and c is a

constant term independent of the data. (Here ‘‘S� l’’
involves subtracting the mean from each participant.)

Graphical LASSO seeks the inverse covariance matrix that

maximizes the L1-penalized likelihood function,

max
R�1

log R�1
�� ��� �

� tr S� lð ÞT S� lð ÞR�1
� �

� k k R�1 k1

ð2Þ

which uses the L1-norm k M k1¼
P

i;j jMi;jj which is the

sum of the absolute values of the matrix entries, and k is a

regularization parameter that controls the degree of sparsity

in theR�1; a higher k value signifies increased regulariza-

tion and a sparser inverse covariance. (Here, the value of k
is determined in the internal cross-validation.)

The learning process uses the FES instances to learn the

parameters of a Gaussian distribution lFESð ;RFESÞ, where
lFES is the mean of the instances, and RFES (actually, RFES

-1 )

is based on the graphical LASSO learner; it similarly learns

the Gaussian parameters for MDD and HC.

The one-vs-one scenarios consist in fitting one

classifier per class pair and require to fit n_classes

* (n_classes - 1)/2 classifiers. At performance time, given

a novel instance Snew, its likelihood is computed based on

each of the two Gaussians in the one-vs-one scenarios, then

assign Snew to the class ynew that is most likely:

ynew ¼ argmaxkln R�1
k

�� ��� �
� Snew � lkð ÞTR�1

k Snew � lkð Þ
ð3Þ

where lk is the vector which contains the mean of each

feature in the dataset X.

Machine Learning Analysis

The overall approach of machine learning analysis

involved the following steps: (1) The data were cleaned

and normalized to the Z-scores. (2) To minimize the

potential for over-fitting, the dataset was randomly divided

into 70% for training the graphical model (training

dataset), and the remaining 30% subset was reserved for

testing (holdout dataset), balanced by class distribution. (3)

The graphical LASSO was applied to the training dataset

(using R package glasso) to learn the graphical structure

with the one-vs-one scenario for each group (FES vs HC,

MDD vs HC, and FES vs MDD). We considered k 2
0:01; 0:03; 0:1; 0:2; 0:3; 0:4; 0:5; 0:6; 0:7; 0:8; 0:9f g; and

selected the values with the highest five-fold cross-

validation accuracy over the training set. (4) Given the

graphic model, the likelihood of each instance was

computed in the holdout dataset belonging to each learned

model for FES, MDD, or HC (see Equation 3). (5) We ran

this process-steps (2), (3), and (4) – 30 times, based on

different splits of the data. See Fig. 2 for the data analysis

flowchart. The average of performance metrics (accuracy

and F1 score) over these 30 runs are reported. Supplemen-

tary material provides details of the performance metrics.

Partial Correlation Model

The partial correlation model was designed to quantify how

closely two nodes are connected with each other, consid-

ering the other nodes. This model represents the linear

correlation between two variables by removing the linear

effects of other nodes (see Equation (S3) in Supplementary

material). In this study, the partial correlation model was

computed on the whole dataset from each group of the one-

vs-one scenarios with the best k selected from the five-fold

cross-validation. Graphical models of FES vs HC were

based on k = 0.01, graphical models of MDD vs HC were

based on k = 0.03, and graphical models of FES vs MDD

were based on k = 0.01. All non-zero weight connections

in the neurocognitive graph were reported and used for

visual representation.

Three theoretical properties were also calculated for the

graphs based on the absolute values of the entries in the

partial correlation matrix: node strength centrality,

Fig. 1 Conditional independence in the graphical model. The

conditional independence of two variables is represented as zero

values in the inverse covariance matrix. In the graphical model,

conditional independence is represented by the lack of an edge

between two variables.
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closeness centrality, and betweenness centrality. The

centrality of a node represents its relative importance

within a network [19]. According to the study of Opsahl,

Agneessens, Skvoretz [20], node strength centrality is

defined as the sum of all associations of a given feature

with all other nodes, closeness centrality represents how

close a feature is to all other nodes, and betweenness

centrality represents the shortest path length connecting

any two features. The higher the measure of node

centrality, the more ‘‘important’’ a given node is in the

graph [21]. In this study, node strength centrality was

revealed in the main report as closeness, and betweenness

centrality was substantially correlated with node strength

centrality. The results of closeness and betweenness are

presented in Supplementary Figs. S1 and S2. We used the

R packages igraph and tnet.

Permutation tests were performed to compare each node

strength centrality value across different groups. We

created a distribution by assigning group labels randomly

to each of the groups 1000 times and then estimated the

difference between groups each time. If the observed

difference between two groups was within 2.5% on either

end of the distribution, we considered the difference to be

significant at the 5% level.

Results

Neurocognitive Graphs of FES vs HC

The neurocognitive graph of FES had 890 edges with non-

zero weights and featured no unconnected nodes (Fig. 3B).

The neurocognitive graph of HC had 600 edges, and the

SOC_MM was conditionally independent of the other

nodes (Fig. 3A). The results showed that the graph of FES

had more connections than that of HC. The top 3 positive

and negative connections in neurocognitive graphs of FES

vs HC are reported in the Supplementary material.

The node strength centrality for FES vs HC is illustrated

in Fig. 5A. The permutation tests to compare the node

strength centrality of FES and HC showed significant

differences in 24 nodes (VIQ, PIQ; BLC_CRL; DMS_AP,

DMS_Ld, DMS_Ls, DMS_PCs, PC0D, PC4D, PC12D;

PRM_Ld, PreED_E; IED_CSE, IED_ATT; SOC_MIT,

SOC_MST; RVP_ML; BetwErr, WithErr, TotalErr, SWM

_MFR, SWM _MLR, SWM _MTP, and Strategy). The

neurocognitive graph of FES had a higher level of strength

centrality on these nodes compared to those of HC. The

cognitive functions related to these 24 nodes included

general intelligence, motor speeding, perceptual sensitivity,

visual and pattern recognition memory, shifting, planning,

sustained attention and inhibition, working memory, and

strategy. The closeness and betweenness centralities for

FES and HC are illustrated in Supplementary Figs. S1A

and S2A.

In the classification of FES and HC, the accuracy was

73.41% and the F1 score was 0.64.

Neurocognitive Graphs of MDD vs HC

The number of edges with non-zero weights in the

neurocognitive graphs was 501 for MDD and 390 for HC

(Fig. 4). Both graphs had conditionally independent nodes,

i.e. SOC_MM and strategy in SWM. But the BLC_PC node

was also conditionally independent in the graph of HC. The

results indicated that the neurocognitive graph of MDD had

more connections than that of HC. The top 3 positive and

negative connections in neurocognitive graphs of MDD vs

HC are presented in the Supplementary material.

The node strength centrality for MDD and HC is

illustrated in Fig. 5B. The permutation tests comparing the

node strength estimates of MDD and HC differed signif-

icantly in 15 nodes (ILM; BLC_CRL; DMS_AP,

DMS_BDP, DMS_PCs, PC4D; PRM_Li, PRM_PCi,

PRM_Ld; PreED_E, EDS_E, IED_CSE, IED_ATT;

SOC_PSM, and SOC_MIT). The neurocognitive graph of

MDD was more highly connected on these nodes than that

Fig. 2 Flowchart of data

processing.
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of HC. The cognitive functions related to these 15 nodes

included logical memory, motor speeding, perceptual

sensitivity, visual and pattern cognition memory, shifting,

and planning. The visualization of closeness and between-

ness centralities for MDD and HC are illustrated in

Supplementary Figs. S1B and S2B.

In the classification of MDD and HC, the accuracy was

67.07% and the F1 score was 0.76.

Neurocognitive Graphs of FES vs MDD

The neurocognitive graph of FES had 890 edges with non-

zero weights and featured no unconnected nodes (Fig. 3B).

The neurocognitive graph of MDD had 724 edges, and

SOC_MM was conditionally unconnected with the others

(Fig. 3C). The results showed that the graph of FES had

more connections than that of MDD. The top 3 positive and

negative connections in the neurocognitive graphs of FES

vs MDD are reported in the Supplementary material.

The node strength centrality of FES and MDD are

shown in Fig. 5C. The permutation tests to compare the

node strength estimates of MDD and FES were signifi-

cantly different in nine nodes (ILM, TMA, PRM_Li,

PRM_PCi, EDS_E, SOC_PSM, SOC_MST, SOC_MM,

and SWM_MTP). Compared to that of MDD, the neu-

rocognitive graph of FES had higher strength centrality on

Fig. 3 Neurocognitive graphs for healthy controls, and patients with

schizophrenia or depression. A Neurocognitive graph of HC, B neu-

rocognitive graph of FES, C neurocognitive graph of MDD. Each

graph contains 54 nodes. Nodes with the same color are from the

same neurocognitive test. Yellow lines, positive associations; gray

lines, negative relations; edge thickness, association strength;

k = 0.01 for the three neurocognitive graphs.

Fig. 4 Neurocognitive graphs for depression and healthy controls.

A Neurocognitive graph of MDD, B neurocognitive graph of HC.

Each graph contains 54 nodes. Nodes with the same color come from

the same neurocognitive test. Yellow lines represent positive

associations, gray lines represent negative relations. Thickness of an

edge indicates the association strength. k = 0.03 for those two

neurocognitive graphs.
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the nodes ILM, TMA, PRM_Li, PRM_PCi, EDS_E, and

SOC_PSM which related to cognitive functions including

immediate logical memory, processing speed, pattern

recognition memory, shifting, and planning. The neurocog-

nitive graph of FES had lower strength centrality on the

nodes SOC_MST, SOC_MM, SWM_MTP which related to

cognitive functions including planning and working mem-

ory. The visualization of closeness and betweenness

centralities for FES and MDD are illustrated in Supple-

mentary Figs S1C and S2C.

In the classification of FES and MDD, accuracy was

59.48% and the F1 score was 0.60.

Discussion

To the best of our knowledge, this is the first report on

neurocognitive graphs of FES, MDD, and HC on the basis

of cognitive assessments by combining both theory-driven

and data-driven approaches. The purposes of this investi-

gation were: (1) to estimate the accuracy of neurocognitive

graphs in classifying individuals with FES or with MDD in

the one-vs-one classification scenario; (2) to examine

neurocognitive features to develop further applications of

neurocognitive graphing of the heterogeneous neuropsy-

chological profiles of the illnesses; and (3) to provide

additional evidence for possible transdiagnostic mecha-

nisms in FES and MDD.

The graphical LASSO model was trained and used to

classify participants with the highest likelihood using 54

features such as general intelligence, working memory,

visual memory, planning, and shifting. The results showed

that patients with FES and patients with MDD had different

neurocognitive graphs, that of the former being less sparse.

In this study, the neurocognitive graph of FES had more

connections, featured no conditionally-independent nodes

and a higher level of node centrality, indicating that FES

has hyperconnections in the neurocognitive graph. Differ-

ences of node strength centrality between FES-related and

MDD-related cognitive functions included general intelli-

gence, motor speeding, perceptual sensitivity, visual and

pattern recognition memory, shifting, planning, sustained

Fig. 5 Node strength centrality in one-vs-one scenarios. A Node

strength centrality for schizophrenia and HC; B node strength

centrality for MDD and HC; C node strength centrality for

schizophrenia and MDD. Green dashed line, node strength centrality

of FES; gray solid line, node strength centrality of HC; blue dotted

line, node strength centrality of MDD.
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attention and inhibition, working memory, and strategy.

Consistent with previous studies, patients with FES had

more impairments in premorbid IQ, memory, attention,

processing speed, and learning than patients with MDD

[22–24]. Neuroimaging studies have demonstrated that

patients with schizophrenia have more severe deficits in

prefrontal and superior temporal activation during the

performance of working memory tasks [25, 26]. In this

study, the interactions of these cognitive functions in the

neurocognitive graph of FES differed greatly from those of

HC, indicating a significant neurocognitive endophenotype

associated with schizophrenia. This study also suggested

that patients with schizophrenia exhibited a higher demand

for cognitive reserve to complete cognitive tasks than HCs

[27], consistent with the characteristics of the neurocogni-

tive graph of FES. From the aspect of neuroimaging

studies, there is evidence that schizophrenia is associated

with disrupted functional networks which may transfer

parallel information less efficiently at a relatively high cost

[28]. In this context, the hyperconnectivity and hyperac-

tivity of the default mode network could contribute to

disturbances of thought and risk for the illness [29, 30].

The current study provides evidence for increased connec-

tions reported in previous brain network studies using the

neurocognitive graph approach.

The neurocognitive graph of MDD also had more

connections, fewer conditionally-independent nodes, and

higher node centrality than HC. The differences of node

strength centrality between MDD-related and HC-related

cognitive functions included logical memory, motor speed-

ing, perceptual sensitivity, visual and pattern cognition

memory, shifting, and planning. The interactions of these

cognitive functions differed between the MDD and HC

neurocognitive graphs. Previous studies have also shown

that patients with MDD have deficits in these cognitive

domains [31, 32]. As patients with MDD have psychomo-

tor retardation and an increased demand for cognitive

reserve in motor speeding [33, 34], it may be the case that

the neurocognitive graph of HCs had an independent

BLC_PC node when compared to that of MDD. Based on

neuroimaging studies, MDD is associated with hypercon-

nectivity not only within the default mode network but also

within the frontoparietal network [35], and increased

functional connectivity of the anterior medial cortex may

be positively associated with rumination in depression

[36, 37].

In this study, the neurocognitive graph of FES was less

sparse with more connections and fewer conditionally-

independent nodes than that of MDD. Node centrality

differences between the neurocognitive graphs of MDD

and FES indicate that immediate logical memory, process-

ing speed, pattern recognition memory, shifting, planning,

and working memory differ between these disorders. This

distinction may be important for guiding future research to

elucidate transdiagnostic mechanisms. When undergoing

cognitive assessments, patients with schizophrenia exhibit

more demand for cognitive reserve than those with MDD.

Based on related neurocognitive studies, MDD with

psychotic symptoms is associated with higher levels of

cognitive deficit [38]. Schizophrenia is associated with

more serious cognitive impairments in selective attention

and working memory than MDD [39, 40].

Both schizophrenia and depression are associated with

symptoms such as psychomotor slowing, difficulty con-

centrating and remembering details, and a decline in

working memory and learning. Neuroimaging studies have

supported the involvement of brain regions closely asso-

ciated with emotion-processing and for models of psy-

chotic symptoms in both schizophrenia and depression.

These regions include the hippocampus, insula, prefrontal

cortex, and inferior parietal cortex [38, 41]. Genetic

research has also provided some evidence related to the

pathogenesis of both schizophrenia and depression, includ-

ing retinoic acid-inducible or induced gene 1, the a-1C
subunit of the L-type voltage-gated calcium channel, and

immune genes [42–45]. These convergent findings may

explain the relatively lower accuracy in the classification of

FES and MDD in this study. In addition to these

overlapping features, lower accuracy may also be related

to the unbalanced sample size for these two groups.

Although the results of the present study are encourag-

ing, possible limitations should be considered. First, it is

important to note that although the battery of neurocogni-

tive tests used provided reliable evaluations, neurocogni-

tive graphs could be constructed with different cognitive

features. Given that the neurocognitive tests of this study

mostly concerned general intelligence and executive func-

tion, it will be important to include social cognition and

emotion in future. Second, it remains unclear how neu-

rocognitive graphs vary over the course of longitudinal

studies, particularly across exposure to a range of therapies

using antipsychotics, antidepressants, or physical treat-

ments. Thus, further longitudinal studies are required.

Third, distinguishing psychotic from affective symptoms

remains a dilemma of psychiatric classification. In future

studies, it will be fruitful to evaluate both psychotic and

affective symptoms in individuals with schizophrenia and

depression, respectively, in an attempt to build a differen-

tial diagnosis paradigm for comorbid schizophrenia and

depression symptoms. Fourth, the sample size of the

current study is modest; larger sample sizes are needed and

the model needs to be validated with new instances.

In conclusion, we introduce the neurocognitive graph as

a novel tool with which to explore the intrinsic associations

between cognitive features in psychopathology. Specifi-

cally, we adopted the graphical model and machine
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learning with the one-vs-one scenario to predict whether an

individual has depression, schizophrenia, or is healthy, and

to generate neurocognitive graphs for each group. The

results revealed neurocognitive graphs with less sparsity in

both FES and MDD relative to HC. The neurocognitive

graphs of schizophrenia and major depression may prove

beneficial for longitudinal monitoring of the probability of

relapse and therapeutic advances.
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