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Abstract

As participants repeatedly interact using graphical signals (as in a game of Pictionary), the

signals gradually shift from being iconic (or motivated) to being symbolic (or arbitrary). The

aim here is to test experimentally whether this change in the form of the signal implies a con-

comitant shift in the inferential mechanisms needed to understand it. The results show that,

during early, iconic stages, there is more reliance on creative inferential processes associ-

ated with insight problem solving, and that the recruitment of these cognitive mechanisms

decreases over time. The variation in inferential mechanism is not predicted by the sign’s

visual complexity or iconicity, but by its familiarity, and by the complexity of the relevant men-

tal representations. The discussion explores implications for pragmatics, language evolu-

tion, and iconicity research.

Introduction

Humans are readily able to generate hypotheses about the meanings of novel signals in com-

municative games such as charades or Pictionary (hereafter, ‘novel signalling tasks’), even

when the perceptual form of these signals changes over time. For instance, Garrod, Fay and

colleagues [1, 2] investigate repeated Pictionary-like games, where participants draw graphical

representations of cues which a partner has to guess, and where this process is repeated over

several rounds with the same items. They show that, if the participants are able to interact

while playing, the initially iconic signs become less iconic or more conventionalised, resulting

in symbolic signs (iconic signs share perceptual properties with their referents, whereas sym-

bolic signs are arbitrary, lacking such a link, or are those for which convention or habit play a

role in their interpretation [3]). This shift from iconic to symbolic signs is called symbolisa-

tion, and the process is exemplified in Fig 1.

Research in symbolisation typically focuses on how the perceptual form of the signal varies

over repeated rounds, or how interpersonal interaction affects this. A question not yet tackled

by the literature is what cognitive mechanisms are recruited during symbolisation. The central

questions investigated here, then, are (1) whether the cognitive mechanisms underlying infer-

ence about meaning at earlier iconic stages of symbolisation are different from those during
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later, less iconic stages; and if so, (2) what the relevant cognitive mechanisms are; and (3) what

features of the task predict such a difference.

Answers to these questions would help fill a gap in our understanding of the evolution of

language in our species. Prior to the evolution of human symbolic language, there may have

been an iconic protolanguage stage [5–9]. In this view, our ancestors first developed iconic

signs, and the process of symbolisation eventually lead to these becoming conventional or arbi-

trary. If symbolisation is part of the explanation for how our species evolved to communicate

linguistically, and since we are unsure just what cognitive processes are involved at various

stages of symbolisation, then a serious gap remains in our understanding of one of the defining

traits of our species

Background

Symbolisation

Garrod et al. [1] explore the conditions under which symbolisation happens. The basic set-up

of their experiment 1 was as follows (‘basic’ in that this is the point of departure for the experi-

ment described below). Participants played six rounds of a novel signalling task. In each

round, one participant (the director or signaller) was given a list of target items and, one-by-

one, produced drawings to help the other participant (the matcher or receiver) guess each

item. Items included easily confusable places, people, TV or film genres, objects and abstract

words. The use of speech or letters was prohibited. Receivers were provided with the full list of

items to aid guessing. After all items in a round were guessed, the participants swapped roles

and repeated the game with the same items.

Garrod et al. [1] found that when feedback was allowed, the signs became simpler and less

iconic (Fig 1). They frame this change in informational terms, arguing that icons carry infor-

mation in their graphical structure. As the signs become less iconic, this informational burden

shifts from the signal to the receiver. During earlier stages in Fig 1, the signal is interpreted

Fig 1. Over several rounds (‘games’) of repeated interaction in a novel signalling task, an iconic sign for ‘theatre’ becomes simplified or

more abstract, resulting in a conventional or symbolic sign (drawn from a corpus collected by [2], published in PLoS ONE by [4]; use

permitted under the Creative Commons Attribution License CC BY 4.0).

https://doi.org/10.1371/journal.pone.0189540.g001
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because of what the receiver sees, whereas in later stages, it is interpreted because of what the

receiver knows about previous interactions, and at this stage the signal itself is less informative.

Symbolisation, in this view, is characterised as a gradual shift in informational burden from

what the receiver perceives to what they know.

Icons

Icons involve resemblance, but not all icons are interestingly alike from a cognitive point of

view. Consider Fig 2, two novel signals drawn independently by two participants in study 1

below to represent the cue ‘Harrison Ford’. Imagine comparing these to a realistic painting of

Harrison Ford. A realistic painting would straightforwardly look like Harrison Ford, and we

would recognise him because of how it looks, because of the information it carries in its graph-

ical structure [1].

On the other hand, although the novel signals in Fig 2 are iconic, they don’t straightfor-

wardly resemble Harrison Ford. Unlike the painting, one cannot simply tell by looking that it

is him. Of all the possible facts about him (he’s American, he’s an actor, he’s male and cauca-

sian, he’s married to Calista Flockhart, etc.) both signallers have independently settled on the

fact that he played Indiana Jones, and of all the possible facts about Indiana Jones (he’s an

archaeologist, he’s a professor, he’s afraid of snakes, etc.) the signallers have settled on the fact

that he carries a whip and has a distinctive hat. Additionally, the signaller in Fig 2b has con-

strued Harrison Ford as sharing a name with a make of car. From the signallers’ perspectives,

these are salient aspects of Harrison Ford. These salient aspects of the signallers’ world knowl-

edge that have been foregrounded in the signal are called its ground [10, 11].

The ground here is not directly communicated to the receiver or straightforwardly per-

ceived by them. Rather than simply recognising Harrison Ford, the receiver has to infer the

signaller’s communicative intentions. The signal is just the input to an inferential process

whereby the receiver must use their world knowledge to generate the hypothesis that the cue

was Harrison Ford [12, 13]. The hat in Fig 2a may look like a sombrero, but trying to interpret

it this way is a dead-end. Rather, it is a poor representation of a fedora, and understanding this

is part-and-parcel of inferring the meaning of the whole. Thus, the receiver cannot take the rel-

evance of any part of the signal for granted, but rather must infer the relevance of all these ele-

ments, so call this a relevance-deciding problem.

This suggests an alternative way to characterise symbolisation. Garrod et al. [1] described it

as involving a shift from what the receiver perceives to what they know. However, in another

(possibly complementary) sense, the receiver’s knowledge is crucial throughout. In earlier

iconic stages, the receiver has to infer the relevance of the ground, based in part on what they

Fig 2. Pictures produced independently by different signallers during experiment 1, below, representing the cue ‘Harrison Ford’.

https://doi.org/10.1371/journal.pone.0189540.g002
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know about the world. When those elements reappear later on, the receiver simply has to rec-

ognise them, based on what they know about the history of use of those elements. For instance,

in earlier rounds in Fig 1, the receiver has to infer that the dots at the bottom represent the

audience. In later rounds, they simply recognise the signal as being similar to ones seen earlier.

This has implications for the main research question: are different cognitive mechanisms

needed throughout symbolisation? The most parsimonious hypothesis is that we rely on the

same cognitive mechanisms throughout. Perhaps it is sufficient to describe symbolisation as

requiring inductive inference and leave the matter there. The alternative hypothesis suggested

here is that different cognitive mechanisms are needed at different stages. Specifically, in ear-

lier stages, a heavier burden will be placed on whatever cognitive mechanisms we bring to bear

on relevance-deciding problems and in later stages, less of a burden.

The question, in a nutshell, is what happens, cognitively, when people don’t recognise a sig-

nal (i.e. when it is new, before it conventionalises)? However, before the matter can be put to

experimental test, two issues need to be resolved: firstly, what makes something a relevance-

deciding problem? Secondly, what are the cognitive mechanisms we bring to bear on rele-

vance-deciding problems, and how would we tell that they are in fact being brought to bear on

a particular problem?

Relevance-deciding problems

The broad hypothesis under consideration is that different cognitive mechanisms are needed

at various stages of symbolisation. A more specific hypothesis is that relevance-deciding mech-

anisms are important earlier on, and less so later. We thus need a way to decide empirically if a

particular signal or item presents a relevance-deciding problem. If the broad hypothesis turned

out to be true, then a change in the degree of iconicity would be a parsimonious explanation

for a change in processing, since we already know that signals become less iconic during sym-

bolisation [1, 2]. To support the specific alternative hypothesis, we must show that something

other than iconicity predicts the recruitment of particular mechanisms of interpretation.

When a receiver first sees something like one of the circles in Fig 1, they have to infer its rel-

evance. Later on, they simply have to recognise it as an instance of a problem they’ve already

solved. The signal’s novelty (or conversely, its level of familiarity) should thus be a factor in

determining the cognitive mechanisms needed for its interpretation. Although novelty and

iconicity may be correlated (during symbolisation, iconicity decreases as the participants

become more familiar with the signals), they are nonetheless distinguishable. For instance, it is

plausible that a signal in round tmight be accurately reproduced in round t + 1. In that case,

its familiarity increases while its iconicity remains constant. Alternatively, if a signal in round t
proves ineffective (e.g., it takes a long time to guess), the signaller might change tack in round

t + 1 and try a different construal (say, represent Harrison Ford as Han Solo instead of Indiana

Jones). In that case, the iconicity of the new signal in round t + 1 may be high or not, whereas

its novelty will definitionally be high, and the receiver will have to infer its relevance all over

again. Thus, in addition to measuring a signal’s iconicity, it is necessary to measure whether it

is novel or familiar, relative to signals drawn in previous rounds of the game.

However, novelty alone does not mean that something is a relevance-deciding problem. A

second factor follows from the distinction between relevance-based meaning and code-like

meaning [12]. In a code, an element in one plane (e.g., meaning space) corresponds with an

element in another plane (e.g., signal space) in a rule-like, predictable way [14]. In Morse code,

for instance, there is a rule-like relationship between particular letters and particular sequences

of dots and dashes. Sperber and Wilson [12] acknowledge that a code model may account for

some aspects of language, but argue that many other aspects (such as pragmatics) require
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something more: open-ended inferential processes of the sort described in the previous

section.

If Sperber and Wilson [12] are right, then we should be able to derive a measure of whether

something presents a relevance-deciding problem by evaluating the degree to which the signal

is predictable given the target item or concept. At the extreme code-like end of this continuum,

letter S is predictably rendered as three dots in Morse code. Similarly, for some target items in

a novel signalling task, the range of construals might be relatively constrained, in which case

the signal should be predictable from the target concept, and independently drawn pictures

should thus be similar to each other. Moving away from a code-like situation, the signallers

who drew Fig 2 were able to choose between several grounds. One construed Ford as a make

of car, and others could plausibly construe him as Han Solo, for instance. At the extreme rele-

vance-deciding end of the continuum, the range of construals might be vast, such that there is

little or no overlap in the signals’ grounds. The less predictable the ground from the concept,

the less similarity between pictures drawn independently for that concept, and the more of a

relevance-deciding problem posed by the item.

To illustrate, both drawings in Fig 2 represent Harrison Ford as a man with a hat and a

whip. This is thus a somewhat predictably salient feature of Harrison Ford. If these figures are

tagged for informative or meaningful elements, Fig 2a can plausibly be tagged as {MAN, HAT,

CLIFF, GUN, WHIP} and Fig 2b as {MAN, HAT, WHIP, CAR} (for details of the tagging

schema see Methodology, and Open Science Framework material). If each pair of signals

drawn for a given meaning is represented by sets of tags X and Y, then the similarity between

the signals’ grounds is just the proportion of shared elements (Jaccard Index, JI: the size of the

intersection of the two sets divided by the size of the union). The difference between the

grounds (Jaccard Distance, JD) is just one minus the Jaccard Index:

JD ¼ 1 � JI ¼ 1 �
jX \ Yj
jX [ Yj

ð1Þ

Thus, the JD between the two signals in Fig 2 is 1 � 3

6
¼ 0:5 since 3 tags {MAN, HAT,

WHIP} are shared out of the set of 6 tags {MAN, HAT, WHIP, CLIFF, GUN, CAR}. The JDs

between all pairs of signals drawn for a target item can be averaged to provide a mean Jaccard

Distance for the item (JDμ). This represents how much of a relevance-deciding problem that

item poses. In a Morse-code-like situation, JDμ = 0 since the signals are always precisely the

same, whereas if the signals do not overlap at all, JDμ = 1. To be clear: the intention is not to

show that some graphical signals are literally codes. Rather, it is to show that, for some items,

the patterns of salience that constitute the ground are relatively more predictable, and others

less so. In that case, some cue items pose more of a relevance-deciding problem than others.

We can thus test whether JDμ plays a role in symbolisation that does not reduce to an effect of

iconicity.

Relevance-deciding cognitive mechanisms

The above factors identify a relevance-deciding problem, but we still need some way to identify

relevance-deciding cognitive mechanisms, and to show that they are in fact being brought to

bear on the interpretation of a signal during a novel signalling task.

A way of doing just that has been identified in the literature on insight problem solving. An

insight problem is one where finding the relevant representation of the problem is hard [15].

Insight problems are thus hard relevance-deciding problems. Since there are well studied

behavioural and neurological hallmarks of the recruitment of insight problem solving

Inference during symbolisation
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mechanisms, these can serve as diagnostics here: the more relevance-deciding a novel signal-

ling problem is, the more likely participants should be to display such hallmarks.

In non-insight (i.e., analytic) problem solving, such as doing long division by a set of learnt

rules or reasoning through a deductive syllogism, one begins with an appropriate representa-

tion of the problem, and is able to mechanically follow an algorithm that leads step-by-step to

the solution [16, 17]. By contrast, in insight problem solving, it is not obvious what informa-

tion is relevant to the solution, and the most obvious reading of the problem is typically mis-

leading (often resulting in an impasse [17, 18]). The main difficulty is finding a relevant

representation or construal in the first place, sometimes out of an open-ended set of possible

problem dimensions [15].

An example is this: ‘A man in a small town married 20 different women of the same town.

All are still living and he never divorced. Polygamy is unlawful but he has broken no law. How

can this be?’ [19]. Solution requires one to restructure one’s representation of the problem

[20], i.e., to suppress a predictable but misleading interpretation and search for an alternative

construal (here, an alternative construal of the term ‘married’, since the solution is that the

man officiated at the weddings). The existence of multiple construals here is precisely what the

previous section identified as a feature of relevance-deciding problems. All that makes this an

insight problem is that the relevant construal (as in ‘the clergyman married the bride and

groom’) is much less probable given the word ‘married’ than the obvious but misleading con-

strual (as in ‘the groom married the bride’), so the latter is difficult to override.

A hallmark of insight problem solving is that the solution is often accompanied by a sud-

den, distinctive ‘Aha!’ experience [17, 21], like a lightbulb metaphorically turning on in one’s

head [22]. Crucially, evidence from neuroimaging [23] and divided-visual-field priming [24]

shows that subjective reporting of an ‘Aha!’ experience correlates with measurable differences

in cognitive processing. Subjective reporting of such an experience thus serves as a diagnostic

for the recruitment of insight problem solving mechanisms: the more of a burden is placed on

relevance-deciding mechanisms, the more likely participants are to report an ‘Aha!’

experience.

There is ample evidence distinguishing insight processing from more analytic processing,

and linking it to key problem features outline above (contrasting predictable, familiar prob-

lems and less predictable, novel problems). The brain networks recruited during insight prob-

lem solving (centred on the right hemisphere/RH temporal lobe, [25]) are able to activate a

relatively broad range of less predictable associates, whereas the corresponding left hemisphere

(LH) regions are more likely to be successful when a smaller range of more predictable associ-

ates suffice for solution. These RH regions are more active when processing novel metaphors

(which involve making creative, relevance-deciding inferences) whereas LH regions are more

active for conventional (i.e., predictable and familiar) metaphors and literal phrases [26]. As

novel metaphors become more familiar, there is a corresponding shift in processing [27].

Further, the same RH brain networks are active during novel signalling tasks [28, 29], and

are implicated in various forms of pragmatic inference, such as understanding speaker inten-

tion [30], generating coherence-creating inferences [31, 32], creating representations of dis-

course-level meaning [33, 34], and inferring meanings that are less predictable from context

[35, 36] or when the context is less constrained [37, 38].

In sum, insight problem solving involves a distinctive manner of processing. The cognitive

mechanisms recruited by insight have been shown to be active in relevance-deciding inference,

and are recruited in cases of novelty and unpredictability. Subjective reporting of an ‘Aha!’

experience is diagnostic of recruitment of these mechanisms. The claim is not that an ‘Aha!’

experience always happens or only happens for hard relevance-deciding problems, or that all

relevance-deciding problems involve insight. Rather, insight problems lie on the opposite of
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the continuum from analytic, algorithmic, code-like problems [39], and the more of a burden

that is placed on relevance-deciding mechanisms in a novel signalling task, the more likely it is

that participants report an ‘Aha!’ experience.

Summary and predictions

When the appearance of a signal changes over the time course of symbolisation, it is currently

unclear whether there is a corresponding change in the cognitive mechanisms needed for

interpretation. The most parsimonious hypothesis is that there isn’t (perhaps it’s all just induc-

tive inference). If there is a change in cognition, the most parsimonious hypothesis is that it

should be predicted by the signal’s iconicity or visual complexity, since we already know they

decrease over time. However, the alternative hypothesis argued for here is that it should

depend instead on the extent to which the signal presents a relevance-deciding problem. Such

problems are characterised by a high degree of novelty, and by less predictable patterns of

salience in the ground. Subjective reporting of an ‘Aha!’ experience is diagnostic of recruit-

ment of relevance-deciding cognitive mechanisms.

In Experiment 1, a novel signalling task is repeated over several rounds. After guessing the

meaning of each signal, the receiver reports the extent to which they had an ‘Aha!’ experience.

The prediction is that participants should be more likely to report an ‘Aha!’ flash of insight in

earlier stages of the symbolisation process, and less likely to do so in later stages, indicating

that insight (and thus relevance-deciding mechanisms) play an important role in earlier stages

and less so in later stages. Experiment 2 involves the collection of measures of iconicity, of nov-

elty, and of how predictable the ground is (JDμ), to test what features of a particular novel sig-

nalling problem predict the kind of cognition needed to solve it.

Experiment 1: Insight in graphical communication

Overview

Pairs of participants took part in a graphical novel signalling task, and reported the extent to

which they experience an insight ‘Aha!’ moment after each guess. The aim was to test whether

the change in a signal during symbolisation corresponds with a change in the cognitive mecha-

nisms needed to interpret it. The prediction is that the insight ratings will be higher at the

beginning than at the end of the symbolisation process, indicating a shift in the cognitive

processing.

Methodology

Participants. 20 University of Edinburgh students were recruited via the university’s job

website (17 female; mean age = 20.08, SD = 1.86). All participants gave written, informed con-

sent and were paid £6 for their participation. One pair was excluded from analysis because one

participant repeatedly wrote English words on her drawings, despite instructions to the con-

trary. Ethics approval was obtained under the University of Edinburgh Linguistics and English

Language Ethics committee procedures.

Materials. The cues were based on Fay et al. [2], who used 20 cue items divided into 5 cat-

egories (places, people, entertainment, objects, abstract) and some categories included a dis-

tractor. Because distractors might be more salient, and because salience is a confound, the

distractors were removed and the categories were expanded to include 5 items each (Table 1).

The abstract category in Fay et al. comprised both nouns and adjectives, but it was limited to

nouns here, for the sake of uniformity.
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Each participant in a pair had their own response booklet. Each page in the booklet corre-

sponded to one round, and the page for that round indicated which role (signaller or receiver)

each participant was to take. The signaller’s page listed items to be signalled during that round.

The receiver’s page had spaces for them to record their guess for each picture, in addition to a

7-point scale for them to provide an insight rating (by circling the relevant number on the

scale), indicating the extent to which they had an ‘Aha!’ experience while guessing. The scale

increased from left to right, such that circling 7 indicated a strong feeling of insight.

A shortlist of 10 items was randomly generated for each pair from the 25 items in Table 1.

The 10-item shortlist constituted the list of cues for the signaller in round 1, and the order of

the shortlist was randomised again before each subsequent round. Each game thus only

involved a random subset of items, so items were not presented a consistent number of times

across participant pairs. For instance, due to the random allocation, only two pairs saw item

‘art gallery’, while six saw item ‘Arnold Schwarzenegger’.

It is plausible that participants might find the game increasingly repetitive, and thus

increasingly unlikely to provoke an insight response. Therefore, it is worth being able to check

whether any change in insight ratings represents a response to individual items, or to the game

as a whole (i.e., a fatigue effect). Consequently, every second round, one item from the shortlist

was replaced by another from Table 1. This occurred every second round so that both partici-

pants in a pair would have the same number of turns with each item. Since new items appeared

throughout the game, the analysis will be able to check whether any change in insight ratings

reflects increasing familiarity with the game as a whole, or with individual items. Further, the

regular inclusion of novel items means that participants cannot be certain just which items will

appear in a given round.

Procedure. Pairs of participants played eight rounds of a Pictionary-like game, alternating

role after each round, thus having four turns at each role. The progress of the game can thus be

measured in terms of eight rounds or four turns. A coin toss decided which participant was

signaller first.

The participants read instructions describing insight in terms of an ‘Aha!’ experience, like a

light bulb suddenly flashing on in the head [22]. To give them the chance to experience an

‘Aha!’ moment before the experiment started, they attempted four typical insight tasks (Com-

pound Remote Associate problems from [40]), and were told that the ‘Aha!’ experience is com-

mon when solving such problems. Participants were instructed not to include any English

words, numbers, letters or other conventional signals in their drawings. They were able to ask

questions if anything was not clear. When both participants indicated they were ready to pro-

ceed, they were given the list of 25 possible answers and were allowed a minute to familiarise

themselves with the items.

The signaller then read the first cue on the 10-item shortlist for round 1 in their booklet,

and began drawing a picture to help the receiver guess the cue. The signaller was required to

continue drawing until the receiver said ‘stop’, indicating that they had guessed. No informa-

tion passed between signaller and receiver except the signal itself, and the receiver’s saying

Table 1. Items grouped by category.

Places Actors Entertainment Objects Abstract

theatre Robert De Niro drama television noise

art gallery Arnold Schwarzenegger soap opera computer monitor depression

museum Clint Eastwood cartoon microwave poverty

parliament Chuck Norris horror window nausea

university Harrison Ford sci-fi iPad violence

https://doi.org/10.1371/journal.pone.0189540.t001
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‘stop’. Thus, the signaller did not know what the receiver had guessed, and the receiver did not

know if their guess was correct. Throughout the whole process, the signaller and receiver both

had access to the table of 25 items.

The receiver recorded their guess on their response sheet and also recorded an insight rat-

ing indicating the extent to which they had experienced an ‘Aha!’ moment. The signaller then

proceeded to the next item on the list. This process repeated until all 10 items for that round

had been guessed. At that point, both participants turned to a new page, which indicated that

they should swap roles. The procedure for each round was identical, apart from the role played

by each participant.

Analysis

The analysis reports models fitted with the lmer or glmer functions (for linear and general-

ised linear mixed-effects models, respectively) from the lme4 package [41] in R [42]. Since the

lmer function does not provide p-values [43], two approaches to significance are taken here:

(1) p-values are calculated using the lmerTest package [44], and (2) bootstrapped 95% con-

fidence intervals (CIs) for the estimated fixed effects are derived using the bootMer function

from the lme4 package.

The random effects structure of the models reported below is the maximal structure justi-

fied by experiment design [45], except in cases of non-convergence or overparameterisation

[43]. Thus, unless otherwise stated, the default structure includes both random slopes and

intercepts for item and participant.

Results

Symbolisation. Garrod et al. [1] measure the visual complexity of a signal by calculating

its perimetric complexity [46], which Fay et al. [2] describe as follows: ‘Perimetric complexity

is calculated by adding the drawing’s Inside and Outside Perimeter, squaring the result, and

dividing by the amount of Ink. Perimetric complexity is a scale-free measure of the graphical

information in a picture and is shown to accurately predict the efficiency with which signs of

varying complexity are decoded’ (p 376, their footnote 3. A python script for calculating peri-

metric complexity is available at https://github.com/justinsulik/pythonScripts). They show

that symbolisation (as in Fig 1) involves a decrease in perimetric complexity. The data from

the present study (Fig 3a) suggests a non-linear decrease, so perimetric complexity is log-trans-

formed for the analyses. Log-transformed perimetric complexity was entered into a linear

mixed-effects regression with turn as the fixed effect (random effects structure by-word and

by-item: intercepts and slopes for turn). There is a significant negative effect of turn on peri-

metric complexity (β = −0.199, SE = 0.033t = −6.029, p< 0.001, bootstrapped 95% CIs [-0.263,

-0.134]). The model shows that perimetric complexity decreases significantly across turns (Fig

3b), meaning that the signals are becoming simpler, as expected (cf. Fig 4).

Accuracy. Accuracy (whether the item was guessed correctly or not) was entered as the

dependent variable into a binomial mixed-effects regression with turn as fixed effect (random

effects structure by-word: intercept only; by-participant: intercept and slope). Accuracy

increases significantly across turns, despite the lack of any feedback (β = 0.499, SE = 0.195,

z = 2.562, p = 0.010, bootstrapped 95% CIs [0.120, 0.933]).

Insight. Insight ratings were entered into a linear mixed-effects regression with turn as

fixed effect (random effects structure by-word: intercept only; by-participant: intercept and

slope). Insight ratings decrease significantly across turns (β = −0.328, SE = 0.102, t = −3.227,

p = 0.005, bootstrapped 95% CIs [-0.530, -0.130], Fig 3d), meaning that the cognitive
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mechanisms underlying relevance-deciding inference are recruited more at the start of symbo-

lisation and less so later.

To rule out the possibility that this was merely a fatigue effect, new items were introduced

once per turn. If the drop in insight ratings represents a fatigue effect, then ratings for these

new items should decrease over turns. If not, insight ratings for the new items should be as

high as for items in the first round. Fig 3e illustrates that there is no fatigue effect (indeed, the

graph suggests just the opposite—it’s plausible that in later turns, a novel cue was salient com-

pared to cues that had been present for a few turns already).

The absence of a fatigue effect is confirmed by adding a new variable (time) to the above

model to represent the number of turns an item has been seen. By the end of turn 3, an item

present from the start has been seen in three turns, an item introduced in turn 2 has been seen

for two turns, and an item newly introduced in turn 3 has been seen for one turn. If the effect

of this new variable overrides the previous effect of turn, then this is no fatigue effect. The

model supports this conclusion: the effect of turn drops out (β = 0.068, SE = 0.067, t = 1.020,

p = 0.308, bootstrapped 95% CIs [-0.068, 0.203]) whereas time is a significant, negative predic-

tor of insight rating (β = −0.420, SE = 0.115, t = −3.637, p = 0.001, bootstrapped 95% CIs

[-0.652, -0.178]).

Fig 3. (a) Mean perimetric complexity vs. turn, suggesting a non-linear decrease. (b) Mean log-transformed perimetric complexity vs. turn (dots),

with linear mixed-effects model estimate for the effect of turn (line). (c) Mean accuracy vs. turn (dots), with binomial mixed-effects model estimate

for effect of turn (curve). (d) Mean insight rating vs. turn for items present since turn 1 (dots), with linear mixed-effects model estimate for the

effect of turn (line). (e) Mean insight ratings vs. turn, grouped by the number of the turn in which the items first appeared. When first introduced,

the mean insight rating for each group is relatively high. For those groups present for more than one turn (i.e. all items except those introduced

during turn 4), there is a subsequent decrease in insight rating.

https://doi.org/10.1371/journal.pone.0189540.g003
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To show that this effect is not a proxy for either of the results already observed, insight rat-

ings were entered into a linear mixed-effects model along with accuracy, time and perimetric

complexity (log-transformed) as fixed effects (random effects structure by-word: intercept

only; by-participant: intercept and slopes for all fixed effects). There is still a significant

decrease in insight ratings over time (β = −0.362, SE = 0.084, t = −4.289, p< 0.001, boot-

strapped 95% CIs [-0.524, -0.194]) when accuracy and perimetric complexity are included as

predictors. In this model, accuracy has a significant effect (β = 0.367, SE = 0.181, t = 2.025,

p = 0.071, bootstrapped 95% CIs [0.009, 0.726]), such that correct guesses were more likely to

be accompanied by an ‘Aha!’ experience. This aligns with findings from non-communicative

insight tasks [47, 48]. There is no effect of perimetric complexity (β = −0.028, SE = 0.156,

t = −0.180, p = 0.860, bootstrapped 95% CIs [-0.333, 0.271]), so the decrease in insight ratings

is not driven by the visual complexity of the signal.

Fig 4. Signals representing cue Harrison Ford across eight rounds for one pair of participants. Rounds

increase left-to-right and top-to-bottom, in which case the left column shows drawings by one participant (the

signaller in rounds 1, 3, 5, 7) and the right one shows pictures by the other participant (the signaller in rounds 2, 4, 6,

8). Each row thus constitutes one turn.

https://doi.org/10.1371/journal.pone.0189540.g004
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Discussion

The data shows a significant decrease in subjective reporting of an ‘Aha!’ experience over time

in a graphical novel signalling game. At the very least, this constitutes a predictable behavioural

difference along the time-course of symbolisation. Additionally, this behavioural measure is

diagnostic of a difference in cognitive processing, and that recruitment of these cognitive

mechanisms has previously been observed in novel signalling tasks and in relevance-deciding

tasks. In that case, the results show that symbolisation involves a change in the cognitive mech-

anisms recruited for interpretation, in addition to the previously observed changes in the sig-

nal. In particular, earlier stages of symbolisation place more of a burden on the cognitive

mechanisms that underlie relevance-deciding inference than later stages.

Given this result, it is not sufficiently informative to describe the whole process as relying on

induction (this was the most parsimonious hypothesis discussed in the introduction). Firstly,

an inductive account makes no predictions regarding the mechanisms of relevance. Secondly,

it is by no means clear that induction encompasses the more creative, open-ended problem

solving typical of insight. Hypothesis generation (in this case, hypotheses about the meaning of

novel signals) is still poorly understood from an inductive point of view [49, 50], but it is also

possible that it may be a distinct form of inference entirely [3, 51]. Thirdly, regardless whether

insight ever turns out to be amenable to an inductive account, insight problem solving implies

distinctive processing mechanisms, and these are demonstrably related to pragmatics [25, 31].

Experiment 1 thus shows a change in cognition during symbolisation, but it remains to be

seen what feature of the task predicts this change: parsimoniously, it could be that a decrease

in iconicity drives the change in cognition, though the alternative hypothesis considered here

is that it is driven by novelty and salience.

Experiment 2: Task features predicting insight ratings

Overview

There are several ways to describe the changes during symbolisation. The final rounds of Figs

1 and 4 are less iconic and less complex than the earlier rounds, but they are also more familiar

(or conversely, less novel). For instance, the whip in Fig 4 has been present since the start, so

in subsequent turns it is increasingly familiar. When it is familiar, people simply recognise it as

a problem they’ve already solved. One question, then, is which of these properties (iconicity or

familiarity) best predict the extent to which participants rely on relevance-deciding mecha-

nisms or simply recognise the signal.

The following describes how data for iconicity and familiarity were collected, and tests

whether either of these predict how insight ratings or accuracy change over time. The predic-

tion is that familiarity will be a better predictor of insight ratings than iconicity.

Although these measures potentially predict the change in insight rating over time, another

measure (mean Jaccard distance, JDμ) evaluates how much of a relevance-deciding problem a

particular cue item represents in the first place. This was based on how predictable the ground

is, given the item to be communicated. The prediction is that a higher JDμ value (indicating a

less code-like, or a more relevance-deciding problem) should lead to an increase in insight rat-

ings the first time an item is presented in the game.

Methodology

Participants. For iconicity and familiarity ratings, participants were recruited via Ama-

zon’s Mechanical Turk (MT) crowd-sourcing platform. Participation was limited to Mechani-

cal Turk workers (called Turkers) who had a higher than 95% approval rating, and who had
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completed over 1000 tasks on MT. They were paid USD $0.02 per rating. Each Turker was

able to provide ratings for one picture or for several pictures as they wished, but the 10 ratings

for a signal were always provided by 10 different Turkers. Overall, 295 Turkers provided rat-

ings, and the median number of signals seen by a Turker was 20. Ethics approval was obtained

under the University of Edinburgh Linguistics and English Language Ethics committee

procedures.

Materials. The signals produced during experiment 1 were scanned to yield jpg files

(480 × 262 pixels).

Procedure: Familiarity and iconicity ratings. For each signal, 10 iconicity ratings and 10

familiarity ratings were collected. The analysis below uses the average of these 10 ratings, so

each signal is represented by one iconicity score (an average of 10 Turkers’ iconicity ratings)

and one familiarity score (an average of 10 Turkers’ familiarity ratings). The Open Science

Framework material includes the images and their scores.

For an iconicity rating, the participants were given the signal and the cue item, and were

asked to rate how strongly the signal resembled the cue. They were told that it was drawn dur-

ing a game of Pictionary, that Pictionary does not require accurate or skillful drawing, and that

their ratings should bear this in mind. They selected a rating from a 7-option drop-down list,

ranging from ‘extremely bad resemblance’ to ‘extremely good resemblance’.

For a familiarity rating, the participants were given two signals that were produced consec-

utively (or almost consecutively—see blow) for the same item in the same game, and were

asked to rate how strongly the newer signal resembled the older one. The following example

refers to the signals from Fig 4. To rate the familiarity of signal b, it was presented alongside

signal a, and participants were asked to rate how similar the two signals were. They selected a

rating from a 7-option drop-down list, ranging from ‘extremely different’ to ‘extremely simi-

lar’. The higher this resemblance, the more familiar (or less novel) the signal is in the context

of the game. Participants were given the same caveats about Pictionary as the iconicity raters.

Two complications were as follows. First, no familiarity rating is possible for signal a
because this is the first time it appeared in the game, and there is no precedent to compare it

to. Thus, familiarity ratings are only possible after an item’s first appearance in the game. Sec-

ondly, the familiarity of a signal was rated relative to whichever signal from the previous turn

it most resembled. Thus, signal c would be presented with signal a rather than signal b. The

reason c is familiar is that it resembles signal a, so its familiarity must be rated relative to a. For

the same reason, signal d would be compared with signal b. This procedure produced a rating

of how familiar each signal was (apart from the item’s first appearance in the game) based on

preceding signals.

Procedure: JDμ values. Whereas iconicity and familiarity ratings were collected on

Mechanical Turk, signals were independently tagged by the author and by a volunteer research

assistant to provide JDμ measures. Ratings of iconicity or familiarity are very quick, need little

instruction and involve at most two images, whereas tagging meaningful elements of the sig-

nals is relatively time-consuming; requires detailed coding instructions (and the opportunity

to provide feedback on or ask for clarification about those instructions); carefully hypothesis-

ing the signaller’s intentions; simultaneously considering multiple images; and reviewing ear-

lier decisions based on later ones. It is thus a great deal more complex and open-ended than

rating for resemblance, and less suited to an online platform like Mechanical Turk.

Both taggers followed a detailed coding schema. The main points in the instructions were

(1) to tag elements of the signal that the tagger thinks are relevant to guessing the target item

(rather than tagging everything recognisable in the signal) and (2) to be consistent, so that

the same element appearing in different pictures receives the same tag. For detailed coding

instructions and the resulting tags, see Open Science Framework material.
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For all possible pairs of new signals drawn for a cue item, the JD (formula 1) was calculated

separately for each tagger. These were then averaged to produce a JDμ for each item (again,

separately for each tagger).

This task is by nature interpretive, and thus allows for substantial variation between taggers.

Anyone who has played Pictionary will know that people do not interpret the drawn signals in

the same way. The expectation is thus not that both taggers will provide the same tags for a sig-

nal, but rather that their resulting JDμ measures will correlate strongly. Two features of the

coding schema and JDμ measure afford a degree of robustness. First, the measure is not con-

tent sensitive. It does not matter if one tagger tags the hat in Fig 4 as FEDORA and the other as

HAT, as long as they are internally consistent and use the same tag if this element reappears in

other signals drawn for this cue. Second, the measure is proportional, so one tagger might pro-

vide less detail and another more, since the extra detail will appear both in the numerator and

denominator of formula 1.

Analysis

The main analysis falls into two parts: (1) new items (items on their first exposure, i.e., all

items in round 1, and the additional items introduced at the start of each subsequent turn to

guard against fatigue effects), and (2) older items (any item after its first exposure). The JDμ is

only informative for new items, since it reflects how people create a graphical signal based on

their world knowledge of the cue, whereas the content of subsequent signals depends in large

part on previous signals. On the other hand, the familiarity rating is only possible for older

items, since it requires comparison with a previous appearance. Iconicity ratings are available

in either case.

Results

New items. There is a high correlation between the two taggers’ by-item JDμ measures

(rs = 0.707, p< 0.001). The following analysis uses the average of both taggers’ JDμ measures,

though using either tagger’s measures separately yields the same conclusions.

Averaging by item (since iconicity and perimetric complexity are calculated by signal,

whereas the JDμ values are calculated by item), there is a moderate negative correlation

between JDμ and iconicity (rs = −0.457, p = 0.008). Thus, the more iconic an items’ signals, the

more consistency there is in how it is represented. There is no relationship between JDμ and

perimetric complexity (rs = 0.374, p = 0.124) or between iconicity and perimetric complexity

(rs = −0.294, p = 0.325).

Iconicity, parametric complexity and JDμ were scaled (after parametric complexity was log-

transformed) and entered as fixed effects into a linear mixed-effects model with insight rating

as the dependent variable (random effects structure by-participant: intercept and slope for ico-

nicity and parametric complexity. Item word was excluded as a random effect since there is

only one JDμ measure per word). JDμ is a significant, positive predictor of insight ratings

(β = 0.394, SE = 0.165, t = 2.389, p = 0.019, bootstrapped 95% CIs [0.069, 0.720], Fig 5a). Thus,

the less predictable an item’s signals are from its mental representation, the more likely it is

that receivers report an ‘Aha!’ moment when inferring the signaller’s intentions. The same

conclusion follows using either tagger’s ratings independently, in place of the average just

reported (tagger 1: β = 0.384, SE = 0.173, t = 2.215, p = 0.029, bootstrapped 95% CIs [0.039,

0.728], tagger 2: β = 0.334, SE = 0.156, t = 2.140, p = 0.035, bootstrapped 95% CIs [0.032,

0.649]). However, there was no significant effect of iconicity (β = 0.091, SE = 0.221, t = 0.413,

p = 0.689, bootstrapped 95% CIs [-0.339, 0.525]) or perimetric complexity (β = 0.014,

SE = 0.171, t = 0.080, p = 0.940, bootstrapped 95% CIs [-0.331, 0.364]).
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Given the relationship between JDμ and iconicity, it is worth checking that the lack of an

effect of iconicity is not due to their collinearity. However, even when iconicity is the only

fixed effect in the model, it still fails to predict insight ratings (β = −0.116, SE = 0.216, t =

−0.538, p = 0.603, bootstrapped 95% CIs [-0.551, 0.309]). Thus, for novel signals, the recruit-

ment of insight-solving cognitive mechanisms depends on how predictable the ground is

given the item, not on perceptual properties such as iconicity or perimetric complexity.

A binomial mixed-effects model with the same fixed effects, but with accuracy as the depen-

dent variable (random effects structure by-participant: intercept only), shows that JDμ is a

significant, negative predictor of accuracy (β = −0.714, SE = 0.326, z = −2.189, p = 0.029, boot-

strapped 95% CIs [-1.562, -0.160]) but there is no effect for iconicity (β = 0.451, SE = 0.279,

z = 1.619, p = 0.105, bootstrapped 95% CIs [-0.080, 1.110]) or perimetric complexity (β = 0.145,

SE = 0.246, z = 0.587, p = 0.557, bootstrapped 95% CIs [-0.367, 0.696]). Thus, the more of a rele-

vance-deciding problem the item poses, the less likely receivers were to guess it correctly.

As previously, given the collinearity between JDμ and iconicity, it is worth checking whether

iconicity has an effect on its own. When it is the only fixed effect in the model, it has a signifi-

cant positive effect (β = 0.659, SE = 0.246, z = 2.673, p = 0.008, bootstrapped 95% CIs [0.198,

1.228]), meaning that more iconic signals were easier to guess. Since this effect is overridden

by JDμ when both are included in a model, performance at novel signalling tasks may some-

times seem to reflect an effect of iconicity, but may actually reflect an effect of world knowl-

edge. This suggests that a focus on iconicity in novel signalling tasks may sometimes yield

misleading effects.

Older items. The focus now shifts to items than have already been seen at least once in a

game. JDμ is no longer an applicable measure, but familiarity now is. Since some items first

appeared in later turns than others, the following uses the time (the number of turns an item

has been seen), rather than turn, as a fixed effect.

Fig 5. (a) Jaccard Distances (JDμ scaled) vs. insight ratings for new signals, with linear mixed-effects model predictions (line). Each dot represents

one signal on its first appearance in a game. Since JDμ is a by-item measure, but each signal might receive a different insight rating, there are multiple

insight ratings per item (and thus per value on the x-axis). (b) JDμ (scaled) vs. accuracy for new signals, with binomial mixed-effects model

predictions (curve). (c) Mean values for iconicity, perimetric complexity (PC) and familiarity (all scaled) vs. the number of times the item has

appeared in a particular game.

https://doi.org/10.1371/journal.pone.0189540.g005
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For older items, there is a moderate correlation between iconicity and perimetric complex-

ity (rs = 0.367, p< 0.001), and a weaker one between iconicity and familiarity (rs = 0.203,

p< 0.001). The relationship between perimetric complexity and familiarity is negligible in size

(rs = −0.043, p = 0.065).

As a sanity check (to test whether the Mechanical Turk ratings behave as expected), iconic-

ity and familiarity were entered as the dependent variables in two separate linear mixed-effects

regressions, with time as the fixed effect (random effects structure by-item: intercepts and

slopes for time; by-participant: intercepts only). Since Fig 5c suggests a non-linear effect of

time on familiarity, a quadratic term was included. The models show that iconicity decreases

significantly over turns (β = −0.131, SE = 0.019, t = −6.952, p< 0.001, bootstrapped 95% CIs

[-0.168, -0.089]), whereas familiarity increases (β = 0.563, SE = 0.078, t = 7.204, p< 0.001,

bootstrapped 95% CIs [0.410, 0.712]), though this effect weakens over time given a significant

negative quadratic term (β = −0.049, SE = 0.010, t = −5.117, p< 0.001, bootstrapped 95% CIs

[-0.069, -0.030]). Signals thus become less iconic and more familiar over time, as expected.

Although the correlation between iconicity and perimetric complexity is only moderate, their

behaviour over time is very similar (Fig 5c).

The main question to be answered here is: which variable best predicts the change in insight

ratings? Insight ratings were entered into a linear mixed-effects model as the dependent vari-

able, with iconicity, familiarity and log-transformed perimetric complexity (all scaled) as fixed

effects, as well as time (random effects structure by-item: intercept and random slopes for peri-

metric complexity and familiarity; by-participant: intercept and random slopes for iconicity

and familiarity). As observed previously, there is a significant negative effect of time (β =

−0.087, SE = 0.025, t = −3.518, p< 0.001, bootstrapped 95% CIs [-0.133, -0.037]). In addition,

there is a significant negative effect of familiarity(β = −0.214, SE = 0.082, t = −2.624, p = 0.016,

bootstrapped 95% CIs [-0.372, -0.040]), but no effect of iconicity (β = 0.079, SE = 0.064,

t = 1.223, p = 0.236, bootstrapped 95% CIs [-0.059, 0.210]), or perimetric complexity (β =

−0.073, SE = 0.053, t = −1.378, p = 0.169, bootstrapped 95% CIs [-0.176, 0.032]). Thus, the

insight ratings decrease as the signals become increasingly familiar (and this does not reduce

to an effect of time), but they are not predicted by the signal’s level of iconicity or visual

complexity.

To test the effects of the same factors on performance, accuracy was entered as the depen-

dent variable into a binomial mixed-effects regression with the same fixed effects as above

(random effects structure by-item and by-participant: intercept only). There is a significant

negative effect of perimetric complexity (β = −0.761, SE = 0.219, z = −3.476, p< 0.001, boot-

strapped 95% CIs [-1.295, -0.315]) and a positive one of familiarity (β = 0.462, SE = 0.173,

z = 2.670, p = 0.008, bootstrapped 95% CIs [0.072, 0.870]), but no effect of iconicity (β =

0.187, SE = 0.259, z = 0.719, p = 0.472, bootstrapped 95% CIs [-0.370, 0.756]) or time (β =

0.061, SE = 0.096, z = 0.632, p = 0.527, bootstrapped 95% CIs [-0.144, 0.292]). Thus, guessers

are better able to guess the signaller’s intentions as the signals become more familiar and

simpler.

Discussion

To see what factors drive the pattern of responses in experiment 1, measures for familiarity

and iconicity were collected, as well the extent to which an item presents a relevance-deciding

problem. For new items, higher insight ratings were predicted by a decrease in JDμ, which

measures how predictable the signals were given the item. Over subquent turns, a drop in

insight ratings was predicted by an increase in familiarity. Thus, symbolisation can be charac-

terised as a decrease in how much of a burden is placed on the cognitive machinery that
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underlies human performance on relevance-deciding problems. This shift in processing is not

predicted by visual properties of the signal, such as iconicity or visual complexity.

The same factors (familiarity and JDμ) predict some of the variation in accuracy for guess-

ing new signals, as well as an improvement in accuracy over time. In the former case iconicity

is misleading (it has an effect when it is the only regressor, but not once JDμ is included), and

in the latter case it has no effect. Experimenters should thus account for the extent to which an

item presents a relevance-deciding problem in experiment design, or before making claims

about the effect of iconicity on performance.

Fig 5a indicates that much of the variation in insight ratings remains unaccounted for,

despite the significant effect of JDμ. It could be that JDμ is quite a coarse measure, especially

since it is calculated by item rather than by signal. It is, after all, about how the item is repre-

sented mentally, or the extent to which that representation predicts the contents of drawings

that signal the item. However, the question of just how mental representations are translated

into particular drawings lies outside the scope of the current research. Further, JDμ uses a sin-

gle dimension to quantify the effect of world knowledge, but world knowledge is massively

multidimensional. Finally, it could be that there are effects of context (each signal is guessed

relative to a particular list of 25 possible items). Despite these limitations, JDμ nonetheless has

a significant effect in the predicted direction.

A decrease in perimetric complexity predicts an increase in accuracy, in addition to the

effect of familiarity. There are several possible interpretations of this (all speculative, alas).

Perhaps low perimetric complexity reflects conventionalisation and perhaps accuracy is

higher for more conventional items. Perhaps, as signals become similar, they also become

more distinct (i.e., less like the signals drawn for other items) and thus easier to guess. These

explanations are certainly compatible, but they lie beyond the scope of the present research

questions.

One concern about the familiarity ratings is that they involve comparing the signals as

a whole (I thank an anonymous reviewer for this suggestion). For instance, in Fig 4, the

familiarity rating for signal b involves comparing it with signal a. There are both similarities

and differences between these two pictures. Focusing on the whip might make them seem

more similar, whereas focusing on general features (e.g., the layout) might make them seem

more different. The worry is that the raters might be doing the latter, and the receiver the

former.

The data gathered in this experiment are insufficient to resolve this issue decisively.

An eye-tracking study would be interesting to explore the time-course of how receivers nar-

row in on salient, informative elements of the signal, but that lies beyond the scope of the

present research question. However, there are several reasons to think that the above worry

does not problematise the conclusions drawn here. First, the raters’ familiarity responses

(but not their iconicity responses) predict the receivers’ insight responses. There is thus

demonstrably some relationship between how the raters are processing the signal for famil-

iarity and how the receiver is inferring its meaning. Second, the receivers’ insight ratings

reflect the extent to which they are tackling a relevance deciding problem. It might be that

they quickly recognise the whip and make a guess on that basis (i.e., do not need to infer its

relevance), or it might be that the whip is not very salient to them, in which case they would

be interpreting the picture as a whole, and having to infer the relevance of its parts while

inferring the communicative intentions of the signaller. The claim is that the insight rating

is a measure of just that. To the extent that the familiarity rating predicts the insight rating,

then, it is likely to be unproblematic that familiarity raters are evaluating the signal as a

whole.
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General discussion

Summary

The results show that there is a shift in the cognitive mechanisms recruited for interpretation

as a signal changes during symbolisation. This shift is not predicted by visual features of the

signal (such as its iconicity or visual complexity), but rather by the extent to which it presents a

relevance-deciding problem. Relevance and the inferential mechanisms humans bring to bear

on relevance-deciding problems play a role in earlier stages of symbolisation.

The question that prompted this research was whether the change in signals observed dur-

ing symbolisation implies a concomitant change in cognitive processing, and if so, how to

characterise that change. Symbolisation can be described as a decrease in iconicity and visual

complexity [1]. However, icons can also pose a relevance-deciding problem, in which case

symbolisation might also involve a decrease in the burden placed on the cognitive mechanisms

that humans bring to bear on relevance-deciding problems. In the case of symbolisation, a rel-

evance-deciding problem is characterised by high novelty (or low familiarity), and by a lack of

predictability in the signal’s ground. Insight problem solving is the recruitment of a distinctive

style of processing to solve hard relevance-deciding problems. Thus, the extent to which some-

thing is a relevance-deciding problem should predict the extent to which participants display

the hallmarks of insight. Crucially, subjective reporting of an ‘Aha!’ moment is a behavioural

hallmark of insight problem solving, and is correlated with the distinctive patterns of insight

processing [23, 24]. Subjective reporting of an ‘Aha!’ experience can thus serve as a diagnostic

for this mode of processing in a novel signalling task.

The broad hypothesis was that symbolisation involves a concomitant change in cognitive

processing, and the specific hypothesis that this is explained by relevance, rather than iconicity

or visual complexity. Thus, the prediction was that there should be a decrease in subjective

reporting of an ‘Aha!’ experience over time, and that this should be predicted by familiarity,

and by how unpredictable an item’s ground is.

To test these hypotheses, participants took part in a repeated novel signalling task. After

each guess, receivers provided a rating indicating the extent to which they had experienced an

‘Aha!’ moment. They had practised other insight problems before the experiment, so that they

were likely to have a better sense of this experience. Experiment 1 replicated the increase in

accuracy and decrease in visual complexity previously demonstrated in the literature on sym-

bolisation [1, 2], showed a decrease in insight ratings over time, and demonstrated that this is

not a mere fatigue effect, nor explicable by changes in visual complexity or accuracy. Experi-

ment 2 showed that insight ratings for new items are explained by a measure of how predict-

able the ground is, given the item (JDμ), and that the decrease in insight ratings over time is

predicted by increasing familiarity, rather than by iconicity or visual complexity. Further, both

factors (familiarity and JDμ) have a significant effect on accuracy, and an apparent effect of ico-

nicity on accuracy was shown to be misleading, since this effect drops out when JDμ is included

in the model. Thus, both the broad and specific hypotheses were supported by the data.

Implications

The results have implications beyond this particular experiment. For instance, they align with

previously observed differences in the cognitive processing of novel vs. conventional meta-

phors [26, 52], and with a shift in cognition as novel metaphors become more familiar [27].

Like the novel signals here, novel metaphors present a relevance-deciding problem, and

Mashal and colleagues show that there is a strong overlap between the neural mechanisms at

work in understanding novel metaphors and those underlying insight problem solving: they
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both involve activation in right hemisphere temporal lobe areas responsible for searching

broad semantic sets, and retrieving less predictable or distantly related semantic information

[25]. Similar patterns of activation are found in a novel signalling task [29], but there the pat-

terns of activation are interpreted as indicating the creation or processing of mental models of

one’s interlocutor. Thus far, then, the literature has linked novel metaphors and insight [52],

or has linked novel signalling and intention reading [29]. The results here suggest that these

may all be part of a bigger picture, since they connect insight, novelty, representation, and

intention reading. The precise relationship between these various abilities remains unclear for

now, but a fuller account of pragmatics and problem solving would require an exploration of

how these pieces fit together [25]. Some possibilities are as follows: the cognitive similarity

between insight and pragmatics could turn out to be illusory; or the cognitive mechanisms

thought to underlie intention reading might be better described as solving relevance-deciding

problems; or insight problem solving could co-opt inferential and representational mecha-

nisms initially evolved for pragmatic intention-reading.

Either way, symbolisation implies a particular cognitive trajectory, such that relevance-

deciding mechanisms are important for earlier stages of the process. This cognitive trajectory

has implications for the evolution of language, since there may have been an iconic protolan-

guage stage prior to the evolution of symbolic (i.e., conventional) communication in our spe-

cies [5–9]. Given the various ways iconicity relates to the other variables of interest here, an

explanation of how humans evolved language cannot focus solely on properties of the signal

(e.g., the extent to which it is iconic), but must also encompass questions of representation and

inference. In particular, the results suggest that the cognitive mechanisms of relevance may

have been a prerequisite for our ancestors’ novel signalling abilities.

This aligns with the claim that relevance is a fundamental aspect of human communica-

tion [12] and that relevance-based pragmatics must have played an explanatory role in the

evolution of human language [53]. What the present work adds to such claims is empirical

measurement of the extent to which something poses a relevance-deciding problem, and a

demonstration that this predicts a difference in cognitive mechanism. However, the results

diverge from such claims in terms of how they characterise those mechanisms. Sperber and

Wilson [12] argue that interpretation of communicative intentions is based on deductive
inference, explicitly rejecting the notion that more creative forms of inference underlie inter-

pretation. The results here show that this insistence on deduction is overly restrictive, since

insight is a creative form of inference [17, 52] and since insight-like mechanisms play a role

in understanding communicative intentions, depending on factors such as novelty and

predictability. Similarly, pragmatic inference can be modeled with Bayesian induction [54],

but it is by no means clear that induction is able to encompass the creative, open-ended infer-

ences underlying human insight problem solving. The results here thus suggest that two

influential models of pragmatic inference (as deductive or inductive) might be incomplete or

inaccurate. Regardless, if pragmatics played an important role in early stages of the evolution

of language in our species, then the cognitive mechanisms described here played an early role

in language evolution.

Language evolution aside, the results have broader implications for iconicity research, since

they show that the role of iconicity in processing and performance is sometimes bound up

with questions of mental representation. Firstly, iconicity was negatively correlated with JDμ.

Since JDμ reflects modes of construal or patterns of salience in world knowledge, it is arguably

a measure of complexity in representational structure. Secondly, although it seemed like ico-

nicity drove an increase in accuracy for novel signals, this effect vanished when JDμ was

included in the model. In this view, what makes Fig 2a a good iconic signal for Harrison Ford

is not just that it resembles him, but also that it foregrounds predictably salient aspects of
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common knowledge about him. The claim about representation, processing and performance

coheres with some recent directions in iconicity research. For instance, Emmorey [55] argues

that iconicity depends as much on representational structure as it does on perceptual resem-

blance, and that representational structure must thus play a part in how iconicity affects pro-

cessing or performance. Ortega and Morgan [56] argue, like Emmorey, that icons are not a

homogeneous group, and show that features of representational structure (a sign’s neighbour-

hood density—the number of associates with distinct meanings) affect the processing of iconic

gestures.

Since the novel signals here elicited an ‘Aha!’ response, this offers a new avenue of research

for insight problem solving. Historically, research in insight problem solving focused on a

small number of hard-to-solve ‘classical’ insight problems (like the marriage problem

described in the introduction above). Later, the problem space was expanded with Remote

Associates Tasks [57] or Compound Remote Associates problems [17], and even more recently

with rebus puzzles [22] and magic tricks [48]. The results here show that novel signalling tasks

could be another fruitful way to study insight, at least where they involve relevance. One strong

benefit of such a move would be that communication is more central to people’s daily lives

than these other problems: they have more experience with trying to communicate in novel

ways, it requires no expert knowledge, language is a core human competence, and time to solu-

tion is often short.

Finally, there are some ramifications for research into creative aspects of language process-

ing. The results reinforce previous evidence that there is a continuum between relatively con-

ventional and relatively novel meanings, and that variation along this continuum predicts the

difference in processing observed here (for instance, in metaphor [26, 27]). Mashal and col-

leagues describe the continuum in terms of salience, but operationalise salience in terms of

familiarity (or conventionality) versus novelty. The current work shows that, in addition to

novelty, salience can usefully be operationalised in terms of representational structure.

Research in this area could be further enriched by the consideration of such structure. Take

the example of ‘crystal river’, a novel metaphor from [52]. It is a relevance-deciding problem

since it is novel, so there is no convention to guide interpretation. An interpreter has to infer

the relevant feature of a crystal that resembles a river (the ground of the metaphor [58]). Pre-

sumably, the ground in this case is that the river is like a crystal in that it is clear or sparkling.

It turns out that ‘clear’ is a close associate of ‘crystal’ but that ‘sparkling’ is a more distant asso-

ciate [59]. If metaphors can vary in terms of how accessible the ground is, it is plausible that

this will moderate the effect of novelty on cognitive processing.

Limitations

In addition to the above implications for cognitive science, the study also has a couple of limi-

tations. One is that it does not explore contextual effects. Plausible contextual factors are that

the set of items is limited to 25 nouns (whereas real-world communication might be more

open-ended), and that the context forces an overlap in drawings (‘TV’ appears as an item, but

a TV also appears in signals for other items, such as ‘cartoon’ or ‘soap opera’, see Fig 6). A

potential worry stemming from these factors is that the measures used here (e.g., ‘Aha!’ ratings

and JDμ values) might partly reflect contextual constraint (I thank an anonymous reviewer for

this suggestion). However, there are several reasons to think that these worries do not under-

mine the conclusions drawn here.

Sulik [60] explores the effect of contextual constraint on hypothesis generation, and finds

that ‘Aha!’ responses increase along with context size (the number of items). In that case, con-

training the context to 25 items could mean that participants’ ‘Aha!’ ratings are not as high as
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they might otherwise have been if this were a more open-ended task. If so, contextual con-

straint involves a ceiling effect. Thus, higher insight ratings (those at the start of the game)

might have been even higher in an open-ended task. Since one of the main conclusions here is

that the cognitive mechanisms of relevance (as indexed by insight ratings) are important for

novel signals, the presence of contextual constraint means that this conclusion is understated,

if anything.

Another worry is whether context impacts JDμ ratings, and if so, whether this is likely to

undermine the conclusions here. Some elements (e.g., TVs and guns) reappear in signals for

many items (see Open Science Framework material and Fig 6). In a constrained context such

as this, these elements are made less informative by virtue of being shared across items on the

25-item list. If participants aimed to be maximally informative, the contextually constrained

task here might actually have fewer of these shared elements than an otherwise similar open-

ended task would. In that case, the JDμ measure would be affected by context. In contrast to

this worry, the claim here is that the signals reflect signallers’ representations of the items, and

that JDμ is a useful (if noisy) measure of how complex those representations are. In this view, if

a TV is central to many people’s representations of an item, then it will probably appear in

many signals for that item, and it would not matter to much whether other items also involve

TVs.

The issue hinges on how informative signallers manage to be. Sulik and Lupyan [61] show

that signallers are typically egocentric when they generate novel signals (i.e., they signal based

on their own world knowledge, regardless how informative this would be to the receiver).

Contextual constraint can drive them to be allocentric (signalling so as to be informative from

the receiver’s perspective). However, constraining themeaning space (by providing a list of

potential target items, as here) has a comparatively small effect on signalling behaviour,

whereas constraining the signal space (for instance, by forcing signallers to pick from a list of

Fig 6. Pictures produced by signallers during experiment 1 representing (a) TV, (b) soap opera, (c) drama, (d) cartoon.

https://doi.org/10.1371/journal.pone.0189540.g006
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pre-existing signals) has a much larger effect on signalling behaviour. Thus the worry about

JDμ and context would be better founded if the present study constrained the signal space

rather than the meaning space. Further, the small effect seen in [61] involves a very con-

strained meaning space of five items. The meaning space here is five times larger, so the effect

is likely to be even smaller.

The issue of these particular measures aside, the presence of a constrained list need not

imply that receivers are going through the list and matching signals with items analytically

(i.e., without relevance-deciding mechanisms). Even if the receiver recognises that the signaller

has drawn a TV, and even if the constrained context allows them to narrow their guess down

to just a few items, they still have to work out whether they are meant to focus on the TV itself,

or on what is being shown on the TV, or whether things drawn next to the TV represent things

that are shown on TV (Fig 6). These are all relevance-deciding inferences: they involve infer-

ring how to interpret the signal as part and parcel of inferring signaller intention. Overall,

then, contextual constraint is unlikely to undermine the conclusions drawn here. Nonetheless,

context is an important part of pragmatics, and the precise effect on signalling and interpreta-

tion of having a limited set of items, grouped into categories, is worth further exploration.

A final potential issue relating to constraint (though not context in the sense discussed

above) is that the taggers for JDμ values were told to tag elements they thought were relevant to

guessing the item, rather than tagging all elements of the signal. However, this plausibly affects

the JDμ values (I thank an anonymous reviewer for raising this question).

On the practical side, this instruction to taggers was intended to minimise subjectivity and

noise, for several reasons. Firstly, the tags are meant as a measure of the signalers’ mental rep-

resentations of the item, so it is reasonable that taggers be aware of the item. The point of the

tags is, for instance, to measure the extent to which a whip is a highly predictable element of

various signals for Harrison Ford (and it turns out to be quite predictable). Secondly, as any-

one who has played Pictionary will know, the guesses produced can be wide and varied. If tag-

gers did not know what the image was meant to represent, there would be a great deal more

noise in the tags. Thirdly, without this constraint, the tags would suffer greatly from the Gava-
gai problem [62]: there might be multiple ways to construe each element, but the JDμ value is

meant to reflect the signalers’ construals.

Practical considerations aside, there are data-supported reasons for this choice. Sulik and

Lupyan [61] show that people vary quite widely in how informative they are when generating

signals, but are a lot more consistent when evaluating signals. Thus, by having the taggers eval-

uate what they thought were relevant elements, given the item, they are thus demonstrably

more likely to be consistent. Nonetheless, there is a fair amount of variation in the tags, though

the observed relationship between JDμ and ‘Aha!’ ratings holds regardless which tagger’s tags

were used to derive a JDμ measure for each item.

There are other limitations that do not relate to constraint or context. Just how humans

understand conventional symbols is an important question, but the experiments here do not

seek to explore or characterise those cognitive processes. Instead, the focus here has been on

finding something useful to say about what happens, cognitively, when signals are not con-

ventional or familiar. One strong candidate for the non-insight cases is Bayesian induction

[63]. Though Fay et al. [2] do not explicitly address the issue, they mention that inductive

biases play a role in symbolisation. The results here can be interpreted to mean that, even

though induction may play a very large role, it cannot explain all stages of symbolisation.

Similarly, the experiments here do not speak to the question of how people recognise things

on sight (for those images that obviously resemble their referents). That is a very broad ques-

tion indeed, but in as far as any distinction can be made between perception and inference
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(and it might be that no clear-cut distinction can be drawn), this seems to be a matter of

perception.

Second, the experiments consider just one type of novel signalling task: graphical signals.

Graphical signals differ from other novel signals (such as spontaneous gesture) in several ways.

For instance, they are permanent (the receiver can review the entire picture in any order at any

time, whereas a novel gesture is more temporary). Relatedly, they are more transparent (it is

easier to see what kind of hat is being drawn in Fig 2a than it would be if gestured, where shape

of the whole hat cannot be perceived simultaneously).

JDμ is not a general measure of representational structure. It only measures the amount of

variation in graphical signals produced independently for the same cue (in order to see how

predictable those signals are given the cue). Different values might be obtained by applying the

same strategy to gestural signals, or by applying a different strategy (such as by collecting word

association data).

The familiarity rating just measures how familiar a signal is given the previous signal. It

thus does not reflect cumulative familiarity with a signal over several rounds. Nor does it mea-

sure increasing familiarity with the items themselves as the game progresses. None of these

limitations problematise the conclusions drawn here, though.

It might be objected that subjective reporting of an ‘Aha!’ experience could be merely a sur-

prisal effect (i.e., an indication that participants are surprised to see something new, rather than

indicating the recruitment of particular cognitive mechanisms for relevance-deciding infer-

ence). This is unlikely to be problematic for several reasons. Firstly, surprisal and ‘Aha!’ ratings

are at best weakly related (rp = 0.06, in [48]). Secondly, not only does subjective reporting of an

‘Aha!’ experience correlate with activation in the cognitive networks associated with insight,

but this activation has also been shown to be depend on variables tested here, such as novelty

or predictability. Thirdly, insight shows distinctive patterns of neural activity prior to solution,

involving resting brain state [64], or the suppression of irrelevant information [65, 66]. Since

these differences are observable prior to solution, they cannot be explained by the surprise that

arises when the solution becomes conscious. Finally, behavioural evidence shows that insight

problem solving is characterised by distinctive patterns of attention [67–70]; executive control

[71]; error (e.g., errors of commission vs. omission [64]); or memory [72]. Even physiological

measures such as heartbeat distinguish insight and from non-insight problem solving [73].

Recent work suggests that the distinction between insight and analytic processes is not

always clear cut [74, 75] or that analytic and insight processes may complementarily tackle dif-

ferent aspects of a problem [75]. The claim here is just that communicative problems can place

more or less of a burden on relevance-deciding mechanisms, that insight problem solving lies

at one end of this spectrum, and that we are more likely to observe hallmarks of insight prob-

lem solving (such as the ‘Aha!’ experience) when more of a burden is placed on those mecha-

nisms. This claim thus does not rely on a clear-cut distinction between insight and non-insight

processes.

Conclusions

Symbolisation involves a shift from complex, iconic signals to simpler, less iconic signals, but

it also involves a shift in cognitive processing that is not predicted by iconicity or visual sim-

plicity. In early stages of the process, more of a burden is placed on the cognitive mechanisms

that humans bring to bear on relevance-deciding problems, but this burden decreases over the

time. These mechanisms underly creative insight problem solving, but they are also active

when a signal poses a relevance-deciding problem, such as novel metaphor or novel signals

here.
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