
ar
X

iv
:1

71
2.

10
06

7v
1

 [
m

at
h.

O
C

]
 2

8
D

ec
 2

01
7

Extended and improved criss-cross algorithms for

computing the spectral value set abscissa and radius

Peter Benner∗ Tim Mitchell†

January 1, 2018

Abstract

In this paper, we extend the original criss-cross algorithms for computing the ε-pseudo-
spectral abscissa and radius to general spectral value sets. Furthermore, we greatly reduce
the total number of expensive Hamiltonian eigenvalue decompositions needed by performing
the horizontal/radial search subphases with a new root-finding-based approach that is both
more numerically resilient and substantially faster, particularly for typical spectral value
sets. Finally, we propose a new, more robust way of handling singular pencils that can arise
when computing the ε-spectral value set radius. Compared to would-be direct extensions
of the original criss-cross algorithms, that is, without the changes we propose here, our
modified methods are more robust and often several times faster, improvements that can
also be relevant for the special case of pseudospectra.

1 Introduction

Consider the continuous-time linear dynamical system

Eẋ = Ax+Bu, (1a)

y = Cx+Du, (1b)

where A ∈ C
n×n, B ∈ C

n×m, C ∈ C
p×n, D ∈ C

p×m, and E ∈ C
n×n. Using feedback u = ∆y,

where ∆ ∈ Cm×p, so that input u varies linearly with respect to output y, (1a) can be rewritten
as Eẋ = Ax+B∆y and (1b) as y = (I −D∆)−1Cx, assuming that (I −D∆) is invertible. It is
then clear that the input-output system (1) is equivalent to

Eẋ =M(∆)x, (2)

where
M(∆) := A+B∆(I −D∆)−1C (3)

is called the perturbed system matrix. As a consequence, the dynamical properties of (1), which
arise in many engineering applications, can be studied by examining the generalized eigenvalue
problem of the matrix pencil (M(∆), E) = λE −M(∆).

For the special case of B = C = E = I and D = 0, (2) simply reduces to

ẋ = (A+∆)x. (4)

∗Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg, 39106 Germany (benner@mpi-
magdeburg.mpg.de).

†Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg, 39106 Germany
(mitchell@mpi-magdeburg.mpg.de).

1

http://arxiv.org/abs/1712.10067v1

Considering ∆ = 0, the ordinary differential equation ẋ = Ax is asymptotically stable if its
spectral abscissa, the maximal real part attained by the eigenvalues of matrix A, is strictly
negative:

α(A) < 0.

However, the spectrum only provides a limited perspective with respect to the dynamics of the
system. If matrices close to an asymptotically stable matrix A have eigenvalues in the right half
plane, then the solution of ẋ = Ax may still have large transient behavior before converging.
Furthermore, in applications, where A is merely a model of some physical process or mechanism,
the theoretical asymptotic stability of A may not be predictive of reality, particularly if small
perturbations of the model A can result in unstable systems. Hence, there has been great interest
to also consider the dynamical properties of (4), which is characterized by pseudospectra [TE05]:
the set of eigenvalues of A under general perturbation, typically limited such that ‖∆‖2 ≤ ε for
some fixed choice ε ∈ R+. For a given ε ≥ 0, the ε-pseudospectral abscissa:

αε(A) := max{Reλ : λ ∈ σ(A+∆), ‖∆‖2 ≤ ε},

where σ(·) denotes the spectrum, provides a measure of robust stability: if αε(A) < 0, then
A+∆ is stable for any perturbation such that ‖∆‖2 ≤ ε. The norm of the smallest destabilizing
perturbation, that is the value of ε that yields αε(A) = 0, is called the distance to instability,
introduced by [Van85]. Beyond robust stability measures, it is also possible to understand the
transient behaviors of nonlinear processes via (stable) linearizations, provided that one looks
beyond their associated linear spectra and instead at their pseudospectra [TTRD93].

Computationally, numerous techniques for plotting the boundaries of pseudospectra are dis-
cussed in [Tre99, WT01] while a “criss-cross” algorithm for computing the ε-pseudospectral
abscissa, with global and local quadratic convergence guarantees, was proposed in [BLO03].
The criss-cross algorithm performs a sequence of alternating vertical and horizontal searches to
find relevant boundary points of the ε-pseudospectrum along the respective search lines, which
converge to a globally rightmost point of the ε-pseudospectrum; these vertical and horizontal
searches are accomplished by computing eigenvalues of associated Hamiltonian matrix pencils.
In fact, the techniques used in the criss-cross algorithm build upon those developed for the first
algorithm for computing the distance to instability [Bye88], which actually dates back about fif-
teen years earlier. The criss-cross algorithm has also been adapted to compute the corresponding
ε-pseudospectral radius :

ρε(A) := max{|λ| : λ ∈ σ(A+∆), ‖∆‖2 ≤ ε},

relevant for discrete-time systems xk+1 = Axk, by using circular and radial searches instead of
vertical and horizontal ones [MO05].

For the more general setting of (1), the analog of the ε-pseudospectrum is an ε-spectral
value set while the analog of the distance to instability is the complex stability radius (perhaps
better known by its reciprocal value, the H∞ norm). Spectral value sets are distinctly different
from pseudospectra of generalized eigenvalue problems λE − A, where both A and E would be
considered under general perturbation. Instead, in spectral value sets, (1) only permits structured
perturbations of the form B∆(I −D∆)−1C to operator A, while E remains unperturbed. Fixed
matrices A, B, C, D, and E represent the certainties of the model while ∆ represents the
uncertainties in the feedback loop. In order to identify dynamical properties of (1), it is natural
to consider the worst outcome possible over the set of uncertainties. The complex stability radius
encodes just that, as its value is the size of the smallest matrix ∆ such that B∆(I −D∆)−1C
destabilizes (1), assuming for now that (A,E) is stable itself.

Algorithms for computing the complex stability radius (or the H∞ norm) of general systems
with input and output, (1) but with E = I, were first proposed by [BBK89], which was inspired
by the Hamiltonian eigenvalue techniques developed in [Bye88] for computing the distance to
instability (the special case where B = C = E = I and D = 0). Shortly thereafter, the

2

now-considered standard algorithm, which converges quadratically and supersedes the earlier
bisection methods of [Bye88] and [BBK89], was simultaneously and independently proposed by
[BB90] and [BS90]. Extending these algorithms to so-called descriptor systems, where E 6= I, was
addressed in [BSV12].1 Techniques to accelerate these algorithms were proposed in [GVDV98]
and, most recently, in [BM17]. As all these methods share a O(n3) amount of work per iteration
complexity, they are typically only tractable choices for computing the H∞ norm of systems
which are relatively small. However, while none of these algorithms make use of spectral values
sets (at least not directly), spectral values sets have been a crucial computational tool in the
recent introduction of methods (see [GGO13, BV14, MO16]) for approximating the complex
stability radius of large-scale systems, using scalable routines. One of the key components of
these new methods has been the development of efficient iterative algorithms for approximating
the ε-spectral value set abscissa, which was first developed for the special case of approximating
the ε-pseudospectral abscissa in [GO11].

Although the aforementioned pseudospectral criss-cross algorithm and its related variant
for discrete-time systems provide dense algorithmic analogs to the newer sparse approximation
techniques of [GO11], to the best of our knowledge corresponding dense algorithms for general
spectral value sets have yet to be developed. In this paper, we extend and improve upon the
work of [BLO03, MO05] to introduce the first criss-cross type methods for computing both the
ε-spectral value set abscissa and radius. Some of the techniques we employed in this paper
were developed in parallel with our recent efforts to accelerate the computation of the H∞

norm [BM17]. By taking advantage of specific properties of typical input-output systems, the
algorithms we propose are faster than what would be achieved by a straightforward extension
of [BLO03, MO05]. In fact, our efficiency improvements are also relevant to the pseudospectral
case. We also introduce a new, more robust procedure for handling singular pencils that may
arise when computing the ε-spectral value set radius. Finally, our improved algorithms are also
more resilient to numerical issues in practice than the preceding methods.

The paper is organized as follows. In Section 2, we present the prerequisite definitions and
theory for spectral value sets. Our new criss-cross algorithm for computing the ε-spectral value
set abscissa is presented in Section 3 while Section 4 describes the necessary modifications to
compute the ε-spectral value set radius instead, including new results for handling singular
pencils. We present convergence results in Section 5. Numerical results are given in Section 6
with concluding remarks made in Section 7.

2 Spectral value sets and the transfer function

We now formally define the ε-spectral value set, its associated ε-spectral value set abscissa and
radius, and give related theoretical results that will be needed in this paper. In addition, we
discuss some of the new issues that arise when considering the dynamical behavior and stability
of input-output systems, with possibly singular E matrices.

Definition 2.1. Let ε ≥ 0 be such that ε‖D‖2 ≤ 1 and define the ε-spectral value set

σε(A,B,C,D,E) =
⋃

{σ(M(∆), E) : ∆ ∈ C
m×p, ‖∆‖2 ≤ ε}. (5)

Now consider the transfer function associated with input-output system (1):

G(λ) := C(λE −A)−1 +D for λ ∈ C\σ(A,E). (6)

As shown in [HP05, Section 5.2] for E = I, spectral value sets can be equivalently defined in
terms of the norm of the transfer function, instead of eigenvalues of (M(∆), E). This fundamental

1 Note that [BSV12] actually refers to computing the L∞ norm, not the H∞ norm, but the only difference
between the two measures is the class of cases where an infinite value is attained. Determining this can be
considered a preprocessing step to the convergent part of the algorithm, which is otherwise the same for both
stability measures.

3

result easily extends to the case of generic E matrices we consider here; e.g. the proof of [GGO13,
Theorem 2.1] readily generalizes by substituting all occurrences of (λI −A) with (λE −A).

Theorem 2.2. Let ε ≥ 0 be such that ε‖D‖2 < 1 and ‖∆‖2 ≤ ε so that I −D∆ is invertible.
Then for λ 6∈ σ(A,E) the following are equivalent:

‖G(λ)‖2 ≥ ε−1 and λ ∈ σ(M(∆), E) for some ∆ with ‖∆‖2 ≤ ε. (7)

By Theorem 2.2, the following corollary is immediate, providing an alternate spectral value
set definition based on the norm of the transfer function.

Corollary 2.3. Let ε ≥ 0 be such that ε‖D‖2 < 1. Then

σε(A,B,C,D,E) = σ(A,E)
⋃

{λ ∈ C\σ(A,E) : ‖G(λ)‖2 ≥ ε−1}. (8)

Note that the nonstrict inequalities in Definition 2.1 and Theorem 2.2 imply that the spectral
value sets we consider are compact. Furthermore, the boundary of σε(A,B,C,D,E) is charac-
terized by the condition ‖G(λ)‖2 = ε−1 while for any matrix ∆ such that λ ∈ σ(M(∆), E) is a
boundary point, ‖∆‖2 = ε must hold (though the reverse implication is not necessarily true).

Lemma 2.4. Let ε > 0 be such that ε‖D‖2 < 1 and let λ be a non-isolated boundary point of an
ε-spectral value set, with associated perturbation matrix ∆, that is, λ ∈ σ(M(∆), E). Then for
one or more λ0 ∈ σ(A,E), there exists a continuous path parameterized by t ∈ [0, 1] such that
λ(t) is an eigenvalue of σ(M(t∆), E) taking λ(0) = λ0 to λ(1) = λ. Furthermore, λ(t) is only a
boundary point at t = 1.

Proof. By continuity of eigenvalues, the continuous path λ(t) exists and clearly, ‖t∆‖2 < ‖∆‖2
holds for t ∈ [0, 1). As λ is on the boundary, ‖∆‖2 = ε holds but then the necessary condition
for λ(t) to be a boundary point is violated for all t ∈ [0, 1).

2.1 The spectral value set abscissa and radius

The ε-spectral value set abscissa, relevant for continuous-time systems (1), is formally defined as
follows.

Definition 2.5. Let ε ≥ 0 be such that ε‖D‖2 < 1 and define the ε-spectral value set abscissa

αε(A,B,C,D,E) := max{Reλ : λ ∈ σε(A,B,C,D,E)}. (9)

Now consider the discrete-time linear dynamical system

Exk+1 = Axk +Buk (10a)

yk = Cxk +Duk, (10b)

where the matrices are defined as before in (1). For the special case of B = C = E = I and
D = 0, the simple ordinary difference equation xk+1 = Axk is stable if and only if its spectral
radius, the maximal modulus attained by the eigenvalues of A, is strictly less than one:

ρ(A) < 1.

Thus, for discrete-time input-output systems of the form of (10), the relevant generalization of
the ε-pseudospectral radius is defined as follows.

Definition 2.6. Let ε ≥ 0 be such that ε‖D‖2 < 1 and define the ε-spectral value set radius

ρε(A,B,C,D,E) := max{|λ| : λ ∈ σε(A,B,C,D,E)}. (11)

4

Unlike the pseudospectral case, it may also be preferable to consider modified definitions of the
ε-spectral value set abscissa and radius. For continuous-time systems, if all the finite eigenvalues
of (A,E) lie in the open left half plane, then (A,E) is a stable matrix pencil. Thus, there can
be a motivation to exclude all infinite eigenvalues of (A,E) from consideration in computing the
ε-spectral value set abscissa. However, if (A,E) has index more than one, where rank(E) is less
than the number of finite eigenvalues of (A,E), then infinitesimally small perturbations can be
constructed which destabilize the pencil [BN93, Section 2]. In this case, (A,E) would be on
the boundary of instability and would thus be essentially unstable, if not technically. As such,
it can also be considered appropriate to sometimes include the infinite eigenvalues, so that the
value of the ε-spectral value set abscissa would be ∞, for the sake of distinguishing such systems.
Further complicating matters, for input-output systems of the form (1), eigenvalues may or may
not be relevant depending whether they are controllable and/or observable, concepts which we
now define.

Definition 2.7. Let λ be a finite eigenvalue of the matrix pencil (A,E) from an input-output
system. Eigenvalue λ is observable if Cx 6= 0 holds for all of its right eigenvectors x, i.e.
Ax = λEx, x 6= 0. Eigenvalue λ is controllable if B∗y 6= 0 holds for all of its left eigenvectors y,
i.e. y∗A = λy∗E, y 6= 0.

In a sense, the presence of uncontrollable and/or unobservable eigenvalues can be considered
an artifact of redundancy in a specific system design. Any associated transfer function G(λ) of

(1) can be reduced to what is called a minimal realization Ĝ(λ), assuming G(λ) is not already

minimal; e.g. see [Dai89, Theorem 2-6.3]. The A and E matrices of Ĝ(λ) are of minimal possi-
ble dimension so that the reduced transfer function is unaltered and its input-output behavior
remains identical to G(λ).

In terms of spectral value sets, consider an eigenvalue λ of (A,E) with right and left eigen-
vectors x and y. If λ is unobservable or uncontrollable, then Cx = 0 or B∗y = 0 respectively
holds, and thus for any perturbation matrix ∆ ∈ C

m×p, either M(∆)x = Ax or y∗M(∆) = y∗A
holds. Furthermore, if λ is a simple eigenvalue, then for sufficiently small ε > 0, λ must be an
isolated point of σε(A,B,C,D,E): letting λ(t) be some parameterization of λ with t ∈ R and
λ(0) = λ, via standard perturbation theory for simple eigenvalues, it is easily seen that λ′(0) = 0
holds.

Despite the variety of ε-spectral value set abscissa or radius definitions one might be interested
in, a specific choice merely dictates the initialization of the algorithms we present here while the
main convergent phase will remain applicable to all cases without modification. For the remainder
of the paper, we simply assume that the desired variant of the spectral value set is defined by
parameters provided by the user, e.g. tolerances for eliminating uncontrollable/unobservable
eigenvalues, whether or not a minimal realization is provided, the system’s index is greater than
one, etc.

2.2 Derivatives of the norm of the transfer function

As we will utilize first- and second-order information of the norm of the transfer function in
several different ways, it will be less repetitious to establish the following somewhat abstract and
out-of-context derivative results now and then apply them later in specific cases as needed. For
technical reasons, we will first need the following assumption.

Assumption 2.8. Let ε > 0 with ε‖D‖2 < 1 and let λ ∈ σε(A,B,C,D,E) with λ 6∈ σ(A,E).
Then the largest singular value of G(λ) is simple.

Remark 2.9. In fact, it can be shown that generically, that is, for all almost all quintuplets
(A,B,C,D,E), the largest singular value of G(λ) is indeed simple for all λ ∈ C\σ(A,E); e.g.
see [BLO03, Section 2] for pseudospectra and [GGO13, Remark 2.20] for general spectral value
sets with E = I. Although counter examples can be constructed (see [GGO13, Remark 2.20]), with

5

probability one such examples will not be encountered in practice and as such, this technicality
does not pose a problem for the algorithms we propose here.

Let λ(t) ∈ C be parameterized with respect to t ∈ R and Z(t) = λ(t)E − A. Then consider
G ◦ λ:

G(λ(t)) = C(λ(t)E −A)−1B +D = CZ(t)−1B +D. (12)

By standard (matrix) differentiation techniques, we have that:

(G ◦ λ)′(t) := −λ′(t)CZ(t)−1EZ(t)−1B (13a)

(G ◦ λ)′′(t) := 2λ′(t)2CZ(t)−1EZ(t)−1EZ(t)−1B − λ′′(t)CZ(t)−1EZ(t)−1B. (13b)

Furthermore, let s(t) be the largest singular value of (12), i.e. ‖G(λ(t))‖2, with associated left
and right singular vectors u(t) and v(t). Assuming that s(t) is a simple singular value at say,
t = 0, by standard perturbation theory, it follows that

s′(0) = Re (u(0)∗ [(G ◦ λ)′(0)] v(0)) (14a)

= −Re
(
u(0)∗

[
λ′(0)CZ(0)−1EZ(0)−1B

]
v(0)

)
. (14b)

To compute s′′(0), we need the following result for the second derivative of eigenvalues, which
can be found in various forms in [Lan64], [OW95], and [Kat82].

Theorem 2.10. For t ∈ R, let H(t) be a twice-differentiable n × n Hermitian matrix family
with distinct eigenvalues at t = 0 with (λk, xk) denoting the kth such eigenpair and where each
eigenvector xk has unit norm and the eigenvalues are ordered λ1 > . . . > λn. Then:

λ′′1 (t)

∣∣∣∣
t=0

= x∗1H
′′(0)x1 + 2

n∑

k=2

|x∗1H
′(0)xk|2

λ1 − λk
.

Since s(t) is the largest singular value of G(λ(t)), it is also the largest eigenvalue of the matrix:

H(t) =

[
0 G(λ(t))

G(λ(t))∗ 0

]
, (15)

which has first and second derivatives

H ′(t) =

[
0 (G ◦ λ)′(t)

(G ◦ λ)′(t)∗ 0

]
and H ′′(t) =

[
0 (G ◦ λ)′′(t)

(G ◦ λ)′′(t)∗ 0

]
, (16)

and where the nonzero blocks are given by (13). Thus, by constructing matrix (15) and its first
and second derivatives given in (16), s′′(0) can be computed by a straightforward application
of Theorem 2.10, noting that eigenvector xk = [uk; vk], where uk and vk are the left and right
singular vectors for the kth singular value of G(λ(0)), which is of course equal to the eigenvalue
λk of H(0).

3 The extended and improved criss-cross algorithm for

computing the ε-spectral value set abscissa

Our criss-cross algorithm is composed of two main subcomponents, vertical and horizontal
searches, which we now describe.

6

3.1 Vertical cross sections of spectral value sets

We begin by presenting a fundamental theorem that relates singular values of the transfer func-
tion, evaluated at some point in the complex plane, to purely imaginary eigenvalues of an asso-
ciated matrix pencil. As alluded to in Section 1, this correspondence, in various more specific
forms, has been a key tool in the aforementioned complex stability radius class of algorithms
[Bye88, BBK89, BB90, BS90, GVDV98, BSV12, BM17] and the ε-pseudospectral abscissa algo-
rithm of [BLO03]. We defer the proof to Appendix A, as it is a straightforward extension of
these earlier results.

Theorem 3.1. Let x ∈ R, y ∈ R, γ > 0 not a singular value of D, and λE − A be regular.
Consider the matrix pencil (Mγx,N), where

Mγx :=

[
A− xE −BR−1D∗C −γBR−1B∗

γC∗S−1C −(A− xE −BR−1D∗C)∗

]
, N :=

[
E 0
0 E∗

]
, (17)

R = D∗D− γ2I, and S = DD∗ − γ2I. Then iy is a finite eigenvalue of matrix pencil (Mγx,N)
if and only if γ is a singular value of G(x+iy) and x+iy is not an eigenvalue of (A,E).

By setting γ = ε−1, Theorem 3.1 immediately leads to the ability to compute all the boundary
points, if any, of an ε-spectral value set that lie on any desired vertical line specified by the value
of x. Given these boundary points, it is then straightforward to obtain the set of cross sections
of the ε-spectral value set with this vertical line.

Remark 3.2. Note that the matrix pencil given by (17) cannot be singular. If it were, then γ
would be a singular value of G(x+iy) for all y ∈ R and thus the entire vertical line specified by
value x would be a part of σε(A,B,C,D,E). Since (A,E) is regular and ε is finite, this is not
possible.

It will be convenient to establish the following notation parameterizing the largest singular
value of the transfer function by the vertical position y for a fixed horizontal position given by
some x:

λx(y) := x+ iy (18a)

Zx(y) := λx(y)E −A (18b)

gx(y) := ‖G(λx(y))‖2 = ‖CZx(y)
−1B +D‖2. (18c)

For a chosen vertical line defined by x = η, let {y1, . . . , yl} be the set of vertical positions,
sorted in increasing order, given by the (we assume nonempty) set of imaginary eigenvalues of
(17). Thus, each point η + iyj is a boundary point of σε(A,B,C,D,E). We first note that it is
insufficient to merely assume that interval [yj, yj+1] ⊂ σε(A,B,C,D,E) holds for odd values of
j. This simple construction can fail if one of the eigenvalues iyj is double: if η + iyj happens
to be a locally rightmost point of the ε-spectral value set, then neither [yj−1, yj] nor [yj , yj+1]
will be inside the ε-spectral value set. As such, a robust algorithm must assert which intervals
are cross sections. One possibility is via the intermediate value theorem and only requires
evaluating gx=η(y) at some interior point ỹj ∈ (yj , yj+1) for each candidate interval; [yj , yj+1] is
a cross section of σε(A,B,C,D,E) if and only if gx=η(ỹj) > ε−1. Alternatively, in [SVDT95], it
was shown that it is possible to cheaply compute g′x=0(yj) by using the eigenvector associated
with eigenvalue iyj ; see [BM17] for this result when E 6= I. Furthermore, it is straightforward
to adapt this approach for any vertical line x = η. Recalling that yj < yj+1 holds, interval
[yj , yj+1] is not a cross section of σε(A,B,C,D,E) if either g′x=η(yj) < 0 or g′x=η(yj+1) > 0
hold. However, obtaining the values of these derivatives via their associated eigenvectors can
sometimes considerably increase memory usage; e.g. if there are 2n imaginary eigenvalues, then
one would need an additional 4n2 floating point numbers to store all the eigenvectors. Lastly, it
is relatively inexpensive to compute g′x=η(yj) directly.

7

Suppose that gx(ŷ) is a simple singular value with associated left and right singular vectors
û and v̂. As λ′x(y) = i, by (13a) it follows that

(G ◦ λx)
′(ŷ) = −iCZx(ŷ)

−1EZx(ŷ)
−1B (19)

and subsequently, by (14), the first derivative of (18c) at ŷ is

g′x(ŷ) = −Re
(
iû∗CZx(ŷ)

−1EZx(ŷ)
−1Bv̂

)
. (20)

The main cost in computing g′x(ŷ) is computing the terms involving Zx(ŷ)
−1, but an LU fac-

torization can be formed once when computing gx(ŷ) and then reused to compute its derivative.
Furthermore, evaluating (18c), and possibly its derivative (20), at multiple points is an embar-
rassingly parallel task.

3.2 Horizontal cross sections of spectral value sets

For a given vertical line x = η, let Ωk = [yk, yk+1] denote a vertical cross section segment of
σε(A,B,C,D,E) and Ω = {Ω1, . . . ,Ωq} denote the set of all these cross sections, computed
via the means described in Section 3.1. In the standard criss-cross algorithm for computing
ε-pseudospectral abscissa [BLO03], horizontal cross sections were defined by the midpoints of
each vertical cross section Ωk ∈ Ω:

ψk = 0.5(yk + yk+1).

Assuming that there is a least one cross section of positive length (as otherwise, all the intervals
would actually be just singleton points along the vertical line x = η, with η equal to the ε-
spectral value set abscissa), it is then possible to move rightward in the spectral value set, since
at least one of the points η+ iψk must be strictly in the interior of σε(A,B,C,D,E). Computing
the rightmost point λ in the union of these horizontal lines intersected with σε(A,B,C,D,E)
provides Reλ > η, or equivalently written:

max
Ωk∈Ω

max{Reλ : λ ∈ σε(A,B,C,D,E) and Imλ = ψk}. (21)

It is actually possible to compute (21) using Theorem 3.1 and [BLO03] proposed doing just
that for the case of the ε-pseudospectral abscissa, by adapting it to consider horizontal cross
sections of pseudospectra instead of vertical ones. However, we will now present a version of
Theorem 3.1 that is applicable for finding cross sections of σε(A,B,C,D,E) along any given line
in the complex plane, as this more general form will be needed in Section 4. In order to present
the theorem, it will be convenient to first establish the following notation for lines.

Definition 3.3. Let θ ∈ [0, 2π) denote the angle between the x-axis and some ray from the origin,
with the positive x and y directions respectively given by θ = 0 and θ = π/2. Given s ∈ R, we
define L(θ, s) as the parallel line to the left of the ray given by θ, separated by distance s, with
left defined with respect to the direction θ.

Theorem 3.4. Given the line L(θ, s), let {iω1, . . . , iωl} be the set of purely imaginary eigenvalues
of (17), where γ = ε−1, x = −s, and matrices A and B have been respectively replaced by eiθrA
and eiθrB, with θr = π/2 − θ. Then the points λj = e−iθr(−s+ iωj) define the cross sections of
σε(A,B,C,D,E) along L(θ, s).

Proof. By Theorem 3.1 and Corollary 2.3, it follows that −s + iωj must be all the boundary
points of σε(e

iθrA, eiθrB,C,D,E) along the vertical line defined by x = −s. Since this spectral
value set is entirely composed of eigenvalues of (eiθrM(∆), E), recalling (3) defining M(∆),
multiplying eiθrM(∆) by e−iθr is equivalent to a rotation about the origin by angle −θr, which
yields σε(A,B,C,D,E). Since θr = π/2− θ, this specific rotation also moves all points −s+ iωj

precisely onto the line L(θ, s) and thus λj = e−iθr(−s + iωj) are all the boundary points of
σε(A,B,C,D,E) along L(θ, s).

8

Thus, for a midpoint ψk of some cross section on the vertical line x = η, it follows by
Theorem 3.4 that the boundary points of σε(A,B,C,D,E) along the horizontal line L(0, ψk) are
given by ωj + iψk, where {iω1, . . . , iωl} are the imaginary eigenvalues of the version of (17) given
by Theorem 3.4 and ωl+iψk is the rightmost boundary point with ωl > η holding. This procedure
can then be applied independently for each interval Ωk ∈ Ω to compute (21). However, this is
where we make our main departure in extending the criss-cross algorithm to general spectral
value sets, as there are several downsides to this approach.

The dominant cost of the criss-cross algorithm is computing the imaginary eigenvalues of
(17), which requires O(n3) work, with a notably large constant since it is a 2n × 2n matrix
pencil. Furthermore, in each horizontal search phase, computing (21) may require computing
the imaginary eigenvalues of several versions of (17), one for each interval Ωk ∈ Ω. Although
parallelization could be used to solve these multiple eigenvalue problems, each requires at least
8n2 floating point numbers (possibly complex valued) of memory just to store the corresponding
matrix pencil, which may limit the achievable parallelization speedup, due to cache and memory
contention issues.

We instead consider using a more direct root-finding approach. Analogously to (18), it will
now be helpful to parameterize the largest singular value of the transfer function by the horizontal
position x for a fixed vertical position given by some y:

λy(x) := x+ iy (22a)

Zy(x) := λy(x)E −A (22b)

gy(x) := ‖G(λy(x))‖2 = ‖CZy(x)
−1B +D‖2. (22c)

Let η specify the current (nonempty) vertical cross section of σε(A,B,C,D,E) and y ∈ (yk, yk+1)
define the position of an associated horizontal line for some interval of positive length Ωk ∈ Ω.
We aim to find a boundary point x+ iy of σε(A,B,C,D,E) such that x > η by solving

gy(x)− ε−1 = 0. (23)

If x solves (23), then clearly x + iy is a boundary point of σε(A,B,C,D,E). Since η + iy is an
interior point of σε(A,B,C,D,E), it follows that gy(η)−ε

−1 > 0 and thus η provides an a priori
lower bound on a permissible root. As limx→∞ gy(x) = ‖D‖2 and ε‖D‖2 < 1, (23) must converge
to some negative value as x→ ∞ and thus it is straightforward to find some upper bound on a
permissible root as well. Hence a simple bisection method, for example, would suffice to solve
(23) such that x > η (albeit with only a linear rate of convergence). However, by exploiting first
and possibly second derivatives of singular values, (23) can also be solved with faster first- or
second-order root-finding methods, respectively. Nevertheless, it will still be necessary to enforce
monotonically updating brackets, to both ensure convergence and that the solution is greater
than the given value η. For example, a hybrid Newton-bisection (or Halley-bisection) root-finding
method would guarantee convergence and near a root, we could still reasonably expect to observe
quadratic (or cubic) convergence.

If the computed value x is the largest such permissible value, then x is equal to the globally
optimal value ωl obtained by invoking Theorem 3.4. However, solving (23) via an iterative
root-finding method may not always return the globally rightmost boundary point along the
given horizontal line. Nonetheless, in our improved criss-cross algorithm, any boundary point on
the horizontal line and to the right of η + iy will suffice. This small concession has little to no
negative impact in practice (as we will see in Section 6) and eventually, the root finding procedure
is guaranteed to always return the globally rightmost boundary point along a given horizontal
line, since as η becomes sufficiently close to the value of the ε-spectral value set abscissa, there
will only be exactly one root of (23) such that x > η.

We now derive the first and second derivatives of (22c). Suppose that gy(x̂) is a simple singular
value with associated left and right singular vectors û and v̂. As λ′y(x) = 1 and λ′′y(x) = 0, by

9

(13), it follows that

(G ◦ λy)
′(x) = −CZy(x)

−1EZy(x)
−1B (24a)

(G ◦ λy)
′′(x) = 2CZy(x)

−1EZy(x)
−1EZy(x)

−1B. (24b)

Again by (14), the first derivative of (22c) at x̂ is

g′y(x̂) = −Re
(
û∗CZy(x̂)

−1EZy(x̂)
−1Bv̂

)
, (25)

while its second derivative at x̂ can be computed via applying Theorem 2.10 to matrix (15) with
first and second derivatives (16), respectively defined by G(λy(x̂)) and the matrix derivatives
given in (24) evaluated at x̂. Note that both g′y(x̂) and g

′′

y (x̂) are relatively inexpensive to obtain
once either (a) gy(x̂), û, and v̂ or (b) a full SVD of G(x+iy) have been computed, respectively.
Although computing the latter may not be reasonable if min(m, p) is relatively large, the former
can generally be computed efficiently and reliably by sparse methods.

Our proposed root-finding approach for the horizontal search phase has two key benefits over
computing imaginary eigenvalues of pencils given by (17).

First, as recently benchmarked in [BM17, Table 2], it is typically much cheaper to compute
the norm of the transfer function: for randomly generated dense systems with n = m = p =
{20, 100, 400}, computing the norm of the transfer function was up to 2.47, 10.2, and 36.8 times
faster, respectively, than computing the eigenvalues of the associated matrix pencils given by
(17). Furthermore, if m, p≪ n, which is typical for input-output systems, then this performance
gap can widen dramatically further: for a randomly generated dense system with n = 400 and
m = p = 10 (again [BM17, Table 2]), computing the norm of the transfer function was up to
119 times faster than computing the eigenvalues of matrix pencil (17), whose cost to compute is
generally unaffected by the number of inputs and outputs. Since the first and second derivatives
can generally be computed with little additional cost over obtaining (22c), solving (23) for the
horizontal searches via a first- or second-order root-finding method has the potential to be much
faster than a direct extension of the original criss-cross algorithm would be. Such a direct
extension would involve computing the imaginary eigenvalues of several large matrix pencils
specified by Theorem 3.4 and (17), one for each of the cross sections computed in the preceding
vertical search phase.

Second, like the eigenvalue-decomposition-based horizontal search phase, (23) can be solved
in an embarrassingly parallel fashion for all the midpoints ψk of vertical cross sections Ωk, but our
root-finding approach permits additional efficiencies and optimizations. Since there is no need
to form the two large 2n× 2n matrices defining the matrix pencil given by Theorem 3.4, cache
and memory contention issues should be much less severe, as only the n× n LU factorization of
λE −A is needed. Perhaps more importantly, and in contrast to the eigenvalue-based approach,
is that in practice, we can actually often avoid needing to solve (23) for many of the midpoints
ψk, thus perhaps negating a need to parallelize at all. Observe that the left side of (23) provides
a measure of how far a given point x + iy is inside the interior of σε(A,B,C,D,E). It thus
stands to reason that a global optimizer of (21) might most likely lie on the horizontal line iψk

that provides the maximal value of gx(y) at y = ψk. Alternatively, a more promising strategy
might be to take the version which has the largest initial Newton step to the right, that is, for
the value of y ∈ {ψ1, . . . , ψq} which maximizes:

−
gy(η)− ε

g′y(η)
. (26)

Thus, for the horizontal search phase, we propose a priority of solving each instance of (23),
for each ψk, where (26) is sorted in decreasing order for y ∈ {ψ1, . . . , ψq}. For convenience,
assume that the ψk midpoints are already sorted such that this ordering holds. Let x̂ be the
solution of (23) for y = ψ1, which had nothing but η to use as a starting point for finding an

10

Subroutine 1 [x,y] = horizontalSearch(η,{y1, . . . , yq})

Constants:

ε > 0 with ε‖D‖2 < 1 and matrices A, B, C, D, E defining σε(A,B,C,D,E)
Input:

η ∈ R defining a vertical line x = η
{y1, . . . , yq} with yk ∈ R and η + iyk in the interior of σε(A,B,C,D,E)

Output:

x+iy is a boundary point of σε(A,B,C,D,E) with x > η, and y ∈ {y1, . . . , yq}.

1: reorder {y1, . . . , yq} s.t. (26) with y = yk decreases with respect to all k
2: x := η; y := y1
3: for k = 1, . . . , q do

4: set function handle f(·) := gy=yk
(·)− ε−1 // (23) defined for y = yk

5: if f(x) > 0 then

6: x := findARootToTheRight(f(·),x)
7: y := yk
8: end if

9: end for

upper bound. Now, for the second solve, (23) for y = ψ2, we can use x̂ as a starting point. If the
left side of (23) is negative at x̂, then we immediately have an upper bound on a root for ψ2 that
is worse (to the left) than root x̂ for ψ1 and we have no evidence that there are any roots to the
right; hence, we can completely skip solving (23) for ψ2 and proceed to ψ3. Similarly, if the left
side of (23) is exactly zero at x̂, then (23) is already solved but does not yield a better root. On
the other hand, if the left side of (23) for ψ2 is positive, then solving (23) for ψ2 initialized at x̂
must yield a better root x̃ > x̂, and so the solve should proceed. Furthermore, by initializing at
x̂ instead of η, we have the additional benefit of warm starting the root-finding computation. We
continue evaluating whether to solve or skip (23) for each of the ψk using the best (rightmost)
root computed so far. Finally, note that our horizontal search procedure, as presented here, does
not explicitly use parallelism but certainly parallelism could be added to it, potentially reducing
its runtime further.

Pseudocode for our new horizontal search method is given in Subroutine 1, which makes
use of the following root-finding method that we only define as function specification. The
specification ensures that the root-finding routine will return a value corresponding to a point
on an outer-facing spectral value set boundary as opposed to on an inner-facing boundary.

Definition 3.5. Let findARootToTheRight(f(·),x0) define some implementation of a bracket-
ing and root-finding routine that given a function f(·) and an initial guess x0 with f(x0) > 0,
returns a value r such that r > x0, f(r) = 0, and f(r + δ) < 0 for all δ ∈ (0, τ) for some fixed
value τ > 0.

Remark 3.6. It is interesting to note that while [BLO03, Theorem 4.1] also considered the
pseudospectral analogs of the first derivatives given in (25) and (20), they actually only used them
for analysis and did not make use of them computationally to improve efficiency and accuracy,
as we do here.

3.3 The new criss-cross algorithm for spectral value sets

In order to compute the ε-spectral value set abscissa, we must first compute the spectrum of
matrix pencil (A,E) and discard any eigenvalues the user does not wish to consider (e.g. uncon-

11

Algorithm 1 [η] = svsAbscissa(ε,A,B,C,D,E)

Input:

ε > 0 with ε‖D‖2 < 1 and matrices A, B, C, D, E defining σε(A,B,C,D,E)
Output:

η equal to the value of αε(A,B,C,D,E)

1: Λ := eig(A,E)
2: // As desired by user, discard uncontrollable/unobservable/infinite eigenvalues
3: Λ := {λ ∈ Λ : λ meets user’s inclusion criteria}
4: if ∞ ∈ Λ then

5: return η = ∞
6: end if

7: λ0 := argmax{Reλ : λ ∈ Λ}
8: // To reduce number of expensive vertical searches, first find a boundary point:
9: [η,y] := horizontalSearch(Reλ0,{Imλ0})

10: while η < αε(A,B,C,D,E) do

11: compute imaginary eigenvalues {iy1, . . . , iyl} of (17) for x = η and γ = ε−1

12: form all intervals Ωk = [yk, yk+1] s.t. η + iy ∈ σε(A,B,C,D,E) ∀y ∈ Ωk

13: Ψ := {ψ1, . . . , ψq} such that ψk is a midpoint of interval Ωk

14: [η,y] := horizontalSearch(η,Ψ)

15: end while

trollable/unobservable/infinite, as discussed in Section 2.1). This is an important preprocessing
step as the algorithm will be initialized at a rightmost eigenvalue λ0 of those that remain. The
original criss-cross algorithm for pseudospectra then proposes that a vertical search should be
done slightly to the right of λ0 (it cannot be done exactly at Reλ0 because (λ0E −A) would be
singular). Instead, we propose to first use Subroutine 1 to find a (locally) rightmost boundary
point λbd of σε(A,B,C,D,E) along the horizontal line passing through λ0, with Reλbd > Reλ0,
and then commence the first vertical search at Reλbd. Besides the numerical benefits of avoiding
the initial vertical search close to an eigenvalue of (A,E), our modified scheme has the perhaps
more important effect of potentially reducing both the number of vertical searches and the num-
ber of root finding problems (23) provided to each horizontal search phase (since the number
of vertical cross sections is likely to decrease as the algorithm converges). Once λbd has been
computed, the convergent part of the algorithm begins, first computing vertical cross sections
of σε(A,B,C,D,E) at the vertical line x = Reλbd and then performing our modified horizontal
search given by Subroutine 1. The algorithm alternates between these updating vertical and
horizontal searches until it has converged to a globally rightmost of σε(A,B,C,D,E), excluding
the user-discarded eigenvalues of (A,E), if any.

See Algorithm 1 for pseudocode of our new ε-spectral value set abscissa method.

4 Computing the ε-spectral value set radius

Our method is also readily adapted to computing the ε-spectral value set radius.

4.1 Arc cross sections of spectral value sets.

First, instead of finding vertical cross sections of σε(A,B,C,D,E), as described in Section 3.1,
we will find the set of arcs given by σε(A,B,C,D,E) intersected with a chosen circle of some
radius r > 0 centered at the origin. In [MO05], this phase is referred to as a circular search.

12

Less general versions of the following result, the analog of Theorem 3.1, go back as far as [HS91,
Section 3], where they considered a fixed radius r = 1, D = 0, and E = I. We defer the proof to
Appendix B.

Theorem 4.1. Let r > 0 be the radius of a circle centered at the origin, angle θ ∈ [0, 2π), γ > 0
not a singular value of D, and λE−A be regular. Consider the matrix pencil (Mγr,Nγr), where

Mγr :=

[
A−BR−1D∗C −γBR−1B∗

0 rE∗

]
,

Nγr :=

[
rE 0

−γC∗S−1C A∗ − C∗DR−1B∗

]
,

(27)

R = D∗D − γ2I and S = DD∗ − γ2I. Then eiθ is an eigenvalue of matrix pencil (Mγr,Nγr) if
and only if γ is a singular value of G(reiθ) and reiθ is not an eigenvalue of (A,E).

Setting γ = ε−1, Theorem 4.1 provides a means to compute all the boundary points, if any,
of an ε-spectral value set that lie on any desired circle of radius r centered at the origin. More
specifically, let {θ1, . . . , θl} be the set of angles, all in [0, 2π) and sorted in increasing order, given
by the (we assume nonempty) set of unit-modulus eigenvalues of (27). Thus, each point reiθj

is a boundary point of σε(A,B,C,D,E). To determine the set of arcs on the circle of radius r
that pass through the spectral value set, the additional “wrap-around” interval [θl, θ1+2π] must
be also be considered in addition to intervals Ωk = [θk, θk+1] for k = 1, . . . , l − 1. Determining
whether an interval passes through the spectral value set can be done via any one of the three
means described in Section 3.1.

Remark 4.2. In contrast to the matrix pencils used in the vertical search phases for comput-
ing the spectral value set abscissa, the pencil defined by (27) can sometimes be singular, which
presents an additional challenge. For now, we simply assume it is nonsingular and address this
issue in Section 4.3.

To provide the polar-coordinate analog of derivative (20), we again parameterize the largest
singular value of the transfer function, similarly to (18) and (22), but now with respect to the
angle θ for a fixed radius r as follows:

λr(θ) := reiθ (28a)

Zr(θ) := λr(θ)E −A (28b)

gr(θ) := ‖G(reiθ)‖2 = ‖Gr(θ)‖2. (28c)

Suppose that gr(θ̂) is a simple singular value with associated left and right singular vectors û
and v̂. As λ′r(θ) = ireiθ, by (13a) it follows that

(G ◦ λr)
′(θ) = −ireiθCZr(θ̂)

−1EZr(θ̂)
−1B (29)

and subsequently, by (14), the first derivative of (28c) at θ̂ is

g′r(θ̂) = −Re
(
ireiθû∗CZr(θ̂)

−1EZr(θ̂)
−1Bv̂

)
. (30)

4.2 Radial cross sections of spectral value sets

Given a circle of radius r = η, let Ωk = [θk, θk+1] denote a non-zero length arc of this circle which
also lies in σε(A,B,C,D,E) and Ω = {Ω1, . . . ,Ωq} denote the set of all such arcs computed via
the means described in Section 4.1, including the additional “wrap-around” arc. Similar to the

13

so-called radial searches employed in [MO05] for pseudospectra, we will consider the set of lines
through the origin defined by angles

ψk = 0.5(θk + θk+1),

the midpoints of all the arcs in Ω. Computing the outermost boundary point λ of the intersection
of σε(A,B,C,D,E) and these lines through the origin provides |λ| > η, or equivalently written:

max
Ωk∈Ω

max{|λ| : λ ∈ σε(A,B,C,D,E) and ∠λ = ψk}. (31)

While Theorem 3.4 could be applied for lines L(ψk, 0) in order to solve (31), we will instead
adapt our new root-finding-based horizontal search to the radial case.

Analogously to (23) for ε-spectral value set abscissa case, the corresponding root-finding
subproblem of (31) is:

gθ(r) − ε−1 = 0, (32)

where

λθ(r) := reiθ (33a)

Zθ(r) := λθ(r)E −A (33b)

gθ(r) := ‖G(λθ(r))‖2 = ‖CZθ(r)
−1B +D‖2 (33c)

parameterizes the largest singular value of the transfer function by the radius r for a fixed angle
θ. As λ′θ(r) = eiθ and λ′′θ (r) = 0, by (13), it follows that

(G ◦ λθ)
′(r) = −eiθCZθ(r̂)

−1EZθ(r̂)
−1B (34a)

(G ◦ λθ)
′′(r) = 2e2iθCZθ(r)

−1EZθ(r)
−1EZθ(r)

−1B. (34b)

Assuming that gθ(r̂) is a simple singular value, with left and right singular vectors û and v̂, by
(14), the first derivative of (33c) at r̂ is

g′θ(r̂) = −Re
(
eiθû∗CZθ(r̂)

−1EZθ(r̂)
−1Bv̂

)
. (35)

As before, the second derivative of (33c) at r̂ can be computed via Theorem 2.10. Finally, we
similarly prioritize solving the root problems given by (32) such that

−
gθ(η)− ε

g′θ(η)
. (36)

is sorted in decreasing order, for the angles θ given by each midpoint ψk of interval Ωk ∈ Ω.

Remark 4.3. Similar to [BLO03], the pseudospectral analogs of the first derivatives given in
(35) and (30) were considered in [MO05, Theorem 2.3], but they were only used for analysis and
not computationally as we do here.

4.3 The full algorithm and singular pencils

Before we can present a complete pseudocode for computing the ε-spectral value set radius, we
must finally address that the circular searches may be interior and/or have associated pencils
that are singular, either of which might cause the algorithm to break down. We will need the
following theorem and an associated corollary, both generalizations of [MO05, Theorem 2.11 and
Corollary 2.12], respectively; the argument given for [MO05, Theorem 2.11] extends directly,
with only simple substitutions, so we omit a proof here.

14

Subroutine 2 [r,θ] = radialSearch(η,{θ1, . . . , θq})

Constants:

ε > 0 with ε‖D‖2 < 1 and matrices A, B, C, D, E defining σε(A,B,C,D,E)
Input:

η > 0 defining a circle of radius η centered at the origin
{θ1, . . . , θq} with θk ∈ [0, 2π) and ηeiθk in the interior of σε(A,B,C,D,E)

Output:

reiθ is a boundary point of σε(A,B,C,D,E) with r > η and θ ∈ {θ1, . . . , θq}.

1: reorder {θ1, . . . , θq} s.t. (36) with θ = θk decreases with respect to all k
2: r := η; θ := θ1
3: for k = 1, . . . , q do

4: set function handle f(·) := gθ=θk(·)− ε−1 // (32) defined for θ = θk
5: if f(r) > 0 then

6: r := findARootToTheRight(f(·),r)
7: θ := θk
8: end if

9: end for

Theorem 4.4. Suppose that the matrix pencil defined by (27) is singular for some value r > 0
and that the largest singular value of G(reiθ) is simple for all θ ∈ [0, 2π). Then either

1. the boundary of σε(A,B,C,D,E) contains the circle of radius r or

2. the circle of radius r is strictly inside σε(A,B,C,D,E).

Corollary 4.5. Suppose that for some fixed r > 0, ‖G(reiθ)‖2 − ε−1 < 0 holds for at least one
angle θ ∈ [0, 2π). Then the matrix pencil defined by (27) is regular.

In light of Corollary 4.5, the following strategy to avoid singular pencils was used in [MO05].
First, on initialization, they proposed computing the maximal value η of (31), for angle ∠λ, where
λ is an outermost eigenvalue of A. This can be done by applying Theorem 3.4 for L(∠λ, 0), in
other words, by initializing the algorithm with a radial search instead of a circular one.2 By
Corollary 4.5, it then follows that the matrix pencils defined by (27) will be regular for all r > η.
However, in floating-point arithmetic, the computed value of η could be lower than its true value
and so the matrix pencil for the initial circular search could still be a singular one, or even if not,
could still correspond to a circular search done entirely in the interior of the pseudospectrum,
which would not return any boundary points. Thus, [MO05] proposed increasing η by a small
tolerance as necessary. If gθ=∠λ(η) ≥ 0, then they advocated increasing η by kδ0 > 0, where δ0
is the Newton step for gθ=∠λ(t) computed at t = η, such that gθ=∠λ(η+kδ0) < 0 for the smallest
positive integer k. They noted that typically k = 1 or 2 sufficed in practice. In exact arithmetic,
this strategy ensures that all circular searches performed by the algorithm will be nonsingular.

Of course, the fact that this procedure cannot be done in exact arithmetic may lead to some
issues. Since the algorithm must make a decision based on the sign of gθ=∠λ(t) ≈ 0, computed
in floating-point arithmetic, the algorithm may increase η unnecessarily or not increase it when
it should. Even if gθ=∠λ(η + kδ0) < 0 holds numerically, its sign could still be wrong (since
it should be close to zero) and thus this is not a foolproof guarantee that the matrix pencil is

2 This choice in [MO05] seems to only be a consequence for avoiding singular pencils. They make no mention
that this choice also has the additional benefit of likely making the method more efficient overall, by reducing
the total number of searches, as we motivate here in the beginning of Section 3.3, when proposing that our new
criss-cross method should start with a horizontal search.

15

regular or that the circle of radius η+ kδ0 actually crosses the boundary of the pseudospectrum.
Furthermore, increasing η by kδ0 may make it greater than ρε(A,B,C,D,E), in which case,
significant accuracy may sometimes be lost.

Motivated by such thorny issues, we propose a new approach for dealing with singular pencils
or interior circular searches that may arise due to numerical inaccuracy. Furthermore, we will still
be able to use our new radialSearch subroutine for all radial searches. If we were to extend the
above procedure of [MO05], the very first radial search would have to be done via Theorem 3.4,
as the root-finding method used by radialSearch is only guaranteed to find a root of (32) to
the right of some initial guess, not necessarily the farthest one; as such, radialSearch is not
always guaranteed to return a value η such that the assumptions of Corollary 4.5 would hold for
all r > η. We first consider the following new result.

Theorem 4.6. Given ε > 0 with ε‖D‖2 < 1, set γ = ε−1 and let λ be an outermost controllable
and observable eigenvalue of (A,E). For some η ≥ |λ|, such that the circle of radius η centered
at the origin is strictly in the interior of σε(A,B,C,D,E), let δ > 0 be the largest value such
that, for all t ∈ [0, 1], circles of radius η + tδ are still subsets of σε(A,B,C,D,E). Finally, let
R = {r1, . . . , rl} denote the set of radii corresponding to the boundary points of σε(A,B,C,D,E)
that lie on L(θ, 0) but are outside the circle of radius η, where θ ∈ [0, 2π) has been chosen
randomly. Then for r̂ = min{r1, . . . , rl} > η, either of the two following scenarios may hold:

1. (Mγr,Nγr), defined by the matrices (27), is singular for r = η + δ but r̂ = η + δ =
ρε(A,B,C,D,E) or

2. (Mγr,Nγr) is regular for r = η + δ and, with probability one, r̂ > η + δ.

Proof. We first consider the case where (Mγr,Nγr) is singular at r = η + δ. Since η + δ ∈ R,
it must be that reiθ is a boundary point of σε(A,B,C,D,E), and by Theorem 4.4, the circle
of radius r centered at the origin must be a subset of the boundary of σε(A,B,C,D,E). Fur-
thermore, ρε(A,B,C,D,E) ≥ r. If strict inquality holds, then there must exist some boundary

point λ̂ ∈ σε(A,B,C,D,E) with |λ̂| > r. But this contradicts the conclusion of Lemma 2.4, that

there exists a path taking some controllable and observable eigenvalue of (A,E) to λ̂ such that

only λ(1) = λ̂ is a boundary point, since any such λ(t) must also cross the circle of radius r at
some t < 1. Hence, r = r̂ as R only contains a single unique value, namely η + δ.

Now suppose (Mγr,Nγr) is regular at r = η + δ. By assumption, the circle of radius η + δ
only touches the spectral value boundary but does not cross it. Furthermore, since the pencil
is regular, by Theorem 4.1, there can only be a finite number (at most n) of contact points
between this circle and the spectral value set boundary. Suppose that r̂ = η + δ, noting that by
assumption, r̂ cannot be any smaller. Then, for boundary point r̂eiθ, its angle θ must be equal
to one of the angles corresponding to the finite set of contact points. As θ ∈ [0, 2π) was chosen
randomly, the probability of this event occurring is zero. Therefore, with probability one, θ will
not correspond to any of the contact points on the circle of radius η+ δ and thus, r̂ > η+ δ.

Theorem 4.6 says that if the current radius η corresponds to a problematic circular search
(one within the interior of the spectral value set), then radialSearch(η,{θ}), when θ is chosen
randomly from [0, 2π), must return a value r > η such that either r is equal to ρε(A,B,C,D,E)
(and thus the computation is done) or r has been increased at least beyond the continuous
problematic annular region of width δ > 0 where circular searches cannot be done. On the
other hand, if the circular search for radius η is problematic because this circle is a subset of the
spectral value set boundary, then by Theorem 4.4, it is clear that η = ρε(A,B,C,D,E). More
precisely, it is not the case that singular pencils are so problematic for the algorithm, but circular
searches done in the interior of σε(A,B,C,D,E) (singular or not) are.

Unfortunately, detecting when a circular search is a problematic interior one is difficult in
inexact arithmetic. Instead of trying to reliably avoid such scenarios, we simply accept that
circular searches may sometimes fail to produce any arc segments due to numerical issues, and

16

that in this case, we must then distinguish between whether the computation is actually fin-
ished or not. If the computation is done, then η already equals ρε(A,B,C,D,E) and calling
radialSearch(η,{θ}) for any angle cannot increase η any further. If the circular search was a
failed interior one, then with probability one, radialSearch must increase η by more than δ.
The only remaining scenario is if the eigensolver simply failed to compute the correct boundary
points but this is a problem to be addressed in the eigensolver, not our algorithm; even so,
radialSearch(η,{θ}) still has a nonzero (but not one either) chance of possibly increasing η to
recover from this difficult situation.

We thus propose that when any circular search fails to return any arc segments, that the
radialSearch subroutine should be called anyway, but for one or more randomly chosen angles.
If radialSearch cannot increase η, we simply conclude that η = ρε(A,B,C,D,E). Otherwise,
η has been increased and we proceed to the next (and larger) circular search. Even if the next
circular search also fails, radialSearch will again be called with a new randomly chosen angle
(or several), thus providing another opportunity for the algorithm to recover from numerical
issues. Of course, Theorem 4.6 motivating our new strategy also assumes exact arithmetic,
which is not possible in practice, and if it were, then the only time a problematic matrix pencil
would ever be encountered is when the spectral value set boundary is a circle attaining the value
of ρε(A,B,C,D,E), an easy case since ρε(A,B,C,D,E) would have already been computed
exactly anyway. Nevertheless, compared to the perturbation technique of [MO05], we feel that
our new strategy is much better motivated and more robust in practice. Furthermore, unlike the
previous method of [MO05], our new procedure has no danger of overshooting the true value of
ρε(A,B,C,D,E).

Pseudocode for our new ε-spectral value set radius method is given in Algorithm 2.

5 Convergence of the algorithms

Although the proof of convergence arguments given in [BLO03] and [MO05] could be directly
extended, the following argument we give here we feel is less technical and more intuitive.

Theorem 5.1. Algorithms 1 and 2 converge to the ε-spectral value set abscissa and radius,
respectively.

Proof. Let η⋆ be the value of the ε-spectral value set abscissa/radius and {ηk} be a sequence our
methods generate, which by construction must be monotonically increasing and ηk ≤ η⋆ must
hold. So suppose that ηk → η̂ < η⋆. Let Ω(η) denote the set of intervals corresponding to vertical
(circular) cross sections varying by x = η (r = η) and consider:

l(η) := max
Ωk∈Ω(η)

{|ωk+1 − ωk| : Ωk = [ωk, ωk+1]}.

The only way l(η) can be discontinuous at some value is if the corresponding matrix pencil is
singular. As this can only happen for circular searches and when it does, it means the algorithm
has converged to η⋆, l(η) must be continuous for all η ∈ [η0, η̂]. Furthermore, as η → η̂, l(η) must
converge to zero; otherwise the corresponding matrix pencils would converge to a singular one,
which we have ruled out cannot happen for η ∈ [η0, η̂]. Let λ0 be the starting point and λ⋆ be a
boundary point attaining the ε-spectral value set abscissa/radius, with associated perturbation
matrix ∆⋆, that is, λ⋆ ∈ σ(M(∆⋆), E). Furthermore, let λ(t) for t ∈ [0, 1] be a path described
by Lemma 2.4 taking λ(0) = λ0 to λ(1) = λ⋆. Since by the lemma, λ(t) must be strictly in the
interior of the ε-spectral value set for all t ∈ [0, 1), and η̂/η⋆ < 1, there exists a fixed δ > 0 such
that the neighborhood of radius δ about λ(η̂/η⋆) lays entirely in interior of the spectral value
set. For any point λ(t̂) with t̂ ∈ (η̂/η⋆ − 0.5δ, η̂/η⋆ + 0.5δ), the neighborhood of radius 0.25δ
about λ(t̂) must also lie entirely in the interior spectral value set. Therefore, the length of any
vertical/circular cross section passing through any such λ(t̂) must be at least 0.5δ. As ηk → η̂,

17

Algorithm 2 [η] = svsRadius(ε,A,B,C,D,E)

Input:

ε > 0 with ε‖D‖2 < 1 and matrices A, B, C, D, E defining σε(A,B,C,D,E)
r a positive integer, specifying how many random angles to try

Output:

η equal to the value of ρε(A,B,C,D,E)

1: Λ := eig(A,E)
2: // As desired by user, discard uncontrollable/unobservable/infinite eigenvalues
3: Λ := {λ ∈ Λ : λ meets user’s inclusion criteria}
4: if ∞ ∈ Λ then

5: return η = ∞
6: end if

7: λ0 := argmax{|λ| : λ ∈ Λ}
8: Ψ := {∠λ0, ψ1, . . . , ψr} such that ψk is chosen randomly from [0, 2π)
9: [η,θ] := radialSearch(|λ0|,Ψ)

10: while η < αε(A,B,C,D,E) do

11: compute unimodular eigenvalues {eiθ1, . . . , eiθl} of (27) for r = η and γ = ε−1

12: form all intervals Ωk = [θk, θk+1] s.t. ηe
iθ ∈ σε(A,B,C,D,E) ∀θ ∈ Ωk

13: if no such intervals then
14: Ψ := {ψ1, . . . , ψr} such that ψk is chosen randomly from [0, 2π)
15: else

16: Ψ := {ψ1, . . . , ψq} such that ψk is a midpoint of interval Ωk

17: end if

18: [η,θ] := radialSearch(η,Ψ)

19: end while

t → η̂/η⋆, and so l(η) must converge to at least 0.5δ, a contradiction. Hence, the methods
converge to η⋆.

6 Numerical experiments

We implemented algorithms svsAbscissa and svsRadius in a single completely new MATLAB
code. When computing the ε-spectral value set radius, whenever no intervals are obtained, we
configured our code to generate three random angles for radialSearch, for invoking Theorem 4.6
to avoid singular pencils and/or interior circular searches.

An evaluation of which bracketing and root-finding method would be most efficient to use
for implementing the prerequisite subroutine findARootToTheRight (specified in Definition 3.5)
is beyond the scope of this article. We implemented findARootToTheRight to first bracket a
root by iteratively increasing the current guess by adding the larger of either two times the
absolute value of the Newton step or the distance from the current guess and the initial guess x0
until an upper bound has been found (and also increasing the lower bound along the way) and
then to subsequently compute a root using the Hermite-interpolation-based method of [CGL01],
which uses first-order information but not second. The very first step of the upper bound
search was set to increase the initial guess by at least max{10−6, 0.01|x0|}. If the function given
findARootToTheRight fails to return a finite value, our code simply updates the lower bound
and increases the current guess.

As a practical optimization, for when all the matrices are real valued but λ0 is not, our

18

code always attempts to first find a root along the x-axis, either to the right of λ0 (or outward
in either direction for the ε-spectral value set radius) before computing a solution to the root
problem for λ0. Assuming such a root exists along the x-axis, the initial ε-spectral value set
abscissa (or radius) estimate η will be increased, from η = α(A,E) (or η = ρ(A,E)) to some
larger value corresponding to a boundary point σε(A,B,C,D,E) on the x-axis. Even though
this strategy potentially introduces an additional horizontal search (or two radial searches), it
often substantially reduces the overall number of complex-valued SVDs incurred, replacing them
with much cheaper real-valued ones. This optimization can have a significant net benefit in terms
of running time because it can sometimes require many iterations to find an upper bound for
the root-finding problem for λ0, since without this optimization, it would be initialized at λ0, a
pole of the transfer function.

Our new code has the following similarities to the pspa and pspr routines of [MO], the respec-
tive implementations of the original criss-cross type methods for computing the pseudospectral
abscissa [BLO03] and the pseudospectral radius [MO05]. First, if the problem is real valued, the
spectral value sets are symmetric with respect to the x-axis; in this case, any interval Ωk ∈ Ω
that corresponds to a section in the open lower half-plane is discarded (since it is “duplicated” by
its positive conjugate). Second, as pspr does not use a structure-preserving eigensolver, we used
eig from MATLAB for all codes in the benchmarks done here; note that any robust implementa-
tion should use structure-preserving eigensolvers, such as those available in SLICOT [BMS+99].
Third, our method simply terminates when the ε-spectral value set abscissa/radius estimate η
can no longer be increased, by any amount; no tolerance is needed. Finally, if the current value
of y (or θ for the ε-spectral value set radius case) is in the interior of some interval Ωk ∈ Ω, then
Ωk is split into two separate intervals at this value (which is why our horizontalSearch and
radialSearch pseudocodes presented here return these values). For explanations of these last
two numeric-related choices, the latter of which helps ensure that the algorithms do not stagnate
at non-globally optimal stationary points, see [BLO03, Section 6].

All experiments were conducted using MATLAB R2017a running on a Macbook Pro with
an Intel i7-6567U dual-core CPU, 16GB of RAM, and Mac OS X v10.12. Running times were
measured using tic and toc and, to account for variability, the time reported for each method-
problem pair is the average of five trials. For consistency, rng(100) was called before each trial,
since some test problems are randomly generated and svsRadiusmakes use of random numbers.

6.1 Pseudospectral examples

To compare to the existing pspa and pspr routines for pseudospectra, we used 21 demo problems
from EigTool [Wri02], all with n = 100. For each example, we tested computing both the ε-
pseudospectral abscissa (Table 1) and ε-pseudospectral radius (Table 2), using ε = 0.01. The
values computed by our new methods typically agreed to those of pspa and pspr to machine
precision (the median relative error was −7.26 × 10−16). The magnitude of the worst relative
error was 1.99 × 10−10 but only 6 of the 42 relative differences exceeded 10−12 in magnitude.
However, these six larger discrepancies were because pspa and pspr were less accurate: they
returned points beyond the pseudospectral boundary (due to inaccuracy in the imaginary parts
of the computed imaginary eigenvalues) while our root-finding approach found points on the
boundary much more accurately (verified by plotting the boundaries near these points using
contour on a sufficiently fine grid).

In Table 1, we see that our new method is faster than pspa on every single test problem, with
the average speedup being 2.23. The maximum speedup of 6.24 faster was obtained on companion

and we note that half of that was due to our optimization for avoiding complex-valued SVDs
(since many iterations were necessary to find the upper bound for the first root-finding problem).
Although part of the motivation for our root-finding was that it could be particularly efficient
for general spectral value sets, (where m, p ≪ n typically holds), it is now clear that our new
approach can offer large performance increases for pseudospectra as well (where n = m = p).

19

Pseudospectral Abscissa (ε = 0.01): pspa versus new method

solves # searches

Problem Eig SVD vert. horz. time (sec.) speedup

airy(101) 13 4 10 46 4 4 9 4(6) 0.414 0.306 1.35
basor(100) 12 2 0 19 5 2 7 2 0.438 0.148 2.95
chebspec(101) 5 1 4 23 2 1 3 1(2) 0.141 0.088 1.61
companion(100) 167 2 396 291 2 2 165 3(11) 3.632 0.582 6.24
convdiff(101) 4 1 0 21 2 1 2 1 0.083 0.072 1.15
davies(101) 10 2 0 41 4 2 6 2(3) 0.264 0.222 1.19
demmel(100) 13 6 10 62 6 6 7 6 0.301 0.270 1.12
frank(100) 4 1 0 16 2 1 2 1 0.113 0.064 1.78
gaussseidel(100,’C’) 4 4 4 21 2 4 2 4(6) 0.169 0.166 1.02
gaussseidel(100,’D’) 6 1 0 14 3 1 3 1 0.182 0.058 3.16
gaussseidel(100,’U’) 4 1 0 21 2 1 2 1 0.178 0.074 2.41
grcar(100) 4 2 4 23 2 2 2 2(3) 0.123 0.115 1.07
hatano(100) 8 1 0 10 4 1 4 1 0.258 0.048 5.43
kahan(100) 4 1 0 12 2 1 2 1 0.096 0.051 1.88
landau(100) 14 2 2 11 5 2 9 2 0.274 0.086 3.19
orrsommerfeld(101) 21 4 2 41 9 4 12 4 0.534 0.260 2.06
random(100) 4 1 4 8 2 1 2 1 0.121 0.047 2.57
randomtri(100) 3 2 14 18 2 2 1 2 0.104 0.091 1.14
riffle(100) 6 2 2 17 3 2 3 2 0.100 0.082 1.22
transient(100) 3 1 0 18 2 1 1 1 0.129 0.122 1.05
twisted(100) 12 2 10 18 5 2 7 2 0.367 0.115 3.18

Average Speedup: 2.23

Table 1: For each labeled pair of columns, performance data is given on the left for pspa and on
the right for the abscissa variant of our new method. The “Eig” column gives the total number
of 2n× 2n eigensolves computed while the “SVD” column gives the total number of evaluations
of the norm of the transfer function. The number of vertical and horizontal searches are given
under the “vert.” and “horz.” headers, respectively; for our new method, if the total number of
“horz.” searches is greater than the number that actually needed to be solved, the latter is given
first, with the former given in parenthesis. The time for the faster of the two methods is in bold
while the “speedup” column is simply pspa’s time divided by the time for our new method. The
last row gives the arithmetic mean of all the speedup values. All pseudospectral examples have
n = m = p = 100.

For the pseudospectral radius comparison, shown in Table 2, our new method was about
11% slower than pspr on average, and sometimes even up to three times slower (companion and
convdiff). However, for the vast majority of problems (13 of 21), pspr only required two 2n×2n
eigenvalue decompositions before convergence, leaving little to no room for further optimization;
as such, our new method was only faster on one of these problems (hatano, 1.24 speedup) and
had a near tie on another (frank). Of the eight examples where pspr required at least three
eigenvalue decompositions, our new method was generally faster, with speedups ranging from
1.28 to 1.91. Even though the average running time is slightly in favor of pspr, the accuracy and
reliability improvements of our new method offer tangible benefits; indeed, pspr was responsible
for four of the six aforementioned problems that had higher numerical error. Furthermore, we
feel this small performance gap can likely be closed by further code optimizations.

20

Pseudospectral Radius (ε = 0.01): pspr versus new method

solves # searches

Problem Eig SVD circ. rad. time (sec.) speedup

airy(101) 5 2 19 40 2 2 3 2(3) 0.199 0.232 0.86
basor(100) 4 3 11 35 2 3 2 4 0.177 0.268 0.66
chebspec(101) 2 1 10 29 1 1 1 1 0.070 0.137 0.51
companion(100) 3 1 402 269 1 1 2 2(4) 0.491 1.383 0.36
convdiff(101) 2 1 6 40 1 1 1 1 0.056 0.174 0.32
davies(101) 2 1 10 40 1 1 1 1 0.080 0.193 0.41
demmel(100) 2 1 6 24 1 1 1 1 0.056 0.096 0.58
frank(100) 2 1 6 18 1 1 1 1 0.072 0.072 1.00
gaussseidel(100,’C’) 2 3 2 20 1 3 1 3 0.086 0.142 0.61
gaussseidel(100,’D’) 2 1 2 17 1 1 1 1 0.067 0.073 0.93
gaussseidel(100,’U’) 2 1 2 30 1 1 1 2 0.092 0.112 0.83
grcar(100) 14 6 52 60 6 6 8 8 0.520 0.357 1.46
hatano(100) 2 1 2 13 1 1 1 1 0.081 0.066 1.24
kahan(100) 4 1 9 10 2 1 2 1(2) 0.117 0.061 1.91
landau(100) 8 3 15 21 3 3 5 3(4) 0.209 0.163 1.28
orrsommerfeld(101) 2 1 6 25 1 1 1 1 0.080 0.135 0.59
random(100) 9 4 34 36 4 4 5 5(6) 0.320 0.236 1.36
randomtri(100) 2 1 1 19 1 1 1 2 0.066 0.080 0.83
riffle(100) 2 1 2 14 1 1 1 1 0.046 0.063 0.74
transient(100) 7 2 10 21 3 2 4 2 0.301 0.184 1.64
twisted(100) 2 2 18 29 1 2 1 2(4) 0.091 0.164 0.56

Average Speedup: 0.89

Table 2: The headers remain mostly as described in Table 1, except that now pspr is compared
to our new method when computing the ε-pseudospectral radius; correspondingly, the number
of circular and radial searches are respectively given under the “circ.” and “rad.” headers. All
pseudospectral examples have n = m = p = 100.

6.2 General spectral value set examples

For our evaluation using spectral value sets, we used 16 test examples of varying dimensions:
four problems (CBM, CM3, CM4, CSE2) from [GGO13] and another 12 from the SLICOT
benchmark examples.3 Since some of the examples have nonzero D matrices, setting ε := 0.01
was not possible for all examples. Instead, we calculated both the continuous- and discrete-time
L∞ norms for each example, via getPeakGain in MATLAB with a tolerance of 10−14, to be
respectively used for the ε-spectral value set abscissa and radius evaluations. Let γ⋆ be the
corresponding computed L∞-norm value. For each problem, we set ε := 2γ⋆, provided that
γ⋆ was a finite positive value and ε‖D‖2 < 0.5 held. Otherwise, for problems with nonzero
D matrices, we used ε := 0.5‖D‖−1

2 and ε := 0.01 for the rest. Finally, each problem was
initialized at a rightmost/outermost finite eigenvalue of (A,E) for computing the ε-spectral
value set abscissa/radius, regardless of whether or not it was an uncontrollable or unobservable
eigenvalue.

As our methods are the first to be able to compute the ε-spectral value set abscissa and radius,
there are no directly competing codes available for comparison. Instead, we consider a second
version of our own code, that mimics how “directly-extended” (DE) versions of pspa and pspr

would perform, where the horizontal and radial searches are done by solving the corresponding
eigenvalue problems instead of by our proposed root-finding alternatives. The values computed
by both variants generally agreed with each other (the median relative error was precisely 0).

3 Available at http://slicot.org/20-site/126-benchmark-examples-for-model-reduction

21

http://slicot.org/20-site/126-benchmark-examples-for-model-reduction

Spectral Value Set Abscissa: directly extended versus new method

Dimensions # solves # searches

Problem n m p Eig SVD vert. horz. time (sec.) speedup

CBM 351 1 2 8 3 23 68 3 3 5 4(5) 3.159 1.362 2.32
CM3 123 1 3 6 2 14 19 3 2 3 2 0.242 0.093 2.60
CM4 243 1 3 8 2 26 20 3 2 5 2 1.453 0.342 4.25
CSE2 63 1 32 6 1 8 9 3 1 3 1(2) 0.064 0.021 3.07
beam 348 1 1 9 3 23 50 4 3 5 3 3.263 1.039 3.14
build 48 1 1 19 3 51 29 6 3 13 3 0.128 0.031 4.14
CDplayer 120 2 2 8 3 20 72 3 3 5 3(4) 0.230 0.167 1.38
eady 598 1 1 7 1 12 7 3 1 4 1(2) 8.149 0.946 8.62
fom 1006 1 1 11 3 25 43 3 3 8 4(6) 57.151 9.758 5.86
heat-cont 200 1 1 5 2 6 44 3 2 2 2 0.571 0.187 3.05
heat-disc 200 1 1 5 3 6 37 3 3 2 3 0.921 0.501 1.84
iss 270 3 3 8 3 19 32 3 3 5 3(4) 2.043 0.652 3.13
pde 84 1 1 6 1 10 18 3 1 3 1(2) 0.140 0.035 3.99
peec 480 1 1 1 1 0 1 1 1 0 0(1) 2.266 2.284 0.99
random 200 1 1 9 3 19 96 4 3 5 3 1.048 0.584 1.80
tline 256 2 2 1 1 0 39 1 1 0 1 0.659 0.913 0.72

Average speedup: 3.18

Average speedup (directly extended with horz. search first): 2.62

Table 3: The headers remain as described in Table 1, except that now a directly-extended variant
of pspa is compared to our new method for computing the ε-spectral value set abscissa. The
additional row gives the average speedup if the directly-extended variant were to begin with a
horizontal search instead of a vertical one.

However, of the 8 of 32 relative differences that exceeded 10−12 in magnitude, four of them even
exceeded 10−10 and sometimes excessively, with max magnitude error being 2.00 × 100. Like
the earlier pseudospectral numerical discrepancies, these four specific larger observed numerical
differences were again due to the DE approach being less accurate. We will discuss these examples
in more detail after reporting the performance results.

For the ε-spectral value set abscissa tests, shown in Table 3, we compared against two ver-
sions of the DE approach: one using a vertical search first and an alternative using an initial
horizontal search, though we only provide detailed per-problem performance statistics for the
former. Overall, our method was much faster than the DE variant using a vertical search first:
our method had an average speedup of 3.18, with the highest speedup being 8.62 (eady), and
it was the faster of the two approaches on 14 out of 16 of the test examples. Even on the two
problems where our method was slower (peec and tline), it was still fairly close. Compared to
the DE variant using an initial horizontal search, our new approach was still 2.62 times faster on
average, underscoring that the majority of acceleration achieved is due to our new root-finding-
based method and not just the simple (though beneficial) swapping of the order of vertical and
horizontal searches.

The ε-spectral value set radius tests, shown in Table 4, also validate our root-finding-based
approach. Our method was again fastest on 14 of the 16 test problems, having an average speedup
of 1.82 compared to the DE variant, with the fastest observed speedup being 4.59 (heat-disc).
On the two problems where our new method was slower (CM3 and CDplayer), it was only by
very negligible amounts.

Returning the four examples where the DE variants had the highest errors, three came from
the ε-spectral value abscissa tests. On beam (9.18 × 10−10 relative error), the final vertical
search produced a cross section that, due to inaccuracy in the imaginary parts of the computed

22

Spectral Value Set Radius: directly extended versus new method

Dimensions # solves # searches

Problem n m p Eig SVD circ. rad. time (sec.) speedup

CBM 351 1 2 2 1 4 23 1 1 1 1 1.431 0.954 1.50
CM3 123 1 3 4 2 10 69 2 2 2 2 0.198 0.216 0.92
CM4 243 1 3 4 2 9 68 2 2 2 2 1.057 0.983 1.08
CSE2 63 1 32 4 2 9 21 2 2 2 2 0.052 0.036 1.46
beam 348 1 1 2 1 4 26 1 1 1 1 1.198 0.891 1.34
build 48 1 1 6 3 17 33 3 3 3 4(5) 0.046 0.036 1.27
CDplayer 120 2 2 2 1 5 46 1 1 1 1 0.078 0.079 0.99
eady 598 1 1 2 1 5 7 1 1 1 0 7.869 6.416 1.23
fom 1006 1 1 2 1 4 5 1 1 1 0 53.626 47.797 1.12
heat-cont 200 1 1 2 1 4 16 1 1 1 1 0.375 0.205 1.83
heat-disc 200 1 1 4 1 7 11 2 1 2 1(2) 0.772 0.168 4.59
iss 270 3 3 8 2 20 37 4 2 4 2 2.627 0.940 2.79
pde 84 1 1 7 1 14 18 3 1 4 1(2) 0.161 0.039 4.09
peec 480 1 1 2 1 3 5 1 1 1 0 5.181 2.193 2.36
random 200 1 1 2 1 4 13 1 1 1 1 0.359 0.246 1.46
tline 256 2 2 4 3 30 109 2 3 3 4(6) 2.523 2.240 1.13

Average speedup: 1.82

Table 4: The headers remain mostly as described in Table 1, except that now a directly-extended
variant of pspr is compared to our new method for computing the ε-spectral value set radius;
correspondingly, the number of circular and radial searches are respectively given under the
“circ.” and “rad.” headers.

eigenvalues, was much wider than it was in reality; as the interval was then split into two pieces,
the midpoints of both segments actually corresponded to points outside of the ε-spectral value
set and thus the method failed to make further rightward progress, terminating the code at a
value below the actual ε-spectral value set abscissa. On random (−1.32 × 10−9), inaccuracy
in the imaginary parts of the computed imaginary eigenvalues resulted in the final horizontal
search returning a point slightly outside of the ε-spectral value set, thus slightly overshooting the
ε-spectral value set abscissa. In contrast, the very large error of 2.00 × 100 observed on tline

occurred because none of the computed eigenvalues for the horizontal search were sufficiently close
to the imaginary axis and thus the first horizontal search failed to increase η at all, terminating
the code with η = α(A,E). The remaining fourth high relative error was on tline (1.49× 10−7)
in the ε-spectral value set radius evaluation. Here, the last radial searches failed to make outward
progress because of numerical inaccuracy in the computed imaginary eigenvalues.

Using structure-preserving eigensolvers would have likely avoided at least some (perhaps even
all) of the above failures but our root-finding-based approach is more numerically reliable even
without them. However, had these numerical difficulties not occurred, the DE variants would
have incurred more eigenvalue decompositions before converging, and thus the reported speedups
would be even more in favor of our new approach. In particular, computing the ε-spectral value
set abscissa for tline was likely only so much in favor of the DE variant because it stagnated
so early; had it not, it is likely that our new approach would have been fastest on this problem.

7 Conclusion

We have proposed the first algorithms to compute, not just approximate, the general ε-spectral
value set abscissa and radius to high accuracy, by both extending and improving upon the ear-
lier ε-pseudospectral abscissa and radius algorithms of [BLO03] and [MO05]. Our experiments

23

validate that our new root-finding-based methodology is both much faster and more reliable
than directly-extend approaches. In fact, our modified approach is typically over twice as fast
as the original criss-cross algorithm for computing the ε-pseudospectral abscissa. Although the
ε-pseudospectral radius evaluation was more or less a tie in terms of average running time, the
increased numerical robustness of our new method, also partly due to our new procedure for han-
dling singular pencils and/or interior circular searches, we feel is likely to outweigh performance
concerns in practice.

There are several possible implementation-related modifications that may significantly im-
prove upon our method further, but we have not yet fully explored these avenues. Certainly,
there is the question of which root-finding method would be best in practice. Relatedly, one of
the most expensive phases of our method can be finding an upper bound for the initial root-
finding problem. In preliminary experiments, we found taking two times a Halley step instead
of Newton one can dramatically reduce the number of evaluations of the norm of the transfer
function needed to locate an upper bound. On a parallel architecture, one could also evaluate
multiple trial upper-bound points simultaneously, which could significantly reduce the running
time (if not the number of function evaluations). Finally, we also considered replacing the
midpoint-of-intervals scheme with points in these intervals obtained from either cubic Hermite
interpolants or local maximizers computed by an optimization code, the latter of which was
proposed in [BM17] for accelerating the computation of the H∞ norm. While such strategies
for this particular application were sometimes faster, sometimes not, optionally applying such
as optimization approach may be also be motivated by resiliency to numerical failures. If the
eigenvalue solver fails to return intervals for the cross sections, or too inaccurate ones, optimizing
in vertical/circular directions could allow additional horizontal/radial searches to be performed,
thus recovering from the numerical failure.

Finally, for future theoretical work, both the numerical analysis done for the original pseudo-
spectral algorithms as well as their local quadratic rate of convergence results can likely be
extended to general spectral value sets, though we have not investigated either yet. Interest-
ingly, the rate of convergence results from [BLO03] and [MO05] require a regularity assumption,
which is not needed to prove the quadratic rate of the very related algorithm for computing the
H∞ norm by [BB90, BS90]. The question of whether there is an alternative convergence rate
proof that does not use such a regularity assumption remains open.

References

[BB90] S. Boyd and V. Balakrishnan. A regularity result for the singular values of a transfer matrix
and a quadratically convergent algorithm for computing its L∞-norm. Syst. Cont. Lett.,
15:1–7, 1990.

[BBK89] S. Boyd, V. Balakrishnan, and P. Kabamba. A bisection method for computing the H∞

norm of a transfer matrix and related problems. Math. Control Signals Systems, 2:207–219,
1989.

[BLO03] J. V. Burke, A. S. Lewis, and M. L. Overton. Robust stability and a criss-cross algorithm
for pseudospectra. IMA J. Numer. Anal., 23(3):359–375, 2003.

[BM17] P. Benner and T. Mitchell. Faster and more accurate computation of the H∞ norm via
optimization. arXiv e-prints arXiv:1707.02497, Cornell University, July 2017. math.OC.

[BMS+99] P. Benner, V. Mehrmann, V. Sima, S. Van Huffel, and A. Varga. SLICOT - a subroutine
library in systems and control theory. In B. N. Datta, editor, Applied and Computational
Control, Signals, and Circuits, volume 1, chapter 10, pages 499–539. Birkhäuser, Boston,
MA, 1999.

[BN93] R. Byers and N. K. Nichols. On the stability radius of a generalized state-space system.
Linear Algebra Appl., 188/189:113–134, 1993.

[BS90] N. A. Bruinsma and M. Steinbuch. A fast algorithm to compute the H∞-norm of a transfer
function matrix. Syst. Cont. Lett., 14(4):287–293, 1990.

24

[BSV12] P. Benner, V. Sima, and M. Voigt. L∞-norm computation for continuous-time descriptor
systems using structured matrix pencils. IEEE Trans. Automat. Control, 57(1):233–238,
January 2012.

[BV14] P. Benner and M. Voigt. A structured pseudospectral method for H∞-norm computation of
large-scale descriptor systems. Math. Control Signals Systems, 26(2):303–338, 2014.

[Bye88] R. Byers. A bisection method for measuring the distance of a stable to unstable matrices.
SIAM J. Sci. Statist. Comput., 9:875–881, 1988.

[CGL01] F. Costabile, M. I. Gualtieri, and R. Luceri. A new iterative method for the computation of
the solutions of nonlinear equations. Numer. Algorithms, 28(1-4):87–100, 2001.

[Dai89] L. Dai. Singular Control Systems. Number 118 in Lecture Notes in Control and Information
Sciences. Springer-Verlag, Berlin, 1989.

[GGO13] N. Guglielmi, M. Gürbüzbalaban, and M. L. Overton. Fast approximation of the H∞ norm
via optimization over spectral value sets. SIAM J. Matrix Anal. Appl., 34(2):709–737, 2013.

[GO11] N. Guglielmi and M. L. Overton. Fast algorithms for the approximation of the pseudospectral
abscissa and pseudospectral radius of a matrix. SIAM J. Matrix Anal. Appl., 32(4):1166–
1192, 2011.

[GVDV98] Y. Genin, P. Van Dooren, and V. Vermaut. Convergence of the calculation of H∞-norms
and related questions. In Proceedings MTNS-98, pages 429–432, Jul. 1998.

[HP05] D. Hinrichsen and A. J. Pritchard. Mathematical Systems Theory I. Springer-Verlag, Berlin,
2005.

[HS91] D. Hinrichsen and N. K. Son. Stability radii of linear discrete-time systems and symplectic
pencils. Int. J. Robust Nonlinear Control, 1:79–97, 1991.

[Kat82] T. Kato. A short introduction to perturbation theory for linear operators. Springer-Verlag,
New York-Berlin, 1982.

[Lan64] P. Lancaster. On eigenvalues of matrices dependent on a parameter. Numer. Math., 6:377–
387, 1964.

[MO] E. Mengi and M. L. Overton. Software for Robust Stability and Controllability.
http://home.ku.edu.tr/~emengi/software/robuststability.html.

[MO05] E. Mengi and M. L. Overton. Algorithms for the computation of the pseudospectral radius
and the numerical radius of a matrix. IMA J. Numer. Anal., 25(4):648–669, 2005.

[MO16] T. Mitchell and M. L. Overton. Hybrid expansion-contraction: a robust scaleable method
for approximating the H∞ norm. IMA J. Numer. Anal., 36(3):985–1014, 2016.

[OW95] M. L. Overton and R. S. Womersley. Second derivatives for optimizing eigenvalues of sym-
metric matrices. SIAM J. Matrix Anal. Appl., 16(3):697–718, 1995.

[SVDT95] J. Sreedhar, P. Van Dooren, and A. Tits. A fast algorithm to compute the real structured
stability radius. In Proc. Conf. Centennial Hurwitz on Stability Theory, Ticino (CH), May
21-26, 1995.

[TE05] L. N. Trefethen and M. Embree. Spectra and pseudospectra: The behavior of nonnormal
matrices and operators. Princeton University Press, Princeton, NJ, 2005.

[Tre99] L. N. Trefethen. Computation of pseudospectra. Acta Numer., 8:247–295, 1999.

[TTRD93] L. N. Trefethen, A. E. Trefethen, S. C. Reddy, and T. A. Driscoll. Hydrodynamic stability
without eigenvalues. Science, 261(5121):578–584, 1993.

[Van85] C. F. Van Loan. How near is a stable matrix to an unstable matrix? In Linear algebra and
its role in systems theory (Brunswick, Maine, 1984), volume 47 of Contemp. Math., pages
465–478. Amer. Math. Soc., Providence, RI, 1985.

[Wri02] T. G. Wright. EigTool. http://www.comlab.ox.ac.uk/pseudospectra/eigtool/, 2002.

[WT01] T. G. Wright and L. N. Trefethen. Large-scale computation of pseudospectra using ARPACK
and eigs. SIAM J. Sci. Comput., 23(2):591–605, 2001. Copper Mountain Conference (2000).

25

http://home.ku.edu.tr/~emengi/software/robuststability.html
http://www.comlab.ox.ac.uk/pseudospectra/eigtool/

A Proof of Theorem 3.1

Proof. Let γ be a singular value of G(x+iy) with left and right singular vectors u and v, that
is, so that G(x+iy)v = γu and G(x+iy)∗u = γv. Using the expanded versions of these two
equivalences (

C ((x+iy)E −A)
−1
B +D

)
v = γu and

(
C ((x+iy)E −A)

−1
B +D

)∗

u = γv,
(37)

we define
q = ((x+iy)E −A)

−1
Bv and s = ((x−iy)E∗ −A∗)

−1
C∗u. (38)

Rewriting (37) using (38) yields the following matrix equation:

[
C 0
0 B∗

] [
q
s

]
=

[
−D γI
γI −D∗

] [
v
u

]
=⇒

[
v
u

]
=

[
−D γI
γI −D∗

]−1 [
C 0
0 B∗

] [
q
s

]
, (39)

where [
−D γI
γI −D∗

]−1

=

[
−R−1D∗ −γR−1

−γS−1 −DR−1

]
and

[
q
s

]
6= 0. (40)

Rewriting (38) as a matrix equation gives:

([
(x+iy)E 0

0 (x−iy)E∗

]
−

[
A 0
0 A∗

])[
q
s

]
=

[
B 0
0 C∗

] [
v
u

]
. (41)

Substituting in (39) for the rightmost term of (41) yields

([
(x+iy)E 0

0 (x−iy)E∗

]
−

[
A 0
0 A∗

])[
q
s

]
=

[
B 0
0 C∗

] [
−D γI
γI −D∗

]−1 [
C 0
0 B∗

] [
q
s

]
. (42)

Bringing over terms from the left side to separate out iy and substituting the inverse on the right
using (40) and then multiplying out the matrix terms, we have

iy

[
E 0
0 −E∗

] [
q
s

]
=

[
A− xE 0

0 A∗ − xE∗

] [
q
s

]
+

[
−BR−1D∗C −γBR−1B∗

−γC∗S−1C −C∗DR−1B∗

] [
q
s

]
.

Combining the matrices on the right and multiplying by

[
I 0
0 −I

]

yields:

iy

[
E 0
0 E∗

] [
q
s

]
=

[
(A− xE −BR−1D∗C) −γBR−1B∗

γC∗S−1C −(A− xE −BR−1D∗C)∗

] [
q
s

]
.

It is now clear that iy is an eigenvalue of the matrix pencil (Mγx,N).
Now suppose that iy is an eigenvalue of pencil (Mγx,N) with eigenvector given by q and s

as above. Then it follows that (42) holds, which can be rewritten as (41) by defining u and v
using the right-hand side equation of (39), noting that neither can be identically zero. It is then
clear that the two equivalences in (38) both hold. Finally, substituting (38) into the left-hand
side equation of (39), it is clear that γ is a singular value of G(x+iy), with left and right singular
vectors u and v.

26

B Proof of Theorem 4.1

Proof. Let γ be a singular value of G(reiθ) with left and right singular vectors u and v, that is, so
that G(reiθ)v = γu and G(reiθ)∗u = γv. Using the expanded versions of these two equivalences

(
C
(
reiθE −A

)−1
B +D

)
v = γu and

(
C
(
reiθE −A

)−1
B +D

)∗

u = γv, (43)

we define
q =

(
reiθE −A

)−1
Bv and s =

(
re−iθE∗ −A∗

)−1
C∗u. (44)

Similar to the proof of Theorem 3.1, it follows that

([
eiθrE 0
0 re−iθE∗

]
−

[
A 0
0 A∗

])[
q
s

]
=

[
B 0
0 C∗

] [
−D γI
γI −D∗

]−1 [
C 0
0 B∗

] [
q
s

]
. (45)

Furthermore, the rightmost three terms of (45) can again be replaced by first substituting the ma-
trix inverse with its explicit form given by (40) and then multiplying these three terms together.
Then, multiplying on the left by [

I 0
0 −eiθI

]

and rearranging terms yields

eiθ
[
rE 0
0 A∗

] [
q
s

]
=

[
A 0
0 rE∗

] [
q
s

]
+

[
B 0
0 −eiθC∗

] [
−R−1D∗C −γR−1B∗

−γS−1C −DR−1B∗

] [
q
s

]
.

Separating and then bringing the −eiθ terms over to the left side, we obtain

eiθ
[

rE 0
−γC∗S−1C A∗ − C∗DR−1B∗

] [
q
s

]
=

[
A−BDR−1B∗ −γBR−1B∗

0 rE∗

] [
q
s

]
,

and thus it is clear that eiθ is an eigenvalue of the matrix pencil (Mγr,Nγr).
The reverse implication follows similarly to the reverse argument given in Appendix A for

the proof of Theorem 3.1.

27

	1 Introduction
	2 Spectral value sets and the transfer function
	2.1 The spectral value set abscissa and radius
	2.2 Derivatives of the norm of the transfer function

	3 The extended and improved criss-cross algorithm for computing the -spectral value set abscissa
	3.1 Vertical cross sections of spectral value sets
	3.2 Horizontal cross sections of spectral value sets
	3.3 The new criss-cross algorithm for spectral value sets

	4 Computing the -spectral value set radius
	4.1 Arc cross sections of spectral value sets.
	4.2 Radial cross sections of spectral value sets
	4.3 The full algorithm and singular pencils

	5 Convergence of the algorithms
	6 Numerical experiments
	6.1 Pseudospectral examples
	6.2 General spectral value set examples

	7 Conclusion
	A Proof of Theorem 3.1
	B Proof of Theorem 4.1

