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We determine the binding energy, the total gravitational wave energy flux, and the gravitational
wave modes for a binary of rapidly spinning black holes, working in linearized gravity and at leading
orders in the orbital velocity, but to all orders in the black holes’ spins. Though the spins are treated
nonperturbatively, surprisingly, the binding energy and the flux are given by simple analytical
expressions which are finite (respectively third- and fifth-order) polynomials in the spins. Our final
results are restricted to the important case of quasi-circular orbits with the black holes’ spins aligned
with the orbital angular momentum.

I. INTRODUCTION

The general relativistic two-body problem, in partic-
ular the description of compact binaries as one of the
most important sources of gravitational waves (GWs) de-
tectable from Earth, poses a large challenge for analyti-
cal as well as numerical calculations. Accurate waveform
models and templates generated by such calculations are
utilized in matched filtering techniques to confidently as-
sign gravitational wave signals to compact binaries, ex-
tract information about the source, and investigate pos-
sible deviations from the predictions of general relativ-
ity (GR). Recent detections of such signals [1–7] have
demonstrated the success of these approaches, but the
need for more accurate and more general descriptions of
binary dynamics in GR persists and will grow with future
more sensitive GW detectors.

Several analytical approaches to the two-body problem
in GR have been developed over the past century. The
predominant method for describing the dynamics and
predicting the form of the emitted radiation for arbitrary-
mass-ratio compact binaries employs the post-Newtonian
(PN) approximation [8, 9]. The PN approach seeks to ex-
tract information from full GR by perturbatively expand-
ing about the slow-motion, weak-field regime. Applied to
a binary system, the computed dynamics and waveforms
are expected to provide accurate predictions only in the
early inspiral phase. However, analytic results from the
PN approximation, together with numerical descriptions
of the late inspiral, plunge, and merger, can be com-
bined synergetically in effective-one-body (EOB) models
[10, 11]. In such, the binary’s evolution can be accurately
modeled from the early inspiral stage through the merger
and ringdown of the remnant. In order for EOB models
to efficiently extract maximal information from detected
gravitational wave signals, accurate analytical and nu-
merical input must be provided. Thus, efforts continue
to push PN theory to ever increasing accuracy.

The PN approximation is an expansion of a compact
binary’s full general relativistic dynamics in the dimen-

sionless small parameter εPN ∼ v2/c2 ∼ Gm/c2r.1 This
amounts to using 1/c2 as the formal expansion param-
eter; an O(c−2n) contribution is said to be at nPN or-
der. The approximation has been pushed to 4PN order
in the conservative sector [12, 13] and to 3PN for the
gravitational wave modes [8, 14] for binaries with con-
stituents represented as structureless (monopole) point
particles, which could describe non-spinning binary black
holes (BBHs). In the seminal work of Mathisson, Papa-
petrou [15–17], and later Dixon [18, 19], finite-size effects
for an extended body in GR have been modeled in the
form of a multipolar structure associated with the body.
Subsequently, spin is incorporated in PN theory through
spin-dependent multipole moments attached to a point-
particle representation of the body. Spin, besides the field
strength and velocity, is typically treated perturbatively
in PN calculations, expanding in the dimensionless small
parameter εspin ∼ Gmχ/rc2.2 For rapidly rotating black
holes, one finds that εspin ∼ εPN. Previously, the conser-
vative dynamics of spinning BBHs was computed up to
4PN order [20]; for the leading orders at various orders in
spin see Refs. [21–33]. For spin-dependent leading orders
in the radiative sector see Refs. [26, 32, 34, 35]. The tra-
ditional approach has been to truncate the expansion in
εspin as accords with the order counting made natural by
the relation εspin ∼ εPN. At 4PN order, this corresponds
to a truncation at fourth order in the spins.

In this paper, we treat εPN and εspin as independent ex-
pansion parameters, and we determine the conservative
and radiative dynamics of an arbitrary-mass-ratio BBH
at leading PN order (leading order in εPN), but to all
orders in spin (no expansion in εspin) [33]. Therefore, we
obtain terms which are, according to the traditional PN
counting in 1/c2, of arbitrarily large PN order. Our final
results are valid for circular orbits and spins aligned with

1 As usual, G is Newton’s constant, c the speed of light, m the
binary’s mass scale, v its orbital velocity, and r the orbital dis-
tance.

2 Here, χ = cS/Gm2 is the dimensionless spin parameter for a
body of mass m and spin S, with χ ∈ [0, 1) for a black hole.
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the orbital angular momentum (though several interme-
diate results are applicable to more general situations).
This is an important case, since waveforms for aligned
(nonprecessing) spins can approximate precessing wave-
forms very well when viewed from a certain frame [36]
and hence can form the basis for precessing waveform
models. The nonperturbative aspect of our results can
improve the synergetic EOB waveform model by suggest-
ing improved resummations of perturbative PN results in
future work.

In the framework of an effective action principle, we
model the BBH as two point-particles with infinite sets
of spin-induced multipole moments, fixed by matching
to the Kerr metric. We consider the coupling of this
multipolar structure to gravity at first post-Minkowskian
(PM) order (i.e. in linearized gravity), in Sec. II. In
Sec. III, the near zone field equations are solved at leading
post-Newtonian order (at leading orders in the orbital ve-
locity) and the binding energy of the binary is computed
for circular orbits and spins aligned with the orbital an-
gular momentum. Lastly, for the same orbital configura-
tion and at the same level of approximation, the source
multipole moments of the complete system are computed
and employed to determine the GW modes and total GW
energy flux emitted by the BBH in Sec. IV.

Throughout the paper, Greek letters µ, ν, α, β, ... are
used as spacetime (abstract or coordinate-basis) indices.
After Sec. II, Latin letters i, j, k, a, b, ... are used as spa-
tial indices. Various other types of Latin indices are used
as indicated in the text. We exploit the multi-index no-
tation L := µ1 . . . µ` for ` tensorial powers of a vector
vµ, such that vL = vµ1...µ` := vµ1 . . . vµ` , as well as
L − 1 = µl . . . µ`−1, etc., both for spacetime indices as
here and for spatial indices, L = i1 . . . i`, the distinc-
tion being clear from the context. Our sign convention
for the volume form is such that ε0123 = +1 in a local
Minkowskian basis, and our sign convention for the Rie-
mann tensor is such that 2∇[µ∇ν]wα = Rµνα

βwβ .

II. EFFECTIVE ACTION FOR A SPINNING
BLACK HOLE

In this section, we review the construction of an effec-
tive action functional for localized spinning body coupled
to gravity, assuming the body has only translational and
rotational degrees of freedom and only spin-induced mul-
tipole moments, as is appropriate for a spinning black
hole at the orders considered in this paper. We begin
in Sec. II A with a general such spinning body, seeing
how its translational and rotational kinematics are linked
to its universal (i.e. body-independent) monopole and
dipole couplings to gravity. In Sec. II B, we consider the
couplings of the body’s higher-order spin-induced multi-
poles (quadrupole, octupole, etc.) to the spacetime cur-
vature, working at linear order in the curvature, and then
specialize to the multipole structure of a spinning (Kerr)
black hole. While those two subsections work in what

could be (in principle) a general curved spacetime, main-
taining general covariance, we specialize to the case of
first-post-Minkowskian spacetime (a linear perturbation
of flat spacetime) in Sec. II C.

A. Effective action of a spinning point-particle

The effective translational and rotational degrees of
freedom for a spinning point-particle can be taken to be
an arbitrarily parametrized worldline x = z(λ), with tan-
gent uµ = dzµ/dλ, and a “body-fixed” tetrad ε µ

A (λ)
(defined only along the worldline) with orthonormality
conditions

ε µ
A εAν = gµν , εAµε

µ
B = ηAB , (1)

where ηAB is a frame Minkowski metric, and gµν is the
spacetime (inverse) metric (evaluated at x = z) which is
used to raise or lower all spacetime indices in this subsec-
tion and the next. For later convenience, we also define
throughout spacetime a “global” tetrad field e µ

a with
analogous orthonormality conditions. The two tetrads
are related by a local Lorentz transformation at each
point on the worldline: ε µ

A = Λ a
A e µ

a . The angular
velocity tensor,

Ωµν = ε µ
A

DεAν

dλ
, (2)

with Ωµν = −Ωνµ, serves as a measure of the particle’s
rotation along the worldline. Of the six (local Lorentz
transformation) degrees of freedom in the body-fixed
tetrad ε µ

A , we expect three to be physical, describing the
body’s (spatial) rotation, while the other three (boosts)
are redundant with the translational degrees of freedom.
We can remove this redundancy by fixing the timelike
vector ε µ

0 to be the direction of the worldline tangent,
or velocity,

ε µ
0 = Uµ := uµ/

√
−uρuρ. (3)

This constraint on the tetrad will translate into a corre-
sponding constraint on the body’s spin tensor.

An effective action for the spinning point-particle can
be given as a functional of the worldline z(λ), the body-
fixed tetrad ε µ

A (λ), and the spin tensor Sµν(λ) conjugate
to the tetrad, by [37–39]

Sp.p.[z, ε, S] =

∫
dλ

{
−m

√
−uµuµ +

1

2
SµνΩµν + Lc

}
,

(4)

where m is the conserved (bare) rest mass. Here, the first
two terms serve as translational and rotational “kinetic
terms,” and they also implicitly encode the monopole-
and dipole-type couplings to the spacetime geometry,
through uµu

µ = gµνu
µuν and through the covariant

derivative in (2), respectively; the dipole couplings are
explicitly extracted at the end of this subsection. The
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couplings between the body’s higher multipoles and the
spacetime curvature are contained in Lc(z, U, S) as spec-
ified in the following subsection.

The constraint (3) on the tetrad translates [37, 40] into
the following constraint on the spin tensor,

SµνUν = 0, (5)

serving as a spin supplementary condition (SSC) [15, 16,
41], which we will refer to as the covariant SSC.3 In or-
der to simplify our computations below, we implement a
change of variables from the rotational degrees of free-
dom as appearing in the action (4). As in [37, 40, 44], we
apply a local Lorentz transformation to the body-fixed
tetrad,

ε ν
A → ε̃ µ

A = Lµνε
ν

A , (6)

such that the timelike vector ε µ
0 = Uµ as in (3) is

boosted into the direction of the timelike vector e µ
0 of

the global tetrad: ε̃ µ
0 = Lµνε

ν
0 = e µ

0 . This is accom-
plished with the standard boost

Lµν = δµν − 2e µ
0 Uν +

ωµων
−Uρωρ

, ωµ = Uµ + e µ
0 . (7)

Under (6) with (7), the second term of (4) becomes [37]

1

2
SµνΩµν =

1

2
S̃µνΩ̃µν + S̃µνU

µDU
ν

dλ
, (8)

where Ω̃µν = ε̃A
µ(Dε̃Aν/dλ), and where the new spin

tensor S̃µν is defined by

Sµν = PµαPνβ S̃αβ , (9)

0 = S̃µν(Uν + e0ν), (10)

with

Pµν = δµν + UµUν (11)

being the projector orthogonal to Uµ.
We can explicitly extract the dipole coupling to the

spacetime geometry by switching from the coordinate ba-
sis to the global tetrad basis and from covariant deriva-
tives to ordinary derivatives, recalling ε µ

A = Λ a
A e µ

a ,

S̃µνΩ̃µν = S̃abΛ̃
a

A

dΛ̃Ab

dλ
+ ωµ

abS̃abu
µ, (12)

DUν

dλ
=

[
dUa

dλ
+ ωβ

baUbu
β

]
e ν
a , (13)

3 At the order considered in this paper, this SSC is equivalent
to the condition Sµνpν = 0 due to Tulczyjew, where pν is the
linear momentum appearing in the Mathisson-Papapetrou-Dixon
equations [15–19], which in general leads to a better behaved
motion of the center [42, 43]. The time evolution defined by the
action does not automatically preserve the SSC. The SSC can
either be added to the action with a Lagrange multiplier, or one
can insert a solution of the SSC into the action.

where ωµ
ab = ebα∇µeaα = ebα∂µe

aα+ebαΓαµβe
aβ are the

Ricci rotation coefficients for the global tetrad. Finally,
using (8)–(13), the action (4) reads

Sp.p. =

∫
dλ

{
−m

√
−uµuµ +

1

2
S̃abΛ̃

a
A

dΛ̃Ab

dλ

+ S̃abU
a dU

b

dλ
+

1

2
ωµ

abSabu
µ + Lc

}
.

(14)

Starting from the following subsection, we drop the tildes
used here to indicate the boosted variables; the use of the
un-boosted variables is restricted to this subsection.

Given (5) and (9)–(10), the full components of both

spin tensors, Sµν and S̃µν , are determined by Uµ, e0
µ,

and the covariant spin vector

Sµ := Uν(∗S)νµ = Uν(∗S̃)νµ, (15)

satisfying SµU
µ = 0, where (∗S)νµ = 1

2ε
αβ

νµ Sαβ is the

spin tensor’s dual, and similarly for (∗S̃)νµ, with εµναβ
being the volume form.

B. Multipole-curvature couplings

So far, only the monopole and dipole couplings, arising
from the first two terms in (4), have been fixed. Here we
fix the couplings of the higher-order spin-induced multi-
poles to the spacetime curvature, in the Lc term in (4),
by considering all possible combinations of the relevant
degrees of freedom which would contribute in a first post-
Minkowskian approximation (but not yet making that
approximation)—this corresponds to keeping only terms
linear in the Riemann tensor and its derivatives.

In constructing the curvature couplings, it is conve-
nient to decompose the (vacuum) Riemann (or Weyl)
tensor of the (external) gravitational field into its elec-
tric (even under parity) and magnetic (odd under parity)
components with respect to the normalized velocity Uµ,

Eαβ = RαµβνU
µUν ,

Bαβ = (∗R)αµβνU
µUν ,

(16)

where (∗R)αβγδ = 1
2ε

µν
αβ Rµνγδ is the dual of the Rie-

mann tensor.
We can now build the linear-in-curvature couplings in
Lc out of Eµν and Bµν and their derivatives and the avail-
able point-particle degrees of freedom, namely, only the
normalized tangent Uµ and the spin-vector Sµ, recall-
ing Sµuµ = 0. We require reparametrization invariance,
which means that the tangent uµ can enter only through
its normalized version Uµ, and invariance under inter-
nal rotations of the body-fixed tetrad ΛA

a, which means
that ΛA

a cannot enter explicitly. We also require invari-
ance under parity transformations, noting that Uµ is even
while Sµ is odd. Then, all possible linear-in-curvature
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couplings are given by [37] (see also Refs. [45, 46])

Lc = −
√
−uρuρ

{ ∞∑
`=1

(−1)`

(2`)!

CE,`
m2`−1

S2L∇2L−2Eµ2`−1µ2`

−
∞∑
`=1

(−1)`

(2`+ 1)!

CB,`
m2`

S2L+1∇2L−1Bµ2`µ2`+1

}
,

(17)

where CB,` and CE,` are dimensionless constants (Wilson
coefficients), the spacetime multi-indices are written out
as 2L = µ1 . . . µ2`, 2L ± 1 = µ1 . . . µ2`±1, etc., and it is
understood that ∇µ does not act on the factors of Uµ
in (16). Note, the monopole (no-spin) and dipole (spin-
orbit) couplings, i.e. the ` = 0 terms, are not included
here, since those are already provided outside of Lc in
(14).

As written in (17), Lc describes the higher-multipole
couplings of an arbitrary body with spin-induced multi-
pole moments. In order to specialize to the case where the
multipoles match those of a spinning (Kerr) black hole,
we set all the C coefficients to unity: CB,` = CE,` = 1 for
all `. This can be justified retrospectively, e.g., by match-
ing the binding energy of a BBH with one spinning and
one nonspinning black hole to the binding energy for a
geodesic in the Kerr spacetime [47] at leading PN order.

C. Linear approximation

We now specialize to a first-post-Minkowskian (or lin-
earized) approximation, writing the spacetime metric as

gµν = ηµν + hµν +O(G2), (18)

where hµν ∼ O(G) is the linear metric perturbation, us-
ing G as a formal expansion parameter. Ultimately, we
aim for a leading-order post-Newtonian (PN) approxi-
mation for the binary dynamics in the near zone of the
source, which will be obtained in the following section
by starting from the post-Minkowskian results discussed
here and then re-expanding at leading orders in the or-
bital velocity.

When the effective point-particle action (for now,
for just one black hole) is added to the Einstein-
Hilbert action for the gravitational field, using the post-
Minkowskian expansion (18) of the metric, we obtain a
total effective action of the form

Seff[h,T] = SG[h] + Skin[T] + Sint[h,T] +O(G2), (19)

where h represents the degrees of freedom of the gravi-
tational field, the metric perturbation hµν(x), and T =
{m, z(λ),ΛA

a(λ), Sµ(λ)} represents the spinning point-
particle degrees of freedom. The term SG[h] is the
Einstein-Hilbert action at leading order in h, which can
be written as

SG[h] = − 1

64πG

∫
d4x ∂ρhµνP

µναβ∂ρhαβ , (20)

while enforcing the harmonic gauge condition,

∂µh̄
µν = 0, (21)

where h̄µν is the trace-reversed metric perturbation,

h̄µν := Pµναβhαβ ,

Pµναβ :=
1

2
(ηµαηνβ + ηναηµβ − ηµνηαβ).

(22)

The kinematic term Skin[T] and the interaction term
Sint[h,T] in (19) are respectively the zeroth- and first-
order terms in the expansion in h of the spinning point-
particle action functional from Sec. II A,

Sp.p.[h,T] = Skin[T] + Sint[h,T] +O(h2). (23)

We now proceed to find explicit forms for these terms,
while establishing appropriate conventions.

We choose to parameterize the worldline with coor-
dinate time, λ = t, in an asymptotically Minkowskian
coordinate system xµ = (x0, xi) = (t, xi). This implies
u0 = 1, as well as ui = vi := dxi/dt for the 3-velocity.
We define the usual Lorentz factor,

γ =
1√

1− v2
=

1
√−uρuρ

+O(h), (24)

where, here and henceforth, the Minkowski metric ηαβ is
used to raise and lower all spacetime indices; note also
v2 = vivjδij . The directional derivative along the parti-
cle’s worldline is denoted with a dot

d

dλ
→ d

dt
=: ˙ . (25)

We fix the freedom in the choice of the global tetrad
ea
µ be taking it to be the symmetric square root of the

metric,

ea
µ = δνa

(
δµν −

1

2
hµν

)
+O(h2). (26)

With these conventions, taking the O(h0) part of Sp.p.

from (14) (with tildes removed) to obtain Skin in (23),
noting that Λ0

µ = δµ0 as follows from (3) and (6)–(7), we
find

Skin[T] =

∫
dt

{
− m

γ
+

1

2
SijΛ

i
K Λ̇Kj +

1

2
Sijv

iv̇j
}
,

(27)

with K = 1, 2, 3.
For the O(h1) interaction part of Sp.p. in (23), we write

Sint =
∫
dt (Lpole-

dipole +Lc), and the pole-dipole terms, aris-
ing from the expansions of the first and fourth terms in
(14) are found to be

Lpole-
dipole =

m

2
UµUν

[
hµν + ε αβ

νρ aρ∂αhβµ

]
+O(ḣ), (28)
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where we use the mass-rescaled spin vector

aµ :=
Sµ

m
. (29)

Notice, we neglect here time derivatives of hµν ; via

integration-by-parts, noting U̇µ = O(h) and ȧµ = O(h),
these become O(h2) terms and total time derivative
terms. (Neglecting the total time derivatives corresponds
to an implicit redefinition of variables [48].)

Finally, for the O(h) part of the higher-multipole cou-
plings in Lc (17), we can use the expansions

Eαβ = − 1

2
UµUν∂α∂βhµν +O(ḣ, h2),

Bαβ =
1

2
UµUνε γτ

ν(β ∂α)∂γhτµ +O(ḣ, h2)

(30)

of the curvature tensors. We then find that it is nat-
ural to combine the contributions from Lpole-

dipole and Lc
by extending the sums in (17) to ` = 0. Having fixed
CB,` = CE,` = 1 to ensure matching with the Kerr space-
time, as outlined above, the full interaction term is ex-
pressed as

Sint[h,T] =

∫
dt

{ ∞∑
`=0

mUµUν

2γ `!
Re

[
i`aL∂Lhµν

+ i`−1aµε αβ
νµ ∂αa

L−1∂L−1hβµ

]}
,

(31)

which matches a result in [33]. Having completed the
relevant post-Minkowskian expansions, we henceforth set
G = 1.

III. CONSERVATIVE DYNAMICS

The building blocks from the previous section are now
combined to give an effective description of a BBH at
leading post-Newtonian order, but to all orders in spin.
The underlying field equations are derived from the full
effective BBH action

SBBH
eff [h,T1,T2] = SG[h]

+ {Skin[T1] + Sint[h,T1] + (1↔ 2)},
(32)

with two copies of the kinetic and interaction terms as
discussed above, for each of the black holes, 1 and 2.
A slow-motion approximation is achieved by expansion
in the orbital velocity v up to linear order. Our near-
zone (NZ) solution hµνNZ, obtained in the no-retardation
limit, agrees with results presented in [49, 50]. We fol-
low the Fokker-action approach used in [51] to derive the
equation of motion of the orbital parameters. A Hamil-
tonian encoding equivalent equations of motion has been
obtained using effective field theoretic tools in [33]. Fi-
nally, we put the equations of motion into explicit form,
solve them, under the above assumption of circular spin-
aligned motion, and obtain the conserved energy and con-
served orbital angular momentum of the BBH to all or-
ders in spin and at the leading PN orders.

A. Field equations and near zone solution

In the full effective BBH action, the metric pertur-
bation was considered at leading post-Minkowskian or-
der. The linearized field equations, in harmonic coordi-
nates, are obtained by varying (32) with respect to the
fields hµν . Integrating by parts, and dropping vanishing
boundary terms, yields the field equations

�h
µν

A = − 16πTµνA ,

TµνA = mAγA

∞∑
l=0

(−1)l

l!
Re
[
iluµAu

ν
Aa

L
A∂LδA

+ il−1uσAa
ρ
Aε

α(µ
σρ u

ν)
A a

L−1
A ∂αL−1δA

]
,

(33)

for black holes A = 1, 2, where we split h
µν

= h
µν

1 +h
µν

2 .
We have used

∫
dt =

∫
d4x δA, with δA := δ[x− zA(t)] in

(31).
The general solution to the inhomogeneous wave equa-

tion is well-known. The retarded inverse d’Alembertian
integral operator, defined by h

µν
= −16π�−1

retT
µν , re-

duces as (�−1
retT

µν)(x, t)→ (∆−1Tµν)(x, t) at leading PN
order in the NZ, where [8]

(∆−1Tµν)(x, t) = − 1

4π

∫
d3x′

Tµν(x′, t)

|x− x′|
. (34)

Retardation effects would contribute only at next-to-
leading PN orders. Applying ∆−1 to the effective energy-
momentum tensor in (33), the NZ linearized gravitational
field of the Ath black hole in the binary is explicitly given
by

h
µν

NZ,A(t,x) = 4mAγA

∞∑
`=0

1

`!
Re
[
iluµAu

ν
Aa

L
A∂Lr

−1
A

+ il−1uσAa
ρ
Aε

α(µ
σρ u

ν)
A a

L−1
A ∂αL−1r

−1
A

]
,

(35)

with rA := |x−zA(t)|. This solution has been obtained in
the linear post-Minkowskian approximation, but it still
contains non-linear-in-velocity contributions at each or-
der in spin.

The leading-order slow-motion approximation is
achieved by truncating the NZ solutions (35) after linear-
in-v terms. This yields a leading PN expansion at each
order in spin. Carefully excluding the higher-order v
terms (e.g., noticing that γ = 1 +O(v2) and a0 = O(v)),

the trace of the solution hµνNZ,A = Pµναβ h̄
αβ
NZ,A is given by

hNZ,A = h
00

NZ,A − h
ij

NZ,Aδij

= 4mADC [aA]r−1
A +O(v2).

(36)

Here, we made use of the differential operator

DC [a] :=

∞∑
`=0

(−1)`

(2`)!
a2L∂2L

= cosh(a×∇),

(37)



6

and define for later convenience

DiS [a] := − ajε ikj
∞∑
`=0

(−1)`

(2`+ 1)!
a2L∂2Lk

= [sinh(a×∇)]i.

(38)

Here ∇ = ∂/∂x, and the index i in (38) labels the com-
ponents of the operator with respect to the chosen basis
(i.e., can be raised and lowered with δij). Additionally,
both operators obey the usual hyperbolic trigonometric
identities.

The NZ gravitational fields hµνNZ,A of a spinning black hole at 1PM order is

h00
NZ,A =− 2φA +O(v2), φA :=

{
−DC [aA] + 2v

(A)
i D

i
S [aA]

}mA

rA
, (39a)

h0j
NZ,A = AjA +O(v2), AiA :=

{
4viADC [aA]− 2DiS [aA]

}mA

rA
, (39b)

hijNZ,A =
1

2
hNZ,Aδ

ij + σijA +O(v2), σijA := − 4v
(j
AD

i)
S [aA]

mA

rA
. (39c)

The complete leading-PN-order NZ solution of the BBH

hNZ,BBH
µν = hNZ,1

µν + hNZ,2
µν +O(v2) (40)

is obtained by superposing the gravitational field of both
black holes.

B. Equations of motion for separation vector

In the following, the focus lies on the derivation of
the set of equations of motion describing the binary’s
separation vector r := z1 − z2, with r = |r|. From this,
the spin corrections to the Newtonian orbital parameter
ω, the angular velocity, are obtained. These equations for
r result from the kinematic behavior of the black holes in
the time-dependent near-zone field (40). This behavior
is encoded in

SEoM
eff [hNZ,1,hNZ,2,T1,T2] =

1

2
Sint[h

NZ,2,T1]

+ Skin[T1] + (1↔ 2),

(41)

where we made again use of the functionals (27) and
(31). Note, we made use of SG[hNZ,1 + hNZ,2] =
−1/2Sint[h

NZ,1,T2] + (1 ↔ 2), plus (divergent) h2
1 and

h2
2 terms which do not influence the equations of motion.

The equation relating the frequency ω to the radius r will
be obtained from the equations of motion for r, restricted
to circular spin-aligned motion.

One of the interaction terms in (41) is given by

Sint[h
NZ,2,T1] =

m1γ1

2

∫
dt

∞∑
l=0

1

l!
Re
[
iluµ1u

ν
1a
L
1 ∂Lh

NZ,2
µν

∣∣∣∣
z1

+il−1uσ1a
ρ
1ε

αµ
σρ uν1a

L−1
1 ∂αL−1h

NZ,2
µν

∣∣∣∣
z1

]
.

(42)

By redefining ∇ := ∂/∂z1 (which we use throughout the
rest of the paper), and noting that the differential opera-
tors DC [a] and DiS [a] in (37) and (38) change accordingly,
the interaction terms can be combined into

Sint[h
NZ,2,T1] + SBH

int [hNZ,1,T2] =∫
dt

{[
2DC [a0] + 4viDiS [a0]

]
m1m2

r
+O(v2)

}
,

(43)

Hyperbolic trigonometric identities have been used to
combine the operators, and we have defined

a0 := a1 + a2,

v := v1 − v2.
(44)

The kinetic terms follow directly from (27). With
Sij = εijkS

k, both kinetic terms in (41) read

Skin[T1] + Skin[T2] =

∫
dt

{
−m1

+
m1

2
v2

1 +
1

2
S1 · (v1 × z̈1) + (1↔ 2)

}
.

(45)

Then, the effective action (41), together with (43) and
(45), provides the full conservative dynamics of the bi-
nary.

At this stage it is convenient to change the coordinate
system on the spatial slices. The coordinate origin is cho-
sen to be the center of mass of the BBH. This amounts
to setting the conserved quantity associated with boost
symmetry of (41) to zero, resulting in the coordinate
transformation

z1 =
m2

M
r − b, z2 = −m1

M
r − b,

b =
1

M
(v1 × S1 + v2 × S2),

(46)

where M = m1 +m2 is the total mass of the system, and
µ = M−1m1m2 the reduced mass. Similar relations are
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Θ

φ

Φ

RN

nλ

S1

S2

m1

m2
x

y

z

FIG. 1. The BBH configuration is illustrated for the case of
m1 = m2 and S1 = S2. The coordinates are chosen such
that the orbital plane coincides with the (x, y)-plane: ẑ ≡ `.
Finally, N , introduced together with R in (68), is pointing
radially outwards, parameterized by Θ and Φ in the usual
way.

found for the velocities vA = żA. The unit vectors

n :=
r

r
, λ :=

v

v
, (47)

with v = |v|, span the orbital plane. Finally, a third
vector ` is constructed to be orthonormal to the orbital
plane. Then the three vectors {n,λ, `} pose a positively-
oriented triad, n×λ = `. In FIG. 1 the BBH configura-
tion in the center of mass frame is depicted for the case
of equal masses and spin vectors.

Applying this transformation at the level of the action,
and utilizing df/dt = (v ·∇)f , for any f(r), the variation
of (41) with respect to the wordline of the center of mass
yields

r̈j =

{
∂jDC [a0] + viσ∗kε j

kl ∂i∂
lDC [a0]

− 2
[
δji v

k∂k − ∂jvi
]
DiS [a0]

}
M

r
,

(48)

the equation of motion for the seperation vector. Here
we followed the conventions of [33], defined

Mσ∗ = m2a1 +m1a2 (49)

and used ∂i = ∂/∂zi1. The action of the differential op-
erators DS [a0] and DiS [a0] on r−1 is presented in detail
in the Appendix. Utilizing the results shown there, the
implicit equations of motion (48) simplify to the explicit
form

r̈ =− r
[

M

(r2 − a2
0)3/2

− vM(σ∗ + 2a0)

r(r2 − a2
0)3/2

]
, (50)

where a0 = ` · a0 and σ∗ = ` · σ∗.

C. Orbital parameter and conserved energy

The equations of motion (50) allow a wide variety of
different solutions for the separation vector r. However,
in this paper we only focus on the special case of circular
motion with aligned spins. In this case, the spins are
constant vectors (as can be verified from their equations
of motion, not presented here), and the acceleration r̈
is directly proportional to r, with the squared angular
velocity serving as proportionality constant:

r̈ = −ω2r. (51)

Comparing (50) and (51), we find

ω2 =
M

r

r − v(2a0 + σ∗)

(r2 − a2
0)3/2

, (52)

for the radius-frequency relationship. For convenience,
we introduce the standard PN expansion parameter

x = (ωM)2/3. (53)

Then the separation r of the black holes, at leading post-
Newtonian order and to all orders in spin, denoted by
LO-S∞, is split into even- and odd-in-spin parts

rLO-S∞(x) = reven(x) + rodd(x), (54)

where

reven(x) =

√
M2

x2
+ a2

0,

rodd(x) = − reven(x)
x3/2M

3

σ∗ + 2a0

M2 + x2a2
0

.

(55)

Expanding this result yields a leading PN spin expansion
of the form described in TABLE I.

Finally, the conserved energy of the BBH, assuming
invariance under time translations of (41), reduces to

E(ω) = µ

(
1

2
r2ω2 + r2ω3σ∗ − M√

r2 − a2
0

)
. (56)

Specializing to circular orbits (i.e., r = rLO-S∞), the con-
served energy of the BBH to all orders in spin at leading
post-Newtonian order, is

ELO-S∞(x) = −µx
2

{
1 +

x3/2

3M
(7a0 + δa−)− x2a2

0

M2

− x7/2a2
0

M3
(a0 − δa−)

}
,

(57)

where ν = µM−1, δ = M−1(m1−m2) and a− = a1−a2,
with ` · a− = a−.

In this special case, the coefficients Ap, from TABLE I,
vanish for p > 3. Thus, remarkably, the spin-expansion of
the binding energy of the binary terminates after cubic-
in-spin contributions. Therefore, our result coincides
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S0 S1 S2 S3 S4 . . . Spa Sp+1a . . .

LO
0PN A0 · 1 A2 · x2χ2 A4 · x4χ4 . . . Ap · xpχp . . .

0.5PN A1 · x3/2χ A3 · x7/2χ3 . . . Ap+1 · xp+3/2χp+1 . . .

NLO
1PN B0 · x B2 · x3χ2 B4 · x5χ4 . . . Bp · xp+1χp . . .

1.5PN B1 · x5/2χ B3 · x9/2χ3 . . . Bp+1 · xp+5/2χp+1 . . .
...

...
...

...
...

...
...

...
...

. . .

a Here p is even.

TABLE I. The results presented in this paper are expansions separately in the traditional post-Newtonian parameter εPN ∼
v2 ∼ m/r ∼ x and the spin expansion parameter εspin ∼ a/r ∼ xχ (In this table, χ serves as book keeping parameter for
the spin expansion). Different rows correspond to different powers of εPN (LO stands for leading-order, and NLO for next-to-
leading order), and different columns to different powers of εspin. Let p be even. Then there is an absolute leading order term
of the expansion in x ∼ εPN, given by Ap · εpspin = Ap · xpχp, with coefficient Ap = Ap(m1,m2,a1,a2). This is the leading
post-Newtonian term at that order in spin. Similary, at (p+1)th order in spin, the absolute leading order term, in the expansion

of x ∼ εPN, is Ap+1 ·
√
εPNε

p+1
spin = Ap+1 · xp+3/2χp+1. In this work we only focus on the leading PN order, i.e., Bp ≡ 0 for all p,

which we denote by LO-S∞. Every expression (e.g., conerved energy, total energy flux etc.), can be written as a sum over p of
all LO terms with different coefficients Ap (up to a multiplicative function depending on masses and x).

with that of [32] in the special case of aligned spins. How-
ever, we extended the validity of the expression presented
there to all orders in spin. Note that the truncation at
cubic order in spin hinges on the use of x as the vari-
able in the binding energy. Compare also to the result
for neutron stars to quartic order in spin [20], where the
constants CE,` and CB,` are not unity as for black holes
and A4 does not vanish. In general, for neutron stars all
coefficients Ap in ELO-S∞(x) are nonzero.

The justification for the choice of coefficients in (17)
can now be presented. We define the dimensionless Kerr
spin-parameter χA = mAaA of the individual black holes
in the considered BBH. Then, in the limit of m2/m1 → 0,
the conserved energy ELO-S∞ reduces to the binding en-
ergy associated with geodesic motion in Kerr spacetime
[47] (characterized by spin-parameter mχ), under the
identification χ1 · ` → χ. A small deviation of the
coefficients CE,` and CB,` from unity would have lead
to additional terms in the test-body limit of ELO-S∞ .
The resulting binding energy would have not matched
the one for geodesic motion in the Kerr solution. Thus,
CE,` = CB,` = 1 is the unique choice, to approximate the
Kerr solution at 1PM order.

Additionally, one can equivalently describe the conser-
vative dynamics with the conserved angular momentum.
In the special case of spin-aligned circular motion the
total and the orbital angular momentum are conserved.
The orbital angular momentum L(ω) = L · ` is always
orthogonal to the orbital plane:

L(ω) = µ

(
ωr2 +

3

2
ω2r2σ∗ − 2Ma0√

r2 − a2
0

)
. (58)

Using rLO-S∞(x), the spin expansion of the orbital an-
gular momentum in terms of the PN parameter x ter-
minates, similar to the binding energy, at cubic-in-spin

contributions:

LLO-S∞(x) = µx−1/2

{
M − 5

12
x3/2(7a0 + δa−)

+
x2a2

0

M
+

3x7/2

4M2
a2

0(a0 − δa−)

}
.

(59)

IV. FAR ZONE MODES AND ENERGY FLUX

In this section, the far zone dynamics of the binary
black hole is analyzed. Again, this is done in the leading
post-Newtonian approximation scheme employed before,
where all spin-induced multipole moments are consid-
ered. The gravitational wave modes and the total energy
flux emitted by the binary are determined at future null
infinity. To do so, a set of source multipole moments,
of the complete BBH, is constructed. Our results for
these source moments agree with those presented in [32]
(before inserting the solution for the orbital separation
r). Utilizing these source moments, we obtain the total
gravitational wave energy flux and the gravitational wave
modes at the leading PN order and to all orders in the
black holes’ spin.

A. Source multipole moments

We consider the mass and current type source mul-
tipole moments, IL(t̃) and JL(t̃) respectively, at leading
post-Newtonian order. Here we introduced the Euclidean
distance R from the above defined center of mass of the
system to a far zone spacetime point, which enables us
to include the retardation by t̃ = t−R. Notice, differen-
tiation with respect to t̃ and t are equivalent and will be
denoted by an overdot as before.
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The complete energy-momentum distribution of the
BBH, the sum of the individual contributions (33), is

T 00 =
{
DC [a1]− v(1)

i D
i
S [a1]

}
m1δ1 + (1↔ 2) +O(v2),

T 0j =
1

2

{
2vj1DC [a1]−DjS [a1]

}
m1δ1 + (1↔ 2) +O(v2),

T ij =− v(i
1 D

j)
S [a1]m1δ1 + (1↔ 2) +O(v2).

(60)

The slow-motion approximation is achieved by discarding
nonlinear velocity contributions.

In the following, angular brackets 〈. . . 〉 denote a
symmetric-trace-free (STF) projection of the respective
indices. Furthermore, from the above energy-momentum
tensor (60) can be seen that T̈ ij ∼ O(v3) and Ṫ ij ∼
O(v2) contribute at next-to-leading order. Consider-
ing this, the multipole moments of the post-Newtonian
source reduce to [8]

IL = FP

∫
d3x

∫ 1

−1

dz

{
δ`(z)x〈L〉(T

00 + T ijδij)

− 4(2`+ 1)

(`+ 1)(2`+ 3)
δ`+1(z)x〈aL〉Ṫ

0a

}
,

JL = FP

∫
d3x

∫ 1

−1

dz εab〈i`

{
δ`(z)xL−1〉aT

0b

}
.

(61)

In these expressions, the energy-momentum tensor Tµν =
Tµν(x, t̃+ zr) is a function of the extended time, which,
together with the associated weighting function δl(z),
takes the finite size of the source, and the resulting time
retardation, into account. As argued above, at lead-
ing post-Newtonian order the finite-size-retardation van-
ishes, since

∫ 1

−1

dz δ`(z)T
µν(x, t̃+ zr) = Tµν(x, t̃) +O(v2). (62)

In principle, the total energy flux, as well as the gravi-
tational wave modes, depend on all source multipole mo-
ments. However, as discussed below, only the mass- and
current-quadrupole and -octopole contain leading PN in-
formation.

In that context, the mass-type moments of the compact binary are

Iij = m1z
〈ij〉
1 +

4

3

(
2va1S

b
1ε

〈i
ab z

j〉
1 − za1Sb1ε

〈i
ab v

j〉
1

)
− 1

m1
S
〈i
1 S

j〉
1 + (1↔ 2) +O(v2)

Iijk = m1z
〈ijk〉
1 +

3

2

(
3va1S

b
1ε

〈i
ab z

jk〉
1 − 2za1S

b
1ε

〈i
ab vj1z

k〉
1

)
− 3

m1
S
〈i
1 S

j
1z
k〉
1 −

3

2m2
1

va1S
b
1ε

〈i
ab Sj1S

k〉
1 + (1↔ 2) +O(v2)

(63a)

and similarly the current-type moments are

J ij = m1z
a
1v
b
1ε

〈i
ab z

j〉
1 +

3

2
S
〈i
1 z

j〉
1 +

1

2m1
2va1S

b
1ε

〈i
ab S

j〉
1 + (1↔ 2) +O(v2),

J ijk = m1z
a
1v
b
1ε

〈i
ab z

jk〉
1 + 2S

〈i
1 z

jk〉
1 +

1

m1

(
2va1S

b
1ε

〈i
ab Sj1z

k〉
1 − za1vb1ε

〈i
ab Sj1S

k〉
1

)
− 2

3m2
1

S
〈i
1 S

j
1S

k〉
1 + (1↔ 2) +O(v2).

(63b)

B. The total gravitational wave energy flux

The total GW energy flux can be directly obtained
from the source multipole moments computed in the last
section with the well-known formula [52]

F =

∞∑
`=2

{
(`+ 1)(`+ 2)

(`− 1)``!(2`+ 1)!!
U̇LU̇L

+
4`(`+ 2)

(`− 1)(`+ 1)!(2`+ 1)!!
V̇LV̇L

}
.

(64)

UL and VL depend on the `-th time derivative of the
source moments IL and JL, as well as auxiliary source
moments WL, XL, YL and ZL as described in [8]. How-

ever, at leading post-Newtonian order: UL = I(`)
L and

VL = J (`)
L , with f (`)(t̃) = d`/dt`f(t − R). In the spin-

aligned configuration, the only time-dependent quanti-
ties in (63) are v(t̃) = vλ(t̃) and r(t̃) = rn(t̃), where

λ(`) ∼ O(x3`/2) and n(`) ∼ O(x3`/2). Taking also the
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spin contributions from r = rLO-S∞(x) into account,4

only the source quadrupole moments contribute at lead-
ing PN order. Therefore, expression (64) reduces to

F =
1

5

...
I ij

...
I ij +

16

45

...
J ij

...
J
ij
. (65)

Carefully combining the individual leading PN order con-
tributions at each spin order, the total gravitational wave
energy flux of the binary black hole simplifies to

FLO-S∞ =
µ2x5

M2

[
32

5
−8x3/2

5M

{
8a0 + 3δa−

}
+

2x2

5M2

{
32a2

0 + a2
−

}
− 4x7/2

15M3

{
16a3

0 + 2a0a
2
− + 52δa2

0a− + δa3
−

}
+

2x4a2
0

5M4

{
16a2

0 + a2
−

}
+

2a2
0x

11/2

15M5

{
64a3

0 + a0a
2
− − 68δa2

0a− − 3δa3
−

}]
.

(66)

Similar to the conserved energy, the total energy flux as-
sumes the pattern described in TABLE I, where in this
case Ap>5 = 0. FLO-S∞ reproduces the results presented
in [32] up to cubic-in-spin effects. Again, the infinite sets
of spin-induced multipolar interactions of the two black
holes remarkably cancel out at higher than quintic-in-
spin contributions. Hence, the total energy flux conveys
full information about the spin effects at leading PN or-
der in the first five terms of the spin expansion.

C. Far zone gravitational wave modes h`m

The angular distribution of the energy flux, as well as
the frequencies, are encoded in the gravitational wave
modes h`m. In the proceedings, we follow the conven-
tions of [53]. As outlined above, we choose to describe
the radiative dynamics in Cartesian coordinates on the
background, with the center of mass of the BBH at the
origin. Then, the defined spatial triad {n,λ, `} can be
written as

n = (cosωt̃, sinωt̃, 0),

λ = (− sinωt̃, cosωt̃, 0),

` = (0, 0, 1).

(67)

Additionally, we define the radially outwards pointing 3-
vector N by

N = (sin Θ cos Φ, sin Θ sin Φ, cos Θ), (68)

such that R = RN (see also FIG. 1, with ωt̃ = φ). Fur-
thermore, the STF spherical harmonics Y`mL are defined
by Y `m(Θ,Φ) = Y`mL NL, with the usual spherical har-
monics: Y `m(Θ,Φ).

4 Together with v = ωr = x3/2M−1r(x).

The gravitational wave modes h`m are the projections
of the polarization waveforms h+ − ih× onto the spin
weighted spherical harmonics −2Y

lm(Θ,Φ) with weight
s = −2:

h+ − ih× =

∞∑
`=0

∑̀
m=−`

h`m −2Y
`m(Θ,Φ). (69)

Making use of the Wigner d-function, the spin weighted
spherical harmonics are

−sY
`m(Θ,Φ) = (−1)s

√
2`+ 1

4π
d`m,s(Θ)eimΦ, (70)

where

d`m,s(Θ) = N`,m

×
kmin∑

k=kmax

(−1)k (sin Θ/2)
2k+s−m

(cos Θ/2)
2`+m−s−2k

k!(`+m− k)!(`− s− k)!(s−m+ k)!
,

(71)

with

N`,m =
√

(`+m)!(`−m)!(`+ s)!(`− s)!,
kmax = max(0,m− s),
kmin = min(`+m, `− s).

(72)

Here s is referred to as the spin weight and ` and m are
the usual labels know from spherical harmonics. The far
zone gravitational wave modes are generally given by

h`m =
1√
2R

[
U`m(t̃)− iV`m(t̃)

]
, (73)

with

U`m =
16π

(2`+ 1)!!

√
(`+ 1)(`+ 2)

2`(`− 1)
ULY`m∗L , (74)

V`m =− 32π`

(2`+ 1)!!

√
(`+ 2)

2`(`+ 1)(`− 1)
VLY`m∗L , (75)
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where ∗ denotes complex conjugation.

We present the gravitational wave modes h`m, such
that the polarization waveform (69) only contains lead-
ing order post-Newtonian information at each order in
spin. However, expanding h+− ih× in εPN (as described
in TABLE I) we find that h`≤3,m contribute exclusively
– only the mass- and current quadrupole, as well as their

octopolar companions, are needed. In order to organize
the presentation, we factorize the time- and distance-
dependence, t̃ and R respectively, out as follows:

h`mLO-S∞ =

√
π

M3R
ĥ`me−imωt̃. (76)

Finally, at leading PN order at all orders in spin, the

associated ĥ`m modes are ĥ20 = 0 = ĥ30 and

ĥ22 = − 8µx

3
√

5

{
3M3 −M2x3/2(3a0 + a−δ) + 3x2a2

0M + 2x7/2a2
0(a0 − a−δ)

}
, (77a)

ĥ21 = − 2iµx3/2

3
√

5

1√
M2 + x2a2

0

{
4δM4 − 6M3x1/2a− + 2M2x2

[
2a0a− + 4δa2

0 + δa2
−

]
− 6Mx5/2a2

0a− + x4a2
0

[
3δa2
− + 4δa2

0 − a0a−

]}
, (77b)

ĥ33 = 3i

√
6

7
µδx3/2(M2 + x2a2

0)3/2, (77c)

ĥ32 = − 8µx5/2

3
√

7
(a0 − δa−)(M2 + x2a2

0), (77d)

ĥ31 = − i

3

√
2

35
µx3/2(M2 + x2a2

0)1/2
{
M2δ + a0x

2(a0δ − 4a−)
}
. (77e)

The remaining modes are obtained exploiting the rela-
tion h`,−m = (−1)`h`m∗. The spin expansion of even-in-
m modes terminates at a finite order. The polarization
waveform (69), together with (77), contains all possible
spin effects at leading post-Newtonian order in the case
of the circular motion and the black holes’ spins aligned
with the orbital angular momentum.

V. CONCLUSION

We determined the binding energy, the gravitational
wave modes and total energy flux emitted by a spin-
ning non-precessing binary black hole in quasi-circular
motion at leading post-Newtonian orders at all orders
in spin. Our results include contributions of arbitrarily
large PN order, counting in 1/c2. In particular, we ob-
tained for the first time the quartic-in-spin contributions
to the 4PN waveform and total energy flux, along with
all higher-order-in-spin contributions at the correspond-
ing leading PN orders. Remarkably, the binding energy,
the total energy flux, as well as some of the gravitational
wave modes only contain a finite number of non-zero spin
contributions at leading post-Newtonian order. For in-
stance, we showed that previously found results for the
binding energy are now valid, without additional correc-
tions, to all orders in spin.

Conversely, the modes where all powers in spin appear
are nevertheless rather compact, which can be used to

improve the resummation of modes, e.g., in the syner-
getic EOB waveform model [54]. Though our results are
only valid for aligned spins, they can still be used to ap-
proximate waveforms from precessing binaries [36]. We
leave the investigation of precessing systems, or analy-
sis of possibly similar resummations of all spin orders at
next-to-leading post-Newtonian order, to future work.
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Appendix: Action of DC [a] and Di
S[a] on r−1

In the following, the action of the differential operators
DC [a] and DiS [a], defined in (37) and (38) respectively,
on r−1 = |z1− z2|−1 are presented in detail. Recall from
Sec. III B, the vectors {n,λ, `} pose a positively oriented
triad (i.e., n× λ = `) on the spatial slices of spacetime,
where r = rn. Let us assemble the tools first [55]. In
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the this appendix, we use ∂i = (∂/∂z1)i; therefore, the
simple identity

∂Mr
−1 = (−1)m(2m− 1)!!

n〈M〉

rm+1
, (A.1)

where 〈. . . 〉 indicates a symmetric trace-free (STF) pro-
jection, holds. Let P`(x) be the `th Legendre polynomial,
then the STF contraction of two arbitrary unit vectors h
and h′, with relative angle α = h · h′, can be shown to
be

h′〈M〉h
〈M〉 =

m!Pm(α)

(2m− 1)!!
. (A.2)

Lastly, we recall that

Pm(0) =

{
(−1)n

4n

(
2n
n

)
, m = 2n

0, otherwise,
(A.3)

with binomial coefficient
(
k
l

)
. Due to spin alignment, we

only need to consider arbitrary vectors k = k`, where
k = k · `. Thus, using (37), we find

DC [k]r−1 =

∞∑
m=0

(−1)mk2mP2m(n · `)
r2m+1

. (A.4)

Since P2m(n · `) is independent of r, the circular motion
restriction can be used at this stage (even when addi-
tional derivatives need to be taken). We obtain, after
making use of (A.3) and resumming the resulting series,

DC [k]r−1 =

∞∑
m=0

(
2n

n

)(
k

2

)2m

r−2m−1

=
1√

r2 − k2
.

(A.5)

Any additional spatial differentiation of this result with
∂ can be done simply by using the first line of (A.5). For
instance, the expression ∂jDC [k]r−1 can be computed
by noting ∂ir = ni. Using (A.1), and resumming the
resulting expression, we acquire

∂jDC [k]r−1 =
−rj

(r2 − k2)3/2
. (A.6)

The action of DiS [k] on r−1 is obtained similarly. Using
(38), the differential operator is given by

DiS [k]r−1 = kjε idj

∞∑
m=0

(−1)mk2mndP2m(n · `)
r2m+4

. (A.7)

For example, applied to the case vj∂jDiS [k]r−1, using
(A.1) and resumming, we find

vj∂jDiS [k]r−1 =
vkri

r3
√
r2 − k2

, (A.8)

where v = |v| = vλ. The necessary expressions for (48)
can gathered in this way. We find:

∂jviDiS [k]r−1 =− rj vk
r3

k2 − 2r2

(r2 − k2)3/2
, (A.9)

viσ∗kε j
kl ∂i∂

lDC [k]r−1 = rj
vσ∗

r

1

(r2 − k2)3/2
. (A.10)

Here, as defined in the text, σ∗ = ` · σ∗.

[1] B. P. Abbott et al. (Virgo, LIGO Scientific), Phys. Rev.
Lett. 116, 241103 (2016), arXiv:1606.04855 [gr-qc].

[2] B. P. Abbott et al. (Virgo, LIGO Scientific), Phys. Rev.
Lett. 116, 061102 (2016), arXiv:1602.03837 [gr-qc].

[3] B. P. Abbott et al. (Virgo, LIGO Scientific), Phys. Rev.
Lett. 119, 141101 (2017), arXiv:1709.09660 [gr-qc].

[4] B. P. Abbott et al. (Virgo, LIGO Scientific), Phys. Rev.
Lett. 119, 161101 (2017), arXiv:1710.05832 [gr-qc].

[5] B. P. Abbott et al. (VIRGO, LIGO Scientific), Phys. Rev.
Lett. 118, 221101 (2017), arXiv:1706.01812 [gr-qc].

[6] B. P. Abbott et al. (Virgo, LIGO Scientific), (2017),
arXiv:1711.05578 [astro-ph.HE].

[7] B. P. Abbott et al. (LIGO Scientific, VINROUGE, Las
Cumbres Observatory, DES, DLT40, Virgo, 1M2H, Dark
Energy Camera GW-E, MASTER), Nature 551, 85
(2017), arXiv:1710.05835 [astro-ph.CO].

[8] L. Blanchet, Living Rev. Rel. 17, 2 (2014),
arXiv:1310.1528 [gr-qc].

[9] T. Futamase and Y. Itoh, Living Rev. Rel. 10, 2 (2007).

[10] A. Buonanno and T. Damour, Phys. Rev. D59, 084006
(1999), arXiv:gr-qc/9811091 [gr-qc].

[11] A. Buonanno and T. Damour, Phys. Rev. D62, 064015
(2000), arXiv:gr-qc/0001013 [gr-qc].

[12] T. Damour, P. Jaranowski, and G. Schäfer, Phys. Rev.
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