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ARTICLE INFO ABSTRACT

Keywords: Learning often occurs in communicative and collaborative settings, yet almost all research into the neural basis
fMRI of memory relies on participants encoding and retrieving information on their own. We investigated whether
Communication learning linguistic labels in a collaborative context at least partly relies on cognitively and neurally distinct
Social interaction representations, as compared to learning in an individual context. Healthy human participants learned labels for
Eiigz:;r:pus sets of abstract shapes in three different tasks. They came up with labels with another person in a collaborative
Memory communication task (collaborative condition), by themselves (individual condition), or were given pre-determined
Collaboration unrelated labels to learn by themselves (arbitrary condition). Immediately after learning, participants retrieved

and produced the labels aloud during a communicative task in the MRI scanner. The fMRI results show that the
retrieval of collaboratively generated labels as compared to individually learned labels engages brain regions
involved in understanding others (mentalizing or theory of mind) and autobiographical memory, including the
medial prefrontal cortex, the right temporoparietal junction and the precuneus. This study is the first to show

that collaboration during encoding affects the neural networks involved in retrieval.

1. Introduction

Learning often occurs in communicative and collaborative settings,
yet almost all research into the neural basis of memory relies on par-
ticipants encoding and retrieving information on their own. Intuitively,
it may seem only a small step to extrapolate that the memory systems
that support encoding and retrieval in an individual context are also
involved in encoding and retrieving in a collaborative context.
However, a study with hippocampal amnesia patients suggests that
learning in a collaborative context and learning in an individual context
may at least partly rely on cognitively and neurally distinct processes.

Duff et al. (2006) instructed patients with hippocampal amnesia to
perform multiple rounds of the “tangram task”, a classical referential
communication task (Clark and Wilkes-Gibbs, 1986). In this task, a
director and a matcher each have a set of abstract figures, but their view
of the other person's figures is occluded by a barrier. The director in-
structs the matcher to rearrange their figures to match the director's
order. Over multiple rounds of this task, healthy participants converge
on a set of labels that are used to refer to the abstract figures. These
labels become shorter and more efficient with each repetition of the
task (Clark and Wilkes-Gibbs, 1986). Interestingly, the amnesic patients

could successfully learn novel labels for the figures over multiple
rounds of the communicative tangram task, but they were unable to
learn arbitrary relations between labels and pictures in an individual
paired-associate learning task. Duff et al. proposed that the successful
learning in the communicative task occurred through tuning of existing
conceptual, semantic and visual networks and did not require hippo-
campus-dependent learning of new associations. Their findings thus
suggest that learning labels in a collaborative context may rely less on
hippocampally oriented memory systems, as compared to learning such
labels individually.

In addition to this evidence from lesion work, behavioral research
also suggests that collaboration affects memory processes (Rajaram and
Pereira-Pasarin, 2010). Both collaborative encoding and retrieval have
been found to impair memory recall compared to individual learning
(Barber et al., 2010; Basden et al., 1997; Weldon and Bellinger, 1997).
Furthermore, during collaborative retrieval of individually encoded
memories, memories can be reinforced as a result of repetition (Blumen
and Rajaram, 2008; Rajaram and Pereira-Pasarin, 2007; Weldon and
Bellinger, 1997), forgotten if they are not mentioned during the inter-
action (Coman et al., 2009; Cuc et al., 2007), and false memories can be
transmitted between people (social memory contagion; Roediger et al.,
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2001). Despite this behavioral literature on collaborative memory, very
little is known about the neural mechanisms that support collaborative
memory encoding and retrieval.

In the current study, we directly compared the neural representation
of collaboratively generated linguistic labels to memory for self-gen-
erated or pre-determined labels that were encoded individually in the
healthy population. During a behavioral session, participants generated
labels for abstract figures together with another person in a colla-
borative communication task (collaborative condition), by themselves
(individual condition), or were given pre-determined arbitrary labels to
learn by themselves (arbitrary condition). Immediately after learning,
participants completed a communicative task in the MRI scanner during
which they retrieved the labels they had learned during the training
session. This design allowed us to directly compare both behavioral and
neural activation patterns relating to the retrieval of labels learned in
the collaborative, individual and arbitrary contexts.

In line with the results from the hippocampal amnesia patients, we
expected that the retrieval of pre-determined arbitrary labels should
rely strongly on the hippocampus, while the retrieval of the colla-
boratively generated labels may be less hippocampus-dependent. More
specifically, we hypothesized that the retrieval of labels learned in the
collaborative condition would partly rely on brain areas involved in
mentalizing or theory of mind, i.e. people's ability to track and under-
stand what other people think or feel. These areas, including the medial
prefrontal cortex, the temporoparietal junction and the precuneus, are
consistently found in neuroimaging studies of social cognition and in-
teraction (Amodio and Frith, 2006; Frith and Frith, 2006, 2010; Schurz
et al., 2014; Van Overwalle and Baetens, 2009). We therefore hy-
pothesized that these areas should be more active in the collaborative
condition than in the individual condition. In addition, we expected
that retrieving self-generated labels (collaborative and individual con-
ditions) as compared to arbitrary labels may activate areas known to be
important for storing semantic associations such as the left angular
gyrus, middle temporal gyrus and temporal poles (Binder et al., 2009).
Behaviorally, we expected to replicate the results of previous tangram
task studies during the behavioral practice phase. That is, participants
were expected to produce shorter and more efficient descriptions with
each round of this task (Clark and Wilkes-Gibbs, 1986).
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Fig. 1. Set-up of the experiment. The top row
depicts the three tasks participants performed
during the behavioral learning session. The matcher
only participated in the collaborative task, but
learned the same sets of labels as the director. The
described tangram pictures are shown at the top to
illustrate the relationship between the pictures and
the labels. After completing these three tasks, the
director retrieved all previously learned labels in the
MRI scanner, while the matcher tried to click on the
described pictures. The trial sequence depicts the
task in the MRI scanner from the director's point of
view. Each picture was presented for seven seconds,
during which the director planned and produced
his/her response out loud. The director was in-
structed to press a button just before speaking.
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2. Materials and methods
2.1. Participants

36 pairs of native Dutch speakers participated in the experiment.
Participants signed up individually through the university research
participation system. They did not know each other before the start of
the experiment. All participants had normal or corrected-to-normal
vision and no history of neurological disease. They gave written in-
formed consent before the start of the experiment. For each pair, one
participant was assigned the role of director and the other the role of
matcher. Data from one pair were excluded due to excessive movement
by the participant in the MRI scanner. The results of the remaining
seventy participants (directors: 7 men, 21.43 years old, range 18-33
years; matchers: 6 men, 21.34 years old, range 18-31 years) are re-
ported below.

2.2. Procedure

The experiment lasted approximately two hours and consisted of
two parts: a behavioral session and an fMRI session. The fMRI session
took place immediately after the behavioral session. Before the start of
the experiment, participants were assigned to the roles of director or
matcher for the duration of the experiment by means of a coin toss.
During the behavioral session, participants were seated behind different
monitors in the same room. The monitors were separated by a screen, so
the participants could not see each other or each other's monitor. The
director learned sixty labels for pictures in three different tasks: a col-
laborative task, an individual task and an arbitrary task. The matcher
studied the same picture labels as the director during the behavioral
session. Participants received written instructions before each task. To
account for possible task order effects on learning and retrieval, or the
specifics of the pictures, the order of the tasks during the behavioral
session as well as the assignment of the picture sets to the three tasks
were counterbalanced. During the fMRI session, the director performed
a referential communication task with the matcher. We recorded the
directors’ vocal responses during both sessions. An overview of the
tasks is depicted in Fig. 1.
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During the collaborative task, the director and matcher came up
with labels together in a collaborative and communicative setting. They
were seated at different computer monitors. Each participant saw the
same set of twenty pictures on their monitor. On each trial, the director
was cued to describe one of the pictures, and the matcher clicked on the
picture that he/she thought was described by the director. We did not
instruct the directors on how to phrase their descriptions (e.g., de-
scription length or specific strategies), but explained that they could
communicate freely with the matcher during the entire task, and could
discuss each picture as long as needed until the matcher had selected
the correct picture. Both participants received feedback on screen
(“correct” or “wrong”) when the matcher clicked on a picture. Once the
matcher had clicked on the described picture, the director was cued to
describe the next picture. Participants completed four rounds of the
collaborative task. In each round of the task, the director was cued to
describe each of the twenty pictures once. The locations of the pictures
on screen as well as the order in which they were cued were rando-
mized before each round. Afterwards, the director received a list con-
taining all pictures and wrote down the labels they had come up with
below the corresponding pictures.

During the individual task, the director came up with labels for
pictures by him- or herself. The matcher did not participate in the in-
dividual task, but was seated in the same room. In this task, the director
saw a different set of twenty pictures on their monitor. The director was
instructed to come up with a label for each picture that he/she could
easily remember. He/she moved from picture to picture by pressing a
button. In each round of the task, the director was cued to describe each
of the twenty pictures once out loud. Directors completed four rounds
of this task. The locations of the pictures on screen as well as the order
in which they were cued were randomized before each round.
Afterwards, the director received a list containing all pictures and wrote
down the labels he/she had come up with below the corresponding
pictures.

During the arbitrary task, the director studied a set of pre-
determined, arbitrary picture labels. The director was again presented
with a different set of twenty pictures on his/her monitor. He/she was
instructed to learn a predetermined label for each picture. The matcher
did not participate in this task. The director could move from picture to
picture by pressing a button. When he/she pressed the button once, a
cue appeared around one of the pictures. When they pressed the button
again, the label they had to learn appeared below the picture. In the
first round of the task, they could look at the pictures and labels without
describing the pictures. From the second round onwards, they were
instructed to say the label they had learned for each picture out loud
when the cue appeared. When they were sure they knew the label as-
sociated with a specific picture, they could remove the picture from the
practice set by pressing a second button. The directors practiced the
labels until they had removed all labels from the practice set. Then they
were asked to label all pictures once more to check their performance.

The matcher had to study all the labels the director had learned
during the behavioral session before the start of the fMRI session to
allow participants to successfully perform the referential communica-
tion game together during the fMRI session. The matcher therefore
learned the same sets of labels as the director during the behavioral
session. In the collaborative task, the director and matcher established
and learned the labels together over the course of the task. The matcher
received the labels the director learned in the other tasks on paper and
studied these in silence. He/she was given the list of pictures and cor-
responding labels the director wrote down after the individual task and
a list of the pictures and corresponding arbitrary labels the director had
studied. Both participants were informed that they had learned the
same labels during the behavioral session before the start of the fMRI
session. This allowed the director to use the labels he/she had learned
during the behavioral session to successfully instruct the matcher
during the task in the MRI scanner.

During the fMRI session, the director lay in the MRI scanner, while
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the matcher was seated at a computer outside the scanner room. The
director spoke through a noise-cancelling microphone and could press a
button on a button box; the matcher wore headphones and used a
mouse to click on pictures. Participants were told that they would play
a communication game in the scanner in which the matcher had to
select the pictures named by the director. Before the director went into
the scanner, we explained to both participants that they had learned the
same sets of labels. On each trial, the director was presented with one of
the sixty pictures he/she had studied during the behavioral session. The
director was instructed to press a button once he/she remembered the
associated label and to then say this label out loud. The button presses
provided us with a measure of the director's planning duration per trial.
At the same time, the matcher saw 20 pictures, organized per set, and
tried to click on the described picture.

Trials for the director and matcher always started simultaneously,
but differed in length. The director's trials lasted 7 s and were followed
by a jittered ITI of 3-5s. The matcher's trials lasted 9.5s and were
followed by an ITI of 0.5-3 s (depending on the director's ITI) to give
them sufficient time to select the correct picture. All pictures were
shown twice during the MRI task in randomized order, resulting in 120
trials in total.

2.3. Materials

The materials consisted of sixty abstract tangram figures, which
were adapted from Read (1965). We ran an online pretest in which 20
participants rated 83 tangram pictures. They were asked to come up
with a label for each picture and rated how difficult it was to describe
each picture on a scale from 1 to 5. Based on these ratings, we created
three sets of twenty tangram pictures each that were matched based on
the difficulty ratings and the predominant semantic category of the
responses (animal, human or object responses).

The labels directors studied in the arbitrary task were selected from
the labels participants produced in the same pretest as well as in a
previous pretest in which we used the same task but a different set of
tangram pictures. We only included labels that were generated for
pictures that were not selected for the final stimulus set. The three sets
of arbitrary labels were matched in terms of semantic categories as well
as the average number of words per label. Each arbitrary label was then
linked to an unrelated tangram picture. An example of an arbitrary
picture-label pair is shown in the arbitrary example trial in Fig. 1.

2.4. Data acquisition and analysis

2.4.1. fMRI data acquisition and preprocessing

Participants were scanned in a Siemens 1.5 T Avanto MRI scanner
using a 32-channel head coil. Functional images were acquired using a
T2*-weighted gradient multi-echo planar imaging sequence (TR
2320 ms; TE1 at 9.4 ms, TE2 at 21 ms, TE3 at 33 ms, TE4 at 44 ms, TES
at 56 ms; 37 slices; ascending slice order; 3 mm slice thickness;
0.51 mm slice gap; 64 X 64 matrix size; 212 X 212 mm FOV; 90° flip
angle and 3.3 x 3.3 X 3 mm voxel size). In addition, T1-weighted
anatomical scans with 1 mm isotropic resolution were acquired (TR =
2250 ms; TE = 2.95 ms; 15° flip angle; 256 x 256 X 176 mm FOV).

We acquired 35 pre-scans before the start of the task in the MRI
scanner. These scans were used to calculate the optimal weighting to
combine the five echoes to one value per volume for each voxel, and
this weighting matrix was applied to the remaining functional scans
(Poser et al., 2006). Preprocessing was done in SPMS8 (Statistical
Parametric Mapping, http://www.fil.ion.ucl.ac.uk/spm/). The pre-
processing of the functional images consisted of slice timing correction
to the onset of the middle slice, coregistration of the functional images
to the T1 based on the subject-mean functional image, normalization to
MNI space (resulting voxel size 2 X 2 X 2 mm) and spatial smoothing
using a 3-dimensional isotropic Gaussian smoothing kernel (full-width
half-maximum 8 mm).
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2.4.2. Behavioral data analysis

We were interested in testing whether directors’ responses became
shorter with each round of the collaborative task during the behavioral
practice session. We therefore calculated how long each trial of the
collaborative task lasted based on the time between stimulus pre-
sentation and the correct click by the matcher. In addition, we tran-
scribed and coded all responses produced by the director during the
fMRI task and counted the number of words per response. The re-
sponses were coded as correct or incorrect by comparing them to the
labels the director had come up with (collaborative and individual
conditions) or studied (arbitrary condition) during the behavioral ses-
sion. The coding was used to calculate the director's accuracy during
the fMRI task. Furthermore, we used the button press responses from
the director in the scanner to estimate planning durations during the
fMRI session. Two participants forgot to press the button during the
task in the MRI scanner and one participant pressed the button at the
wrong time (after instead of before naming the picture labels). We
manually calculated the planning durations for these three participants
by inspecting the voice onset time in the audio recordings of their re-
sponses using Praat (Broersma, 2001), and used these values for the
analyses. For the analysis of the number of words per label and the
planning durations, we excluded incorrect trials, trials without a button
press and trials with planning durations that were more than 3 SD from
the mean per condition and the mean per participant (9.83% of trials).
Greenhouse-Geisser correction was applied when the sphericity as-
sumption was violated and Holm-Bonferroni correction for multiple
comparisons was used for all reported post-hoc tests. Finally, although
our main focus is on the directors’ performance and responses, we
calculated the matcher's accuracy during the fMRI session, i.e. whether
the matcher clicked on the intended picture on each trial. Clicking re-
sponses from one matcher were not recorded due to a technical problem
and therefore not included in the analysis.

2.4.3. fMRI analysis

We included five variables in the first-level general linear models:
collaborative retrieval, individual retrieval, arbitrary retrieval,
speaking and trials of no interest. The condition of no interest regressor
included trials without a button press and trials with responses that did
not match the labels learned during the behavioral session. Note that
the condition labels (collaborative, individual and arbitrary) refer to the
tasks during the behavioral session; the fMRI task was always done
together by the director and the matcher and the trial presentation was
the same for all three conditions. The retrieval regressors were stick
functions time-locked to picture onset. We included the planning
duration associated with each trial as a linear parametric modulator.
The speaking regressor was modeled as a stick function with the onset
determined by the button press for each trial. We included the number
of words per trial as a linear parametric modulator alongside the
speaking regressor. The parametric modulators were included in the
GLM to exclude possible confounds due to differences in planning
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durations or in the number of words used in the responses, which may
affect the BOLD response. The collaborative, individual and arbitrary
retrieval regressors should therefore only reflect successful memory
retrieval processes. Regressors were convolved with the hemodynamic
response function. In addition, we included 24 nuisance regressors: the
six realignment parameters, their square, their first derivative, and the
realignment parameters used to realign the previous volume. Individual
t-contrasts of interest were created and used in second-level random-
effect analyses. Group analyses were performed using one-sample t-
tests. Whole-brain results were corrected for multiple comparisons by
combining a p < 0.001 voxel-level threshold with a cluster extent
threshold determined by means of a Monte Carlo simulation with 2500
iterations, after estimation of the smoothness of the data (Slotnick et al.,
2003). This revealed that clusters of 41 voxels or larger indicated sta-
tistically significant effects at the p < 0.05 level, corrected for multiple
comparisons. Since we had specific hypothesis about the involvement of
the hippocampus, we also ran a region of interest (ROI) analysis re-
stricting the search field to the anatomically defined left and right
hippocampus using the MarsBaR AAL ROI of this region (Brett et al.,
2002).

3. Results
3.1. Behavioral results

First, we tested whether the tasks during the behavioral session
differed in duration. In addition, we tested whether we could replicate
the results of previous studies that used the tangram task. These studies
typically find that directors’ descriptions become shorter and more ef-
ficient over time (e.g., Clark and Wilkes-Gibbs, 1986; Brennan and
Clark, 1996). We therefore compared the time per picture across the
four rounds of the collaborative training task. Second, we compared the
planning durations, accuracy and number of words per label between
conditions in the fMRI session.

3.1.1. Behavioral session

The tasks during the behavioral session were all self-paced, and
there were differences in duration between the tasks (see Fig. 2A). A
repeated-measures ANOVA with condition as within-subject factor re-
vealed a significant main effect of condition (collaborative, individual
or arbitrary) on the total duration per task, F(2,68) = 62.99, p < 0.001.
Post-hoc comparisons revealed significant differences between all
conditions (p < 0.001 for collaborative vs. individual and individual vs.
arbitrary, p < 0.05 for collaborative vs. arbitrary).

To see whether we could replicate previous behavioral studies that
used similar collaborative tasks, we compared the duration per picture
over subsequent rounds of the collaborative task. The duration per
picture decreased with each round of the collaborative task (round 1:
27 s, round 2: 11.10's, round 3: 6.76 s, round 4: 5.89 s; see Fig. 2B). A
repeated-measures ANOVA with round as within-subject factor

Fig. 2. Behavioral results from the behavioral ses-
sion: A) total time per training task, and B) time per
picture per round in the collaborative task. Error
bars indicate standard error of the mean.

Round1 Round2 Round3 Round4
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revealed a main effect of round, F(3,102) = 120.58, p < 0.001. A
polynomial trend analysis revealed significant linear and quadratic
trends across rounds (linear: F(1,34) = 145.08, p < 0.001; quadratic: F
(1,34) = 92.85, p < 0.001). Our results thus replicate previous studies
that found that directors’ descriptions become more efficient and
shorter with each round of the tangram task. We also looked at the
duration per picture in the individual task and observed a similar pat-
tern in this task: the duration per picture decreased with each round of
the task (round 1: 8.79s, round 2: 3.94 s, round 3: 2.98, round 4:
2.645). A repeated-measures ANOVA with round as within-subject
factor revealed a main effect of round, F(3,102) = 86.33, p < 0.001.

3.1.2. fMRI session

We performed repeated-measures ANOVAs with condition (colla-
borative, individual or arbitrary) as within-subject factor and the di-
rector's accuracy, planning durations and number of words per label as
dependent measures (see Fig. 3). We found a significant main effect of
condition on accuracy, F(2,68) = 34.42, p < 0.001. Post-hoc compar-
isons revealed that accuracy was significantly higher in the collabora-
tive condition compared to the individual condition (t(34) = 2.81,
p < 0.01) and in the individual compared to the arbitrary condition (t
(34) = 4.91, p < 0.001). We found a significant main effect of condi-
tion on planning durations in the fMRI task, F(2, 68) 72.26,
p < 0.001. Post-hoc comparisons revealed significantly shorter plan-
ning durations in the individual compared to the arbitrary condition, t
(34) = 9.40, p < 0.001. The difference between the collaborative and
the individual conditions was not significant, t(34) = 1.55, p = 0.13.
We found a significant main effect of condition on the number of words
per label in the MRI task, F(2, 68) = 26.08, p < 0.001. Post-hoc
comparisons revealed that responses contained significantly more
words in the collaborative condition compared to the individual con-
dition (t(34) = 4.61, p < 0.001) and in the individual condition com-
pared to the arbitrary condition (t(34) = 2.70, p < 0.05).

Matchers’ accuracy during the fMRI session was highest for the
collaboratively learned labels (collaborative: M 86.91%, SEM:
1.87%; individual: 78.60%, SEM: 2.61%; arbitrary: 60.15%, SEM:
3.01%). Note that the matchers’ performance was highly dependent on
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Fig. 3. Behavioral results from the fMRI session: A)
percentage of labels successfully recalled during the
fMRI session, B) planning duration during the fMRI
session (time from picture onset until the director's
button press) for correct trials, and C) number of
words per label averaged across the successfully re-
called trials. Error bars indicate standard error of the

+

mean.

Collaborative Individual Arbitrary

the directors’ accuracy and planning durations, which differed across
conditions.

3.2. fMRI results

We compared the retrieval of labels learned in the collaborative
condition to labels learned in the other conditions to examine the
neural mechanisms of collaborative learning. In addition, we compared
the retrieval of labels learned in the individual and arbitrary conditions
to examine the effects of learning self-generated labels. The results of
the fMRI analyses are listed in Table 1 and presented in Figs. 4 and 5.
The fMRI results are all from the retrieval phase of the trials modeled
from picture onset.

3.2.1. Collaborative > Arbitrary

The comparison between the correctly retrieved collaborative and
arbitrary conditions resulted in clusters in the precuneus, the bilateral
angular gyri, medial prefrontal cortex and bilateral temporal poles
(Figs. 4 and 5, yellow).

3.2.2. Individual > Arbitrary

The contrast between the correctly retrieved individual and the
arbitrary conditions revealed clusters in the left angular gyrus, and in
the temporal poles extending into the middle and inferior temporal gyri
(Figs. 4 and 5, light blue).

3.2.3. Collaborative > Individual

The contrast of main interest was between the correctly retrieved
collaborative and individual conditions. This comparison revealed a
series of clusters including a large cluster connecting the midcingulate
cortex and precuneus, a right temporoparietal cluster, a cluster in the
left putamen, bilateral middle frontal clusters and several medial
frontal clusters (Figs. 4 and 5, violet).

3.2.4. Arbitrary > Individual
The comparison between the correctly retrieved arbitrary and in-
dividual conditions resulted in a large number of clusters including the
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Table 1
Whole-brain results for the comparisons between the collaborative, individual and arbi-

Table 1 (continued)

trary conditions. Up to three local maxima are listed when a cluster has multiple peaks Brain region Cluster T value MNI coordinates
more than 8 mm apart. extent
(voxels) X y Z
Brain region Cluster T value MNI coordinates
extent Left medial frontal gyrus / 346 4.92 -8 -4 74
(voxels) X y z supplementary motor area
Right medial frontal gyrus / 4.89 10 -4 72
Collaborative > Arbitrary supplementary motor area
Precuneus 2554 6.41 0 —46 48 Left medial frontal gyrus / 3.74 0 -6 68
Right precuneus 6.12 8 —-52 30 supplementary motor area
Left precuneus 5.66 -12 -50 38 Right middle frontal gyrus 108 4.9 32 38 28
Left inferior temporal gyrus 375 6.28 -52 -4 -32 Left cerebellum 80 4.83 -30 -60 -—34
Left temporal pole 5.47 —48 10 -30 Right insula 950 4.8 32 24 4
Left middle temporal gyrus 5 -56 8 —-26 Right insula 4.54 52 14 -6
Right inferior parietal lobule 1546 6.2 60 —40 46 Right insula 4.47 30 24 -4
Right supramarginal gyrus 5.29 64 -36 36 Left superior parietal lobule 1315 4.54 -30 -—-64 44
Right angular gyrus 5.06 50 —-66 28 Right calcarine gyrus 4.38 16 -98 4
Left middle temporal gyrus 1204 5.53 —-58 —-56 22 Left calcarine gyrus 4.37 2 —-88 -—10
Left inferior parietal lobule 5.37 —-60 —46 40 White matter 52 4.5 -28 -36 28
Left supramarginal gyrus 5.14 —-62 —46 32 Right caudate nucleus 82 4.48 20 —-20 24
Right temporal pole 231 5.05 40 16 —-34 Right thalamus 4.18 18 -18 14
Right middle temporal gyrus 4.41 52 4 -30 Left precentral gyrus 121 4.46 -3 0 36
Right temporal pole 4.4 44 6 -38 3.86 -26 2 40
Right medial frontal gyrus 1135 4.86 6 56 4 Left precentral gyrus 3.62 —-46 2 34
Left medial frontal gyrus 4.79 -4 54 8 Left cerebellum 55 4.36 -2 —46 —22
Right medial orbitofrontal cortex 4.62 8 50 -4 Left postcentral gyrus 116 4.33 —48 —-14 44
Left tcentral 1 -42 -1
Individual > Arbitrary 6.3 posteen r & gyrus 413 4 8 36
Right rolandic operculum 42 4.22 66 0 12
Left angular gyrus 736 5.6 —-54 -58 26
e . Left cerebellum 73 4.16 —-48 -—-58 -—34
Left inferior parietal lobule 5.51 —-52 —-60 40 .
. . . Brainstem 83 4.12 0 -14 -12
Left inferior parietal lobule 4.57 —-48 -74 36 3.75 9 —o4 —12
Right inferior temporal gyrus 122 5.13 56 0 —34 3'57 _g 14 —4
Right 1.nfer10r temporal gyrus 4.14 48 6 —34 Right precuneus 81 4 18 66 24
Left middle temporal gyrus 196 4.34 -54 -20 -20 . . .
. Right superior occipital gyrus 3.97 26 -64 28
Left inferior temporal gyrus 4.22 -50 -4 —34 . .
Left middle temporal gyrus 4.08 -60 2 —24 Right calcarine gyrus 3.53 12 -78 12
porat gy : 48 387 0 -36 4
foflt lah(t)rzltlze > Individual 270 6.07 _22 10 0 Individual > Collaborative
? pu i,i ? ) Right middle occipital gyrus 723 5.07 42 -90 4
Right midcingulate cortex 5056 5.73 14 —-30 40 DO .
. . Right inferior occipital gyrus 4.71 40 -68 -—10
Left superior parietal lobule 5.19 —-16 -60 58 DO L
N Right inferior occipital gyrus 4.27 30 -88 -8
Right precuneus 4.88 6 -52 56 . . .
. . Right middle orbital gyrus 61 4.68 36 48 -10
Right supramarginal gyrus 514 5.61 60 —-42 36 . .
. . Left middle occipital gyrus 214 4.5 -32 -88 4
Right supramarginal gyrus 4.8 66 —42 30 s -
. . Left inferior occipital gyrus 3.9 —44 -80 -4
Right superior temporal gyrus 3.83 66 —-38 20 P .
. left inferior occipital gyrus 3.67 -42 -72 -8
Left middle frontal gyrus 121 5.58 —28 36 30 . .
. R Right fusiform gyrus 90 4.39 40 -18 -20
Right middle frontal gyrus 162 5.11 32 38 28 . .

. . Right orbitofrontal cortex 72 4.21 24 40 -16
Anterior cingulate cortex 3.49 20 30 28 . . .

. . Right inferior frontal gyrus 90 4.11 46 8 26
Anterior cingulate cortex 42 4.71 14 20 26 Rieht inferior frontal avrus 3.08 54 10 30
Right medial frontal gyrus / 173 4.56 2 0 48 § 24 :

supplementary motor area Arbitrary > Collaborative
Left superior frontal gyrus 72 4.24 -16 -10 70 Right insula 851 8.68 34 24 -2
Left inferior frontal gyrus 42 4.24 -38 8 10 Right inferior frontal gyrus 4.45 36 38 -12
Right medial frontal gyrus 49 3.89 8 56 4 Right orbitofrontal cortex 4 34 46 -10
Right medial frontal gyrus / 63 3.88 10 -14 72 Left inferior occipital gyrus 2496 6.98 —-48 -66 -—10
supplementary motor area Left inferior occipital gyrus 6.71 —48 —-64 -20
Right precentral gyrus 3.58 16 -24 76 Left inferior occipital gyrus 6.62 -42 -62 -6
Right lingual gyrus 42 3.74 18 -56 —10 Left inferior parietal lobule 733 6.9 —-28 -70 46
Arbitrary > Individual L(?ft m.lddlef occipital gyrus 5.82 —-28 -70 36
s .. Right inferior frontal gyrus 1145 6.75 50 22 28
Left inferior occipital gyrus 402 6.78 -54 -66 -—16 DO
Right inferior frontal gyrus 6.24 46 28 18
Left cerebellum 4.13 —46 -74 -22 I
Right inferior frontal gyrus 5.66 50 12 32
3.92 -30 -9 -20 s
Left inferior frontal gyrus 1139 6.3 —-46 22 26
Left caudate nucleus 1199 6.39 -12 14 -6 . .
Left inferior frontal gyrus 6.16 —44 28 20
Left thalamus 5.26 -2 -16 12
N Left precentral gyrus 5.14 -42 8 30
Right caudate nucleus 4.83 14 16 -4
. ) Left cerebellum 145 5.93 -8 -72 =24
Left anterior cingulate cortex 1508 5.84 -6 10 28 .
. . Brainstem 654 5.92 -2 -14 -14
Left anterior cingulate cortex 5.38 -2 34 22 4.65 10 _o4 —16
Right anterior cingulate cortex 5.18 4 28 28 4' 44 5 —20 -30
Left cerebellum 289 5.57 —6 =56 -20 Right middle occipital gyrus 1395 5.9 36 -90 10
Left cerebellum 4.91 -8 =72 -24 R . . .
X Right inferior occipital gyrus 5.3 30 -84 0
White matter 691 5.2 -12 -14 32 I e
R Right inferior occipital gyrus 5.24 32 -90 -8
Left insula 5.18 -32 18 -4
. Left thalamus 1743 5.9 -2 -20 12
Left insula 4.89 -34 8 20
. Thalamus 5.69 -4 -4 2
White matter 98 5.17 -10 -32 28
) Thalamus 5.64 10 —24 22
White matter 241 5.11 -18 -12 -10 . . -

. Right superior occipital gyrus 612 5.78 30 —-68 44
Left hippocampus 4.86 -0 -2 -8 Right superior occipital gyrus 4.05 30 -56 36
Left amygdala 3.82 -22 -2 -10 gt sup pita’ gy :

Right superior medial frontal gyrus 783 5.63 4 28 46
(continued on next page)
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Table 1 (continued) anterior cingulate cortex, bilateral caudate nucleus, left hippocampus,
bilateral insula, medial frontal cortex and the bilateral calcarine gyri

Brain region Cluster T value MNI coordinates (Fig. 4, dark blue).
extent
(voxels) X y z
Left anterior cingulate cortex 5.01 -6 32 22 3.2.5. Region of interest analysis
Right anterior cingulate cortex 477 6 3028 To further clarify the difference in involvement of the hippocampus
Left insula 365 5.59 -32 22 -4 . . . .
Left insula 266 44 14 i in the collaborative learning context compared to the other learning
Left inferior frontal gyrus 3.62 _36 36 i contexts, we extracted parameter estimates using the MarsBaR toolbox
Right inferior temporal gyrus 117 4.63 54 -60 —20 (Brett et al., 2002) from the anatomically defined left and right hip-
106 4.49 -6 -28 26 pocampus defined in the AAL template (Tzourio-Mazoyer et al., 2002).
Ehgl?umf‘fs o :?Z _22 _;2 2624 A factorial repeated-measures ANOVA on the parameter estimates re-
€] sirorm Tus . - - - . ope . P
Left inferior ffgntal gyrus 43 387 _48 44 9 vealed no significant main effects (condition: F(2, 68) = 3.00,

p > 0.05; hemisphere: F(1,34) = 3.34, p > 0.05), but a significant
hemisphere x condition interaction, F(2,68) = 3.32, p < 0.05. Post-hoc
analyses revealed that the hippocampus was significantly more

[ Individual > Arbitrary

B  Arbitrary > Individual

Fig. 4. Brain regions showing increased activity during the successful retrieval of labels learned in different tasks by the director: the retrieval of collaboratively learned labels versus
labels learned in the arbitrary task (yellow), the retrieval of collaboratively versus individually learned labels (violet), the retrieval of individually learned labels versus labels learned in
the arbitrary task (light blue), and the retrieval of labels learned in the arbitrary task versus individually learned labels (dark blue). All clusters shown are significant on the cluster level
and corrected for multiple comparison at p < 0.05. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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[ ] Collaborative > Arbitrary

[ Collaborative > Individual

[ ] Overlap Collaborative > Arbitrary and Collaborative > Individual

[ ] Collaborative > Arbitrary

[ Individual > Arbitrary
[ Overlap Collaborative > Arbitrary and Individual > Arbitrary

Fig. 5. Overlap between the task contrasts depicted in Fig. 4. Orange indicates the overlap between the retrieval of collaboratively learned labels versus labels learned in the arbitrary task
(yellow) and the retrieval of collaboratively versus individually learned labels (violet). Green indicates the overlap between the retrieval of collaboratively learned labels versus labels
learned in the arbitrary task (yellow) the retrieval of individually learned labels versus labels learned in the arbitrary task (light blue). (For interpretation of the references to color in this

figure legend, the reader is referred to the web version of this article.)
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Fig. 6. Parameter estimates for the collaborative, individual and arbitrary conditions
extracted from the anatomical left hippocampus ROI.

activated in the arbitrary condition relative to the individual condition,
t(34) = 3.38, p < 0.05. The parameter estimates extracted from the left
hippocampus are plotted in Fig. 6.

4. Discussion

In this study, participants generated labels for abstract figures to-
gether with another person in a collaborative communication task
(collaborative condition) and by themselves (individual condition), and
were given pre-determined, unrelated labels to learn by themselves
(arbitrary condition). They then retrieved these labels during a com-
munication task in the MRI scanner. The analysis of the fMRI data re-
vealed two main findings. First and most importantly, we show that
collaboratively learned labels are neurally distinguishable from in-
dividually learned labels mainly in brain areas related to memory
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retrieval and social cognition, such as the medial prefrontal cortex, the
right temporoparietal junction and the precuneus. Second, we show
that the retrieval of self-generated labels as compared to unrelated,
arbitrary labels engages semantic processing areas, such as the left
angular gyrus and the bilateral temporal poles, while retrieving arbi-
trary word-picture associations is more hippocampus-dependent.

4.1. Collaboratively encoded labels are neurally distinguishable from
individually encoded labels

The most direct test of the effect of collaborative encoding on
memory retrieval is the comparison between the retrieval of colla-
boratively and individually learned labels. Labels learned in both of
these conditions were self-generated, so the crucial difference between
them was whether the labels were generated in a collaborative or an
individual context. The results of this comparison include the right
angular gyrus (often referred to as the right temporoparietal junction in
the social cognition literature), the posterior cingulate cortex, the
medial prefrontal cortex and the precuneus. This set of brain regions
has been associated with a number of cognitive processes including
theory of mind, autobiographical memory, navigation and prospection
(Buckner and Carroll, 2007; Spreng et al., 2009; Rabin et al., 2010).
These processes all involve self-projection: mentally projecting yourself
into an alternative situation or perspective beyond the immediate en-
vironment (Buckner and Carroll, 2007). Of these processes involving
self-projection, theory of mind and autobiographical memory seem to
be the most likely candidates to explain the neural differences we found
in the current study.

The main difference between the collaborative and the individual
encoding tasks is the presence or absence of a matcher. Directors likely
put themselves in the matchers’ shoes during encoding, a process
known as theory of mind or mentalizing, and may have also engaged in
mentalizing to facilitate the retrieval of these jointly established labels.
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In line with this view, the mentalizing network has previously been
found to be recruited when people perform communicative actions
(e.g., Sassa et al., 2007; Willems et al., 2010) and during the encoding
and retrieval of social information (e.g., Mitchell et al., 2002; Mitchell
et al., 2004). For example, Mitchell et al. (2004) found that subsequent
memory performance correlates with activity during encoding in the
medial prefrontal cortex during a social orienting task. It is interesting
to note that patients with bilateral ventromedial prefrontal damage can
successfully perform the tangram task (Gupta et al., 2012). A possible
explanation based on our results is that this area forms part of a larger
network that supports collaborative retrieval, potentially allowing for
other parts of the network to compensate after damage to the medial
prefrontal cortex.

Another important difference between the collaborative and the
individual encoding tasks was that directors had to agree on the labels
with the matchers in the collaborative task. Over the course of these
interactions, directors likely formed richer episodic memory re-
presentations than in the individual task. For example, if the matcher
failed to select the correct picture based on the director's initial de-
scription, the director had to come up with a novel description of the
picture or provide additional detail, thus creating additional cue-target
associations and facilitating retrieval (similar to the elaboration ac-
count of the testing effect proposed by Carpenter, 2009). Such prompts
for elaboration were not present in the individual task. Directors may
have also retrieved specific social information or cues related to the
matcher (e.g., voice, knowledge of a specific subject) when recalling a
collaboratively learned label.

The neural differences between the retrieval of collaboratively and
individually generated labels thus likely stem from the involvement of
theory of mind processing and/or the encoding of more elaborate au-
tobiographical memories for collaboratively generated labels, yet based
on the current design it is difficult to pinpoint exactly what cognitive
processes these differences reflect. Future research focusing specifically
on the encoding phase or using more tightly controlled encoding
paradigms should be able to determine the contributions of theory of
mind and autobiographical memory to collaborative encoding and re-
trieval. Another important question for future studies is whether these
effects are associated with collaborative retrieval more generally (e.g., a
“social” retrieval strategy), or reflect partner-specific information.
Healthy participants use longer descriptions when they are matched
with a new partner in the tangram task, taking into account that the
new matcher does not know the previously established conceptual pacts
(Brennan and Clark, 1996; Wilkes-Gibbs and Clark, 1992). Future stu-
dies should test whether the same brain regions are activated and
whether they are activated to the same extent when collaboratively
generated labels are retrieved for a different addressee or in a non-
communicative context.

While we also observed behavioral differences between the labels
learned in the collaborative and individual contexts at retrieval, it
seems unlikely that these behavioral differences can explain the ob-
served neural differences. By including parametric modulators and
modeling incorrect trials separately in the GLM of the fMRI data, we
tried to account for the differences in the number of words, planning
durations and accuracy that may contribute to the difference between
conditions. This approach appears to have been successful, given that
we did not observe increased activation for the collaborative condition
relative to the individual condition in the classical, left-hemispheric
temporo-parietal-frontal language network where we would have
otherwise expected widespread activation as a result of the longer de-
scriptions for the collaborative condition (cf. Willems et al., 2010).

4.2. The role of semantic memory and the hippocampus
To test the effect of studying self-generated labels, we directly

compared the retrieval of labels learned in the individual and arbitrary
tasks. The Individual > Arbitrary comparison revealed clusters in the
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left angular gyrus and the bilateral temporal poles. We also found
considerable overlap between the Individual > Arbitrary and
Collaborative > Arbitrary contrasts in these areas (Fig. 5, bottom row).
In the collaborative and individual tasks, participants were free to come
up with labels for the abstract figures. They probably tried to associate
the abstract figures with their existing conceptual knowledge of the
world. The temporal and left angular clusters we find here are therefore
likely the result of retrieving semantic associations between the pictures
and labels (Binder et al., 2009; Patterson et al., 2007; Price, 2012). It is
interesting to note that while we find the involvement of the left an-
gular gyrus in both the Individual > Arbitrary and Collaborative >
Arbitrary contrasts, we only found a cluster in the right angular gyrus
for the Collaborative > Arbitrary comparison. These findings align with
the proposed hemispheric specialization of the angular gyrus: activa-
tion in the right angular gyrus is consistently found in attention and
social cognition tasks (e.g., Corbetta et al., 2000; Saxe and Wexler,
2005), while the left angular gyrus is thought to be an important se-
mantic hub in the brain (Binder et al., 2009).

We only found a cluster in the hippocampus in the comparison
between the arbitrary and the individual conditions on the whole-brain
level. However, the results of our ROI analysis (Fig. 6) suggest that the
reason we only found a significant cluster in this contrast is that the left
hippocampus is involved to different degrees in the retrieval of labels
generated in all conditions, with the arbitrary condition being most
hippocampus-dependent and the individual condition being least hip-
pocampus-dependent. While patients with hippocampal amnesia can
successfully perform this type of collaborative task (Duff et al., 2006),
follow-up experiments by Duff and colleagues suggest that the hippo-
campus is involved in at least some aspects of collaborative memory.
For example, patients with hippocampal amnesia are impaired in their
use of definite reference in this task (Duff et al., 2011) and have diffi-
culties establishing linguistic labels for highly similar pictures (Duff
et al.,, 2012). Interestingly, a recent study showed that patients with
hippocampal amnesia are able to successfully tailor their descriptions to
a new matcher (Yoon et al., 2017). This finding suggests that estab-
lishing a link between a label and a specific conversational partner may
not be hippocampus-dependent. It remains to be tested whether pa-
tients with hippocampal amnesia would perform similarly to healthy
controls in the individual task we used, for which we observed the least
hippocampal involvement during retrieval.

4.3. Collaboratively generated labels are better remembered

The behavioral results show that collaboratively generated labels
were remembered better than labels learned in the individual and ar-
bitrary conditions. This is an interesting finding given that the colla-
boratively generated labels were also on average the longest. Based on
the literature on collaborative encoding and retrieval (Barber et al.,
2010; Basden et al., 1997; Weldon and Bellinger, 1997), one may have
expected poorer recall performance in the collaborative compared to
the individual condition. One possible explanation for this finding is
that the memory of interacting with another person during the learning
phase may have acted as an extra cue for retrieval of the labels. In
addition, the collaborative benefit we find here may be due to the fact
that the collaborative task induced more elaborative processing, be-
cause directors and matchers had to agree on a set of labels for the
pictures over a series of interactions. Finally, unlike previous studies on
collaborative encoding, our collaborative task required participants to
jointly come up with and agree on a set of labels to allow for efficient
communication. This may have led participants to come up with co-
herent labels, which promote efficient collaborative encoding (Barber
et al., 2012).

Memory performance during the fMRI session was poorest for the
labels that directors had learned in the arbitrary task. Even though the
labels were shorter, participants’ planning durations were longer and
recall performance was poorer than in the other conditions. When
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retrieving an arbitrary label, participants could not rely on the se-
mantics or social context in which the label was learned, making re-
trieval more difficult.

In the collaborative task during the behavioral practice session, we
replicated the well-established observation that directors’ descriptions
become shorter with each round of the task. It is interesting to note that
we found a similar pattern in the individual task, because most previous
research using the tangram task did not include a self-generated in-
dividual condition. Hupet and Chantraine (1992) found that the
number of words does not decrease over rounds when directors are
instructed to describe tangram pictures that will later be presented to a
matcher, suggesting that the contributions of the matcher play a crucial
role in reducing the cost of the referring process. In our individual
condition, directors could safely shorten their descriptions over rounds
and generate labels tailored to their own idiosyncratic knowledge (cfr.
Tullis and Benjamin, 2015), as they did not need to coordinate their
descriptions with the matcher to establish effective labels. This resulted
in considerably shorter labels in the individual condition compared to
the collaborative condition and high accuracy rates during the fMRI
session, although accuracy was higher in the collaborative condition.

In conclusion, the present study compared the retrieval of labels
learned in collaborative, individual and arbitrary contexts. Our results
show that the retrieval of collaboratively generated labels as compared
to individually learned labels engages brain regions involved in social
cognition and autobiographical memory. This study is the first to show
that collaboration during encoding can affect the neural networks in-
volved in retrieval.
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