Classification of Matrix Product States with a Local (Gauge) Symmetry

Ilya Kull,1 Andras Molnar,1 Erez Zohar,1 and J. Ignacio Cirac1

1Max-Planck-Institut für Quantenoptik, Hans-Kopfermann-Straße 1, 85748 Garching, Germany.
(Dated: November 2, 2017)

Matrix Product States (MPS) are a particular type of one dimensional tensor network states, that have been applied to the study of numerous quantum many body problems. One of their key features is the possibility to describe and encode symmetries on the level of a single building block (tensor), and hence they provide a natural playground for the study of symmetric systems. In particular, recent works have proposed to use MPS (and higher dimensional tensor networks) for the study of systems with local symmetry that appear in the context of gauge theories. In this work we classify MPS which exhibit local invariance under arbitrary gauge groups. We study the respective tensors and their structure, revealing known constructions that follow known gauging procedures, as well as different, other types of possible gauge invariant states.

I. INTRODUCTION

Gauge theories play a paramount role in modern physics. Through the gauge principle, the theories describing the fundamental interactions in the standard model of particle physics are obtained by lifting the global symmetries of the interaction-free matter theories to be local symmetries, minimally coupled [1] to a gauge field. Moreover, they also emerge as effective low-energy descriptions in several condensed matter scenarios [2]. Historically, the gauging procedure was first conceived as a transformation of a Lagrangian or Hamiltonian describing a physical system; however, it can be performed on the level of quantum states as well, irrespective of dynamics associated to a specific theory.

In spite of their central role in the standard model, non-Abelian gauge theories still involve puzzles to be solved. Their complete understanding still poses a significant challenge due to non-perturbative phenomena (e.g. low energy QCD). Among the various approaches proposed to tackle the strongly coupled regime, a particularly general and successful one is lattice gauge theory [3]. Monte Carlo sampling of Wilson’s Euclidean lattice version of gauge theories has so far been the most successful method of numerical simulation, nevertheless, it suffers from its own drawbacks. The sign problem [4] prevents application to systems with large fermionic densities, and the use of Euclidean time does not allow to study real time evolution and non-equilibrium phenomena in general scenarios. In order to describe real-time evolution of such theories, one is forced to abandon the Monte Carlo approach, and search for other methods. In this context, the Hamiltonian formulation of Kogut and Susskind [5] has been receiving renewed interest, with two recent approaches coming from the quantum information and quantum optics community: quantum simulation, using optical, atomic or solid-state systems [6, 7], and tensor network states.

The representation of quantum many-body states as tensor networks is connected to White’s density-matrix renormalization group [8], and in the case of one dimensional spin lattices is known as matrix product states (MPS) [9]. Among many useful properties of tensor networks, one which makes them well suited to the description of states with symmetries, is the ability to encode the symmetry on the level of a single tensor (or a few) describing the state. In the case of global symmetries, both for MPS and for certain classes of PEPS in 2D (Projected Entangled Pair States - the generalization of MPS to higher dimensional lattices), the relation between the symmetry of the state and the properties of the tensor is well understood [10]. Tensor networks studies of lattice gauge theories have so far included numerical works (e.g., mass spectra, thermal states, real time dynamics and string breaking, phase diagrams etc. for the Schwinger model and others) [11–30], furthermore, several theoretical formulations of classes of gauge invariant tensor network states have been proposed [31–35]. In all of the latter the construction method follows the ones common to conventional gauge theory formulations: symmetric tensors are used to describe the matter degree of freedom, and later on a gauge field degree of freedom is added, or, alternatively - a pure gauge field theory is considered. While the usefulness of tensor networks in lattice gauge theories has certainly been demonstrated by the above mentioned works, so far there were few attempts (e.g. [13]) to generally classify tensor network states with local symmetry.
In this paper, starting from the assumption of a local symmetry, we find necessary and sufficient conditions to be satisfied by the tensors encoding a MPS. Similar work was done in [13] for MPS with local U(1) symmetry and with open boundary conditions. We focus on translation-invariant MPS, and deal with arbitrary finite or compact Lie groups. Clearly, one could come up with arbitrarily complicated constructions of states with a local symmetry (e.g. by using many kinds of symmetric tensors). Our analysis is therefore limited to three physically meaningful settings corresponding to: states describing matter, pure gauge field states and states of both matter and gauge field. In our analysis the matter degrees of freedom are represented by “spins”; this could in principle be extended to fermionic systems, and in particular to Majorana fermions.

For states describing only matter we find that local symmetries can only be trivial, and show how to gauge such states by adding another degree of freedom. When investigating pure gauge states we show that local symmetry in MPS requires a specific structure of the Hilbert space describing the gauge field degree of freedom. In Wilson’s lattice gauge theories, in order to obtain minimal coupling in a continuum limit, the gauge field degree of freedom is set as a group element in the same representation as the one acting on the matter [3]. In the Hamiltonian formulation, the corresponding Hilbert space is isomorphic to $L^2(G)$, equipped with the left and right regular representations [30], and is referred to by Kogut and Susskind as “the rigid rotator” (in the SU(2) case) [5]. The structure that we find for the gauge field Hilbert space is more general and contains the rotator-like space introduced by Kogut and Susskind as a particular case.

In the matter and gauge field setting we show that, similar to the case of MPS with a global symmetry, the tensor describing the matter degree of freedom is a (generalized) vector operator, and its structure is therefore determined by the Wigner-Eckart theorem; the gauge field tensor’s structure is simpler: it is an intertwining map that translates the physical symmetry operators into a group action on the virtual (bond) spaces. This is a one dimensional version of the construction principle used in [34] - our work describes the sense in which this construction method is unique and the available structural and parametric freedom in choosing the tensors. However, the structure we derive allows for more general gauge invariant MPS, namely, ones that do not arise as a result of gauging a global symmetry or coupling matter to a pure gauge field. We construct examples of such states: while possessing a local symmetry when coupled to each other, the matter and gauge field degrees of freedom do not retain their individual symmetries when separated. Finally, we discuss mutual implications between the condition of local symmetry of the pure gauge field and the condition of global symmetry of the matter when the two can be coupled to each other to produce a MPS with local symmetry.

The paper is organized as follows. In Section II we introduce the basic notation and define the settings which will be investigated in subsequent sections. Section III presents a summary of our results. In Section IV we review the known classification of MPV with a global symmetry. In Section V we derive the proofs of the stated results.

II. FORMALISM

In this section we introduce the MPS formalism and the notation used in this paper. We present the different settings of states and symmetries that will be the focus of investigation in subsequent sections. We motivate the choices of those settings, and relate them to physical theories. This section covers all the definitions and the essential background needed in order for our results to be stated in Section III.

A. Matrix product vectors

We consider matrix product vectors (MPV) rather than states (MPS). The distinction is emphasized because MPV can refer to unnormalized MPS as well as to matrix product operators, to which our results can also be applied. Moreover, in the following we shall define symmetries in terms of equalities between vectors and not states, i.e. we shall not allow a phase difference. For a comprehensive introduction to MPS we refer the reader to [2, 37, 38]. In the following we shall review the basic definitions, and quote essential results.

Let H be a d-dimensional Hilbert space. A matrix product vector (MPV) is a vector $|\psi^N\rangle \in H^\otimes N$ given
by

\[|\psi_N^A\rangle = \sum_{\{i\}} \text{Tr}\left(A^{i_1}A^{i_2}...A^{i_N}\right)|i_1i_2...i_N\rangle,\]

(1)

where \(\{A^i| i = 1, ..., d\}\) are \(D \times D\) matrices and \(\{|i| i = 1, ..., d\}\) is an orthonormal basis in \(\mathcal{H}\). The dimension of the matrices - \(D\) - is called the bond dimension of \(A\). We say that the tensor \(A\), which consists of the matrices \(A^i\), generates the MPV \(|\psi_N^A\rangle\); in fact, it generates a family of vectors: \(\{|\psi_N^A\rangle| N \in \mathbb{N}\}\). We refer to the entire family of vectors as the MPV generated by \(A\).

A MPV of this form is translationally invariant (TI). It is possible to describe vectors that are not TI in a similar way, with a different tensor associated with each tensor copy of \(\mathcal{H}\). Throughout this paper we consider only TI-MPV.

In order to avoid cumbersome notation involving many indices, we will use the graphical notation commonly used in tensor networks. Each tensor is denoted by a rectangle with lines connected to it. Each line corresponds to an index of the tensor. For example, the tensor \(A\) generating the MPV above is represented as:

\[\text{A} \]

where the top line corresponds to the physical index: \(i = 1, ..., d\), and the horizontal lines - to the (“virtual” or “bond”) matrix indices: \(\alpha = 1, ..., D\). Contraction of tensor indices is indicated by connecting the respective lines. If \(M\) is a square matrix, i.e. a rank 2 tensor, then \(\text{Tr}(M)\) is denoted by:

\[M\]

The coefficient corresponding to the \(|i_1i_2...i_N\rangle\) basis element of the MPV \(|\psi_N^A\rangle\) in Eq. (1) is denoted by:

\[A_{i_1i_2i_3...i_N}\]

where we specified the values of the physical indices. We identify the MPV of length \(N\) generated by \(A\) with the set of its coefficients and denote the MPV as:

\[A_{i_1}A_{i_2}A_{i_3}...A_{i_N}\]

Definition II.1. Let \(A\) be a tensor composed of matrices \(\{A^i\}\). Blocking of \(b\) copies of \(A\) defines a new tensor denoted by \(A_{\times b}\), which is composed of the matrices given by the \(b\)-fold products of \(A^i\), and are numbered by an index \(I := (i_1, i_2, ..., i_b)\):

\[\{(A_{\times b})^I = A^{i_1}A^{i_2}...A^{i_b} | i_1, i_2, ..., i_b = 1, ..., d_A\}\].

The new index \(I\) corresponds to the basis \(\{|I| := |i_1\rangle \otimes |i_2\rangle \otimes ..., \otimes |i_b\rangle\}\) of \(\mathcal{H}^{\otimes b}\). Graphically:

\[A_{\times b} = A_{i_1}A_{i_2}A_{i_3}...A_{i_b}\]

The MPV of length \(N\) generated by \(A_{\times b}\) is \(|\psi_N^{A_{\times b}}\rangle \in (\mathcal{H}^{\otimes b})^{\otimes N}\).
Definition II.2 (Injective tensor). A tensor A consisting of $D \times D$ matrices $\{A^i\}_{i=1}^d$ is injective if
\[
\text{span} \left\{ A^i \mid i = 1, \ldots, d \right\} = \mathcal{M}_{D \times D},
\]
where $\mathcal{M}_{D \times D}$ is the algebra of $D \times D$ matrices.

Definition II.3. Let A be a tensor consisting of matrices $\{A^i\}_{i=1}^d$. The completely positive (CP) map associated with A is defined by:
\[
E_A(\cdot) = \sum_{i=1}^D A^i \cdot A^i\dagger,
\]
i.e., the matrices $\{A^i\}$ are the Kraus operators of E_A.

Definition II.4 (Normal tensor). A tensor A, consisting of $D \times D$ matrices $\{A^i\}_{i=1}^d$, is normal if there exists $L \in \mathbb{N}$ such that:
\[
\text{span} \left\{ A^{i_1} A^{i_2} \ldots A^{i_L} \mid i_1, i_2, \ldots, i_L = 1, \ldots, d \right\} = \mathcal{M}_{D \times D},
\]
where $\mathcal{M}_{D \times D}$ is the algebra of $D \times D$ matrices. That is, A is normal if it becomes injective after blocking a sufficient number of its copies. In addition we require that the spectral radius of the CP map E_A is equal to 1.

Remark II.1. If a tensor becomes injective after blocking L_0 copies, it is also injective when blocking any number $L \geq L_0$ of copies. There is an upper bound on the minimal number of copies of a normal tensor needed to be blocked in order for the blocked tensor to be injective, which depends only on its bond dimension.

Proposition II.1. A tensor is normal (Definition II.4) iff the CP map associated with it is primitive (irreducible and non-periodic).

Definition II.5 (Canonical form). A tensor A is in CF if the matrices A^i are block diagonal and have the following structure:
\[
A^i = \oplus_{k=1}^n \nu_k A_k^i,
\]
where $\{A_k\}$ are normal tensors and ν_k are constants.

Definition II.6 (Canonical form II). A is in CFII if in addition to being in CF, for any k appearing in Eq. (2) the CP map E_{A_k} is trace preserving, and has a positive full rank diagonal fixed point $\Lambda_k > 0$.

Proposition II.2. Let $|\psi_A^N\rangle$ be the MPV generated by a tensor A. If the CP map E_A has no periodic irreducible blocks, then there exists a tensor \tilde{A} in CF (or CFII) such that:
\[
|\psi_A^N\rangle = |\psi_{\tilde{A}}^N\rangle, \forall N \in \mathbb{N}.
\]
If E_A does have periodic blocks, then there exist a tensor \tilde{A} in CF (of CFII) and $b \in \mathbb{N}$ such that:
\[
|\psi_{A^{x_b}}^N\rangle = |\psi_{\tilde{A}}^N\rangle, \forall N \in \mathbb{N},
\]
where A^{x_b} is the tensor obtained by blocking b copies of A (Definition II.7).

Definition II.7 (Basis of normal tensors). Let A be a tensor in CF. A set of tensors $\{\tilde{A}_j\}$ is said to be a basis of normal tensors (BNT) of A if A_j are normal tensors, and for every A_k appearing in A’s expansion (Eq. (2)) there exists a unique \tilde{A}_j, an invertible matrix V and a phase $e^{i\phi}$ such that $A_k = e^{i\phi} V^{-1} A_j V$.

From now on whenever we consider a tensor A in CF we shall write it in terms of a BNT $\{A_j\}_{j=1}^m$:
\[
A^i = \oplus_{j=1}^m \oplus_{q=1}^{r_j} \mu_{j,q} V^{-1} A_j^{q} V_{j,q}.
\]
The MPV of length N generated by such a tensor A takes the form:
\[
|\psi_A^N\rangle = \sum_{j=1}^m \sum_{q=1}^{r_j} (\mu_{j,q})^N |\psi_{A_j}^N\rangle.
\]
B. Representation theory

In this section we introduce projective representations. We review basic facts from representation theory, stated in the more general setting of projective representation, following \[41, 42\]. Next, we describe how the general setting of a MPV with a symmetry with respect to a finite dimensional representation Θ(g), can be simplified by writing the MPV in a form compatible with the decomposition of Θ(g) into irreducible representations. Finally, we quote two theorems: Schur’s lemma and the Wigner-Eckart theorem, that will allow us to classify the tensors generating symmetric MPVs.

1. Projective representations

Let \(H \) be a finite dimensional Hilbert space. Denote by \(U(H) \) the group of unitary operators on \(H \). Throughout the paper, unless explicitly stated otherwise, \(G \) will always refer to a finite group or a compact Lie group.

Definition II.8. A function \(\gamma : G \times G \to U(1) \) satisfying:

\[
\gamma(g,h)\gamma(gh,f) = \gamma(g,h)f \gamma(h,f), \quad \forall g, h, f \in G \\
\gamma(g,e) = \gamma(e,g) = 1, \quad \forall g \in G,
\]

where \(e \in G \) is the trivial element, is called a multiplier of \(G \). For compact Lie groups we require \(\gamma \) to be continuous.

Definition II.9. A projective unitary representation of a group \(G \) on \(H \) is a map \(\Theta : G \to U(H) \) such that for all \(g, h \in G \) \(\Theta(g)\Theta(h) = \gamma(g,h)\Theta(gh) \), where \(\gamma \) is a multiplier of \(G \).

That is, projective unitary representations are unitary representations up to a phase factor. Throughout this paper all representations will be assumed to be unitary and finite dimensional. From this point on, unitary representation shall be used to emphasize that it is not projective. Projective representations can refer to both, as unitary representations are a particular case of projective representations, namely, they are the ones with the trivial multiplier.

Two projective representations \((\Theta, H) \) and \((\Theta', H') \) with multipliers \(\gamma \) and \(\gamma' \) are equivalent in the sense of projective representations if there exist an isomorphism \(\phi : H \to H' \) and a function \(\mu : G \to U(1) \) such that \(\Theta'(g)\phi = \mu(g)\phi\Theta(g) \) for all \(g \in G \). Their multipliers then satisfy:

\[
\gamma'(g,h) = \gamma(g,h)\mu(g)\mu(h)\mu(gh)^{-1}. \tag{4}
\]

Equation \(4 \) defines an equivalence relation on the group of multipliers of \(G \). The quotient of the subgroup of multipliers of the form \(\gamma(g, h) = \mu(g)\mu(h)\mu(gh)^{-1} \) in the group of all multipliers is the second cohomology group \(H^2(G, U(1)) \) of \(G \) over \(U(1) \) \[42\]. When two projective representations \(\Theta \) and \(\Theta' \) have multipliers related by Eq. \(4 \), for some function \(\mu : G \to U(1) \) we say they are in the same cohomology class.

Definition II.10. Two projective representations \((\Theta, H) \) and \((\Theta', H') \) with the same multiplier \(\gamma \) are equivalent if there exists an isomorphism \(\phi : H \to H' \) such that \(\Theta'(g)\phi = \phi\Theta(g) \) for all \(g \in G \). We denote \(\Theta'(g) \cong \Theta(g) \).

2. Complete reducibility

Fix a choice of representatives from the equivalence classes (Definition II.10) of irreducible projective representations of \(G \) with multiplier \(\gamma \); denote them by \(D_\gamma^j : G \to U(H_j) \). Fixing a basis \(\{|j\rangle\} \) in \(H_j \) for every \(j \) defines the irreducible projective representation matrices: \(D_\gamma^j(g) = \sum_{m,n} D_\gamma^j(g)_{m,n}|m\rangle\langle n| \). These generalize the \(SU(2) \) Wigner matrices to projective representations of arbitrary groups.
Let \mathcal{H} be a finite dimensional Hilbert space, and let $\Theta : g \mapsto \Theta(g)$ be a projective representation of G with multiplier γ. For finite and compact groups any finite dimensional projective representation is fully reducible and is equivalent to a direct sum of irreducible projective representations $\oplus_j D_j^i(g)$ with the same multiplier, i.e., there exists a basis $\{ | j, m \rangle \}$ of \mathcal{H} such that:

$$\Theta(g) | j, m \rangle = \sum_n D_j^i(g)_{n,m} | j, n \rangle. \quad (5)$$

We refer to such a basis as the irreducible representation basis of $\Theta(g)$ (in general it is not unique, e.g., when an irreducible representation appears multiple times [43]; we shall assume a choice of such a basis).

When considering a representation acting on a MPV, it is convenient to write the MPV in the irreducible representation basis. In the following we describe how this is achieved, and show that it does not interfere with CF properties of the tensor generating the MPV.

Remark II.2. A change of basis of the physical space from $\{ | i \rangle \}$ to the irreducible representation basis $\{ | j, m \rangle \}$ (Eq. 5), involves a transformation of the tensor generating the MPV: $A \mapsto \tilde{A}$, where \tilde{A} consists of the matrices $\tilde{A}^{i,m} = \sum_i \langle j, m | i \rangle A^i$. This is easily seen by inserting an identity operator $\sum_{j,m} | j, m \rangle \langle j, m |$ for every copy of \mathcal{H} in the definition of $| \psi_{\mathcal{A}} \rangle$ (Eq. (11)).

Proposition II.3. Let $\{ A^i \}_{i=1}^d$ be the Kraus operators defining a CP map E_A. For any unitary $d \times d$ matrix U the matrices $\{ \sum_j U_{i,j} A^j \}_{i=1}^d$ define the same CP map. [39]

Corollary II.1. Let A be a tensor in CF (CFII) composed of the matrices $\{ A^i \}$ corresponding to the basis $\{ | i \rangle \}$ of \mathcal{H}. Then the tensor \tilde{A}, composed of the matrices $\tilde{A}^{i,m} = \sum_i A^i \langle j, m | i \rangle$ as in Remark II.2 is also in CF (CFII).

Proof. \tilde{A} has the same block structure as A (Eq. (2)):

$$\tilde{A}^{i,m} = \sum_{k=1}^n \nu_k A_k^{i,m} = \sum_{k=1}^n \nu_k \sum_i \langle j, m | i \rangle A^i_k. \quad (6)$$

According to Proposition III.1, the normality and CFII properties of each block \tilde{A}_k are defined by the CP map associated to it. Proposition II.3 says this maps is not affected by the transformation $A_k \mapsto \tilde{A}_k$ because $\{ \langle j, m | i \rangle \}$ are the entries of a unitary matrix. Each block \tilde{A}_k is therefore a normal tensor (and in CFII). \qed

3. Intertwining relations

It was shown in [44, 45] that an injective tensor A which generates a MPV with a global symmetry with respect to a representation Θ_g, satisfies:

$$\Theta(g) = X(g)^{-1} A^{i'} X(g), \quad (6)$$

i.e., for all $i = 1, \ldots, d$: $\sum_{i'} \Theta(g)_{i'i} A^{i'} = X(g)^{-1} A^i X(g)$, where $X(g)$ is a projective representation of G. While we will make the precise statement and derive this result later, we now point out that in Eq. (6) the tensor A translates the action of $\Theta(g)$ on the physical space into a group action on the virtual space.

In the following, we quote two theorems: Schur’s lemma and the Wigner-Eckart theorem, which can be used to classify tensors satisfying such intertwining relations.

Definition II.11 (Intertwining map). Let (η, V) and (π, W) be projective representations of a group G with the same multiplier. A linear map $T : V \rightarrow W$ is called an intertwining map if $\pi(g)T = T \eta(g)$, $\forall g \in G$.

Lemma II.1 (Schur’s lemma). An intertwining map between irreducible projective representations with the same multiplier is zero if they are inequivalent, and proportional to the identity if they are equal.

The tensor product of two irreducible projective representations with multipliers γ and γ' is a projective representation with multiplier $\gamma \gamma'$. (Remark II.5) $\gamma \gamma' : (g, h) \mapsto \gamma(g, h) \gamma'(g, h)$, and is generally a reducible one. The unitary map that realizes the decomposition of $D_\gamma(g) \otimes D_{\gamma'}(g)$ into a direct sum of irreducible representations $\otimes_{J \in \mathcal{J}} D_{\gamma J}$ is the Clebsch-Gordan map whose matrix elements are the Clebsch-Gordan coefficients $\langle j, m; l, n \mid J, M \rangle$, which are determined by the choice of the representation matrices D_γ (for a discussion of their uniqueness having fixed the representation matrices see (II.12)).

The following is a generalization of the $SO(3)$ vector operators, well known in quantum mechanics (II.12).

Definition II.12 (Vector operator). Let $\langle \eta, V \rangle$, $\langle \pi, W \rangle$ and $\langle \kappa, \mathcal{H} \rangle$ be projective representations of G with $\text{dim}(\mathcal{H}) = d$. A vector operator with respect to $\langle \kappa, \pi, \eta \rangle$ is a d-tuple of linear operators $\vec{A} = (A^1, A^2, \ldots, A^d)$, $A^i : V \rightarrow \mathcal{H}$ which, for all $g \in G$ and all $\vec{v} \in \mathcal{H}$, satisfies:

$$(\kappa(g)\vec{v}) \cdot \vec{A} = \pi(g) \left(\vec{\varepsilon} \cdot \vec{A} \right) \eta(g)^{-1}$$

where $\vec{v} \cdot \vec{A} := \sum_i v^i A^i$.

It was shown in (II.10) that Eq. (II.6) can be used to determine the tensor A satisfying it, and that it consists of Clebsch-Gordan coefficients. We will derive the same result using a generalized version of the well known Wigner-Eckart theorem, using the fact that Eq. (II.6) resembles a vector operator relation for $SO(3)$ (Vector operator) with respect to $\langle \kappa, \pi, \eta \rangle$.

Theorem II.1 (Wigner-Eckart). Let $D_\gamma^0(g)$, $D_{\gamma'}^j(g)$ and $D_{\gamma''}^r(g)$ be irreducible projective representations. Let \vec{A} be a vector operator with respect to $\langle \kappa := D_\gamma^0, \pi := D_{\gamma'}^j, \eta := D_{\gamma''}^r \rangle$. If $\gamma'' = \gamma'$, then $A = 0$. Otherwise (if $\gamma'' \neq \gamma'$), then $A^M | M = 1, \ldots, \text{dim}(J_0) \rangle$ are of the form:

$$A^M = \sum_{J \in \mathcal{J} : \gamma J = D_{\gamma''}^r} \alpha_J \sum_{m,n} \langle j, m; l, n \mid J, M \rangle |m\rangle|n\rangle,$$

where \mathcal{J} is the set of irreducible projective representation indices appearing in the decomposition of $D_{\gamma'}^j(g) \otimes D_{\gamma''}^r(g)$, $\langle j, m; l, n \mid J, M \rangle$ are the Clebsch-Gordan coefficients of this decomposition, $D_{\gamma''}^r(g)$ is the complex conjugate representation to $D_{\gamma''}^r(g)$, $\{ |m\rangle \}$ and $\{ |n\rangle \}$ are the irreducible representation bases: $\pi(g)|m\rangle = \sum_m D_{\gamma'}^j(g)_{m', m}|m\rangle$, $\eta(g)|n\rangle = \sum_n D_{\gamma''}^r(g)_{n', n}|n\rangle$ and α_J are arbitrary constants.

For a proof of the theorem in the familiar $SO(3)$ setting, we refer the reader to (II.11); for a proof in the the setting of projective representations see (II.13).

Remark II.3. Apart from the freedom of choosing the constants $\{ \alpha_J \}$ in Eq. (II.8), there is an additional freedom which comes from the fact that the Clebsch-Gordan coefficients are not uniquely determined by the irreducible representation matrices (II.13).

Remark II.4. The multiplier of the complex conjugate projective representation $\overline{D_{\gamma}^r}(g)$ is γ^{-1}. We will always use Theorem II.1 with $\gamma = 1$, then $A = 0$ unless $\gamma' = \gamma''$.

Remark II.5. We assume a choice of a unique representative in each equivalence class of irreducible projective representations of G, so any two are either inequivalent or are represented by the same matrices.

Remark II.6. A is zero if $D_{\gamma}^0(g)$ does not appear in the decomposition of $D_{\gamma'}^j(g) \otimes D_{\gamma''}^r(g)$. There is a J summation in Eq. (II.6) because in general the same irreducible representation could appear multiple times in the decomposition of the tensor product of two irreducible representations.
C. Physical states and their symmetries

Gauge theories involve the dynamics of two kinds of degrees of freedom: *matter* and *gauge field*. Given those two ingredients, one can consider three types of states: states of only matter degrees of freedom, states of only gauge field degrees of freedom and states of both matter and gauge field. These correspond to non-interacting theories, pure gauge theories and interacting gauge theories respectively (where interactions are understood as those between matter and gauge degrees of freedom).

When constructing a gauge theory one usually starts from an interaction-free theory of the matter degree of freedom which is invariant with respect to a group of global transformations, i.e., the same group element acting in each point in space (or space-time). Adding an additional degree of freedom - the gauge field - with its own transformation law with respect to the group, allows to define local symmetry operators which act on both the matter and the gauge field degrees of freedom. These operators commute with the transformed (gauged) Hamiltonian, and the subspace of states which is invariant under all such operators is considered as the space of physical states. The generators of such local symmetry operators are the so-called Gauss law operators. They correspond to locally conserved quantities (charges), i.e., associated to each point in space (or space-time).

Conversely, one could start from a pure gauge field theory with a local symmetry and couple a matter degree of freedom to it, once again resulting in a system with local symmetry. Finally one could have matter and gauge field coupled in such a way that the combined state has a local symmetry but neither the mass state nor the gauge field state have a symmetry on their own.

We shall now describe the three types of MPVs considered in this paper, corresponding to the above mentioned types of states, and for each one of them define the symmetries which will be investigated in subsequent sections.

1. Matter MPV

Let \(\mathcal{H}_A \) be a \(d_A \) dimensional Hilbert space corresponding to a single degree of freedom (“spin”). Consider \(N \) such “spins” positioned on a one dimensional lattice, with periodic boundary conditions. A tensor \(A \) consisting of square matrices \(\{ A^i \}_{i=1}^{d_A} \) generates a TI-MPV that describes a state of the chain of matter “spins”. Let \(\Theta \) be a unitary representation of \(G \) on \(\mathcal{H}_A \), \(\Theta : g \mapsto \Theta(g) \).

It is well known that in order to lift a global symmetry to be a local one, an additional degree of freedom must be introduced [1]. When investigating the possibility of a local symmetry for a matter MPV, we find this statement reaffirmed (see Theorem 1). We define the setting of the theorem in the following:

Definition 1 (Local Symmetry for matter MPV). A MPV \(|\psi^N_A\rangle \) has a local symmetry with respect to \(\Theta(g) \) if for all \(N \in \mathbb{N} \):

\[
\Theta_{g_1} \otimes \Theta_{g_2} \otimes \ldots \otimes \Theta_{g_N} |\psi^N_A\rangle = |\psi^N_A\rangle, \quad \forall g_1, g_2, \ldots, g_N \in G.
\]

Global symmetry in MPS have been studied extensively [44, 47]. In order for this paper to be self contained, we quote and then derive the main result, which classifies the tensors \(A \) that generate MPV with the following symmetry:

Definition 2 (Global Symmetry for matter MPV). A MPV \(|\psi^N_A\rangle \) has a global symmetry with respect to \(\Theta(g) \) if for all \(N \in \mathbb{N} \):

\[
\Theta_g \otimes \Theta_g \otimes \ldots \otimes \Theta_g |\psi^N_A\rangle = |\psi^N_A\rangle, \quad \forall g \in G.
\]

Remark II.7. The condition of a local symmetry (Definition 1) is equivalent to invariance under any single-site group action (all \(g_i = e \) except one). For TI-MPV it is therefore sufficient to consider only \(g_1 \neq e \).

2. Gauge field MPV

Next we shall consider a case in which the local transformations act on two neighboring sites of a TI-MPV, which will be eventually seen as the pure gauge case.
Let \(\mathcal{H}_B \) be a \(d_B \) dimensional Hilbert space corresponding to a single “spin”. Consider \(N \) such spins positioned on a one dimensional lattice, with periodic boundary conditions. A tensor \(B \) consisting of square matrices \(B^i_{j=1} \) generates a TI-MPV that describes a state of the chain of gauge field “spins”.

Definition 3 (Local Symmetry for gauge field MPV). Let \(\mathcal{R}, \mathcal{L} \) be two projective representations of \(G \) on \(\mathcal{H}_B, \mathcal{R} : g \mapsto \mathcal{R}(g), \mathcal{L} : g \mapsto \mathcal{L}(g) \) with multipliers \(\gamma \) and \(\gamma^{-1} \), so that the tensor product \(\mathcal{R}(g) \otimes \mathcal{L}(g) \) is a unitary representation. A MPV \(|\psi^N_B\rangle \) has a local symmetry in respect to \(\mathcal{R}(g) \otimes \mathcal{L}(g) \) if for all \(N \in \mathbb{N} \) and for any two neighboring lattice sites \(K \) and \(K+1 \):

\[
\mathcal{R}^{|K\rangle} \otimes \mathcal{L}^{|K+1\rangle}|\psi^N_B\rangle = |\psi^N_B\rangle, \quad \forall g \in G.
\]

3. Matter and gauge field MPV

Let \(\mathcal{H}_A \) and \(\mathcal{H}_B \) be as in Section II C 1 and Section II C 2 respectively. Consider a lattice of length 2\(N \) with matter and gauge field spins alternating among sites. Tensors \(A \) and \(B \), consisting of \(D_1 \times D_2 \) matrices \(A^i_{j=1} \) and \(D_2 \times D_1 \) matrices \(B^i_{j=1} \) respectively, generate a TI-MPV (in the sense of translating two sites) that describes a state of the chain of matter and gauge field “spins”. The MPV, generated by a tensor we denote \(AB \), takes the form:

\[
|\psi^N_{AB}\rangle = \sum_{\{i,j\}} \text{Tr} \left(A^{i_1} B^{j_2} A^{i_2} B^{j_2} \ldots A^{i_N} B^{j_N} \right)|i_1 j_1 i_2 j_2 \ldots i_N j_N\rangle.
\]

In lattice gauge theories, the matter degrees of freedom are located on the sites of a lattice whereas the gauge field degrees of freedom - on the links connecting adjacent sites [13]. In the one dimensional case, our setting differs from this structure only in notation, e.g., we could have chosen to call the even numbered sites “links”.

Let \(\Theta(g) \) and \(\mathcal{L}(g) \) be as in Section II C 1 and Section II C 2 respectively.

Definition 4 (Local Symmetry for both matter and gauge field MPV). A MPV \(|\psi^N_{AB}\rangle \) has a local symmetry with respect to \(\mathcal{R}(g) \otimes \Theta(g) \otimes \mathcal{L}(g) \) if for all \(N \in \mathbb{N} \) and for any three neighboring lattice sites numbered \(2K, 2K+1 \) and \(2K+2 \) (corresponding to \(\mathcal{H}_B \otimes \mathcal{H}_A \otimes \mathcal{H}_B \)):

\[
\mathcal{R}(g)^{[2K]} \otimes \Theta(g)^{[2K+1]} \otimes \mathcal{L}(g)^{[2K+2]} |\psi^N_{AB}\rangle = |\psi^N_{AB}\rangle, \quad \forall g \in G.
\]

D. Generators and Gauss’ law

In the previous section we defined the symmetries in terms of representations of a group \(G \). For matrix Lie groups it is often the case that one could describe the same symmetry in terms of representations of the Lie algebra \(\mathfrak{g} \) of \(G \). While the two descriptions are mathematically equivalent, it is precisely the elements of the Lie algebra representation that correspond to observables in physical theories. Such observables are conserved by the dynamics in a theory which respects the symmetry, and are therefore of great importance.

To each scenario described above (Section II C 1, Section II C 2 and Section II C 3) correspond different such observables, and physical theories corresponding to the different settings - matter, gauge field or matter and gauge field - observe different conservation laws. In the following we describe the relation of those settings to physical lattice gauge theories [37].

When \(G \) is a compact and connected Lie group, e.g. \(U(1) \) or \(SU(N) \), the exponential map \(\exp : \mathfrak{g} \to G \) is surjective. Thus every group element can be written as an exponential of an element in the Lie algebra \(\mathfrak{g} \) [48]. Let \(\mathcal{R}(g) \), \(\mathcal{L}(g) \) and \(\Theta(g) \) be representations on \(\mathcal{H}_B \) and \(\mathcal{H}_A \) respectively (for \(SU(N) \) we can always choose \(\mathcal{R}(g) \) and \(\mathcal{L}(g) \) to be unitary representations keeping \(\mathcal{R}(g) \otimes \mathcal{L}(g) \) unchanged [11]), and let \(|\psi^N_{AB}\rangle \) be
as defined in Section II C 3. We can express the physical representations as exponentials of generators:

\[
\Theta(g) = \exp \left(i \sum_a Q_a \varphi_a(g) \right),
\]

\[
\mathcal{R}(g) = \exp \left(i \sum_a R_a \varphi_a(g) \right),
\]

\[
\mathcal{L}(g) = \exp \left(i \sum_a L_a \varphi_a(g) \right),
\]

where \(\{ \varphi_a(g) \} \) are real parameters and \(\{ R_a \} \), \(\{ L_a \} \) and \(\{ Q_a \} \) are Hermitian operators on \(\mathcal{H}_B \) and \(\mathcal{H}_A \) respectively such that \(\{ iR_a \} \), \(\{ iL_a \} \) and \(\{ iQ_a \} \) are bases of the respective Lie algebras. In the Hamiltonian formulation of lattice gauge theories [5, 36] \(\{ R_a \} \) and \(\{ L_a \} \) satisfy the Lie algebra relations:

\[
[R_a, R_b] = i f_{abc} R_c,
\]

\[
[L_a, L_b] = i f_{abc} L_c,
\]

\[
[R_a, L_b] = 0,
\]

where \(f_{abc} \) are the structure constants of the Lie algebra \(g \). \(\{ Q_a \} \) satisfy the relations:

\[
[Q_a, Q_b] = i f_{abc} Q_c.
\]

The local symmetry transformations appearing in the matter and gauge field MPV scenario (Definition [3]):

\[
\mathcal{R}^{[2K]}(g) \otimes \Theta^{[2K+1]}(g) \otimes \mathcal{L}^{[2K+2]}(g)|\psi_{AB}^N\rangle = |\psi_{AB}^N\rangle,
\]

are generated by the operators:

\[
G^{[2K+1]}_a := \left(R^{[2K]}_a + Q^{[2K+1]}_a + L^{[2K+2]}_a \right).
\]

Differentiating Eq. (9) with respect to any of the parameters \(\varphi_a \) we obtain:

\[
\left(R^{[2K]}_a + Q^{[2K+1]}_a + L^{[2K+2]}_a \right)|\psi_{AB}^N\rangle = G^{[2K+1]}_a|\psi_{AB}^N\rangle = 0 .
\]

This is the lattice version of Gauss’ law. In physical theories, states \(|\psi_A\rangle \) have a global symmetry generated by \(\{ Q_a \} \) - the SU(\(N \)) charge operators. In the U(1) case there is one generator \(Q \) - the electric charge operator; furthermore, for Abelian groups \(L = -R \). In that case Eq. (10) says that at each lattice site corresponding to matter, the charge is equal to the difference between the values of \(L \) on the right and on the left of it (the 1D lattice divergence of \(L \)). This becomes Gauss’ law when taking a continuum limit. \(L \) is therefore identified as the electric field. Analogously, in the SU(\(N \)) case \(\{ R_a \} \) and \(\{ L_a \} \) are identified with right and left electric fields respectively [36].

The same kind of equation can be obtained for the case of a gauge field MPV with a local symmetry (Definition [3]):

\[
\left(R^{[K]}_a + L^{[K+1]}_a \right)|\psi_B^N\rangle = 0 .
\]

In the case of a global symmetry for a matter MPV, differentiating the symmetry relation (Definition [2]), we obtain a global operator - the total charge:

\[
\sum_K Q^{[K]}_a|\psi_A^N\rangle = 0 .
\]
III. RESULTS

We summarize the results presented in this paper, first stating the main results of each of the cases presented above, and then turning to a more detailed and formal description. The detailed proofs will be given in the subsequent sections. For each one of the settings introduced in the previous section, we shall first show that the symmetry condition implies a transformation relation satisfied by the tensor(s) generating the MPV. Second, we shall show that those transformation relations determine the structure of the tensor(s). For each setting we shall then discuss implications of the derived tensor structures.

A. Matter MPV with local symmetry

We show that a MPV with one degree of freedom - the mass “spins” - can have a local symmetry as in Definition 1, only if it is the trivial one. This is consistent with the way gauge invariant states are usually constructed in lattice gauge theories, as well as with the construction of continuum gauge theories, where an additional degree of freedom is introduced. The first observation is a general one, not restricted to MPVs:

Proposition 1. Let \(\mathcal{H} \) be a finite dimensional Hilbert space and let \(\Theta : g \mapsto \Theta(g) \) be a representation on \(\mathcal{H} \). Let \(|\psi^N\rangle \in \mathcal{H}^\otimes N \) be a vector with a local symmetry, i.e.

\[
\Theta(g_1) \otimes \Theta(g_2) \otimes \cdots \Theta(g_N)|\psi^N\rangle = |\psi^N\rangle, \quad \forall g_1, g_2, \ldots, g_N \in G.
\]

Then \(|\psi^N\rangle \in \mathcal{H}_0^\otimes N \), where \(\mathcal{H}_0 \subset \mathcal{H} \) is the subspace on which \(\Theta(g) \) acts trivially.

In the following we show that for MPVs a similar statement to Proposition 1 can be made for the tensor generating the MPV. Let \(|\psi_A\rangle \) and \(\Theta(g) \) be as in Section II C 1. According to Proposition II.2, given an arbitrary tensor \(A \) generating \(|\psi_A\rangle \), one can obtain a tensor in CF which generates the same state, (possibly after blocking \(A \)). We therefore assume \(A \) to be in CF.

Theorem 1. Let \(A \) be a tensor in CF generating a MPV with a local symmetry with respect to a representation \(\Theta(g) \) (Definition 1). Then for all \(g \in G \) the tensor \(A \) satisfies:

\[
\Theta(g) A = A, \quad \text{i.e., for all } i = 1, \ldots, d_A: \sum_{i'} \Theta(g)_{ii'} A_{i'} = A_i.
\]

According to Remark II.2 the MPV generated by \(A \) can be written in terms of a tensor \(\hat{A} \), composed of the matrices \(\{ A^{j,m} \} \), corresponding to the irreducible representation basis \(\{|j,m\} \) on which \(\Theta(g) \) acts as \(\Theta(g)|j,m\rangle = \sum_n D^j(g)_{n,m}|j,n\rangle \). According to Corollary II.1 \(\hat{A} \) is also in CF. Applying Theorem 1 to \(\hat{A} \) leads to the following:

Corollary 1. The matrices \(\hat{A}^{j,m} \) are non-zero only for \(j \) such that \(D^j(g) \equiv I_{1 \times 1} \).
B. Gauge field MPV

We show that a local symmetry for a gauge field MPV $|\psi_B^N\rangle$ generated by a tensor B (in CFII) (as defined in Section II C 2), implies the following transformation relations for B:

$$B_R (g) = B X(g) ; B_L (g) = X(g)^{-1} B ,$$ \hspace{1cm} (11)

where $X(g)$ is a projective representation with the same multiplier as that of $R(g)$. This transformation relation allows to determine the structure of the physical Hilbert space of the gauge field degree of freedom.

We find that the gauge field “spins” are composed of right and left parts:

$$H_B = \bigoplus_k H_r^k \otimes H_l^k ,$$

where H_r^k are irreducible representation spaces of G. The physical representations $R(g)$ and $L(g)$ take the forms:

$$R(g) = \bigoplus_k (\mathbb{I} \otimes D^r_k (g)) , \quad L(g) = \bigoplus_k (D^l_k (g) \otimes \mathbb{I}) ,$$

and act on the right and left parts of H_B respectively.

The transformation relation Eq. (11) also determines the structure of the tensor B. Decompose $X(g)$ into its constituent irreducible representations and project Eq. (11) to the corresponding irreducible subspaces (virtual and physical). The obtained blocks of B intertwine irreducible representations, and their structure is therefore determined by Schur’s lemma (Lemma II.1). When the irreducible representations in Eq. (11) match, the corresponding elementary block of B is proportional to the tensor composed of the matrices:

$$B^{m,n} = |m\rangle \langle n| ,$$

so that B, when represented in graphical notation, takes the form:

\begin{center}
\begin{tikzpicture}
\node (B) at (0,0) {B};
\node (X) at (1,0) {$X(g)$};
\node (R) at (0,1) {$R(g)$};
\node (L) at (1,1) {$L(g)$};
\draw (B) -- (X);
\draw (R) -- (B);
\draw (L) -- (X);
\draw (X) -- (B);
\end{tikzpicture}
\end{center}

Otherwise, if the irreducible representations do not match, that block of B is zero.

The tensor B is composed out of such elementary building blocks multiplied by constants - free parameters.

Finally, we show that for any B generating a gauge field MPV with a local symmetry, one can always find a tensor A, describing a matter degree of freedom, such that the matter and gauge field MPV generated by A and B has a local symmetry.

We shall now describe these results in detail, and state the relevant theorems.

Let $|\psi_B\rangle$ be a MPV generated by a tensor B and let $R(g), L(g)$ be projective representations as defined in Section II C 2. As in the case of a matter MPV above, according to Proposition II.2 we can assume B is in CFII and write it in terms of its BNT:

$$B^i = \bigoplus_{j=1}^{n} \bigoplus_{q=1}^{r_j} \mu_{j,q} B_j^i ,$$ \hspace{1cm} (12)

where $\{B_j\}$ are normal tensors in CFII forming a BNT of B (Definition II.7) and $\mu_{j,q}$ are constants.

Theorem 2 (Gauge field MPV with a local symmetry). A tensor B in CFII which generates a MPV that has a local symmetry with respect to $R(g) \otimes L(g)$ where $R(g)$ and $L(g)$ are projective representations with inverse multipliers (Definition III), transforms under the representation matrices as:

$$R(g) \quad \quad \quad \quad L(g)$$

\begin{center}
\begin{tikzpicture}
\node (B) at (0,0) {B};
\node (X) at (1,0) {$X(g)$};
\node (R) at (0,1) {$R(g)$};
\node (L) at (1,1) {$L(g)$};
\draw (B) -- (X);
\draw (R) -- (B);
\draw (L) -- (X);
\draw (X) -- (B);
\end{tikzpicture}
\end{center} \hspace{1cm} \begin{center}
\begin{tikzpicture}
\node (B) at (0,0) {B};
\node (X) at (1,0) {$X(g)^{-1}$};
\node (R) at (0,1) {$R(g)$};
\node (L) at (1,1) {$L(g)$};
\draw (B) -- (X);
\draw (R) -- (B);
\draw (L) -- (X);
\draw (X) -- (B);
\end{tikzpicture}
\end{center}

\hspace{1cm} (13)
where $X(g)$ is a projective representation of G with the same multiplier as $R(g)$ and with the same block structure as B (Eq. (12a)):

$$X(g) = \bigoplus_{j=1}^{m} \bigoplus_{q=1}^{r_j} X_j(g).$$

(14)

When considering matter and gauge field MPVs in the next section, we will show that in that setting, a more general relation than Eq. (13) is satisfied by the tensor B. Namely:

$$R(g) \quad B \quad X(g) \quad ; \quad L(g) \quad B \quad Y(g^{-1}) \quad B,$$

(15)

where $X(g)$ and $Y(g)$ are different projective representations (in the case when B is composed of non-square matrices they are of different dimensions). We shall now present results which follow from the more general relation (Eq. (15)), as they will be relevant also in the next section. Then we will apply them to the case at hand - Eq. (13) (i.e., when $X(g) = Y(g)$ and B is composed out of square matrices).

Equation (15) allows us to determine the structure of the Hilbert space of the gauge field degree of freedom. The fact that the action of $R(g)$ is translated to a matrix multiplication from the right, and that of $L(g)$ - to multiplication from the left implies that their actions on the “spin” representing the gauge field are independent, consequently the “spin” must be composed of right and left parts:

Proposition 2 (Structure of H_B). Given a tensor B, projective representations $R(g)$, $L(g)$ with inverse multipliers γ and γ^{-1} (as defined in Section II C 2) and matrices $X(g)$ and $Y(g)$ which satisfy Eq. (13), the Hilbert space H_B can be restricted to a representation space of $G \times G$ and thus decomposes into a direct sum of tensor products of irreducible representation spaces of G:

$$H_B = \bigoplus_{k=1}^{M} H_{l_k} \otimes H_{r_k},$$

where r_k and l_k are irreducible representation labels.

The structure of H_B described in (14) is a particular case of this Hilbert space. There:

$$H_B = \bigoplus_{k}^{M} H_{\overline{r_k}} \otimes H_{r_k},$$

(16)

where $\overline{r_k}$ indicates the complex conjugate representation to r_k. Equation (16) is a truncated version of the K-S Hilbert space, which allows to regain the whole space if M is increased such that all the irreducible representations are included. Each k sector in Eq. (16): $H_{\overline{r_k}} \otimes H_{r_k}$ is isomorphic to the function space spanned by

$$\{D_{m,n}^{r_k} : g \mapsto D_{m,n}^{r_k} (g) \mid m, n = 1, \ldots, \text{dim}(r_k)\} \subset L^2(G),$$

with $R(g)$ and $L(g)$ equivalent to the right and left translations γ.

Remark III.1. The group transformations $R(g)$ and $L(g)$ are equivalent, according to Proposition 2 to $\otimes_k (\mathbb{I} \otimes D^{r_k}_\gamma (g))$ and $\otimes_k (D^{l_k}_{\gamma^{-1}} (g) \otimes \mathbb{I})$ respectively, where $D^{r_k}_\gamma (g)$ are irreducible projective representations. Changing the basis of the physical Hilbert space (as in Remark II.2 to $\{|l_k, m\} \otimes |r_k, n\}$ in which the representations take this block diagonal form, involves transforming B into \tilde{B} given by the matrices: $\tilde{B}^{k,m,n} = \sum_i B^i (l_k, m; r_k, n | \cdot i)$. According to Corollary III 1 \tilde{B} is also in CFII. Equation (15) holds for the new tensor under the action of the transformed operators: $\tilde{R}(g) = \otimes_k (\mathbb{I} \otimes D^{r_k}_\gamma (g))$ and $\tilde{L}(g) = \otimes_k (D^{l_k}_{\gamma^{-1}} (g) \otimes \mathbb{I})$. We shall always assume B, $L(g)$ and $R(g)$ are in these forms.
Remark III.2. The simplest case of Eq. 15 one could consider is when \(\mathcal{R}(g) = \mathbb{1} \otimes D^r(g) \) and \(\mathcal{L}(g) = D^l(g) \otimes \mathbb{1} \), for irreducible projective representations \(D^r_\gamma(g) \) and \(D^l_{\gamma^{-1}}(g) \). To these corresponds the basis \(\{ |m \rangle \otimes |n \rangle \mid m = 1, \ldots, \text{dim}(l), n = 1, \ldots, \text{dim}(r) \} \), and the matrices composing the tensor \(B \) are numbered by two indices:

\[
B^{m,n} = \sum_{\alpha, \beta} B_{\alpha \beta}^{m,n} |\alpha\rangle \langle \beta| .
\]

\(B \) transforms under \(\mathcal{R}(g) \) and \(\mathcal{L}(g) \) in the following manner:

\[
\mathcal{R}(g) : B^{m,n} \mapsto \sum_{n'} D^r_\gamma(g)_{n,n'} B^{m,n'} = B^{m,n} X(g)
\]

\[
\mathcal{L}(g) : B^{m,n} \mapsto \sum_{m'} D^l_{\gamma^{-1}}(g)_{m,m'} B^{m',n} = Y(g)^{-1} B^{m,n} .
\]

We have seen in Remark III.2 how to change the basis of the physical Hilbert space in order to bring the physical representations to block diagonal form. We would like to do the same for the virtual projective representations \(X(g) \) appearing in Eq. 15. This can be achieved by a different transformation of the tensor \(B \) described in the following:

Remark III.3. Given \(B, \mathcal{R}(g), \mathcal{L}(g) \) and \(X(g) \) that satisfy Eq. 13, redefine \(B \):

\[
B^{k,m,n} \mapsto \tilde{B}^{k,m,n} = V^{-1} B^{k,m,n} V ,
\]

with any invertible matrix \(V \). The new tensor \(\tilde{B} \) generates the same MPV and transform as in Eq. 13 with \(X(g) \) replaced by \(X(g) = V^{-1} X(g) V \).

Remark III.4. Note that the transformation described in Remark III.3 may ruin the CF property of \(B \), as \(V \) does not in general preserve \(B \)’s block structure (Eq. 12). We shall therefore take care to use this freedom of choosing the basis of \(X(g) \) only when we no longer intend to use the CF property.

Remark III.3 allows us to assume without loss of generality \(X(g) \) takes the form \(\oplus_a X^a(g) \), where \(X^a(g) \) are irreducible projective representations. Next we project Eq. 13 to the \(k \) sector of the physical Hilbert space (Remark III.1) and to the \((a, b)\) block in the virtual space, since the representations are block diagonal they commute with the projection operators for every group element \(g \in G \). We therefore obtain:

\[
\begin{array}{c}
| \langle I \otimes D^\gamma(g) \rangle |

B^{b}_{a,b} & X^b(g) & | \langle D^l_{\gamma^{-1}}(g) \otimes \mathbb{1} \rangle |

\end{array}
\]

where \(B^{b}_{a,b} \) is the tensor that consists of the \((a, b)\) blocks of the matrices \(B^{k,m,n} \).

The reduction procedure described above motivates the following definition of an elementary \(B \) block. Next we shall show that the irreducible representations appearing in Eq. 17 determine such blocks up to a constant.

Definition III.1. An elementary block of the tensor \(B \) is one which satisfies Eq. 15, where \(\mathcal{R}(g) = \mathbb{1} \otimes D^r_\gamma(g), \mathcal{L}(g) = D^l_{\gamma^{-1}}(g) \otimes \mathbb{1} \) and \(X(g), Y(g), D^r_\gamma(g) \) and \(D^l_{\gamma^{-1}}(g) \) are irreducible projective representations (both \(X(g) \) and \(Y(g) \) have multiplier \(\gamma \)).

Proposition 3 (Structure of an elementary \(B \) block). Let \(B \) be an elementary \(B \) block (Definition III.1). If \(X(g) = D^r_\gamma(g) \) and \(Y(g) = D^l_{\gamma^{-1}}(g) \), then \(B \) is proportional to the tensor composed of the matrices

\[
B^{m,n} = |m\rangle \langle n|, m = 1, \ldots, \text{dim}(l), n = 1, \ldots, \text{dim}(r) .
\]

Otherwise \(B = 0 \).
We have thus classified all tensors B that satisfy Eq. (13). There is however more information to be extracted from Theorem 2. According to Proposition 3, when projected to sectors corresponding to inequivalent representations, the tensor B is zero. This result, combined with the assumption that B is in CF imposes relations between the irreducible representations that comprise $\mathcal{R}(g)$, $\mathcal{L}(g)$ and $X(g)$:

Proposition 4. Let B, $\mathcal{R}(g)$, $\mathcal{L}(g)$ and $X(g)$ be as in Theorem 2. Let $X_j(g) = \oplus_a X_j^a(g)$ be a block of $X(g)$ appearing in Eq. (14), consisting of irreducible projective representations $X_j^a(g)$. Let $\mathcal{R}(g) = \oplus_k (\mathcal{K} \otimes D^a_k(g))$ and $\mathcal{L}(g) = \oplus_k D^a_k(g \otimes I)$, where D^a_k and D^b_k are irreducible projective representations. Then the following hold:

1. For all k either there exist a and b such that $X_j^a(g) = D^b_k(g)$ and $X_j^b(g) = D^a_k(g)$, or the projection of the corresponding tensor B_j (a BNT element of B) to the sector k of the physical space is zero.
2. $\forall a \exists k$ such that $X_j^a(g) = D^b_k(g)$.
3. $\forall a \exists k$ such that $X_j^a(g) = D^b_k(g)$.

The elementary block of B described in Proposition 3 is the same as the one used in [34]. Note that even in lattices of higher dimensionality each gauge field degree of freedom still connects two lattice sites. There:

$$B^{j; m,n} = \beta_j |j, m) \langle j, n|,$$

where β_j are arbitrary constants. The overall structure of the B tensor derived above admits more general structures than Eq. (18); these structures are recovered if for example, all blocks $X_j(g)$ appearing in $X(g)$ (Eq. (14)) are irreducible representations. In this case (since in Proposition 4 the index a can assume only one value), for all k $D^a_k(g) = D^{b_k}_k(g)$ and \mathcal{H}_B takes the K-S form, as in Eq. (16).

In the following two propositions we consider adding a matter degree of freedom to a gauge field MPV with a local symmetry. We show that it is always possible to find a tensor A and a unitary representation $\Theta(g)$ (non-trivial ones) that couple to it:

Proposition 5. Let B be in CFII and let $|\psi_B^N\rangle$ have a local symmetry with respect to $\mathcal{R}(g) \otimes \mathcal{L}(g)$ (as in Theorem 2). It is always possible to find a tensor A and a representation $\Theta(g)$ such that the corresponding matter and gauge field MPV $|\psi_B^N\rangle$ has a local symmetry with respect to $\mathcal{R}(g) \otimes \Theta(g) \otimes \mathcal{L}(g)$ (Definition 4). In addition, the corresponding matter MPV - $|\psi_A^N\rangle$ - has a global symmetry with respect to $\Theta(g)$.

For a restricted class of B tensors, any A and $\Theta(g)$ that couple to it (satisfy Definition 4) will have a global symmetry:

Proposition 6. Let B, $\mathcal{R}(g)$ and $\mathcal{L}(g)$ be as in Theorem 2 and in addition let $\text{span}\{B^{k; m, n} | k, m, n\}$ contain the identity matrix (e.g. Eq. (18)). Let A and $\Theta(g)$ be such that the MPV generated by AB has a local symmetry with respect to $\mathcal{R}(g) \otimes \Theta(g) \otimes \mathcal{L}(g)$ (Definition 4). Then $|\psi_A^N\rangle$ has a global symmetry with respect to $\Theta(g)$. If in addition A is in CF with the same block structure as B (Eq. (12)), then A transforms as:

$$\Theta(g)$$

$$A$$

$$X(g)^{-1}$$

$$X(g)$$

with the same $X(g)$ from Theorem 2.

The MPVs described above may be combined in a way that allows coupling matter and gauge fields such that each of them could be invariant on its own, as in the conventional well known scenarios of gauge theories. However, as we shall demonstrate in the next section, this is not the most general setting of a local symmetry involving these two building blocks.
C. Matter and gauge field MPV

We show that a local symmetry for a combined matter and gauge field MPV \(|\psi_{AB}^N\rangle\) (defined in Section II C 3) generated by tensors \(A\) and \(B\) (in an appropriate form), implies the following transformation relations for \(A\) and \(B\):

\[
\begin{align*}
B \circ R(g) &= B \circ X(g), \\
B \circ L(g) &= Y(g)^{-1} \circ B
\end{align*}
\]

where \(X(g)\) and \(Y(g)\) are projective representations from the same cohomology class. As described in the previous section, the relation for \(B\) allows to infer the structure of the Hilbert space \(H_B\) associated with the gauge field degree of freedom. As before, \(H_B\) splits into right and left parts. The structure of the tensor \(B\) can be derived in the same way as in the previous section. Each elementary block of the tensor \(A\), obtained by projecting Eq. (19) to irreducible representation spaces, satisfies a vector operator relation, and is therefore determined by the Wigner-Eckart theorem (Theorem II.1).

In the general case, the structure described in this section allows for “unconventional” gauge symmetries where a local symmetry exists for the matter and gauge field MPV but none of the constituents has a symmetry on its own, i.e., the gauge field MPV does not have a local symmetry and the matter MPV does not have a global one. We construct an explicit example of such a case (see Proposition 11).

Finally we use the known results about global symmetries in MPV [44] to find a class of matter MPVs with a global symmetry that can be gauged by adding a gauge field degree of freedom. We shall now state the above results in detail.

Let \(|\psi_{AB}^N\rangle\) be a MPV generated by tensors \(A\) and \(B\) and let \(R(g), \Theta(g)\) and \(L(g)\) be as defined in Section II C 3.

Theorem 3 (Matter and gauge field MPV with a local symmetry). Let both \(BA\) and \(AB\) be normal tensors in CFII and let \(\Theta(g)\) and \(R(g), L(g)\) be unitary and projective representations (with inverse multipliers) of a group \(G\) respectively. Let \(|\psi_{AB}^N\rangle\) be a MPV with a local symmetry with respect to \(R(g) \otimes \Theta(g) \otimes L(g)\) (Definition 4). Then there exist projective representations \(X(g)\) and \(Y(g)\) on \(C^{D_1}\) and \(C^{D_2}\) respectively, such that \(X(g)\) has the same multiplier as \(R(g)\), and \(Y(g)\) - the inverse multiplier to that of \(L(g)\). The tensors \(A\) and \(B\) transform as follows:

\[
\begin{align*}
B \circ R(g) &= B \circ X(g), \\
B \circ L(g) &= Y(g)^{-1} \circ B
\end{align*}
\]
In the following proposition we show that given arbitrary tensors A and B, generating a MPV $|\psi_{AB}^N\rangle$, it is possible to describe the same MPV as a linear combination of MPVs that satisfy the normality condition in Theorem 3.

Proposition 7. Let $|\psi_{AB}^N\rangle$ be a MPV generated by arbitrary tensors A and B. Then there exist tensors $\{A_\chi\}$ and $\{B_\chi\}$, and there exists $b \in \mathbb{N}$ such that for all χ both $A_\chi B_\chi$ and $B_\chi A_\chi$ are normal tensors and $\forall N \in \mathbb{N} \quad |\psi_{AB}^{N_{x,b}}\rangle = \sum_\chi \mu_\chi^N |\psi_{A_\chi B_\chi}^N\rangle$, where μ_χ are constants and $AB_{x,b}$ is the tensor obtained by blocking b copies of the tensor AB.

Next we show that if $|\psi_{AB}^N\rangle = \sum_\chi \mu_\chi^N |\psi_{A_\chi B_\chi}^N\rangle$ has a local symmetry with respect to $\mathcal{R}(g) \otimes \Theta(g) \otimes \mathcal{L}(g)$, then every normal component $|\psi_{A_\chi B_\chi}^N\rangle$ must have the same symmetry. We can then apply Theorem 3 to each of the components.

Proposition 8. Let $|\psi_{AB}^N\rangle = \sum_\chi \mu_\chi^N |\psi_{A_\chi B_\chi}^N\rangle$, where both $A_\chi B_\chi$ and $B_\chi A_\chi$ are normal tensors. Let O be a local operator acting on a fixed number of adjacent sites. If $\forall N \ O$ leaves the MPV invariant:

$$O \otimes \mathbb{I}_{\text{rest}} |\psi_{AB}^N\rangle = |\psi_{AB}^N\rangle ,$$

then O leaves every component invariant:

$$O \otimes \mathbb{I}_{\text{rest}} |\psi_{A_\chi B_\chi}^N\rangle = |\psi_{A_\chi B_\chi}^N\rangle \forall \chi .$$

Having derived Eq. (20), Proposition 2 can be applied to determine the structure of the Hilbert space \mathcal{H}_B. As in the case of a gauge field MPV discussed in the previous section, we are free to assume $X(g)$ and $Y(g)$ are block diagonal in irreducible representations:

Remark III.5. In Theorem 3, we are free to choose similarity transformations for $X(g)$ and $Y(g)$ independently. Given $A, B, \mathcal{R}(g), \Theta(g), \mathcal{L}(g), X(g)$ and $Y(g)$ that satisfy Eq. (20) and Eq. (21), we can redefine A and B:

$$A^{j,m} \to \tilde{A}^{j,m} = U^{-1} A^{j,m} V , \quad B^{k,m,n} \to \tilde{B}^{k,m,n} = V^{-1} B^{k,m,n} U ,$$

with any invertible matrices U and V of fitting dimensions. The new tensors generate the same MPV $|\psi_{AB}^N\rangle$ and transform as in Theorem 3 with $X(g)$ and $Y(g)$ replaced by $\tilde{X}(g) = U^{-1} X(g) U$ and $\tilde{Y}(g) = V^{-1} Y(g) V$.

Definition III.2 (Elementary A block). An elementary block of the tensor A is one which satisfies Eq. (21), where $\Theta(g)$, $X(g)$ and $Y(g)$ are all irreducible projective representations.

By bringing all of the representations appearing in Eq. (20) and Eq. (21) to block diagonal form (using Remark II.2 on the physical representations and Remark III.5 on the virtual ones), and projecting Eq. (20) and Eq. (21) to irreducible sectors of the physical and virtual Hilbert spaces (as explained in Section III.13), we may reduce Eq. (20) and Eq. (21) to the cases of elementary blocks of B and of A respectively.

We have seen in Section III.9 that Eq. (20) determines the tensor B given $\mathcal{R}(g), \mathcal{L}(g), X(g)$ and $Y(g)$ (Proposition 4). We now show that Eq. (21) determines the tensor A given $\Theta(g), X(g)$ and $Y(g)$.

Proposition 9. Let A be an elementary block (Definition III.2), with $\Theta(g) = D^L_{\gamma\gamma}(g)$, $X(g) = D^L_\gamma(g)$ and $Y(g) = D^L_{\gamma^+}(g)$. Then A is built out of Clebsch-Gordan coefficients and has the form:

$$A^M = \sum_{J \in \mathcal{J} : D^J = D^L_{\gamma\gamma}} \alpha_J \sum_{m,n} \langle J,M | \tilde{J},m;l,n \rangle \langle m|n \rangle ,$$
Theorem 4. A tensor Θ where

There exist tensors

Proposition 11. Let AB and BA be normal tensors and let B satisfy Eq. (20) with $\mathcal{R}(g) = \bigoplus k (\mathbf{I} \otimes D^k_\gamma(g))$, $\mathcal{L}(g) = \bigoplus k (D^k_{\gamma^{-1}}(g) \otimes \mathbf{I})$, $Y^a(g) = \bigoplus l Y^a(g)$ and $X(g) = \bigoplus l X^b(g)$, where D^k_γ, $D^k_{\gamma^{-1}}$, Y^a and X^b are irreducible projective representations, then

1. For all k either there exist a and b such that $X^b(g) = D^k_{\gamma^{-1}}(g)$ and $Y^a(g) = D^k_\gamma(g)$ or the projection of the tensor B to the sector k of the physical space is zero (and it can be discarded).

2. $\forall a \exists k$ such that $Y^a(g) = D^k_{\gamma^{-1}}(g)$.

3. $\forall b \exists k$ such that $X^b(g) = D^k_\gamma(g)$.

By constructing tensors A and B that transform as in Theorem 3 with $X(g) \neq Y(g)$ we show the existence of matter and gauge field MPVs which have a local symmetry but for which the corresponding matter MPV does not have a global symmetry, nor does the gauge field MPV have a local one:

Proposition 11. There exist tensors A and B such that $|\psi_{AB}\rangle$ has a local symmetry with respect to $\mathcal{R}(g) \otimes \Theta(g) \otimes \mathcal{L}(g)$, but $|\psi_A\rangle$ does not have a global symmetry with respect to $\Theta(g)$. In addition $\mathcal{R}(g) \otimes \mathcal{L}(g)|\psi_B\rangle \neq |\psi_B\rangle$.

We review known results about MPV with global symmetry [44]. Let A be a tensor in CFII:

$$A^i = \bigoplus_{j=1}^n \bigoplus_{q=1}^r \mu_{j,q} A^i_j,$$

where $\{A_j\}$ are normal tensors in CFII forming a BNT of A (Definition 11.7) and $\mu_{j,q}$ are constants.

Theorem 4. A tensor A in CFII which generates a MPV with a global symmetry with respect to a representation $\Theta(g)$ of a connected Lie group G, transforms under the representation matrix as:

$$\begin{pmatrix} \Theta(g) \\ A \end{pmatrix} = \begin{pmatrix} X(g)^{-1} & A \\ \end{pmatrix} \begin{pmatrix} X(g) \\ \end{pmatrix},$$

where $X(g)$ has the same block structure as A:

$$X(g) = \bigoplus_{j=1}^m \bigoplus_{q=1}^r \mu_{j,q} X_j(g),$$

and where each block $X_j(g)$ is a projective representation, in the general case, for different j values $X_j(g)$ belong to different cohomology classes.

In the case when all $X_j(g)$ obtained in Theorem 4 are from the same cohomology class, we can find a gauge field tensor B and projective representations $\mathcal{R}(g)$ and $\mathcal{L}(g)$ that gauge the symmetry:

Proposition 12. Let A be a tensor in CFII generating a MPV with a global symmetry i.e., satisfying Theorem 4. Let $X(g)$ (in Eq. (24)) be a projective representation (i.e. all $X_j(g)$ in Eq. (24) are in the same cohomology class). Then there exist a tensor B and projective representations $\mathcal{R}(g)$ and $\mathcal{L}(g)$ with inverse multipliers such that both local symmetries: Definition 2 for $|\psi^A_{IB}\rangle$ and Definition 3 for $|\psi^N_{IB}\rangle$ are satisfied.
IV. MPV WITH A GLOBAL SYMMETRY

In the next section we shall present the derivation of the previously described results. Before that, however, we review MPVs basics not covered in the formalism section, needed for the derivation of of the classification of MPVs with a global symmetry, originally shown in [44]. In order for the paper to be self contained, we derive the result from the fundamental theorem of MPV (see Theorem IV.1), following [38] and references therein.

Proposition IV.1. Definition IV.2 is equivalent to the existence of a one-sided inverse tensor A^{-1} which satisfies:

$$
\begin{bmatrix}
\alpha \\
\beta \\
\end{bmatrix}
= \left[
\begin{bmatrix}
A^{-1} \\
A \\
\end{bmatrix}
\right] \left[
\begin{bmatrix}
\alpha \\
\beta \\
\end{bmatrix}
\right],
$$

that is:

$$
\sum_i A_{\alpha\beta}^i (A^{-1})_{i\alpha}^j = \delta_{\alpha\alpha'} \delta_{\beta\beta'}
$$

Definition IV.1 (Span of matrix products). For a tensor A with bond dimension D let $S_L \subseteq M_{D \times D}$ be the space spanned by all possible L-fold matrix products:

$$
S_L := \text{span} \left\{ A^{i_1} A^{i_2} \ldots A^{i_L} \mid i_1, i_2, \ldots, i_L = 1, \ldots, D \right\}.
$$

Definition IV.2. Let $\Gamma_A : M_{D \times D} \rightarrow H \otimes L$ be defined by:

$$
\Gamma^L_A(X) = \sum \text{Tr} \left(X A^{i_1} A^{i_2} \ldots A^{i_L} \right) |i_1 i_2 \ldots i_L\rangle.
$$

For a normal tensor, according to Definition IV.4 for L large enough, $S_L = M_{D \times D}$. For tensors in CF the following holds:

Proposition IV.2 (Span property of BNT). Let A be in CF with each block being a unique element of its BNT, i.e. there is no q summation in Eq. (3). Then for L large enough, S_L is the entire matrix algebra $M := \bigoplus_j M_{D_j \times D_j}$ where $M_{D_j \times D_j}$ is the algebra of $D_j \times D_j$ matrices and D_j is the bond dimension of A_j.

Proposition IV.3. Let A be a tensor consisting of block diagonal matrices: $A^i \in \mathcal{M} := \bigoplus_j M_{D_j \times D_j}$, and let S_L and Γ_A^L be as in Definition IV.1 and Definition IV.2 respectively. Then $S_L = \mathcal{M}$ iff $\Gamma_A^L|_{\mathcal{M}}$ is injective.

Proof. Assume injectivity of $\Gamma_A^L|_{\mathcal{M}}$, then any element $X \in S_L \cap \mathcal{M}$ satisfies $\Gamma_A^L(X^\dagger) = 0$ because the coefficients of the the vector $\Gamma_A^L(X^\dagger)$ are inner products of X with elements in S. This implies $X = 0$. If $S = \mathcal{M}$, then for every non zero $X \in \mathcal{M}$, X^\dagger has a non vanishing inner product with at least one element $A^{i_1} A^{i_2} \ldots A^{i_L}$, and therefore $\Gamma_A^L(X)$ is non zero.

Proposition IV.4. For a tensor A in CF as in Eq. (3), for L large enough the space S_L (Definition IV.1) has the form:

$$
S_L = \left\{ \bigoplus_{j=1}^m \bigoplus_{q=1}^{r_j} \mu_{j,q} L_j V_j^{-1} M_j V_j \mid M_j \in M_{D_j \times D_j} \right\}
$$

(25)

Proof. Consider a tensor \tilde{A} which consists of the BNT of A without multiplicities (as in Proposition IV.2). An element $\tilde{S} = \bigoplus_{j=1}^m \bigoplus_{q=1}^{r_j} \mu_{j,q} L_j V_j^{-1} M_j V_j$ in S_L is obtained by taking the same linear combination of the matrix products $A^{i_1} A^{i_2} \ldots A^{i_L}$ as the one which generates $\tilde{S} = \bigoplus_{j=1}^m M_j$ from the matrix products $\tilde{A}^{i_1} \tilde{A}^{i_2} \ldots \tilde{A}^{i_L}$.
Proposition IV.5. Let \(\{A_j\}_{j=1}^m \) be a BNT of \(A \), and let each \(A_j \) appear in \(A \) with no multiplicities, i.e. \(A^i = \oplus_{j=1}^m \mu_j A_j^i \). For \(L \) large enough the image of the algebra of block diagonal matrices \(\mathcal{M} := \oplus_{j=1}^m \mathcal{M}_{D_j \times D_j} \), where \(D_j \) is the bond dimension of \(A_j \), under the map \(\Gamma_A^L \) is a direct sum:

\[
\Gamma_A^L (\mathcal{M}) := \{ \Gamma_A^L(X) \mid X \in \mathcal{M} \} = \bigoplus_{j=1}^m \Gamma_A^L (\mathcal{M}_{D_j \times D_j}) .
\]

In particular \(\sum_{j=1}^m \Gamma_A^L (X_j) = 0 \) implies \(X_j = 0 \ \forall j = 1, \ldots, m. \)

Proposition IV.5 allows us to prove the following lemma:

Lemma IV.1. Let \(A \) be a tensor in \(\text{CF} \) with BNT \(\{A_j\} \), and let \(S \) and \(T \) be tensors with the exact same block structure as \(A \):

\[
A^i = \oplus_{j=1}^m \bigoplus_{q=1}^{r_j} \mu_{jq} A_j^i V_j^q S \qquad S^i = \oplus_{j=1}^m \bigoplus_{q=1}^{r_j} \mu_{jq} V_j^q S A_j^i \qquad T^i = \oplus_{j=1}^m \bigoplus_{q=1}^{r_j} \mu_{jq} V_j^q S A_j^i .
\]

If the following equality holds for any length \(N \):

\[
\sum_{\{i\}} \text{Tr} \left(S^{i_1} A^{i_2} \ldots A^{i_N} \right) |i_1, i_2, \ldots, i_N \rangle = \sum_{\{i\}} \text{Tr} \left(T^{i_1} A^{i_2} \ldots A^{i_N} \right) |i_1, i_2, \ldots, i_N \rangle ,
\]

which in tensor notation reads:

\[
S = A A \ldots A = T ,
\]

then \(S = T \).

Proof. Plugging in the block structure of the tensors into Eq. (26) we obtain:

\[
0 = \sum_{\{i\}} \text{Tr} \left(\oplus_{j=1}^m \bigoplus_{q=1}^{r_j} \mu_{jq}^N [T_j^i i_1] - S_j^i i_1 \right) A_j^{i_2} \ldots A_j^{i_N} |i_1, i_2, \ldots, i_N \rangle
\]

\[
= \sum_{j=1}^m \sum_{q=1}^{r_j} \mu_{jq}^N \sum_{\{i\}} \text{Tr} \left([T_j^i i_1] A_j^{i_2} \ldots A_j^{i_N} \right) |i_1, i_2, \ldots, i_N \rangle .
\]

Plugging in the definition of the map \(\Gamma_A \) (Definition IV.2)

\[
\sum_{j=1}^m \sum_{i_1} \Gamma_A^{N-1} \left(\sum_{q=1}^{r_j} \mu_{jq}^N [T_j^i i_1] - S_j^i i_1 \right) \otimes |i_1 \rangle = 0 .
\]

According to Proposition IV.5 for \(N \) large enough (\(\geq L_0 \)) we have for all \(i_1 \) and all \(j \)

\[
\sum_{q=1}^{r_j} \mu_{jq}^N [T_j^i i_1] - S_j^i i_1 = 0 .
\]

For all \(j \), since \(\{\mu_{jq}\}_{q=1}^{r_j} \) are non-zero, there exists an \(N \geq L_0 \) such that \(\sum_{q=1}^{r_j} \mu_{jq}^N \neq 0 \). Therefore for all \(j \) we have:

\[
T_j^i = S_j^i .
\]
We review the fundamental theorem of MPV [38] and apply it to the case of a MPV with a global symmetry.

Proposition IV.6. [38] Let A and B be tensors in CF (Eq. (3)) with BNT \(\{A_j\}_{j=1}^{g_a} \) and \(\{B_k\}_{k=1}^{g_b} \) respectively. If for all N the tensors A and B generate MPVs proportional to each other, then $g_a = g_b$ and for every j there is a unique $k(j)$, a unitary matrix X_j and a phase $e^{i\phi_j}$ such that:

\[
A_j^i = e^{i\phi_j} X_j^{-1} B_{k(j)}^i X_j .
\]

Remark IV.1. Note that X_j are determined up to a phase.

Proposition IV.6 was proved in [38] and was used to prove the following:

Theorem IV.1 (The Fundamental Theorem of MPV). Let two tensors A and B in CF (CFII) generate the same MPV for all N. Then they have the same block structure, and there exists an invertible (unitary) matrix X:

\[
X = \bigoplus_{j=1}^{m} \bigoplus_{q=1}^{r} X_j ,
\]

which is block diagonal, with the same block structure as A, and a permutation matrix Π between the blocks, such that:

\[
\begin{array}{c}
\Theta \\
\end{array} = \begin{array}{c}
\Pi^{-1} \\
\end{array} B \begin{array}{c}
\Pi \\
\end{array} \begin{array}{c}
X \\
\end{array} .
\]

We now apply the fundamental theorem of MPV to the case when a MPV generated by a tensor A in CFII is invariant under the action of the same unitary operator on every site:

Corollary IV.1. Let A be a tensor in CFII (Eq. (3)) generating a MPV with a global invariance under a unitary Θ:

\[
\Theta^\otimes N |\psi_A^N\rangle = |\psi_A^N\rangle ,
\]

then A transforms under the unitary matrix as:

\[
\begin{array}{c}
\Theta \\
\end{array} = \begin{array}{c}
\Pi^{-1} \\
\end{array} A \begin{array}{c}
\Pi \\
\end{array} X ,
\]

where X is a unitary matrix with the same block structure as A, and is unitary in each block (Eq. (28)), and Π is a permutation between the j blocks of A (it does not permute the q blocks).

Proof: The tensor \tilde{A} consisting of the matrices $\tilde{A}^i := \sum_{i'} \Theta_{i,i'} A^{i'}$ generates $\Theta^\otimes N |\psi_A^N\rangle$. Before finishing the proof, we shall now prove the following lemma:

Lemma IV.2. Let \(\{A_j\} \) be the BNT of A, then the tensors \(\{\tilde{A}_j\} \) composed of the matrices $\tilde{A}_j^i = \sum_{i'} \Theta_{i,i'} A_j^{i'}$ form a BNT of \tilde{A}, and \tilde{A} is in CFII.

Proof: Lemma IV.2. \tilde{A}_j are normal tensors and in CFII because a unitary mixture of the Kraus operators gives the same CP map (Proposition II.3), and they are a basis because \(\{A_j\} \) is.

We can now apply the fundamental theorem of MPV to A and \tilde{A}. In this case, however, because the coefficients $\mu_{j,q}$ in Eq. (3) are the same for A and \tilde{A}, Π permutes only between j blocks.

Next we apply the above to a MPV with a global symmetry as in Definition [2]

\[
\Theta(g)^\otimes N |\psi_A^N\rangle = |\psi_A^N\rangle .
\]
Theorem 4. A tensor A in CFII which generates a MPV with a global symmetry with respect to a representation $\Theta(g)$ of a connected Lie group G, transforms under the representation matrix as:

$$
\Theta(g)
\downarrow
A\rightarrow X(g)^{-1}A X(g),
$$

where $X(g)$ has the same block structure as A:

$$
X(g) = \oplus_{j=1}^{m} \oplus_{q=1}^{r_j} X_j(g),
$$

and where each block $X_j(g)$ is a projective representation, in the general case, for different j values $X_j(g)$ belong to different cohomology classes.

Proof. According to Corollary [IV.1] for every $g \in G$ we have:

$$
\sum_{i'} \Theta(g)_{i',i} A_{i'} = X(g)^{-1} \Pi(g)^{-1} A^i \Pi(g) X(g).
$$

Consider the action of the group element $gh \in G$ in two ways using Eq. (29):

$$
X(gh)^{-1} \Pi(gh)^{-1} A^i \Pi(gh) X(gh) = \sum_{i'} \Theta(gh)_{i',i} A_{i'}
= \sum_{i',k} \Theta(g)_{i,k} \Theta(h)_{k,i'} A_{i'}
= \sum_{k} \Theta(g)_{i,k} X(h)^{-1} \Pi(h)^{-1} A^k \Pi(h) X(h)
= X(h)^{-1} \Pi(h)^{-1} X(g)^{-1} \Pi(g)^{-1} A^i \Pi(g) X(g) \Pi(h) X(h).
$$

Taking the L-fold product of the LHS and RHS for different indices i_1, i_2, \ldots, i_L we obtain:

$$
X(gh)^{-1} \Pi(gh)^{-1} (A^{i_1} A^{i_2} \ldots A^{i_L}) \Pi(gh) X(gh) = X(h)^{-1} \Pi(h)^{-1} X(g)^{-1} \Pi(g)^{-1} (A^{i_1} A^{i_2} \ldots A^{i_L}) \Pi(g) X(g) \Pi(h) X(h).
$$

We shall now prove the following lemma, and then continue with the proof.

Lemma IV.3. $\Pi(g)$ is a representation of G and is therefore the trivial one.

Proof: Lemma [IV.3] According to Proposition [IV.3] by taking appropriate linear combinations of Eq. (30) we can obtain:

$$
X(gh)^{-1} \Pi(gh)^{-1} (\Delta[j]) \Pi(gh) X(gh) = X(h)^{-1} \Pi(h)^{-1} X(g)^{-1} \Pi(g)^{-1} (\Delta[j]) \Pi(g) X(g) \Pi(h) X(h),
$$

where $\Delta[j_0]$ is a matrix consisting of multiples of I in the j_0 block and zero in all the rest: $\Delta[j_0] := \oplus_{j=1}^{m} \oplus_{q=1}^{r_j} \mu_{j,q}^{i_0} \delta_{i,j_0} I_{D_j \times D_j}$. This is achieved by setting $M_j = \delta_{j,j_0} I$ in Eq. (25). Denote by $g(j)$ the image of the block j under the permutation $\Pi(g)$, then $\Pi(g)^{-1} \Delta[j] \Pi(g) = \Delta[g^{-1}(j)]$. Plugging this into Eq. (31) we get:

$$
\text{LHS} = X(gh)^{-1} \left(\Delta[(gh)^{-1}(j)]\right) X(gh)
= \Delta[(gh)^{-1}(j)] =
\text{RHS} = X(h)^{-1} \Pi(h)^{-1} X(g)^{-1} (\Delta[g^{-1}(j)]) X(g) \Pi(h) X(h)
= X(h)^{-1} \Pi(h)^{-1} (\Delta[g^{-1}(j)]) \Pi(h) X(h)
= \Delta[h^{-1}(g^{-1}(j))],
$$

22
where in each step the Xs commute with the Δs because they have the same block structure and the Δs are proportional to I in each block. We conclude that $(gh)^{-1}(j)$ and $h^{-1}(g^{-1}(j))$ are the same block number and therefore $\Pi(g)$ is a group homomorphism. It remains to show that $\Pi(g)$ depends on g smoothly. From Eq. (29) we obtain:

$$X(g)^{-1}\Pi(g)^{-1}A^{i_1}A^{i_2} \ldots A^{i_L} \Pi(g) X(g) = \sum_{\{i_i\}} \left(\Theta(g)_{i_1,i_1'} A^{i_1'} \right) \left(\Theta(g)_{i_2,i_2'} A^{i_2'} \right) \ldots \left(\Theta(g)_{i_L,i_L'} A^{i_L'} \right).$$

(32)

As above, we can take a linear combination of the As to get a $\Delta[j]$ between the permutations in the LHS. Knowing how the permutation acts on each $\Delta[j]$ determines $\Pi(g)$ completely. The Xs on the LHS commute with all $\Delta[j]$ as before. The RHS will then be a linear combination of $\{\Theta(g)A\}$, and will thus depend on g smoothly. Since we assumed G is a connected Lie group we conclude that $\Pi(g) \equiv I$. \qed

We now repeat the step leading to Eq. (31) but this time with an arbitrary matrix M in the j block:

$$\Delta^M_{j_0} := \oplus_{j=1}^m \oplus_{q=1}^{r_j} \delta_{j,j_0} A^L_{j,q} M.$$

Equation Eq. (31) becomes:

$$X(g h)^{-1} (\Delta^M_j) X(g h) = X(h)^{-1} X(g)^{-1} (\Delta^M_j) X(g) X(h).$$

This means that for any j block we have:

$$\oplus_{q=1}^{r_j} \delta_{j,j_0} A^L_{j,q} X_j(g h)^{-1} M X_j(h) = \oplus_{q=1}^{r_j} \delta_{j,j_0} A^L_{j,q} X_j(h)^{-1} X_j(g)^{-1} M X_j(g) X_j(h).$$

We see that $X_j(g) X_j(h)(X_j)^{-1}(gh)$ commutes with every matrix M and is therefore proportional to the identity. $X_j(g)$ is therefore a projective representation. \qed

Remark IV.2. Note that different blocks of $X(g)$ can belong to different equivalence classes of projective representations. We could construct such an example by taking the direct sum of two normal tensors A and \tilde{X}, which transform under a given representation $\Theta(g)$ with $X(g)$ and $\tilde{X}(g)$, projective representations from different cohomology classes. $X(g) \oplus \tilde{X}(g)$ is then not a projective representation because $X(g h) \oplus \tilde{X}(g h)$ differs from $X(g) X(h) \oplus X(g) X(h)$ by a diagonal matrix and not a scalar one.

V. DERIVATION AND PROOFS OF THE RESULTS

In this section we prove the theorems stated in Section III.

A. Matter MPV with local symmetry

Proposition 1. Let H be a finite dimensional Hilbert space and let $\Theta : g \mapsto \Theta(g)$ be a representation on H. Let $|\psi^N\rangle \in \mathcal{H}^\otimes N$ be a vector with a local symmetry, i.e.

$$\Theta(g_1) \otimes \Theta(g_2) \otimes \ldots \Theta(g_N)|\psi^N\rangle = |\psi^N\rangle, \quad \forall g_1, g_2, \ldots, g_N \in G.$$

Then $|\psi^N\rangle \in \mathcal{H}_0^\otimes N$, where $\mathcal{H}_0 \subset \mathcal{H}$ is the subspace on which $\Theta(g)$ acts trivially.

Proof. Write $|\psi^N\rangle$ in the irreducible representation basis which satisfies:

$$\Theta(g)_{j,m} = \sum_n D^j(g)_{n,m} |j,n\rangle,$$

where $D^j(g)$ are irreducible representation matrices.

$$|\psi^N\rangle = \sum_{j_1, m_1, \ldots, j_N, m_N} c_{j_1, m_1, \ldots, j_N, m_N} |j_1, m_1, \ldots, j_N, m_N\rangle.$$

23
The local symmetry condition implies:
\[
\sum_{n_1} D^{j_1}(g)_{m_1,n_1} c_{j_1,n_1,...,j_N,m_N} = c_{j_1,m_1,...,j_N,m_N},
\]
which means that the vector of coefficients \(\vec{c}_{j_1,\ldots,j_N,m_N} \) is either zero or an invariant subspace of \(D^{j_1}(g) \), in which case \(D^{j_1}(g) \) is the trivial representation. This implies that the coefficients \(c_{j_1,\ldots,j_N,m_N} \) are zero whenever any one of the \(j_k \)'s corresponds to a non trivial representation.

Theorem 1. Let \(A \) be a tensor in \(\text{CF} \) generating a MPV with a local symmetry with respect to a representation \(\Theta(g) \) (Definition 1). Then for all \(g \in G \) the tensor \(A \) satisfies:

\[
\Theta(g) \quad \begin{array}{c}
\text{A} \\
\end{array} = \quad \begin{array}{c}
\text{A} \\
\end{array} ,
\]
i.e., for all \(i = 1,\ldots,d_A \):
\[
\sum_{\nu} \Theta(g)_{\nu,i'} A_{i'}^\nu = A_i.
\]

Proof. We apply Lemma IV.1 with \(S^i := \sum_{\nu} \Theta(g)_{\nu,i'} A_{i'}^\nu \) and \(T^i := A_i \).

Remark V.1. We have never used any properties of \(\Theta(g) \) as a representation. The same proof is valid for any operator \(\Theta \).

According to Remark II.2, the MPV generated by \(A \) can be written in terms of a tensor \(\tilde{A} \), composed of the matrices \(\{ \tilde{A}^{j,m} \} \), corresponding to the irreducible representation basis \(\{|j,m\rangle\} \) on which \(\Theta(g) \) acts as \(\Theta(g)|j,m\rangle = \sum_n D^{j}(g)_{n,m}|j,n\rangle \). According to Corollary II.1, \(\tilde{A} \) is also in \(\text{CF} \). Applying Theorem 1 to \(\tilde{A} \) leads to the following:

Corollary 1. The matrices \(\tilde{A}^{j,m} \) are non-zero only for \(j \) such that \(D^j(g) \equiv \mathbb{I}_{1 \times 1} \).

Proof. From Theorem 1 we deduce that each vector of matrix elements of \(A \):
\[
\vec{A}_{\alpha,\beta}^j = \left(A_{\alpha,\beta,1}^j, A_{\alpha,\beta,2}^j, \ldots, A_{\alpha,\beta,\text{dim}(j)}^j \right)^T
\]
is invariant under \(D^j(g) \) for all \(g \in G \). This implies that either \(\vec{A}_{\alpha,\beta}^j \) is zero or that \(D^j(g) \) is the one dimensional trivial representation.

B. Pure gauge field MPV

In order to prove Theorem 2 we shall proceed as in Section IV: we shall first prove a lemma which describes the case when \(\mathcal{R} \) and \(\mathcal{L} \) are just unitary operators, and later use that to prove the case when they are representations.

Lemma V.1. Let \(B \) be a tensor in \(\text{CFII} \):
\[
B^i = \bigoplus_{j=1}^m \bigoplus_{q=1}^{r_j} \mu_{j,q} B^i_j,
\]
and let \(\mathcal{R} \) and \(\mathcal{L} \) be two unitary operators such that for all \(K \):
\[
\mathcal{R}^{[K]} \mathcal{L}^{[K+1]} |\psi_B^N\rangle = |\psi_B^N\rangle .
\]

Then \(B \) transforms under the unitary matrices as follows:

\[
\begin{array}{c}
\mathcal{R} \\
\end{array} \quad \begin{array}{c}
\text{B} \\
\end{array} = \quad \begin{array}{c}
\text{B} \\
\end{array} ; \quad \begin{array}{c}
\mathcal{L} \\
\end{array} \quad \begin{array}{c}
\text{B} \\
\end{array} = \quad \begin{array}{c}
\text{B} \\
\end{array} ,
\]
where \(X \) is a unitary matrix with the same block structure as \(B^i \), as in Eq. 28.
Proof. Applying Theorem 1 (recall Remark V.1) to the tensor BB and the unitary $R \otimes L$ (BB is in CF if B is in CF), we obtain:

$$\begin{array}{c}
R & L \\
\downarrow & \downarrow \\
B & B \\
\downarrow & \downarrow \\
B & B \\
\end{array} = \begin{array}{c}
B & B \\
\downarrow & \downarrow \\
B & B \\
\end{array}. \tag{34}
$$

Applying the pair of operators to every site on the chain (for even N) we conclude that the MPV is invariant under the global application of the operators in reversed order: $(L \otimes R)^{\otimes N} |\psi_B^{2N}\rangle = |\psi_B^{2N}\rangle$. Using Corollary IV.1 we obtain:

$$\begin{array}{c}
L & R \\
\downarrow & \downarrow \\
B & B \\
\downarrow & \downarrow \\
B & B \\
\end{array} = \begin{array}{c}
X^{-1} & \Pi^{-1} \\
\downarrow & \downarrow \\
B & B \\
\downarrow & \downarrow \\
B & B \\
\end{array} = \begin{array}{c}
\Pi & X \\
\downarrow & \downarrow \\
B & B \\
\downarrow & \downarrow \\
B & B \\
\end{array}, \tag{35}
$$

where X is unitary and Π is a permutation, as in Corollary IV.1. Next consider the following tensor:

$$\begin{array}{c}
L & R & L & R & L & R \\
\downarrow & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow \\
B & B & B & B & B & B \\
\downarrow & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow \\
B & B & B & B & B & B \\
\end{array} \ldots \begin{array}{c}
B \\
\downarrow \\
B \\
\end{array}.
$$

According to Eq. (34) this tensor is equal to the LHS of the following, and according to Eq. (35) - to the RHS:

$$\begin{array}{c}
LHS = \\
\begin{array}{c}
L \\
\downarrow \\
B & B & B & B \\
\downarrow & \downarrow & \downarrow & \downarrow \\
B & B & B & B \\
\end{array} = \\
\begin{array}{c}
R \\
\downarrow \\
\Pi & X \\
\downarrow & \downarrow \\
B & B & B & B \\
\downarrow & \downarrow & \downarrow & \downarrow \\
B & B & B & B \\
\end{array} \ldots \begin{array}{c}
B \\
\downarrow \\
B \\
\end{array}. \tag{36}
$$

Using the same argument as in equation Eq. (31), we show that the permutation must act trivially: use Proposition IV.4 on the string of consecutive Bs, excluding the extreme right and left ones, to obtain multiples of I in a single j block and zeros elsewhere. Note that R and L do not change the block structure of the tensors they act on. Now compare the RHS with the LHS block-wise, if Π acts non trivially on a block j, then we get that B_jB_j is zero, which is a contradiction to B_j being normal. Next, having eliminated the possibility of a permutation, project Eq. (36) to any (j,q) block to obtain:

$$\begin{array}{c}
L & R \\
\downarrow & \downarrow \\
B & B \\
\downarrow & \downarrow \\
B & B \\
\end{array} \ldots \begin{array}{c}
B \\
\downarrow \\
B \\
\end{array} = \\
\begin{array}{c}
X_j^{-1} & \Pi_j^{-1} \\
\downarrow & \downarrow \\
B_j & B_j \\
\downarrow & \downarrow \\
B_j & B_j \\
\end{array} \ldots \begin{array}{c}
B_j \\
\downarrow \\
B_j \\
\end{array} = \\
\begin{array}{c}
B_j \\
\downarrow \\
B_j \\
\end{array} \ldots \begin{array}{c}
B_j \\
\downarrow \\
B_j \\
\end{array}. \tag{37}
$$
where B_j is a normal tensor by assumption. We can now apply the inverse on the string of Bs in the middle (BB is normal if B is normal) to obtain:

$$B_j \otimes B_j = X_j^{-1} \otimes B_j \otimes B_j \otimes X_j .$$

According to Remark [IV.1] the matrices X_j are determined up to a constant. We now choose a representative from the projective unitary class of X_j. The above implies that for any such choice there is a constant x_j such that:

$$B_j R(g) = B_j X_j (g); \quad B_j L(g) = X_j^{-1} B_j . \quad (13)$$

Therefore the desired X is $X = \oplus_{j=1}^m \oplus_{q=1}^r x_j X_j$.

Theorem 2 (Gauge field MPV with a local symmetry). A tensor B in CFII which generates a MPV that has a local symmetry with respect to $R(g) \otimes L(g)$ where $R(g)$ and $L(g)$ are projective representations with inverse multipliers (Definition 3), transforms under the representation matrices as:

$$B \otimes B = X(g) \otimes X(g) \quad ; \quad B \otimes B = X(g)^{-1} B \otimes B \quad , \quad (13)$$

where $X(g)$ is a projective representation of G with the same multiplier as $R(g)$ and with the same block structure as B (Eq. (12)):

$$X(g) = \oplus_{j=1}^m \oplus_{q=1}^r x_j X_j(g) . \quad (14)$$

Proof. As we have seen in the proof of Lemma [V.1] Eq. (33) holds for each block of B, so for every group element $g \in G$ we have:

$$B_j \otimes B_j = X_j(g) \otimes B_j \otimes B_j \otimes X_j(g) ; \quad B_j \otimes B_j = X_j(g)^{-1} B_j \otimes B_j \quad . \quad (37)$$
We write the action of the group element $\mathcal{R}(gh)$ on B in two ways:

$$
\gamma(g,h) \times B_j X_j(gh) = \gamma(g,h) \times B_j = B_j,
$$

where $\gamma(gh)=\gamma(g)\gamma(h)$.

Now by contracting with the tensor $B_j B_j \ldots B_j$ from the left, and taking the appropriate linear combination which results in the identity matrix (B_j is normal), we obtain $\gamma(g,h) X_j(gh) = X_j(g) X_j(h)$. This means that for all j $X_j(g)$ is a projective representation with the same multiplier as $\mathcal{R}(g)$ (γ). Therefore $X_j(g)$ is a projective representation.

Proposition 2 (Structure of \mathcal{H}_B). Given a tensor B, projective representations $\mathcal{R}(g)$, $\mathcal{L}(g)$ with inverse multipliers γ and γ^{-1} (as defined in Section 12), and matrices $X(g)$ and $Y(g)$ which satisfy Eq. (15), the Hilbert space \mathcal{H}_B can be restricted to a representation space of $G \times G$ and thus decomposes into a direct sum of tensor products of irreducible representation spaces of G:

$$
\mathcal{H}_B = \bigoplus_{k=1}^{M} \mathcal{H}_{l_k} \otimes \mathcal{H}_{r_k},
$$

where r_k and l_k are irreducible representation labels.

Proof. Even though $|\psi_B\rangle$ is defined in terms of the basis $\{|j\rangle\}$ in \mathcal{H}_B, it is sufficient to consider only vectors of the form:

$$
|\phi_{\alpha,\beta}\rangle = \sum_i \langle \alpha|B^i|\beta\rangle|i\rangle \in \mathcal{H}_B.
$$

Let $\mathcal{H} := \text{span}\{|\phi_{\alpha,\beta}\rangle\}_{\alpha,\beta}$. The group transformations $\mathcal{L}(g)$ and $\mathcal{R}(g)$ preserve \mathcal{H}:

$$
\mathcal{R}(g)|\phi_{\alpha,\beta}\rangle = \sum_i \langle \alpha|B^i X(g)|\beta\rangle|i\rangle = \sum_{i,\gamma} \langle \alpha|B^i|\gamma\rangle \langle \gamma|X(g)|\beta\rangle|i\rangle = \sum_{\gamma} \langle \gamma|X(g)|\beta\rangle|\phi_{\alpha,\gamma}\rangle,
$$

$$
\mathcal{L}(g)|\phi_{\alpha,\beta}\rangle = \sum_i \langle \alpha|Y(g)^{-1} B^i|\beta\rangle|i\rangle = \sum_{i,\gamma} \langle \alpha|Y(g)^{-1}|\gamma\rangle \langle \gamma|B^i|\beta\rangle|i\rangle = \sum_{\gamma} \langle \alpha|Y(g)^{-1}|\gamma\rangle|\phi_{\gamma,\beta}\rangle,
$$

where Eq. (15) was used. Performing a Schmidt decomposition of $|\psi_{AB}\rangle$ (or $|\psi_B\rangle$, the argument is the same) with respect to any partition where one gauge field Hilbert space is split off from the rest of the system:

$$
|\psi_{AB}\rangle = \sum_{\{i_j\},\{j\}_{\alpha,\beta}} \langle \alpha|A_{i_1} B_{j_1} A_{i_2} B_{j_2} \ldots A_{i_N} B_{j_N} |\alpha\rangle \rangle |i_1\rangle \otimes |j_1\rangle \otimes |i_2\ldots i_N j_N\rangle
$$

$$
= \sum_{\alpha,\beta} \langle \phi_{\alpha,\beta}|2|\psi_{\beta,\alpha}\rangle |3,\ldots,2N,1\rangle.
$$

27
we see that only vectors from \mathcal{H} appear. Therefore it is sufficient to restrict ourselves to $\mathcal{H}_B = \mathcal{H}$. Next we show that \mathcal{H} has a representation space structure. Equation (15) implies that $\mathcal{R}(g)$ and $\mathcal{L}(h)$ commute on \mathcal{H}:

$$\mathcal{L}(g)\mathcal{R}(h)|\phi_{\alpha,\beta}\rangle = \sum_i (\alpha|Y(g)^{-1}B^iX(h)|\beta\rangle)|i\rangle = \mathcal{R}(h)\mathcal{L}(g)|\phi_{\alpha,\beta}\rangle.$$

Thus \mathcal{H} forms a projective representation space of $G \times G$ with the projective representation map $(g, h) \mapsto \mathcal{L}(g)\mathcal{R}(h)$ with multiplier $\gamma^{-1} \times \gamma$ of $G \times G$ defined by $\gamma^{-1} \times \gamma : (g, h) \mapsto \gamma^{-1}(g, g')(h, h')$ [42]:

$$\mathcal{L}(g)\mathcal{R}(h)\mathcal{L}(g')\mathcal{R}(h')|_\mathcal{H} = \mathcal{L}(g)\mathcal{L}(g')\mathcal{R}(h)\mathcal{R}(h')|_\mathcal{H} = \gamma^{-1}(g, g')(h, h')\mathcal{L}(gg')\mathcal{R}(hh')|_\mathcal{H},$$

where we used the fact that $\mathcal{L}(g)$ and $\mathcal{R}(h)$ commute and preserve \mathcal{H}. For finite or compact groups \mathcal{H} decomposes into a direct sum of irreducible projective representations of $G \times G$ with multiplier $\gamma^{-1} \times \gamma$, each one of which is equivalent to a projective representation of the form $(g, h) \mapsto D^l_{\gamma^{-1}}(g) \otimes D^r_{\gamma}(h)$ [42], which proves the proposition.

Recall the definition of an elementary B block:

Definition III.1. An elementary block of the tensor B is one which satisfies Eq. (15), where $\mathcal{R}(g) = \mathbb{I} \otimes D^r_{\gamma}(g)$, $\mathcal{L}(g) = D^l_{\gamma^{-1}}(g) \otimes \mathbb{I}$ and $X(g), Y(g), D^r_{\gamma}(g)$ and $D^l_{\gamma^{-1}}(g)$ are irreducible projective representations (both $X(g)$ and $Y(g)$ have multiplier γ).

Proposition 3 (Structure of an elementary B block). Let B be an elementary B block (Definition III.1). If $X(g) = D^l_{\gamma}(g)$ and $Y(g) = D^r_{\gamma^{-1}}(g)$, then B is proportional to the tensor composed of the matrices

$$B^{m,n} = |m\rangle\langle n|, m = 1, \ldots, \text{dim}(l), n = 1, \ldots, \text{dim}(r).$$

Otherwise $B = 0$.

Proof. Write B as a map $B : \mathbb{C}^{D_2} \rightarrow \mathbb{C}^{D_1} \otimes \mathcal{H}_B$:

$$B = \sum_{m,n} B^{m,n} \otimes |m\rangle|n\rangle = \sum_{m,n,\alpha,\beta} B^{m,n}_{\alpha,\beta} |\alpha\rangle\langle \beta| \otimes |m\rangle|n\rangle$$

By hypothesis B satisfies (Eq. (15)):

$$[\mathbb{I} \otimes (\mathcal{R}(g)\mathcal{L}(h))]B = \left[\mathbb{I} \otimes \left(D^l_{\gamma^{-1}}(h) \otimes D^r_{\gamma}(g)\right)\right]B = \left[Y(h)^{-1} \otimes \mathbb{I}\right]B[X(g) \otimes \mathbb{I}]$$

Write the above equality explicitly (repeated indices are summed over):

$$\text{LHS} = \sum_{m,n,\alpha,\beta} B^{m,n}_{\alpha,\beta} |\alpha\rangle\langle \beta| \otimes D^l_{\gamma^{-1}}(h)|m\rangle D^r_{\gamma}(g)|n\rangle = \sum_{m,n,\alpha,\beta} B^{m,n}_{\alpha,\beta} |\alpha\rangle\langle \beta| \otimes D^l_{\gamma^{-1}}(h)|m\rangle D^r_{\gamma}(g)|n\rangle =$$

$$\text{RHS} = \sum_{m,n,\alpha,\beta} B^{m,n}_{\alpha,\beta} Y(h)^{-1}|\alpha\rangle\langle \beta|X(g) \otimes |m\rangle|n\rangle = \sum_{m,n,\alpha,\beta} B^{m,n}_{\alpha,\beta} Y(h)|\alpha\rangle\langle \beta|X(g) \otimes |m\rangle|n\rangle.$$

Projecting both LHS and RHS to $|\hat{\alpha}\rangle\langle \hat{\beta}|$ we obtain

$$\sum_{m,n} D^l_{\gamma^{-1}}(h)_{\hat{m},m} D^r_{\gamma}(g)_{\hat{n},n} B^{m,n}_{\alpha,\beta} = \sum_{\alpha,\beta} B^{\hat{\alpha},\hat{\beta}}_{\alpha,\beta} Y(h)_{\alpha,\alpha} X(g)_{\beta,\beta}.$$

The LHS is a multiplication from the left (summing the indices m, n) of the matrix \mathbf{B}, with entries $B^{m,n}_{(\alpha,\beta)} := B^{m,n}_{\alpha,\beta}$, with the matrix $D^l_{\gamma^{-1}}(h) \otimes D^r_{\gamma}(g)$, which is an irreducible projective representation of $G \times G$. The RHS is a multiplication of \mathbf{B} from the right (summing the indices α, β) with the matrix $Y(h) \otimes X(g)$, which is also an irreducible projective representation of $G \times G$ (with the same multiplier). By Schur’s lemma (Lemma II.1) $\mathbf{B} \propto \mathbb{I}$ (i.e. $B^{m,n}_{\alpha,\beta} \propto \delta_{\alpha,m} \delta_{\beta,n}$) if $D^l_{\gamma^{-1}}(h) \otimes D^r_{\gamma}(g) = Y(h) \otimes X(g)$, and zero otherwise.

\(\square\)
Proposition 4. Let \(B, \mathcal{R}(g), \mathcal{L}(g) \) and \(X(g) \) be as in Theorem 4. Let \(X_j(g) = \oplus_a X^a_j(g) \) be a block of \(X(g) \) appearing in Eq. (14), consisting of irreducible projective representations \(X^a_j(g) \). Let \(\mathcal{R}(g) = \oplus_k (D^k_\gamma(g) \otimes \mathbb{I}) \) and \(\mathcal{L}(g) = \oplus_k (D^{\bar{k}}_\gamma(g) \otimes \mathbb{I}) \), where \(D^k_\gamma \) and \(D^{\bar{k}}_\gamma \) are irreducible projective representations. Then the following hold:

1. For all \(k \) either there exist \(a \) and \(b \) such that \(X^b_j(g) = D^b_\gamma(g) \) and \(X^a_j(g) = \bar{D}^a_\gamma(g) \), or the projection of the corresponding tensor \(B_j \) (a BNT element of \(B \)) to the sector \(k \) of the physical space is zero.
2. \(\forall a \exists k \text{ such that } X^a_j(g) = D^b_\gamma(g) \).
3. \(\forall a \exists k \text{ such that } X^a_j(g) = \bar{D}^a_\gamma(g) \).

Proof. Recall the structure of the tensor \(\Theta(g) \):

\[
\Theta(g) = \oplus_a X^a_j(g)
\]

where \(\{ B_j \} \) are normal tensors. Project Eq. (13) to a block \(j, q \) of the virtual space to obtain:

\[
\mathcal{R}(g) \quad B_j \quad \mathcal{L}(g)
\]

Let \(X_j(g) = \oplus_a X^a_j(g) \) be a block of \(X(g) \). We shall prove each item in the statement:

1. Let \(B^k_j \) be the projection of the tensor \(B_j \) to the \(k \) sector of the physical Hilbert space. If for a certain \(k \) there exist \(a \) and \(b \) such that \(X^b_j(g) = D^b_\gamma(g) \) and \(X^a_j(g) = \bar{D}^a_\gamma(g) \), then according to Proposition 3 for all \(a, b \) the \(a, b \) block of \(B^k_j \), consisting of the matrices \(B^{k,m,n}_{j,a,b} \), is zero. This means \(B^k_j \) is zero.
2. If there is a \(Y^a(g) \) for which there is no appropriate \(k \) then according to Proposition 3 \(B^k[m,n] \) all have a zero row which is a contradiction to the normality of \(B_j \).
3. As in Item 2 \(B^k[m,n] \) now would have a zero column, which contradicts the normality of \(B_j \).

The proof of Proposition 5 will be presented in the next section after we derive the structure of the symmetric matter tensor \(A \).

Proposition 6. Let \(B, \mathcal{R}(g) \) and \(\mathcal{L}(g) \) be as in Theorem 4 and in addition let \(\text{span}\{ B^{k,m,n}_{j,a,b} \mid k, m, n \} \) contain the identity matrix (e.g. Eq. (13)). Let \(A \) and \(\Theta(g) \) be such that the MPV generated by \(AB \) has a local symmetry with respect to \(\mathcal{R}(g) \otimes \Theta(g) \otimes \mathcal{L}(g) \) (Definition 4). Then \(|\psi_A^N \rangle \) has a global symmetry with respect to \(\Theta(g) \). If in addition \(A \) is in CF with the same block structure as \(B \) (Eq. (12)), then \(A \) transforms as:

\[
\Theta(g) \quad A \quad \mathcal{L}(g)
\]

with the same \(X(g) \) from Theorem 4.
Proof. We use the local symmetry condition around every A:

$$
\begin{align*}
\mathcal{L}(g) & \quad \mathcal{R}(g) & \quad \Theta(g) & \quad \cdots & \quad \Theta(g) \\
\mathcal{R}(g) & \quad \Theta(g) & \quad \mathcal{L}(g) & \quad \cdots \\
B & \quad A & \quad B & \quad A & \quad \cdots & \quad A \\
\end{align*}
\Rightarrow \begin{array}{c}
B \quad A \\
B \quad A \\
\end{array} = \begin{array}{c}
B \quad A \quad B \quad A \quad \cdots \quad A \\
B \quad A \quad B \quad A \quad \cdots \quad A \\
\end{array}.
$$

According to the transformation laws for B, the LHS of the above equals:

$$
\begin{align*}
= \Theta(g) \quad \Theta(g) \quad \Theta(g) \\
\Theta(g) \quad \Theta(g) \quad \Theta(g) \\
X(g)^{-1} \quad B \quad X(g) \quad A \quad X(g)^{-1} \quad B \quad X(g) \quad A \quad X(g)^{-1} \quad \cdots \quad X(g) \quad A \\
\end{align*}
$$

We can now use the assumption $I \in \text{span}\{B^{k,m,n}\}$ to eliminate the Bs from the equation, the Xs then cancel out and we obtain the desired global symmetry:

$$
\begin{align*}
\Theta(g) & \quad \Theta(g) & \quad \Theta(g) \\
A & \quad A & \quad \cdots & \quad A \\
\end{align*}
\Rightarrow \begin{array}{c}
\Theta(g) \\
A \\
\Theta(g) \quad \Theta(g) \quad \Theta(g) \\
A \quad A \quad \cdots \quad A \\
\end{array} = \begin{array}{c}
\Theta(g) \\
A \\
\Theta(g) \\
A \quad A \quad \cdots \quad A \\
\end{array}.
$$

If in addition A is in CF, we can apply Theorem 4 to obtain transformation relations for A. To show the rest of the claim (if A in addition has the block structure of B) we write the symmetry condition and again use the transformation rules for B:

$$
\begin{align*}
\Theta(g) \\
B \quad X(g) \quad A \quad X(g)^{-1} \quad B \quad A \quad \cdots \quad A \\
\end{align*}
\Rightarrow \begin{array}{c}
\Theta(g) \\
B \quad X(g) \quad A \quad X(g)^{-1} \quad B \quad A \quad \cdots \quad A \\
\Theta(g) \\
A \quad A \quad \cdots \quad A \\
\end{array} = \begin{array}{c}
\Theta(g) \\
B \quad X(g) \quad A \quad X(g)^{-1} \quad B \quad A \quad \cdots \quad A \\
\Theta(g) \\
A \quad A \quad \cdots \quad A \\
\end{array}.
$$

We eliminate all Bs as before and are left with:

$$
\begin{align*}
\Theta(g) \\
X(g) \quad A \quad X(g)^{-1} \quad A \quad \cdots \quad A \\
\end{align*}
\Rightarrow \begin{array}{c}
\Theta(g) \\
X(g) \quad A \quad X(g)^{-1} \quad A \quad \cdots \quad A \\
\Theta(g) \\
A \quad A \quad \cdots \quad A \\
\end{array} = \begin{array}{c}
\Theta(g) \\
X(g) \quad A \quad X(g)^{-1} \quad A \quad \cdots \quad A \\
\Theta(g) \\
A \quad A \quad \cdots \quad A \\
\end{array}.
$$

We can now use Lemma IV.1 with $S^i = A^i$ and $T^i = X(g) \sum_{i'} \Theta(g)_{i,i'} A^{i'} X(g)^{-1}$ to finish the proof (this is where we use the assumption about the block structure of A, the crucial thing is that $X(g)$ is compatible with A’s blocks as in Lemma IV.1).
C. Matter and gauge field MPV

Theorem 3 (Matter and gauge field MPV with a local symmetry). Let both BA and AB be normal tensors in CFII and let $\Theta(g)$ and $\mathcal{R}(g), \mathcal{L}(g)$ be unitary and projective representations (with inverse multipliers) of a group G respectively. Let $|\psi_{AB}^N\rangle$ be a MPV with a local symmetry with respect to $\mathcal{R}(g) \otimes \Theta(g) \otimes \mathcal{L}(g)$ (Definition 4). Then there exist projective representations $X(g)$ and $Y(g)$ on \mathbb{C}^{D_1} and \mathbb{C}^{D_2} respectively, such that $X(g)$ has the same multiplier as $\mathcal{R}(g)$, and $Y(g)$ - the inverse multiplier to that of $\mathcal{L}(g)$. The tensors A and B transform as follows:

\begin{align}
\mathcal{R}(g) & \quad \mathcal{L}(g) \\
B & = \quad B \quad X(g) \\
& ; \\
\Theta(g) & \\
A & = \quad X(g)^{-1} \quad A \quad Y(g) \\
\end{align}

(20)

Proof. Apply Theorem 2 on the tensor AB and the representations $\check{\mathcal{R}}(g) := \mathbb{I} \otimes \mathcal{R}(g)$ and $\check{\mathcal{L}}(g) := \Theta(g) \otimes \mathcal{L}(g)$ to obtain:

\begin{align}
\mathcal{R}(g) & \\
A & = \quad X(g) \\
\Theta(g) & \\
B & = \quad X(g)^{-1} \quad A \quad Y(g) \\
\end{align}

(38)

(39)

where $X(g)$ is a projective representation with the same multiplier as $\mathcal{R}(g)$. Apply Theorem 2 once more, this time on the tensor BA and the representations $\check{\mathcal{R}}(g) := \mathcal{R}(g) \otimes \Theta(g)$ and $\check{\mathcal{L}}(g) := \mathcal{L}(g) \otimes \mathbb{I}$ to obtain:

\begin{align}
\mathcal{R}(g) & \\
B & = \quad B \quad \Theta(g) \\
\check{\mathcal{L}}(g) & \\
A & = \quad B \quad A \quad Y(g) \\
\end{align}

(40)
and

\[
\mathcal{L}(g) = B - A = Y(g)^{-1} - B - A ,
\]

where \(Y(g)\) is a projective representation with inverse multiplier to \(\mathcal{L}(g)\). By contracting Eq. (38) from the left with the tensor \(BA\ldots B\), and taking the appropriate linear combination to obtain the identity matrix out of the tensor \(BA\ldots BA\) (using the normality of \(BA\)), we eliminate the the \(A\) in Eq. (38). By contracting Eq. (41) with \(BA\ldots B\) from the right - we eliminate the \(A\) in Eq. (41) (using the normality of \(AB\)). This proves the transformation rule for \(B\) - Eq. (20). Next plug in the transformation rules of \(B\) under \(\mathcal{R}(g)\) into Eq. (41) to obtain:

\[
\Theta(g) = B - X(g) - A = B - A - Y(g) .
\]

Finally, eliminate the \(B\) from the equation as in the previous steps to obtain the transformation rule for \(A\) and finish the proof.

Proposition 7. Let \(|\psi_{AB}^N\rangle\) be a MPV generated by arbitrary tensors \(A\) and \(B\). Then there exist tensors \(\{A_\chi\}\) and \(\{B_\chi\}\), and there exists \(b \in \mathbb{N}\) such that for all \(\chi\) both \(A_\chi B_\chi\) and \(B_\chi A_\chi\) are normal tensors and \(\forall N \in \mathbb{N}\) \(|\psi_{AB,\chi}^N\rangle = \sum \mu_\chi^N |\psi_{A_\chi B_\chi}^N\rangle\), where \(\mu_\chi\) are constants and \(AB_{\chi b}\) is the tensor obtained by blocking \(b\) copies of the tensor \(AB\).

Proof. We argue similarly to [38] where it is described how to obtain, from an arbitrary tensor, a tensor in CF generating the same MPV. Begin by finding all of \(A\alpha\)'s minimal invariant subspaces \(S_\alpha\), such that \(A_i B_j P_\alpha = P_\alpha A_i^T B_j^T P_\alpha\) for all \(i\) and \(j\), where \(P_\alpha\) is the orthogonal projection to \(S_\alpha\). Let \(\hat{P}_\alpha\) be the partial isometry \(\hat{P}_\alpha : \mathbb{C}^{D_1} \to S_\alpha\) such that \(\hat{P}_\alpha^\dagger P_\alpha = P_\alpha\) and \(\hat{P}_\alpha^\dagger \hat{P}_\alpha = \mathbb{I}_{S_\alpha}\). Define \(A_\alpha := P_\alpha A^T\) and \(B_\alpha := B^T P_\alpha^\dagger\). Then

\[
|\psi_{AB}^N\rangle = \sum_{\{i,j\}} \text{Tr} \left(A_i^{11} B_j^{1j} \ldots A_i^{1N} B_j^{1jN} \right) |i_1 j_1 \ldots i_N j_N\rangle
\]

\[
= \sum_{\{i,j\}, \alpha} \text{Tr} \left(P_\alpha A_i^{11} B_j^{1j} \ldots A_i^{1N} B_j^{1jN} P_\alpha \right) |i_1 j_1 \ldots i_N j_N\rangle
\]

\[
= \sum_{\{i,j\}, \alpha} \text{Tr} \left(P_\alpha A_i^{11} B_j^{1j} P_\alpha \ldots P_\alpha A_i^{1N} B_j^{1jN} P_\alpha \right) |i_1 j_1 \ldots i_N j_N\rangle
\]

\[
= \sum_{\{i,j\}, \alpha} \text{Tr} \left(\hat{P}_\alpha A_i^{11} B_j^{1j} \hat{P}_\alpha^\dagger \hat{P}_\alpha \ldots \hat{P}_\alpha A_i^{1N} B_j^{1jN} \hat{P}_\alpha^\dagger \hat{P}_\alpha \right) |i_1 j_1 \ldots i_N j_N\rangle
\]

\[
= \sum_{\alpha} |\psi_{A_\alpha B_\alpha}^N\rangle .
\]

Note that the bond dimension of the tensor \(A_\alpha B_\alpha\) is \(\dim(S_\alpha)\) which is smaller than the original bond dimension \(D_2\). Now \(A_\alpha B_\alpha\) has no invariant subspaces but \(B_\alpha A_\alpha\) might, therefore, perform the same for \(B_\alpha A_\alpha\) - for each \(\alpha\) find all minimal invariant subspaces \(T_{\alpha \beta}\) of \(B_\alpha A_\alpha\). Let \(Q_{\alpha \beta}\) be the orthogonal projections to the invariant subspaces and \(Q_{\alpha \beta}\) the partial isometries. Define \(A_{\alpha \beta} := A_{\alpha \beta}^T \hat{Q}_{\alpha \beta}^\dagger = \hat{P}_\alpha A_{\alpha \beta}^T \hat{P}_\alpha^\dagger\), and \(B_{\alpha \beta} :=

\[\hat{Q}_{\alpha\beta} B^j_{\alpha} = \hat{Q}_{\alpha\beta} B^j \hat{P}^l_{\alpha}. \] For each \(\alpha \) we have

\[|\psi^N_{A\varepsilon B_{\alpha}} \rangle = \sum_{\beta} |\psi^N_{A\varepsilon B_{\alpha\beta}} \rangle, \]

and thus

\[|\psi^N_{AB} \rangle = \sum_{\alpha} |\psi^N_{A\varepsilon B_{\alpha}} \rangle = \sum_{\alpha\beta} |\psi^N_{A\varepsilon B_{\alpha\beta}} \rangle. \]

Now each \(A_{\alpha\beta} B_{\alpha\beta} \) might be reducible. Continue iterating this decomposition, once for \(AB \) and once for \(BA \). Since the bond dimension of the tensors obtained at each step decreases, this procedure is bound to end after a finite number of steps. In the final step, we obtain the tensors \(A^i = P_x A^i Q^l_x \) and \(B^j = Q_x B^j P^l_x \), where \(\chi \) incorporates all the previous indices, such that both \(A_{\chi} B_{\chi} \) and \(B_{\chi} A_{\chi} \) have no non trivial invariant subspaces. We can then perform the second step (as in (38)) which involves blocking the tensors in order to eliminate the periodicity of the associated CP maps. The blocking scheme is the following: \(\hat{A}^{ij} := A^i B^j A^k \) and \(\hat{B}^{lmn} := B^l A^m B^n \). We can find the least common multiple of the length needed to eliminate the periodicity of all CP maps, and perform step 1 again if needed (after blocking the CP maps again become reducible [39]). We can repeat these steps as many times as needed. The process terminates at some point because the bond dimension decreases at each step. Finally, rescale the matrices \(A_{\chi} B_{\chi} \) by a constant \(\mu_{\chi} \) to make the spectral radius of \(E_{A\varepsilon B_{\chi}} \) and \(E_{B_{\chi} A_{\chi}} \) equal to 1. The following lemma is required:

Lemma V.2. \(E_{A\varepsilon B_{\chi}} \) and \(E_{B_{\chi} A_{\chi}} \) have the same spectral radius.

Proof. Let \(X \) be an eigenvector of \(E_{A\varepsilon B_{\chi}} \) with eigenvalue \(\lambda \): \(E_{A\varepsilon B_{\chi}}(X) = E_{A\varepsilon B_{\chi}}(X) = \lambda X \). Apply \(E_{B_{\chi}} \) to both sides to obtain \(E_{B_{\chi} A_{\chi}}(X) = \lambda E_{B_{\chi}}(X) \), i.e., \(E_{B_{\chi}}(X) \) is an eigenvector of \(E_{B_{\chi} A_{\chi}} \) with eigenvalue \(\lambda \). Interchanging \(A \) and \(B \) we obtain that \(E_{A\varepsilon B_{\chi}} \) and \(E_{B_{\chi} A_{\chi}} \) have the same spectrum, and therefore the same spectral radius. \(\square \)

Remark V.2 (Blocking of the symmetry operators). In the blocking scheme described in Proposition 7 if we start out with a MPV with a local symmetry under the operators \(\mathcal{R}(g) \otimes \Theta(g) \otimes \mathcal{L}(g) \), after blocking we need to redefine the operators to act on the blocked degrees of freedom as follows: \(\mathcal{R}(g) := \mathcal{R}(g) \otimes \Theta(g) \otimes (\mathcal{L}(g) \mathcal{R}(g)) \), \(\hat{\Theta}(g) := \Theta(g) \otimes (\mathcal{L}(g) \mathcal{R}(g)) \otimes \Theta(g) \) and \(\hat{\mathcal{L}}(g) := (\mathcal{L}(g) \mathcal{R}(g)) \otimes \Theta(g) \otimes \mathcal{L}(g) \).

Proposition 8. Let \(|\psi^N_{AB} \rangle = \sum \chi \mu^N_{\chi} |\psi^N_{A\varepsilon B_{\chi}} \rangle \) where both \(A_{\chi} B_{\chi} \) and \(B_{\chi} A_{\chi} \) are normal tensors. Let \(O \) be a local operator acting on a fixed number of adjacent sites. If \(\forall N \) \(O \) leaves the MPV invariant:

\[O \otimes I |\text{rest} \rangle |\psi^N_{AB} \rangle = |\psi^N_{AB} \rangle, \]

then \(O \) leaves every component invariant:

\[O \otimes I |\text{rest} \rangle |\psi^N_{A\varepsilon B_{\chi}} \rangle = |\psi^N_{A\varepsilon B_{\chi}} \rangle \forall \chi. \]

Proof. Pick a BNT \(\{ A_j B_j \} \) out of the normal tensors \(\{ A_{\chi} B_{\chi} \} \) and construct a new tensor \(C \) by blocking the tensors \(\{ A_{\chi} B_{\chi} \} \) diagonally (possibly changing the order of the blocks):

\[C_{ui} = \oplus_{\chi} \mu_{\chi} A^i_{\chi} B^j_{\chi} = \oplus_j \oplus_q \mu_{j,q} V^{-1}_{i,j} A^i_j B^j_q V_{i,j,q}, \]

where for every \(\chi \) there is a \(j \) and a \(q \) such that \(\mu_{\chi} A_{\chi} B_{\chi} = \mu_{j,q} V^{-1}_{i,j} A^i_j B^j_q V_{i,j,q} \). Now \(C \) is in CF and generates the same MPV as \(AB \). We have

\[O |\psi^N_C \rangle = O |\psi^N_{AB} \rangle = |\psi^N_{AB} \rangle = |\psi^N_C \rangle. \]
We can now use Lemma IV.1 (use Eq. (27) from the proof of the lemma) for the tensor \(C = AB \) to obtain

\[
\begin{pmatrix}
A_j & B_j & A_j & B_j & \cdots & B_j
\end{pmatrix} = \begin{pmatrix}
A_j & B_j & A_j & B_j & \cdots & B_j
\end{pmatrix},
\]

where the operator in the box contains \(O \) (we need to extend it by at most one \(\otimes \mathbb{I} \) from the right and from the left in order to occupy a full \(AB \ldots AB \) block). Finally, we have

\[
O|\psi^N_{A_vB_v}\rangle = O|\psi^{N-1}_{V_{g^{-1}}A_jB_{j'}}\rangle = |\psi^N_{A_jB_j}\rangle = |\psi^N_{A_vB_v}\rangle.
\]

Recall the definition of an elementary \(A \) block:

Definition III.2 (Elementary \(A \) block). An elementary block of the tensor \(A \) is one which satisfies Eq. (21), where \(\Theta(g) \), \(X(g) \) and \(Y(g) \) are all irreducible projective representations.

Proposition 9. Let \(A \) be an elementary block (Definition III.2), with \(\Theta(g) = D_{J_0}(g) \), \(X(g) = D_{j_0}(g) \) and \(Y(g) = D_{l_0}(g) \). Then \(A \) is built out of Clebsch-Gordan coefficients and has the form:

\[
A^M = \sum_{J \in \mathfrak{J}: D_J = D_{J_0}} \alpha_J \sum_{m,n} \langle J, M | J, m; l, n \rangle |m\rangle \langle n|,
\]

where \(\mathfrak{J} \) is the set of irreducible representation indices appearing in the decomposition of \(D_{J_0}(g) \otimes D_{l_0}(g) \) into irreducible representations, \(\langle J, m; l, n | J, M \rangle \) are the Clebsch-Gordan coefficients of the decomposition, \(\overline{D_{J_0}(g)} \) is the complex conjugate representation to \(D_{J_0}(g) \) and \(\alpha_J \) are arbitrary constants.

Proof. Write out Eq. (21):

\[
\sum_{i'} \Theta(g_i') A_{i'} = X(g)^{-1} A^i Y(g).
\]

Taking the complex conjugate of both sides

\[
\sum_{i'} \Theta(g^{-1}_{i'}) \overline{A_{i'}} = \overline{X(g)^{-1} A^i Y(g)}
\]

we see that \(\overline{A} \) satisfies Eq. (27) for \(\overline{v} = e^{ \overline{g} } \) and the group element \(g^{-1} \), with \(\kappa = \Theta(g), \pi = \overline{X(g)} \) and \(\eta = \overline{Y(g)} \). Therefore \(\overline{A} \) is a vector operator with respect to the above representations. In the case when \(\Theta(g) = D_{J_0}(g), X(g) = D_{j_0}(g) \) and \(Y(g) = D_{l_0}(g) \) are irreducible representations, according to Theorem II.1 \(\overline{A} \) is of the form:

\[
\overline{A^M} = \sum_{J: D_J = D_{J_0}(g)} \alpha_J \sum_{m,n} \langle J, m; l, n | J, M \rangle |m\rangle \langle n|,
\]

taking the complex conjugate, we find the desired form of \(A \).

Example V.1. A direct calculation using the Clebsch-Gordan series [13]:

\[
D_l(g)_{m,m'} D_{l'}(g)_{n,n'} = \sum_{L,N,N'} \langle j, m; l, n | L, N \rangle \langle L, N' | j, m'; l, n' \rangle D_l(g)_{N,N'}.
\]
shows that the tensor composed of the matrices

\[A^{J,M} = \sum_{m,n} \langle J, M | \bar{J}, m; l, n \rangle \langle m | n \rangle, \]

for a fixed value of \(J \), satisfies

\[D^J(g) A = D^J(g)^{-1} A D^J(g). \]

Consequently, the tensor composed out of all matrices \(\{ A^{J,M} \}_{J \in \mathbb{R},M} \) (all \(J \) appearing in the decomposition \(D^J(g) \otimes D^J(g) = \oplus_{J \in \mathbb{R}} D^J(g) \)) satisfies:

\[\oplus_{J \in \mathbb{R}} D^J(g) A = D^J(g)^{-1} A D^J(g). \]

In addition to being a symmetric tensor, this tensor is always injective: let \(D := \dim(j) = \dim(l) \). Due to the fact that the C-G coefficients are the entries of a unitary matrix, the matrices \(A^{J,M} \) satisfy \(\text{Tr} \left(A^{J,M} A^{J',M'} \right) = \delta_{JJ'} \delta_{MM'} \). Since there are \(D \times D \) of them, they form an ONB of the space of \(D \times D \) matrices.

We can now prove the following proposition, the proof of which we postponed in the previous section.

Proposition 5. Let \(B \) be in CFII and let \(|\psi_B^N\rangle \) have a local symmetry with respect to \(\mathcal{R}(g) \otimes \mathcal{L}(g) \) (as in Theorem 2). It is always possible to find a tensor \(A \) and a representation \(\Theta(g) \) such that the corresponding matter and gauge field MPV \(|\psi_B^N\rangle \) has a local symmetry with respect to \(\mathcal{R}(g) \otimes \Theta(g) \otimes \mathcal{L}(g) \) (Definition 4). In addition, the corresponding matter MPV - \(|\psi_A^N\rangle \) - has a global symmetry with respect to \(\Theta(g) \).

Proof. For each \(D^k_J(g) \) appearing in \(X(g) = \oplus_k \Delta^k_J \), let \(J(k) \) be an irreducible representation index appearing in the decomposition of \(D^k_J(g) \otimes D^k_J(g) \). Let \(A^{(k)} \) be the tensor presented in Example 5 satisfying

\[D^J(k)(g) A^{(k)} = D^{J(k)}(g)^{-1} A^{(k)} D^{J(k)}(g). \]

Let the matter Hilbert space be \(\mathcal{H}_A := \oplus_k \mathcal{H}_{J(k)} \). Let the tensor \(A \) in each sector \(J(k) \) of the physical space be zero except for in the \(k, k \) virtual block, such that:

\[[X^{-1}(g) A^{J(k),M} X(g)]_{l,m'} = \delta(l,k) \delta(l',k) D^{J(k)}(g) A^{(k)} A^{(k)} D^{J(k)}(g). \]

\[\square \]

Proposition 10. Let \(AB \) and \(BA \) be normal tensors and let \(B \) satisfy Eq. (20) with \(\mathcal{R}(g) = \oplus_k (1 \otimes D^a_{\gamma}(g)) \), \(\mathcal{L}(g) = \oplus_k (D^{b}_{\gamma}(g) \otimes 1) \), \(Y(g) = \oplus_a Y^a(g) \) and \(X(g) = \oplus_b X^b(g) \), where \(D^a_{\gamma} \), \(D^{b}_{\gamma} \), \(Y^a \) and \(X^b \) are irreducible projective representations, then

35
1. For all k either there exist a and b such that $X^k_b(g) = D^k_{\gamma^k}(g)$ and $Y^a_a(g) = D^k_{\gamma^{-k}}(g)$ or the projection of the tensor B to the sector k of the physical space is zero (and it can be discarded).

2. $\forall a \exists k$ such that $Y^a_a(g) = D^k_{\gamma^{-1}}(g)$.

3. $\forall b \exists k$ such that $X^k_b(g) = D^k_{\gamma}(g)$.

Proof. 1. Assume the contrary is true, then according to Proposition $B^{k,m,n}$ are all zero and this value of k does not contribute to the MPV.

2. If there is a $Y^a_a(g)$ for which there is not an appropriate k then according to Proposition $B^{k,m,n}$ all have a zero row which is a contradiction to the normality of AB.

3. As in Item 2, $B^{k,m,n}$ now would have a zero column and would contradict normality of BA.

Proposition 11. There exist tensors A and B such that $|\psi_{AB}\rangle$ has a local symmetry with respect to $R(g) \otimes \Theta(g) \otimes L(g)$, but $|\psi_A\rangle$ does not have a global symmetry with respect to $\Theta(g)$. In addition $R(g) \otimes L(g)|\psi_B\rangle \neq |\psi_B\rangle$.

The proof is given by the following example:

Example V.2. Let $G = D_{10}$ the dihedral group of order 10. It is the group generated by two elements: r and s satisfying $r^5 = s^2 = (sr)^2 = e$. D_{10} has two inequivalent two dimensional irreducible representations ρ_1 and ρ_2 generated by:

$$
\rho_1 : r \mapsto R_1 := \begin{pmatrix} e^{i\theta} & 0 \\ 0 & e^{-i\theta} \end{pmatrix}, \\
\rho_2 : r \mapsto R_2 := \begin{pmatrix} e^{2i\theta} & 0 \\ 0 & e^{-2i\theta} \end{pmatrix},
$$

$$
s \mapsto S := \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix},
$$

where $\theta = 2\pi/5$. The tensor product $\overline{\rho_1} \otimes \rho_2$ decomposes into $\rho_1 \oplus \rho_2$:

$$
\overline{\rho_1} \otimes \rho_2 : r \mapsto R_1 \otimes R_2 = \begin{pmatrix} e^{i\theta} & 0 & 0 & 0 \\ 0 & e^{-i3\theta} & 0 & 0 \\ 0 & 0 & e^{i3\theta} & 0 \\ 0 & 0 & 0 & e^{-i\theta} \end{pmatrix},
$$

$$
s \mapsto S \otimes S = \begin{pmatrix} 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{pmatrix}.
$$

It is clear from inspection of the above 4×4 matrices that the unitary transformation realizing the direct sum decomposition is a permutation of the basis elements, the non zero Clebsch-Gordan coefficients are:

$$
\langle \rho_1, 1 | \overline{\rho_1}, 1; \rho_2, 1 \rangle = 1, \\
\langle \rho_1, 2 | \overline{\rho_1}, 2; \rho_2, 2 \rangle = 1, \\
\langle \rho_2, 1 | \overline{\rho_1}, 1; \rho_2, 2 \rangle = 1, \\
\langle \rho_2, 2 | \overline{\rho_1}, 2; \rho_2, 1 \rangle = 1.
$$
Following Example V.1 and using these coefficients, define the tensor A:

\[
A^1 = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \quad A^2 = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}.
\]

A satisfies:

\[
\rho_1(g) A \rho_1(g)^{-1} = A \quad \rho_2(g) A \rho_2(g)^{-1}.
\] (43)

According to Proposition 3, the following tensor B:

\[
B_{11}^1 = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \quad B_{12}^1 = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix},
\]
\[
B_{21}^1 = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}, \quad B_{22}^1 = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix},
\]

satisfies:

\[
\rho_1(g) B \rho_1(g)^{-1} = B \quad \rho_2(g) B \rho_2(g)^{-1}.
\] (44)

Eq. (43) and Eq. (44) are easily verified for the generators of the group, r and s, and therefore hold for any group element. From these equations it follows that $|\psi_{AB}^N\rangle$ has a local symmetry (Definition 4 with $R(g) = \rho_1(g)$, $\Theta(g) = \rho_1(g)$ and $L(g) = \rho_2(g)$); however, ρ_1 is not a global symmetry for $|\psi_{AB}^N\rangle$, as is easily verified for a MPV of length 1. Similarly, a direct computation shows $R(g) \otimes L(g) |\psi_{AB}^2\rangle \neq |\psi_{AB}^2\rangle$.

Proposition 12. Let A be a tensor in CFII generating a MPV with a global symmetry i.e., satisfying Theorem 4. Let $X(g)$ (in Eq. (23)) be a projective representation (i.e. all $X_j(g)$ in Eq. (24) are in the same cohomology class). Then there exist a tensor B and projective representations $R(g)$ and $L(g)$ with inverse multipliers such that both local symmetries: Definition 4 for $|\psi_{AB}^N\rangle$ and Definition 3 for $|\psi_{AB}^B\rangle$ are satisfied.

Proof. As $X(g)$ appears in Eq. (24) together with its inverse, it is defined only up to a phase. As we assumed all $X_j(g)$ are from the same cohomology class, we can lift each one of them to be projective representations with the same multiplier γ. We can assume without loss of generality (same argument as in Remark III.3) that each $X_j(g)$ is block diagonal: $X(g) = \oplus_j \oplus_q \oplus_{a_j} D_{a_j}^j(g)$. Set $R(g) = X(g)$, $L(g) = X(g)$ and let B be completely block diagonal:

\[
B^{j,q,a;j,m,n} = |j, q, a_j; m\rangle\langle j, q, a_j; n|,
\]

i.e., for each irreducible block of $X(g)$ there is a corresponding sector in \mathcal{H}_B:

\[
\mathcal{H}_B = \oplus_j \oplus_q \oplus_{a_j} \mathcal{H}_{a_j} \otimes \mathcal{H}_{a_j},
\]

where $\overline{a_j}$ is the complex conjugate representation to a_j. \[\square\]
Example V.3 (An SU(2) gauge invariant MPV). For \(G = SU(2) \) we demonstrate the construction of a general locally invariant MPV emphasizing the constituents of physical theories and relating our setting and notation to \([34, 36]\). Write the irreducible representations \(D^j(g) \) in terms of their generators:

\[
D^j(g) = \exp \left(i \sum_a \tau_a^j \varphi_a(g) \right), \quad \forall g \in SU(2),
\]

where \(\{ \varphi_a(g) \}_{a=1}^2 \) are real parameters and \(\{ \tau_a^j \}_{a=1}^2 \) are Hermitian \((2j + 1) \times (2j + 1)\) matrices satisfying the \(su(2) \) Lie algebra relations:

\[
[\tau_a^j, \tau_b^c] = i \varepsilon_{abc} \tau_c^j,
\]

where \(\varepsilon_{abc} \) is the totally antisymmetric tensor. Let \(D^r \) and \(D^l \) be two irreducible representations of \(SU(2) \) and let \(J_0 \) be the set of irreducible representation indices appearing in the decomposition of the tensor product: \(D^r(g) \otimes D^l(g) \cong \bigoplus_{J \in J_0} D^J(g) \). Let \(J \subseteq J_0 \). Define the representation \(\Theta(g) \) as generated by \(\{ Q_a := \bigoplus_{J \in J} \tau_a^J \}_{a=1}^3 \):

\[
\Theta(g) = \bigoplus_{J \in J} D^J(g) = \bigoplus_{J \in J} \exp \left(i \sum_a \tau_a^J \varphi_a(g) \right) = \exp \left(i \sum_a Q_a \varphi_a(g) \right).
\]

As in Example V.1, the tensor \(A \), defined by the matrices:

\[
A^J,M = \sum_{m,n} \alpha_J \langle J,M | \tau, m; l, n \rangle | m \rangle\langle n |, \quad J \in J_0, M = 1, \ldots, \text{dim}(J)
\]

satisfies:

\[
\Theta(g) A^J,M = D^r(g)^{-1} A^J,M D^l(g).
\]

This relation, written in terms of the generators, reads:

\[
\sum_{M'} \left[\exp \left(i \sum_a \tau_a^J \varphi_a(g) \right) \right]_{M,M'} A^{J,M'} = \exp \left(-i \sum_a \tau_a^r \varphi_a(g) \right) A^{J,M} \exp \left(i \sum_a \tau_a^l \varphi_a(g) \right).
\]

Differentiating this equation with respect to any one of the group parameters \(\varphi_a \) we obtain the “virtual Gauss law” satisfied by \(A \):

\[
Q_a : A^{J,M} \mapsto \sum_{M'} [\tau_a^J]_{M,M'} A^{J,M'} = -\tau_a^r A^{J,M} + A^{J,M} \tau_a^l.
\]

Next, add a gauge field degree of freedom to the matter MPV, described by a tensor: \(B^{m,n} = |m\rangle\langle n| \), and define the transformations:

\[
R(g) = \mathbb{I} \otimes D^r(g) ; \quad L(g) = \overline{D^l(g)} \otimes \mathbb{I}.
\]

The action of \(L(g) \) on the gauge field Hilbert space is given by:

\[
L(g)|m,n \rangle = (\overline{D^l(g)} \otimes \mathbb{I})|m,n \rangle = \sum_{m'} \overline{D^l(g)}_{m',m} |m',n \rangle = \sum_{m'} D^l(g^{-1})_{m,m'} |m',n \rangle.
\]
whereas $R(g)$ acts as:

$$R(g)|m, n⟩ = \sum_{n'} D^r(g)_{n', n}|m, n'⟩ .$$

$R(g)$ and $L(g)$ can be defined in terms of right and left generators $\{R_a\}_{a=1}^3$ and $\{L_a\}_{a=1}^3$, as described in Section II D:

$$R(g) = \exp \left(i \sum_a R_a \varphi_a(g)\right)$$

$$L(g) = \exp \left(i \sum_a L_a \varphi_a(g)\right).$$

In our case R_a is simply given by $I \otimes \tau^r_a$ but in general R_a and L_a can have a block diagonal structure. Define the generators of the local gauge transformation around lattice site $2K + 1$:

$$G_{a}^{[2K+1]} := \left(R_{a}^{[2K]} + Q_{a}^{[2K+1]} + L_{a}^{[2K+2]} \right).$$

From our construction it follows that for all $g \in G$ and for all lattice sites K:

$$R^{[2K]}(g) \otimes \Theta^{[2K+1]}(g) \otimes L^{[2K+2]}(g)|ψ^N_{AB}⟩ = |ψ^N_{AB}⟩ .$$

Once again, differentiating with respect to the group parameters φ_a we obtain:

$$\left(R_{a}^{[2K]} + Q_{a}^{[2K+1]} + L_{a}^{[2K+2]} \right)|ψ^N_{AB}⟩ = G_{a}^{[2K+1]}|ψ^N_{AB}⟩ = 0 .$$

This is the lattice version of Gauss’ law. In physical theories $D_l = \overline{D^r}$ and thus states $|ψ_A⟩$ have a global symmetry generated by $\{Q_a\}$ - the $SU(2)$ charge operators. R_a and L_a are identified with right and left electric fields respectively [36].

One could generalize the above construction for

$$R(g) = \oplus_k (I \otimes D^r_k(g)) ; \quad L(g) = \oplus_k (D^l_k(g) \otimes I)$$

by constructing A and B as above for each k sector and combining them together block diagonally (in both physical and virtual dimensions). Duplicating the virtual representations while keeping the physical ones fixed can be achieved by $B^{m,n} \mapsto (B^{m,n} \oplus B^{m,n})$, $A^{J,M} \mapsto (A_1^{J,M} \oplus A_2^{J,M})$. This can be used to enlarge the number of variational parameters. The tensors A_1 and A_2 must both have the same structure (Eq. (45)) but can have different parameters $α_J$. The generalization to of the above to $G = SU(N)$ is straightforward.

VI. SUMMARY

In this work, we studied and classified translationally invariant MPVs with a local (gauge) symmetry under arbitrary groups. The states we classified may involve two types of building blocks, A and B tensors, which represent matter and gauge fields respectively.

We showed that matter-only MPVs may have a local symmetry, when one transforms a single site, only if they are trivial (composed of products of invariant states at each site). We also classified pure gauge states, which involve only B tensors and have local invariance when one transforms two neighboring sites, including the well-known structure of physical states involving only gauge fields. These two building blocks can be combined in a way that allows coupling matter fields (with global symmetry) to gauge fields (with local symmetry) in a locally symmetric manner, as in conventional gauge theory scenarios. Furthermore, we expanded the class of gauge invariant states to include ones that involve matter and gauge fields which do
not possess the known symmetry properties when decoupled. We classified the structure and properties of such MPVs as well.

Further work shall include a generalization to further dimensions, i.e. using PEPS. In our work we were able to connect some of the results to the symmetry properties and structure of previous gauge invariant PEPS constructions [31, 32, 34] when the space dimension is reduced to one, and therefore higher dimensional generalizations in the spirit of the current work should be possible. In particular, the tensor describing the gauge field, as it resides on the links of a lattice, is a one dimensional object for any spatial dimension, and has shown, in some particular cases, properties known from previous PEPS studies. Another important generalization one should consider is a fermionic representation of the matter, combining the spirit of this work with previous works on fermionic PEPS with gauge symmetry [33, 35] or with global symmetry [50, 51]. From the physical point of view, a physical study aiming at understanding the new classes of gauge invariant states introduced in this paper, in which the matter and gauge field do not posses separate symmetries, may also potentially unfold new physical phenomena and phases.

VII. ACKNOWLEDGMENTS

IK acknowledges the support of the DAAD.
URL https://cds.cern.ch/record/257493

doi:10.1103/PhysRevD.10.2445

arXiv:cond-mat/0408370
doi:10.1103/PhysRevLett.94.170201

arXiv:1503.02312
doi:10.1088/0034-4885/79/1/014401
URL http://arxiv.org/abs/1503.02312

arXiv:1305.1602
doi:10.1002/andp.201300104
URL https://doi.org/10.1002/andp.201300104

doi:10.1103/PhysRevLett.69.2863

arXiv:0907.2796
doi:10.1080/14789940801912366
URL http://arxiv.org/abs/0907.2796

doi:10.1088/1367-2630/12/2/025010

URL https://doi.org/10.1007/JHEP11(2013)158

doi:10.1103/PhysRevD.90.014508

doi:10.1103/PhysRevLett.113.091601

URL http://stacks.iop.org/1367-2630/16/i=10/a=103015

doi:10.1103/PhysRevLett.112.201601

arXiv:1412.0595

URL https://doi.org/10.1007/JHEP07(2015)130

doi:10.1103/PhysRevD.92.034519

doi:10.1103/PhysRevD.93.094512

